WorldWideScience

Sample records for diagnostic imaging agent

  1. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto

    2012-01-01

    In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes...... that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...

  2. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  3. Liposomes as carriers of imaging agents

    International Nuclear Information System (INIS)

    Caride, V.J.

    1985-01-01

    This review discusses the utilization of liposomes as imaging agents or as vehicles for contrast materials. The initial approach was the use of radiolabeled liposomes for scintigraphy. To this end liposomes were either labeled in the lipid membrane or aqueous radiotracers were incorporated inside the lipid vesicles. The lipid labeling provides a more stable association of the radioactive tracer and the lipid vesicles, while the use of water-soluble radiotracers provides a wider selection of compounds. Early attempts at selective tumor imaging using radiolabeled liposomes were unsuccessful. The use of monoclonal antibodies attached to liposomes offers new hopes. Several strategies have been proposed in this respect and several others can be envisioned. The use of liposomes permits the use of several administration routes for imaging agents. Of particular interest is the subcutaneous administration for lymph node visualization. Liposomes offer clear advantages over most radiocontrast agents for prolonged hepatosplenic contrast enhancement. This is particularly relevant in the diagnostic evaluation of the abdomen with computed tomography. Important research efforts are being conducted in this area. Two different approaches have been advanced: the incorporation of contrast agents into liposomes and the preparation of radiopaque liposomes from radiodense lipids. Nuclear magnetic resonance imaging can also benefit from contrast agents. Several centers are investigating this exciting field using liposomes loaded with paramagnetic elements.152 references

  4. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  5. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  6. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  7. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    National Research Council Canada - National Science Library

    Markland, Francis S

    2008-01-01

    ...%. This project outlines the development of a recombinant version of a member of a class of proteins known as disintegrins as an innovative imaging and diagnostic agent for ovarian cancer (OC). Vicrostatin (VN...

  8. Diagnostic imaging of lung cancer with In-111-MDEGD

    International Nuclear Information System (INIS)

    Nakajima, Susumu; Hayashi, Hideo; Maeda, Tomio

    1987-01-01

    Indium-111-mono DTPA-ethyleneglycol Ga deuterporphyrin (In-111-MDEGD) is a new tumor imaging agent in lung cancer. The agent has been studied with golden hamsters bearing adenocarcinoma, C57 black mice bearing Lewis lung adenocarcinoma, and nude mice bearing human lung adenocarcinoma xerografts. It has been revealed that the tumor-to-lung, tumor-to-kidney, and tumor-to-blood ratios are higher for In-111-MDEGD than for Ga-67 citrate widely used in imaging tumors, and that the agent is not accumulated in inflammatory lesions. The results were encouraging enough to start clinical diagnostic trials in lung cancer. In this paper, an overview of In-111-MDEGD, along with its preliminary data, is given. (Namekawa, K.)

  9. Diagnostic value of β amyloid plaques imaging agent 131I-IMPY brain imaging in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Ye Wanzhong; Lu Chunxiong; Yang Min; Bao Jiandong; Cheng Zhaohuo; Cai Deliang; Wang Zhiqiang; Yang Bixiu

    2012-01-01

    Objective: To evaluate the diagnostic value of β-amyloid plaques imaging agent [ 131 I] 2( 4-dimethylaminop henyl)-6-iodoimidazo [1, 2-α] pyridine ( 131 I-IMPY) SPECT imaging in early Alzheimer's Disease. Methods: 24 cases of AD (7 males, 17 females, aged 48∼79 years) and 14 normal (6 males, 8 females, aged 42∼67 years) control subjects were selected for this study. 131 I-IMPY SPECT imaging was carried out 2-3 h post injection. 131 I-IMPY uptake defined as the ratio of each brain gyrus and cerebellum uptake on fixed region of interest (ROI) (Rcl/cb) was calculated. Comparative analysis between the two groups was carried out using t-test. Results: In patients with early AD (MCI), 131 I-IMPY was increased in parietal gyrus, temporal gyrus and frontal gyrus compared with normal control group and it were found to be statistically significant (t = 1.3967∼2.8757, all P 0.05). In patients with AD, increase in 131 I-IMPY were observed in parietal, temporal, occipital lobes and basal ganglia compared with normal control group and it were found to be statistically significant (t=2.1001∼6.2789, all P 0.05), and 131 I-IMPY was increased in occipital lobes and basal ganglia compared with MCI group and it were found to be statistically significant (t=2.0850∼3.6772, all P 131 I-IMPY was lightly increased in each brain of left side gyrus compared with right but without statistically significant difference (t=0.1273∼0.5571, all P>0.05). Conclusions: 131 I-IMPY SPECT Imaging was helpful for early diagnosis of AD. (authors)

  10. The inextricable axis of targeted diagnostic imaging and therapy: An immunological natural history approach

    International Nuclear Information System (INIS)

    Cope, Frederick O.; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin

    2016-01-01

    Summary: In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. 99m Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a K d of 3 × 10 −11 M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (> 2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular “drug compilers” of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate 99m Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis

  11. Diagnostic agent for radioimmunological determinations

    International Nuclear Information System (INIS)

    Updike, S.J.

    1978-01-01

    The invention concerns a diagnostic agent for radioimmunological determinations. According to the invention, a binding protein (protein globulins, antibodies) of an aqueous solution specific for the substance to be determined is incorporated in gel particles of a strongly hydrophilic insoluble gel of controlled pore size. After subsequent drying of the system, a radioactively labelled form of the substance to be determined from a non-aqueous medium is included. The mixture is dried again. The diagnostic agent forred can be well stored and is very stable. There is no loss of activity of the specific bonding protein when drying according to the invented method. The described reagent can be effectively applied to the determination of many antigens and haptens: The gel is rehydrated by the sample to be investigated; as a result of this, the non-bonded tracer is set free and competes with the non-labelled substance for the bonding position. (VJ) [de

  12. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  13. Study for the design method of multi-agent diagnostic system to improve diagnostic performance for similar abnormality

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Gofuku, Akio

    2014-01-01

    Accidents on industrial plants cause large loss on human, economic, social credibility. In recent, studies of diagnostic methods using techniques of machine learning such as support vector machine is expected to detect the occurrence of abnormality in a plant early and correctly. There were reported that these diagnostic machines has high accuracy to diagnose the operating state of industrial plant under mono abnormality occurrence. But the each diagnostic machine on the multi-agent diagnostic system may misdiagnose similar abnormalities as a same abnormality if abnormalities to diagnose increases. That causes that a single diagnostic machine may show higher diagnostic performance than one of multi-agent diagnostic system because decision-making considering with misdiagnosis is difficult. Therefore, we study the design method for multi-agent diagnostic system to diagnose similar abnormality correctly. This method aimed to realize automatic generation of diagnostic system where the generation process and location of diagnostic machines are optimized to diagnose correctly the similar abnormalities which are evaluated from the similarity of process signals by statistical method. This paper explains our design method and reports the result evaluated our method applied to the process data of the fast-breeder reactor Monju

  14. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  15. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  16. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1992-01-01

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for T c and Re imaging agents; (4) Characterization of stable T c - and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on T c -diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch's research group for heart and brain imaging

  17. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  18. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, Mariapompea; Kováčik, L.

    2017-01-01

    Roč. 50, č. 1 (2017), s. 51-60 ISSN 0017-1557 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Au nanoparticles * Laser * X-ray diagnostic s * medical imaging * contrast medium Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.638, year: 2016

  19. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  20. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  1. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    Science.gov (United States)

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  2. Comparison of PSMA-HBED and PSMA-I and T as diagnostic agents in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Michael; Langton, Tiffany; Kumar, Divesh [Fiona Stanley Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Campbell, Andrew [Fiona Stanley Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Molecular Imaging and Therapy Service (Nuclear Medicine), Perth (Australia); Royal Perth Hospital, Medical Engineering and Physics, Perth (Australia)

    2017-08-15

    Gallium(68)-labelled prostate-specific membrane antigen (PSMA) radiopharmaceuticals can be used to detect prostate cancer (PCa) cells due the their over expression of PSMA. The {sup 68}Ga HBED-PSMA (PSMA-HBED) ligand has been most widely used and can be considered the current gold standard agent. Further PSMA ligands based on the DOTAGA and DOTA conjugates have more recently been developed. These agents (PSMA-I and T and PSMA-617) have potential theranostic capabilities as they can be conjugated with therapeutic radioisotopes. In this study, we examine whether PSMA-I and T has comparative efficacy, such that it could replace PSMA-HBED as a diagnostic agent in prostate carcinoma. 19 patients with PCa referred for {sup 68}Ga-PSMA imaging were imaged with PSMA-HBED and PSMA-I and T PET-CT imaging within a 2-week period. The two pharmaceuticals were synthesised using click chemistry. Imaging was performed using the same standardised methodology on a Siemens Biograph mCT. All sites of PSMA binding thought to represent PCa (probable or definite) were included in a lesion analysis that examined lesion concordance and lesional binding efficiency (SUV{sub peak}) between the two radiopharmaceuticals. For each patient, SUV{sub mean} of the LV cavity blood pool, bone, muscle and liver were determined as image background measures. Across all patients, PSMA uptake was observed in 47 lesions (10 bone lesions, 19 nodal lesions, 18 high-grade intraprostatic binding). Lesions were concordant between the agents in all except for two small (<4 mm) nodal lesions which were not visualised with PSMA-I and T. SUV{sub peak} assessment showed significantly greater overall lesion binding with HBED (paired t test, p = 0.0001). LV blood pool and bone marrow SUV{sub mean} were significantly higher for I and T than HBED (paired t test, blood pool p < 1 x 10-5, bone marrow p < 0.005). Intra-patient comparative imaging demonstrates higher lesional PSMA-HBED binding than PSMA-I and T and that the

  3. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.

    Science.gov (United States)

    Yeh, Benjamin M; FitzGerald, Paul F; Edic, Peter M; Lambert, Jack W; Colborn, Robert E; Marino, Michael E; Evans, Paul M; Roberts, Jeannette C; Wang, Zhen J; Wong, Margaret J; Bonitatibus, Peter J

    2017-04-01

    The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Adrenal imaging agents

    International Nuclear Information System (INIS)

    Davis, M.A.; Hanson, R.N.; Holman, B.L.

    1980-01-01

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  5. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  6. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  7. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  8. Diagnostic imagings and embolotherapy for the superior mesenteric vein-inferior vena cava shunt

    International Nuclear Information System (INIS)

    Morita, Yutaka; Yamada, Masataka; Miyata, Mutsuhiko; Kubo, Kohzo.

    1994-01-01

    Diagnostic imaging and embolization therapy for the uncommon portal and mesenteric vein-inferior vena cave shunt (PV·SMV-IVC shunt) are reported. As the frequency of clinical symptoms such as hematemesis, melena and confusion caused by gastrointestinal varices, or hepatoencephalopathy was about 40%, it was important for this disease entity to be diagnosed with noninvasive diagnostic images. The careful examination of the area around the right renal vein was able to overcome the low diagnostic rate of 20-40% obtained with US and CT images. In cases of simple PV·SMV-IVC shut without gastrointestinal varices, embolization therapy using steel coils and done by the intravenous approach is easy and noninvasive. On the other hand, in cases of complex PV-SMV-IVC shunt with gastrointestinal varices, dual balloon occluded embolization therapy using a liquid sclerosing agent and done by the intravenous and portal approaches is preferable. (author)

  9. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  10. Performance characteristics of magnetic resonance imaging without contrast agents or sedation in pediatric appendicitis.

    Science.gov (United States)

    Didier, Ryne A; Hopkins, Katharine L; Coakley, Fergus V; Krishnaswami, Sanjay; Spiro, David M; Foster, Bryan R

    2017-09-01

    Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (Pappendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall thickness demonstrate high sensitivities but relatively low specificities. Nonvisualization of the appendix favors a negative diagnosis.

  11. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  12. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  13. Performance characteristics of magnetic resonance imaging without contrast agents or sedation in pediatric appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A.; Hopkins, Katharine L.; Coakley, Fergus V.; Foster, Bryan R. [Oregon Health and Science University, Department of Diagnostic Radiology, Portland, OR (United States); Krishnaswami, Sanjay [Oregon Health and Science University, Department of Surgery, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Spiro, David M. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2017-09-15

    Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (P<0.01), with sensitivities of 91% and 97% and specificities of 60% and 50%. For examinations in which the appendix was not identified by one or both reviewers (23/98), the clinical outcome was negative. Rapid MRI without contrast agents or sedation is accurate for diagnosis of pediatric appendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall

  14. Performance characteristics of magnetic resonance imaging without contrast agents or sedation in pediatric appendicitis

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Hopkins, Katharine L.; Coakley, Fergus V.; Foster, Bryan R.; Krishnaswami, Sanjay; Spiro, David M.

    2017-01-01

    Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (P<0.01), with sensitivities of 91% and 97% and specificities of 60% and 50%. For examinations in which the appendix was not identified by one or both reviewers (23/98), the clinical outcome was negative. Rapid MRI without contrast agents or sedation is accurate for diagnosis of pediatric appendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall

  15. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  16. Complications in diagnostic imaging. 2. ed.

    International Nuclear Information System (INIS)

    Ansell, G.; Wilkins, R.A.; Medical Research Council, Harrow

    1987-01-01

    Thirty-seven chapters review various complications which may arise for patients and staff in medical diagnostic imaging. Five of these chapters are indexed separately covering topics on the complications of using radiopharmaceuticals, safety considerations in magnetic resonance imaging, radiation hazards of diagnostic radiology and medico-legal problems involving diagnostic radiology in both the UK and the USA. (UK)

  17. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    Science.gov (United States)

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  18. method and container for production of diagnostic scanning agents

    International Nuclear Information System (INIS)

    Ruddock, C.F.

    1979-01-01

    The pertechnetate ion containing the technetium-99m isotope has limited applications in diagnostic scanning because it does not readily form complexes with materials which locate in specific parts of the body. Stannous salts have been widely used to reduce the pertechnetate to a form which readily complexes with materials. In the present invention, both a container and a more suitable metal reducing agent are discussed for transforming the technetium in pertechnetate for diagnostic scanning use. The vessel contains tin or a tin-containing alloy as a reducing agent for the pertechnetate and a complexant for the reduced technetium; all contents are sterile and dry. The present invention is advantageous over the stannous salts method since (1) problems of stannous salt instability during production, storage and after labelling are eliminated; (2) production procedures are simplified; (3) it is not essential to nitrogen purge vials before sterilisation; (4) it reduces toxicity; (5) the shelf life of diagnostic scanning kits may be dramatically improved; (6) the metal reducing agent may be sterilised by γ-irradiation without deteriorating; (7) the labelling technique can be performed over a wide pH range; and (8) the technique should be unaffected by technetium-99 in the technetium-99m. (U.K.)

  19. Prostate Activated Prodrugs and Imaging Agents

    National Research Council Canada - National Science Library

    Jones, Graham B

    2004-01-01

    .... The substrate chosen was a 3 component system composed of a peptide sequence with affinity for PSA, an imaging agent and a deactivating bridge-linker, which electronically incapacitates the imaging agent...

  20. Non-radiological contrast agents (MRI)

    International Nuclear Information System (INIS)

    Bonnemain, B.; Lautrou, J.; Meyer, D.; Doucet, D.

    1987-01-01

    Over the past few years, extensive research has been carried out in an attempt to develop contrast agents that could help improve both the performance (acquisition times) and the diagnostic efficacy of Magnetic Resonance Imaging (MRI) techniques. On the basis of physicochemical and pharmacological criteria discussed in this presentation, a few efficacious, well-tolerated compounds could be developed. Two of them, the gadolinium complexes Gd-DOTA and Gd-DTPA, are currently being tried in man. This first generation of contrast agents, which are aspecific markers of the intravascular space, has been shown to have good diagnostic potential in conventional MRI procedures. The diagnostic contribution of these contrast agents will probably be a most essential factor in new MRI techniques using low field strengh or fast imaging sequences [fr

  1. Uptake of perfusion imaging agents by transplanted hearts: an experimental study in rats

    International Nuclear Information System (INIS)

    Bergsland, J.; Carr, E.A. Jr.; Carroll, M.; Feldman, M.J.; Kung, H.; Wright, J.R.

    1989-01-01

    There is a need for a reliable noninvasive marker of rejection in transplanted hearts. Endomyocardial biopsy is now the universally accepted diagnostic method of choice, but the invasiveness of the procedure and the limited size of the sample obtained makes this method far from ideal. As coronary blood flow may be expected to decrease during acute rejection, there has been interest in thallium-201 chloride (T1), a perfusion marker, as an imaging agent for diagnosing cardiac rejection. Hexakis(t-butylisonitrile)-technetium (Tc-TBI) is a representative of a new class of radiopharmaceuticals proposed as perfusion markers. We have compared the uptake of these imaging agents in a rat model of cardiac transplantation. Uptake of Tc-TBI as well as of T1 was significantly lower in rejecting than in nonrejecting hearts. This change was found in both left (LV) and right (RV) ventricles. Allografts in animals treated with cyclosporine (CyA) showed less severe rejection and higher uptakes of both imaging agents as compared to unmodified rejection. Our results suggest that perfusion imaging with these radionuclides is a potentially useful approach to the problem of detecting allograft rejection

  2. Diagnostic imaging in intensive care patients

    International Nuclear Information System (INIS)

    Afione, Cristina; Binda, Maria del C.

    2004-01-01

    Purpose: To determine the role of imaging diagnostic methods in the location of infection causes of unknown origin in the critical care patient. Material and methods: A comprehensive medical literature search has been done. Recommendations for the diagnostic imaging of septic focus in intensive care patients are presented for each case, with analysis based on evidence. The degree of evidence utilized has been that of Oxford Center for Evidence-based Medicine. Results: Nosocomial infection is the most frequent complication in the intensive care unit (25 to 33%) with high sepsis incidence rate. In order to locate the infection focus, imaging methods play an important role, as a diagnostic tool and to guide therapeutic procedures. The most frequent causes of infection are: ventilation associated pneumonia, sinusitis, intra-abdominal infections and an acute acalculous cholecystitis. This paper analyses the diagnostic imaging of hospital infection, with the evaluation of choice methods for each one and proposes an algorithm to assess the septic patient. Conclusion: There are evidences, with different degrees of recommendation, for the use of diagnostic imaging methods for infectious focuses in critical care patients. The studies have been selected based on their diagnostic precision, on the capacity of the medical team and on the availability of resources, considering the risk-benefit balance for the best safety of the patient. (author)

  3. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  4. Diagnostic value of a new myocardial perfusion agent, teboroxime (SO 30,217), utilizing a rapid planar imaging protocol: Preliminary results

    International Nuclear Information System (INIS)

    Hendel, R.C.; McSherry, B.; Karimeddini, M.; Leppo, J.A.

    1990-01-01

    Technetium-99m-labeled agents have advantages over thallium-201 in terms of photon statistics, cost and clinical availability. They have been suggested as an alternative to thallium for myocardial perfusion imaging. Teboroxime is a new boronic acid adduct of technetium dioxime (BATO) compound that demonstrates favorable characteristics in preliminary studies. With use of a novel (seated) patient positioning technique and a rapid dynamic acquisition protocol, 30 patients underwent planar imaging with teboroxoime while at rest and after maximal treadmill exercise. Postexercise scans were completed in an average time (mean +/- SD) of 4.4 +/- 1.6 min, with 4.8 +/- 1.5 min for the views at rest. These results were compared with coronary arteriography or thallium scintigraphy after treadmill exercise, or both. Diagnostic agreement (abnormal versus normal) was present in 28 of the 30 patients (p less than 0.001). Regarding physiologic assessment as compared with thallium scintigraphy, the finding of infarction and ischemia was concordant in 89% and 86% of patients, respectively. This report describes the initial use of teboroxime with a rapid dynamic planar imaging technique, resulting in a high correlation with exercise thallium scintigraphy. Delayed postexercise images obtained 5 to 10 min after exercise demonstrated rapid disappearance of exercise-induced defects noted on the initial (0 to 5 min) postexercise views. The rapid differential washout with teboroxime has not been previously described and the possible clinical significance is discussed

  5. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  6. Diagnostic Imaging in Snakes and Lizards

    OpenAIRE

    Banzato , Tommaso

    2013-01-01

    The increasing popularity of snakes and lizards as pets has led to an increasing demand of specialised veterinary duties in these animals. Diagnostic imaging is often a fundamental step of the clinical investigation. The interpretation of diagnostic images is complex and requires a broad knowledge of anatomy, physiology and pathology of the species object of the clinical investigation. Moreover, in order to achieve a correct diagnosis, the comparison between normal and abnormal diagnostic im...

  7. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  8. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  9. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    International Nuclear Information System (INIS)

    Guo, Gepu; Lu, Lu; Tu, Juan; Guo, Xiasheng; Zhang, Dong; Yin, Leilei; Wu, Junru; Xu, Di

    2014-01-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml −1 . The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. (paper)

  10. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  11. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  12. Role of teleradiology in modern diagnostic imaging

    International Nuclear Information System (INIS)

    Chrzan, R.; Urbanik, A.; Wyrobek -Renczynska, M.; Podsiadlo, L.

    2004-01-01

    Teleradiology is a dynamically expanding technology of electronic transmission of radiologic images. History of teleradiology development, methods of obtaining images in digital form, media used for their transmission, factors affecting time of transmission, methods of visualization of transmitted images, attempts at standardization of new technology and at last typical applications of teleradiology were presented. Teleradiology from the position of technical curiosity advanced to the role of everyday work tool. Possibility of specialist diagnostic imaging assurance in poorly developed regions, not possessing sufficient number of radiologists, turned out particularly important. Cooperation of regional hospitals with specialist centers of diagnostic images reporting and archiving created a chance for making better use of owned equipment and reducing the costs of diagnostics. For the sake of broader and broader access to teleradiology not only over the world but also in Poland it is advisable to familiarize with its possibilities by both radiologists and clinicists using the results of diagnostic imaging. (author)

  13. Structured diagnostic imaging in patients with multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M.; Kanz, K.G.

    2002-01-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [de

  14. A naturally occurring contrast agent for OCT imaging of smokers' lung

    International Nuclear Information System (INIS)

    Yang Ying; Bagnaninchi, Pierre O; Whiteman, Suzanne C; Pittius, Daniel Gey van; Haj, Alicia J El; Spiteri, Monica A; Wang, Ruikang K

    2005-01-01

    Optical coherence tomography (OCT) offers great potential for clinical applications in terms of its cost, safety and real-time imaging capability. Improvement of its resolution for revealing sub-layers or sub-cellular components within a tissue will further widen its application. In this study we report that carbon pigment, which is frequently present in the lungs of smokers, could be used as a contrast agent to improve the OCT imaging of lung tissue. Carbon produced an intense bright OCT image at a relatively deep location. The parallel histopathological section analysis confirmed the presence of carbon pigment in such tissues. The underlying mechanism of the OCT image formation has been discussed based on a model system in which carbon particles were dispersed in agar gel. Calculations and in-depth intensity profiles of OCT revealed that higher refractive index particles with a size close to or smaller than the wavelength would greatly increase backscattering and generate a sharp contrast, while a particle size several times larger than the wavelength would absorb or obstruct the light path. The naturally occurring contrast agent could provide a diagnostic biomarker of lung tissue in smokers. Furthermore, carbon under such circumstances, can be used as an effective exogenous contrast agent, with which specific components or tissues exhibiting early tumour formation can be optically labelled to delineate the location and boundary, providing potential for early cancer detection and its treatment

  15. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  16. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  17. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  18. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  19. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung

    2014-01-01

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  20. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  1. Targeting SR-BI for cancer diagnostics, imaging and therapy

    Directory of Open Access Journals (Sweden)

    Maneesha Amrita Rajora

    2016-09-01

    Full Text Available Scavenger receptor class B type I (SR-BI plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumours and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.

  2. The Downside of Diagnostic Imaging

    Science.gov (United States)

    An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.

  3. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  4. Overuse of Diagnostic Imaging for Work-Related Injuries.

    Science.gov (United States)

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  5. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  6. Does MR imaging effectively replace diagnostic arthroscopy

    International Nuclear Information System (INIS)

    Ruwe, P.; McCarthy, S.; Wright, J.; Randall, L.; Lynch, K.; Jokyl, P.

    1990-01-01

    This paper determines if MR imaging reduces the number of diagnostic arthroscopic procedures required in patients with knee complaints and if MR imaging is cost-effective compared with diagnostic arthroscopy. The cohort analysis consists of 100 patients seen in a sports medicine clinic by two orthopedic surgeons who agreed on well-defined criteria for performing MR imaging and arthroscopy. Each orthopedic surgeon referring a patient for MR imaging checked a form regarding the plans for arthroscopy. Outcome analysis was conducted at 6 months

  7. Multimodal nanoparticle imaging agents: design and applications

    Science.gov (United States)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  8. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  9. Liver nodules. MR imaging using extracellular gadolinium agent

    International Nuclear Information System (INIS)

    Yoshimitsu, Kengo; Honda, Hiroshi

    2009-01-01

    Extracellular gadolinium (Gd)-containing contrast medium, including gadopentetate dimeglumine (Gd-DTPA), has been playing a main role in the diagnostic MR imaging of the liver. Its significance is two-fold: assessment of the degree of neovascularity or angiogenesis in its early dynamic phase, and that of bulk of interstitium in its equilibrium phase. With the advent of gadolinium ethoxybenzyl diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA), which can be used as a dynamic study agent by bolus injection in addition to its original use as a tissue-specific agent, some possibility has been suggested that extracellular Gd agent would be no longer available in the near future in the field of liver MR imaging. Neovascularity or arterial supply of a lesion may well be assessed by Gd-EOB-DTPA, when carefully selected pulse sequence and well designed injection protocol are used, as well as by Gd-DTPA. However, the pertinent assessment of interstitium or stroma can never be achieved by Gd-EOB-DTPA or any other contrast medium present. The interstitium of neoplasm, typically called as stromal fibrosis, is generated through the interaction between the neoplasm per se and its host, and its clinicopathological significance related to disease prognosis has well been established in some disease entities. Extracellular Gd agent is the only contrast medium that can provide information regarding the tumor stroma in a simple, easy, safe and non-invasive fashion, when properly used. This review article discusses, dynamic MR imaging features of representative liver diseases, including several recent topics. From technical point of view, 3D gradient-echo sequence with fat suppression should be used for dynamic studies along with tailored injection protocol using autoinjector and saline flush. Vascularity of hepatocellular carcinoma (HCC) can now be properly assessed by dynamic MR with approximately 90% concordance with CT during hepatic arteriography. Portal phase images can be used to

  10. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  11. Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Robert M, Malone; John R, Celesteb; Peter M, Celliers; Brent C, Froggeta; Robert L, Guyton; Morris I, Kaufman; Tony L, Lee; Brian J, MacGowan; Edmund W, Ng; Imants P, Reinbachs; Ronald B, Robinson; Lynn G, Seppala; Tom W, Tunnell; Phillip W, Watts

    2005-01-01

    Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber

  12. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rutman, Aaron M. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Kuo, Michael D. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Center for Translational Medical Systems, University of California San Diego Medical Center, San Diego, CA 92103 (United States)], E-mail: mkuo@ucsd.edu

    2009-05-15

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  13. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    International Nuclear Information System (INIS)

    Rutman, Aaron M.; Kuo, Michael D.

    2009-01-01

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  14. Diagnostic imaging procedure volume in the United States

    International Nuclear Information System (INIS)

    Johnson, J.L.; Abernathy, D.L.

    1983-01-01

    Comprehensive data on 1979 and 1980 diagnostic imaging procedure volume were collected from a stratified random sample of U.S. short-term general-care hospitals and private practices of radiologists, cardiologists, obstetricians/gynecologists, orthopedic surgeons, and neurologists/neurosurgeons. Approximately 181 million imaging procedures (within the study scope) were performed in 1980. Despite the rapidly increasing use of newer imaging methods, plain film radiography (140.3 million procedures) and contrast studies (22.9 million procedures) continue to comprise the vast majority of diagnostic imaging volume. Ultrasound, computed tomography, nuclear medicine, and special procedures make up less than 10% of total diagnostic imaging procedures. Comparison of the data from this study with data from an earlier study indicates that imaging procedure volume in hospitals expanded at an annual growth rate of almost 8% from 1973 to 1980

  15. The preparation and characterization of peptide's lung cancer imaging agent

    International Nuclear Information System (INIS)

    Liu Jianfeng; Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding seven peptides by T7 phage display peptide library, so as to prepare peptide's lung cancer early diagnostic agent. Methods: Use phage display in vivo technology, the 7-peptide phage that binding the lung cancer specifically was obtained, then the DNA sequence was measured and the seven peptide was synthesized. After labeled by 125 I, the seven peptide was injected into mice via vein and the distribution was observed. Results: One peptide was obtained by four rounds screening, and the peptide can bind lung cancer tissue specifically. Two hours after injection get the best imaging of lung cancer, metabolism of peptide in mice is fast, the distribution in vivo is decrease six hours and almost disappear 20 hours after injection. Conclusion: The peptide can image and diagnose lung cancer better. (authors)

  16. Encyclopedia of diagnostic imaging

    International Nuclear Information System (INIS)

    Baert, A.L.

    2008-01-01

    The simple A to Z format provides easy access to relevant information in the field of imaging. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list. (orig.)

  17. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  18. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Johnson, Joyce T.; Robinson, Joshua D.; Deng, Jie; Rigsby, Cynthia K.

    2016-01-01

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  19. Contrast agents for MRI

    International Nuclear Information System (INIS)

    Bonnemain, B.

    1994-01-01

    Contrast agents MRI (Magnetic Resonance Imaging) have been developed to improve the diagnostic information obtained by this technic. They mainly interact on T1 and T2 parameters and increase consequently normal to abnormal tissues contrast. The paramagnetic agents which mainly act on longitudinal relaxation rate (T1) are gadolinium complexes for which stability is the main parameter to avoid any release of free gadolinium. The superparamagnetic agents that decrease signal intensity by an effect on transversal relaxation rate (T2) are developed for liver, digestive and lymph node imaging. Many area of research are now opened for optimal use of present and future contrast agents in MRI. (author). 28 refs., 4 tabs

  20. A revolution in diagnostic imaging.

    Science.gov (United States)

    Mamula, Paul W

    2003-03-01

    In November 1966, Sandy Koufax, the star left-handed pitcher of the Los Angeles Dodgers, retired after spending his final season coping with traumatic arthritis in his elbow, the compounded effects of a sliding injury to his pitching arm the previous season and 12 years of hard throwing.1 Had his career begun a few years later, he might have been able to benefit from the advances in diagnostic imaging and treatment that were introduced at that time. Modern arthroscopy and computed tomography (CT) did not become available until the mid 1970s,2 and the first elbow reconstruction was done by Frank Jobe, MD, about 10 years after Koufax retired.1 Arthroscopy was first used as a diagnostic tool, but it later became a surgical tool, affecting treatment of knees, then, later, shoulders. Since 1973, when The Physician and Sportsmedicine was launched, we have witnessed a revolution in diagnostic imaging and are continuing to see an evolution of modalities.

  1. Analysis of licensed South African diagnostic imaging equipment ...

    African Journals Online (AJOL)

    Analysis of licensed South African diagnostic imaging equipment. ... Pan African Medical Journal ... Introduction: Objective: To conduct an analysis of all registered South Africa (SA) diagnostic radiology equipment, assess the number of equipment units per capita by imaging modality, and compare SA figures with published ...

  2. Diagnostic imaging in medicine. 2. ed.

    International Nuclear Information System (INIS)

    Reba, R.C.; Goodenough, D.J.

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume. (orig.)

  3. [Diagnostic imaging and acute abdominal pain].

    Science.gov (United States)

    Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-19

    Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.

  4. Image quality enhancement for skin cancer optical diagnostics

    Science.gov (United States)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  5. A study of diagnostic imaging in pancreatic trauma

    International Nuclear Information System (INIS)

    Hirota, Masashi; Kanazumi, Naohito; Kato, Koichi; Eguchi, Takehiko; Kobayashi, Hironobu; Suzuki, Yuichi; Kimura, Jiro; Ishii, Masataka

    2002-01-01

    Pancreatic trauma treatment depends on pancreatic ductal injury. We examined the usefulness and problems of diagnostic imaging, such as enhanced CT, ERP, and CT after ERP, in pancreatic trauma. Subjects were 12 patients with pancreatic trauma treated in our hospital between April 1993 and March 2000. Enhanced CT was performed in 6 patients undergoing diagnostic imagings and ERP in 4 of the 6. Overall diagnostic accuracy of pancreatic ductal injury in enhanced CT was 16.7% and accuracy in ERP with CT after ERP was 100%. Intraoperative diagnosis of main pancreatic ductal injury was difficult in 1 of 2 patients in whom ERP failed. The importance of preoperative diagnostic imaging is thus clear. We expect that MRCP, recently evaluated in pancreatic disease diagnosis, will become a new pancreatic trauma modality. (author)

  6. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  7. RANZAR Body Systems Framework of diagnostic imaging examination descriptors

    International Nuclear Information System (INIS)

    Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory

    2014-01-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.

  8. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    Science.gov (United States)

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  9. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  10. Diagnostic agents containing albumin and methods for making same

    International Nuclear Information System (INIS)

    Saklad, E.L.; Layne, W.W.

    1981-01-01

    This patent specification outlines a method for providing a diagnostic agent for use in radiological testing, comprising the production of an admixture of a source of radionuclide ion (sup(99m)Tc), a reducing agent (source of stannous ions at a pH below 7) and a stabilized, defatted human albumin being sufficiently purified for an aqueous solution not to become cloudy for at least an hour at a pH of 4 or below. Other aspects of the patent provide for a method of producing a radiodiagnostic kit of the above components, packaged in a sealed sterile non-pyrogenic container, and also a method of concentrating sup(99m)Tc in vivo in a target mammalian tissue, by intravenous administration of a mixture of sup(99m)Tc, a reducing agent, and delipidized serum albumin. (U.K.)

  11. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  12. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  13. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  14. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  15. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  16. Meniscal tear. Diagnostic errors in MR imaging

    International Nuclear Information System (INIS)

    Barrera, M. C.; Recondo, J. A.; Gervas, C.; Fernandez, E.; Villanua, J. A.M.; Salvador, E.

    2003-01-01

    To analyze diagnostic discrepancies found between magnetic resonance (MR) and arthroscopy, and the determine the reasons that they occur. Two-hundred and forty-eight MR knee explorations were retrospectively checked. Forty of these showed diagnostic discrepancies between MR and arthroscopy. Two radiologists independently re-analyzed the images from 29 of the 40 studies without knowing which diagnosis had resulted from which of the two techniques. Their interpretations were correlated with the initial MR diagnosis, MR images and arthroscopic results. Initial errors in MR imaging were classified as either unavoidable, interpretive, or secondary to equivocal findings. Eleven MR examinations could not be checked since their corresponding imaging results could not be located. Of 34 errors found in the original diagnoses, 12 (35.5%)were classified as unavoidable, 14 (41.2%) as interpretative and 8 (23.5%) as secondary to equivocal findings. 41.2% of the errors were avoided in the retrospective study probably due to our department having greater experience in interpreting MR images, 25.5% were unavailable even in the retrospective study. A small percentage of diagnostic errors were due to the presence of subtle equivocal findings. (Author) 15 refs

  17. [Diagnostic imaging of breast cancer : An update].

    Science.gov (United States)

    Funke, M

    2016-10-01

    Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.

  18. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  19. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  20. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  1. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Zagzebski, J. [University of Wisconsin (United States)

    2016-06-15

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  2. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    International Nuclear Information System (INIS)

    Zagzebski, J.

    2016-01-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  3. Trends in utilization: has extremity MR imaging replaced diagnostic arthroscopy?

    International Nuclear Information System (INIS)

    Glynn, Nicole; Morrison, William B.; Parker, Laurence; Schweitzer, Mark E.; Carrino, John A.

    2004-01-01

    To examine the relative change in utilization of magnetic resonance (MR) imaging of the extremities versus diagnostic and therapeutic arthroscopy. Using the 1993, 1996, and 1999 nationwide Medicare Part B databases, utilization rates (per 100,000) were determined for upper and lower extremity MR imaging, diagnostic arthroscopy and therapeutic arthroscopy using CPT-4 codes. Utilization of extremity MR imaging was compared with that of diagnostic and therapeutic arthroscopy in 10 geographic regions of the United States and tracked over time. Combined lower and upper extremity MR imaging utilization per 100,000 increased from 393 to 1,056 in 1999 (+168.7%). Utilization of diagnostic arthroscopy of the extremities decreased from 18 in 1993 to 8 in 1999 (-55.6%); therapeutic arthroscopy rates increased from 461 in 1993 to 636 in 1999 (+40.0%). Specifically, from 1993 to 1999, utilization of lower extremity MR imaging increased from 270 to 661 (+144.8%). Utilization of diagnostic arthroscopy of the knee over the same time period decreased from 11 to 5 (-54.5%); therapeutic arthroscopy increased from 394 to 501 (+27.2%). Similarly, utilization rates for upper extremity MR imaging increased from 123 to 395 (+221.1%). Utilization of diagnostic arthroscopy of the shoulder over the same time period decreased from 7 to 2 (-71.4%); therapeutic arthroscopy increased from 44 to 104 (+136.4%). No specific geographic trends were ascertained. The utilization of MR imaging of the extremities has markedly increased from 1993 to 1999. During the same time period the utilization of diagnostic arthroscopy has decreased and that of therapeutic arthroscopy has increased. These findings support the hypothesis that there is increased reliance of clinical practitioners on the diagnostic information provided by MR imaging in preoperative clinical decision-making. (orig.)

  4. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    Science.gov (United States)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  5. Rationale diagnostic approach to biliary tract imaging

    International Nuclear Information System (INIS)

    Helmberger, H.; Huppertz, A.; Ruell, T.; Zillinger, C.; Ehrenberg, C.; Roesch, T.

    1998-01-01

    Since the introduction of MR cholangiography (MRC) diagnostic imaging of the biliary tract has been significantly improved. While percutaneous ultrasonography is still the primary examination, computed tomography (CT), conventional magnetic resonance imaging (MRI), as well as the direct imaging modalities of the biliary tract - iv cholangiography, endoscopic-retrograde-cholangiography (ERC), and percutaneous-transhepatic-cholangiography (PTC) are in use. This article discusses the clinical value of the different diagnostic techniques for the various biliary pathologies with special attention to recent developments in MRC techniques. An algorithm is presented offering a rational approach to biliary disorders. With further technical improvement shifts from ERC(P) to MRC(P) for biliary imaging could be envisioned, ERCP further concentrating on its role as a minimal invasive treatment option. (orig.) [de

  6. Visualization, imaging and new preclinical diagnostics in radiation oncology

    International Nuclear Information System (INIS)

    Cyran, Clemens C; Reiser, Maximilian F; Belka, Claus; Niyazi, Maximilian; Paprottka, Philipp M; Eisenblätter, Michel; Clevert, Dirk A; Rist, Carsten; Nikolaou, Konstantin; Lauber, Kirsten; Wenz, Frederik; Hausmann, Daniel

    2014-01-01

    Innovative strategies in cancer radiotherapy are stimulated by the growing knowledge on cellular and molecular tumor biology, tumor pathophysiology, and tumor microenvironment. In terms of tumor diagnostics and therapy monitoring, the reliable delineation of tumor boundaries and the assessment of tumor heterogeneity are increasingly complemented by the non-invasive characterization of functional and molecular processes, moving preclinical and clinical imaging from solely assessing tumor morphology towards the visualization of physiological and pathophysiological processes. Functional and molecular imaging techniques allow for the non-invasive characterization of tissues in vivo, using different modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and optical imaging (OI). With novel therapeutic concepts combining optimized radiotherapy with molecularly targeted agents focusing on tumor cell proliferation, angiogenesis, and cell death, the non-invasive assessment of tumor microcirculation and tissue water diffusion, together with strategies for imaging the mechanisms of cellular injury and repair is of particular interest. Characterizing the tumor microenvironment prior to and in response to irradiation will help to optimize the outcome of radiotherapy. These novel concepts of personalized multi-modal cancer therapy require careful pre-treatment stratification as well as a timely and efficient therapy monitoring to maximize patient benefit on an individual basis. Functional and molecular imaging techniques are key in this regard to open novel opportunities for exploring and understanding the underlying mechanisms with the perspective to optimize therapeutic concepts and translate them into a personalized form of radiotherapy in the near future

  7. Child abuse. Diagnostic imaging of skeletal injuries

    International Nuclear Information System (INIS)

    Stenzel, Martin; Mentzel, Hans-Joachim

    2012-01-01

    Diagnostic imaging, besides medical history and clinical examination, is a major component in assessment of cases of suspected physical child abuse. Performance of proper imaging technique, and knowledge of specific injury patterns is required for accurate image interpretation by the radiologist, and serves protection of the child in case of proven abuse. On the other side, it is essential to protect the family in unjustified accusations. The reader will be familiarised with essentials of the topic 'Physical child abuse', in order to be able to correctly assess quality, completeness, and results of X-ray films. Moreover, opportunities and limitations of alternative diagnostic modalities will be discussed. (orig.)

  8. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  9. Silver nanoparticles as optical clearing agent enhancers to improve caries diagnostic by optical coherence tomography

    Science.gov (United States)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; da Silva, Evair J.; da Silva, Andrea F.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    The use of silver nanoparticles as optical clearing agent (OCA) enhancers to improve caries diagnostic by optical coherence tomography (OCT) is demonstrated here. Five molars with no evident cavitation were selected. The OCAs were based on aqueous solution of silver nanoparticles (AgNP, 1.18x 1014 particles/mL, ø ≈ 10nm) and its dilution at 10% in glycerol. Teeth were placed on a platform with a micrometric screw, and after applying the OCAs, they were scanned with a Callisto SD-OCT system operating ate 930nm central wavelength. The occlusal surfaces were scanned by OCT, capturing crosssectional images with 8 mm transversal scanning, generating numerical matrices (2000x512). The OCT images had their transverse dimension preserved. AgNP-OCAs promoted image stretching due to the modification in the light optical path caused by AgNP-OCAs refractive indices close to that of the enamel. AgNP-OCAs evidenced the enamel birefringence and highlighted initial demineralization areas, that presented defined margins with higher contrast between sound and demineralized regions, with higher OCT signal intensity in those areas.

  10. Preparation, purification and primary bioevaluation of radioiodinated ofloxacin. An imaging agent

    International Nuclear Information System (INIS)

    Kandil, Shaban; Seddik, Usama; Hussien, Hiba; Shaltot, Mohamed; El-Tabl, Abdou

    2015-01-01

    The broad-spectrum antibiotic agents have been demonstrated as promising diagnostic tools for early detection of infectious lesions. We set out ofloxacin (Oflo), a second-generation fluoroquinolone, for the radioiodination process. In particular, this was carried out with 125 I via an electrophilic substitution reaction. The radiochemical yield was influenced by different factors; drug concentration, different oxidizing agents, e.g. chloramine-T, iodogen and n-bromosuccinimide, pH of medium, reaction time, temperature and different organic media. These parameters were studied to optimize the best conditions for labeling with ofloxacin. We found that radiolabeling in ethanol medium showed a 70% radiochemical yield of 125 I-ofloxacin. The radioiodination was determined by means of TLC and HPLC. The cold labeled Oflo ( 127 I-Oflo) was prepared and controlled by HPLC. The cold labeled Oflo was also confirmed by NMR and MS techniques. Furthermore, biodistribution studies for labeled 125 I-Oflo were examined in two independent groups (3 mice in each one); control and E. Coli-injected (inflamed). The radiotracer showed a good localization in muscle of thigh for inflamed group as compared to control. In conclusion, ofloxacine might be a promising target as an anti-inflammatory imaging agent.

  11. Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, D.; Taupitz, M.; Hamm, B. [Universitaetsklinikum Charite, Berlin (Germany). Inst. fuer Radiologie; Gehl, H.B. [Medizinische Univ. Luebeck (Germany). Inst. fuer Radiologie; Heuck, A. [Muenchen Univ. (Germany). Radiologische Klinik; Krahe, T. [Koeln Univ. (Germany). Inst. fuer Radiologische Diagnostik; Lodemann, K.P. [Bracco-Byk Gulden GmbH, Konstanz (Germany)

    1999-07-01

    Purpose: To evaluate the safety and diagnostic efficacy of two different doses of ferric ammonium citrate as a paramagnetic oral contrast agent for MR imaging of the upper abdomen. Material and methods: Ninety-nine adult patients referred for MR imaging for a known or suspected upper abdominal pathology were included in this randomized multicenter double-blind clinical trial. Imaging was performed with spin-echo (T1- and T2-weighted) and gradient-echo (T1-weighted) techniques before and after administration of either 1200 mg or 2400 mg of ferric ammonium citrate dissolved in 600 ml of water. Safety analysis included monitoring of vital signs, assessment of adverse events, and laboratory testing. Efficacy with regard to organ distension, contrast distribution, bowel enhancement and delineation of adjacent structures was graded qualitatively. Results: No serious adverse events were reported for either of the two concentrations. A total of 31 minor side effects were noted, of which significantly more occurred in the higher dose group (p<0.01). The diagnostic confidence in defining or excluding disease was graded as better after contrast administration for 48% of all images. Marked or moderate enhancement of the upper gastrointestinal tract was achieved at both doses in 69.5% of cases with no evident difference between the two doses. The higher dose tended to show better results in terms of the contrast assessment parameters. Conclusion: Ferric ammonium citrate is a safe and effective oral contrast agent for MR imaging of the upper abdomen at two different dose levels. The higher dose showed a tendency toward better imaging results while the lower dose caused significantly fewer side effects. Therefore, the 1200 mg dose can be recommended in view of the risk-to-benefit ratio. (orig.)

  12. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  13. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  14. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18f]fluorobenzoate

    International Nuclear Information System (INIS)

    Jonson, Stephanie D.; Welch, Michael J.

    1999-01-01

    Cholesteryl-p-[ 18 F]fluorobenzoate ([ 18 F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [ 18 F]CFB. The synthesis of [ 18 F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [ 18 F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [ 18 F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [ 18 F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [ 18 F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [ 18 F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [ 18 F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders

  15. Meeting Report: High-Throughput Technologies for In Vivo Imaging Agents

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2005-04-01

    Full Text Available Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.

  16. Diagnostic imaging in medicine. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Reba, R C; Goodenough, D J; Davidson, H F

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume.

  17. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  18. Diagnostic imaging in internal medicine

    International Nuclear Information System (INIS)

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging

  19. Investigating the link between radiologists’ gaze, diagnostic decision, and image content

    Science.gov (United States)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent; Krupinski, Elizabeth

    2013-01-01

    Objective To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods Gaze data and diagnostic decisions were collected from three breast imaging radiologists and three radiology residents who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Image analysis was performed in mammographic regions that attracted radiologists’ attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results By pooling the data from all readers, machine learning produced highly accurate predictive models linking image content, gaze, and cognition. Potential linking of those with diagnostic error was also supported to some extent. Merging readers’ gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the readers’ diagnostic errors while confirming 97.3% of their correct diagnoses. The readers’ individual perceptual and cognitive behaviors could be adequately predicted by modeling the behavior of others. However, personalized tuning was in many cases beneficial for capturing more accurately individual behavior. Conclusions There is clearly an interaction between radiologists’ gaze, diagnostic decision, and image content which can be modeled with machine learning algorithms. PMID:23788627

  20. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  1. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  2. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  3. Use of radiolabeled antibodies as diagnostic imaging agents

    International Nuclear Information System (INIS)

    Wang, T.S.T.; Seldin, D.; Fawwaz, R.A.; Srivastava, S.; Olvwole, S.

    1989-01-01

    Recent advances in hybridoma technology have led to the development of monoclonal antibodies to a variety of antigens. The high degree of specificity of such reagents coupled with refinements in instrumentation and production of new radionuclides has rekindled interest in the application of radioimmunoscintigraphy in the diagnosis of various diseases. Although much of the work with monoclonal antibodies has been devoted to the diagnosis and treatment of tumors, increasing use is being made of these agents for the study of nontumor related disorders. This chapter focuses on the application of radioimmunoscintigraphy in the diagnosis of malignancies with a discussion on the other uses, notably those related to the vascular system

  4. Evaluation of optimized magnetic resonance perfusion imaging scanning time window after contrast agent injection for differentiating benign and malignant breast lesions.

    Science.gov (United States)

    Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong

    2017-03-01

    The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.

  5. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    Energy Technology Data Exchange (ETDEWEB)

    Tourassi, Georgia [ORNL; Voisin, Sophie [ORNL; Paquit, Vincent C [ORNL; Krupinski, Elizabeth [University of Arizona

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By pooling the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.

  6. Magnetic Resonance Imaging with a Weak Albumin Binding Contrast Agent can Reveal Additional Endo leaks in Patients with an Enlarging Aneurysm after EVAR

    NARCIS (Netherlands)

    Habets, J.; Zandvoort, H. J. A.; Moll, F. L.; Bartels, L. W.; Vonken, E. P. A.; van Herwaarden, J. A.; Leiner, T.

    WHAT THIS PAPER ADDS In patients with enlarging aneurysms of unknown origin after endovascular aneurysm repair, magnetic resonance imaging (MRI) with a weak albumin binding contrast agent has additional diagnostic value for both the detection and determination of the origin of the endoleak.

  7. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  8. Diagnostic imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Gradzki, J.; Nowak, S.; Paprzycki, W.

    1993-01-01

    40 patients have been examined with operational and histological confirmation of craniopharyngioma. CT image and X-ray plane of skull were performed in case all of these patients. TMR was conformed to examine 4 patients. X-ray planes was compared to CT. CT permits tumor cyst detection. The efficacy of mentioned above diagnostic techniques was compared with surgical findings. (author)

  9. Positrons as imaging agents and probes in nanotechnology

    International Nuclear Information System (INIS)

    Smith, Suzanne V

    2009-01-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  10. Shape Effects in Nanoparticle-Based Imaging Agents

    Science.gov (United States)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used

  11. Dosimetric evaluation of 99mTc IgG as infection diagnostic agent for HIV positive patients

    International Nuclear Information System (INIS)

    Teran, Mariella; Paolino, Andrea; Vilar, Javier; Kapitan, Miguel; Andruskevicius, Patricia; Hermida, Juan C.; Gaudiano, Javier; Perez Sartori, Graciela; Savio Larriera, Eduardo

    2008-01-01

    A wide variety of radiopharmaceuticals are used as diagnostic or therapeutic agents. In this case 99m Tc-IgG was used to determine infection-inflammation processes in HIV patients, who sometimes are difficult to diagnose because of the presence of non specific signs and symptoms. The aim of this work was to estimate the hazard associated with the use of radiopharmaceuticals in nuclear medicine. In order to establish a proper design of kinetic studies and determine the radiation doses to individual human organs internal dosimetry methods were used. HIV positive patients with suspect of infection focus were administered via iv injection with 740 MBq (20 mCi) of 99m Tc-IgG. Anterior and posterior whole body images were acquired at 4 and 24 hours post injection in a gamma camera Mediso Medical Imaging, 1024 x 512 matrix. Geometric mean was calculated for different regions of interest taking into account decay, scattering and attenuation corrections. Blood and urine samples were collected at 1, 4, 8, 12 and 24 hours post injection. They were measured in a dose calibrator Capintec CR 5, corrections for geometry and decay were performed. For each patient, percentage of injected dose was calculated both for biological and image samples. The number of disintegrations was developed for those organs where higher concentration of activity was observed (liver, kidneys and spleen), the organs involved in the excretion (urinary bladder and intestines), red marrow and the reminder of the body. Total doses were estimated using OLINDA/EXM software. The code calculations showed that chosen organs as more compromised during the diagnostic procedure received very low effective doses. Correlation studies with calculations performed both for image and biological samples data were done. Despite the risk population under study the dosimetric estimations showed that 99m Tc-IgG is a safe radiopharmaceutical to be used in routine diagnostic procedures without hazardous effects. (author)

  12. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  13. Optimum image compression rate maintaining diagnostic image quality of digital intraoral radiographs

    International Nuclear Information System (INIS)

    Song, Ju Seop; Koh, Kwang Joon

    2000-01-01

    The aims of the present study are to determine the optimum compression rate in terms of file size reduction and diagnostic quality of the images after compression and evaluate the transmission speed of original or each compressed images. The material consisted of 24 extracted human premolars and molars. The occlusal surfaces and proximal surfaces of the teeth had a clinical disease spectrum that ranged from sound to varying degrees of fissure discoloration and cavitation. The images from Digora system were exported in TIFF and the images from conventional intraoral film were scanned and digitalized in TIFF by Nikon SF-200 scanner(Nikon, Japan). And six compression factors were chosen and applied on the basis of the results from a pilot study. The total number of images to be assessed were 336. Three radiologists assessed the occlusal and proximal surfaces of the teeth with 5-rank scale. Finally diagnosed as either sound or carious lesion by one expert oral pathologist. And sensitivity and specificity and kappa value for diagnostic agreement was calculated. Also the area (Az) values under the ROC curve were calculated and paired t-test and oneway ANOVA test was performed. Thereafter, transmission time of the image files of the each compression level were compared with that of the original image files. No significant difference was found between original and the corresponding images up to 7% (1:14) compression ratio for both the occlusal and proximal caries (p<0.05). JPEG3 (1:14) image files are transmitted fast more than 10 times, maintained diagnostic information in image, compared with original image files. 1:14 compressed image file may be used instead of the original image and reduce storage needs and transmission time.

  14. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[{sup 18}f]fluorobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Jonson, Stephanie D.; Welch, Michael J. E-mail: welch@mirlink.wustl.edu

    1999-01-01

    Cholesteryl-p-[{sup 18}F]fluorobenzoate ([{sup 18}F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [{sup 18}F]CFB. The synthesis of [{sup 18}F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [{sup 18}F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [{sup 18}F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [{sup 18}F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [{sup 18}F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [{sup 18}F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [{sup 18}F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders.

  15. Imaging diagnostics of the foot; Bildgebende Diagnostik des Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Szeimies, Ulrike; Staebler, Axel [Radiologie in Muenchen-Harlaching, Muenchen (Germany); Walther, Markus (eds.) [Schoen-Klinik Muenchen-Harlaching, Muenchen (Germany). Zentrum fuer Fuss- und Sprunggelenkchirurgie

    2012-11-01

    The book on imaging diagnostics of the foot contains the following chapters: (1) Imaging techniques. (2) Clinical diagnostics. (3) Ankle joint and hind foot. (4) Metatarsus. (5) Forefoot. (6) Pathology of plantar soft tissue. (7) Nervous system diseases. (8) Diseases without specific anatomic localization. (9) System diseases including the foot. (10) Tumor like lesions. (11) Normative variants.

  16. Validation of Diagnostic Imaging Based on Repeat Examinations. An Image Interpretation Model

    International Nuclear Information System (INIS)

    Isberg, B.; Jorulf, H.; Thorstensen, Oe.

    2004-01-01

    Purpose: To develop an interpretation model, based on repeatedly acquired images, aimed at improving assessments of technical efficacy and diagnostic accuracy in the detection of small lesions. Material and Methods: A theoretical model is proposed. The studied population consists of subjects that develop focal lesions which increase in size in organs of interest during the study period. The imaging modality produces images that can be re-interpreted with high precision, e.g. conventional radiography, computed tomography, and magnetic resonance imaging. At least four repeat examinations are carried out. Results: The interpretation is performed in four or five steps: 1. Independent readers interpret the examinations chronologically without access to previous or subsequent films. 2. Lesions found on images at the last examination are included in the analysis, with interpretation in consensus. 3. By concurrent back-reading in consensus, the lesions are identified on previous images until they are so small that even in retrospect they are undetectable. The earliest examination at which included lesions appear is recorded, and the lesions are verified by their growth (imaging reference standard). Lesion size and other characteristics may be recorded. 4. Records made at step 1 are corrected to those of steps 2 and 3. False positives are recorded. 5. (Optional) Lesion type is confirmed by another diagnostic test. Conclusion: Applied on subjects with progressive disease, the proposed image interpretation model may improve assessments of technical efficacy and diagnostic accuracy in the detection of small focal lesions. The model may provide an accurate imaging reference standard as well as repeated detection rates and false-positive rates for tested imaging modalities. However, potential review bias necessitates a strict protocol

  17. Imaging techniques used in the diagnostic workup of acute venous thromboembolic disease.

    Science.gov (United States)

    Tilve-Gómez, A; Rodríguez-Fernández, P; Trillo-Fandiño, L; Plasencia-Martínez, J M

    Early diagnosis is one of the most important factors affecting the prognosis of pulmonary embolism (PE); however, the clinical presentation of PE is often very unspecific and it can simulate other diseases. For these reasons, imaging tests, especially computed tomography angiography (CTA) of the pulmonary arteries, have become the keystone in the diagnostic workup of PE. The wide availability and high diagnostic performance of pulmonary CTA has led to an increase in the number of examinations done and a consequent increase in the population's exposure to radiation and iodinated contrast material. Thus, other techniques such as scintigraphy and venous ultrasonography of the lower limbs, although less accurate, continue to be used in certain circumstances, and optimized protocols have been developed for CTA to reduce the dose of radiation (by decreasing the kilovoltage) and the dose of contrast agents. We describe the technical characteristics and interpretation of the findings for each imaging technique used to diagnose PE and discuss their advantages and limitations; this knowledge will help the best technique to be chosen for each case. Finally, we comment on some data about the increased use of CTA, its clinical repercussions, its "overuse", and doubts about its cost-effectiveness. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Science.gov (United States)

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  19. Chromatographic quality control procedures for /sup 99m/Tc-diagnostic agents

    International Nuclear Information System (INIS)

    Marinelli, M.; Pozzato, R.; Garuti, P.; Zucchini, G.L.

    1986-01-01

    The purpose of this work was to experiment simple and rapid chromatographic systems, based on paper and thin-layer techniques, to test the radiochemical purity of some common /sup 99m/Tc diagnostic agents, and select those systems able to prevent the anomalies due to oxidation and artifact production. The agents were examined under conditions which usually bring about the above mentioned anomalies, then the results were compared with those obtained under controlled conditions. Quali- and quantitative detection of the activity present on the chromatograms was carried out using the equipment available in nuclear medicine departments

  20. Preparation, purification and primary bioevaluation of radioiodinated ofloxacin. An imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, Shaban; Seddik, Usama; Hussien, Hiba; Shaltot, Mohamed [Atomic Energy Authority, Cairo (Egypt). Cyclotron Project; El-Tabl, Abdou [Monofia Univ. (Egypt). Faculty of Science

    2015-07-01

    The broad-spectrum antibiotic agents have been demonstrated as promising diagnostic tools for early detection of infectious lesions. We set out ofloxacin (Oflo), a second-generation fluoroquinolone, for the radioiodination process. In particular, this was carried out with {sup 125}I via an electrophilic substitution reaction. The radiochemical yield was influenced by different factors; drug concentration, different oxidizing agents, e.g. chloramine-T, iodogen and n-bromosuccinimide, pH of medium, reaction time, temperature and different organic media. These parameters were studied to optimize the best conditions for labeling with ofloxacin. We found that radiolabeling in ethanol medium showed a 70% radiochemical yield of {sup 125}I-ofloxacin. The radioiodination was determined by means of TLC and HPLC. The cold labeled Oflo ({sup 127}I-Oflo) was prepared and controlled by HPLC. The cold labeled Oflo was also confirmed by NMR and MS techniques. Furthermore, biodistribution studies for labeled {sup 125}I-Oflo were examined in two independent groups (3 mice in each one); control and E. Coli-injected (inflamed). The radiotracer showed a good localization in muscle of thigh for inflamed group as compared to control. In conclusion, ofloxacine might be a promising target as an anti-inflammatory imaging agent.

  1. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Scott B Raymond

    Full Text Available Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5+/-5.4-fold increase in Trypan blue fluorescence and 2.7+/-1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP, across a large age range (9-26 months, with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.

  2. [Transparency regime: semiotics of radiographical images in urological diagnostics].

    Science.gov (United States)

    Martin, M; Fangerau, H

    2012-10-01

    Shortly after Röntgen discovered x-rays urology became one of the main test fields for the application of this new technology. Initial scepticism among physicians, who were inclined to cling to traditional manual methods of diagnosing, was replaced by enthusiasm for radiographic technologies and the new method soon became the standard in, for example the diagnosis of concrements. Patients favoring radiographic procedures over the use of probes and a convincing documentation of stones in radiograms were factors that impacted the relatively rapid integration of radiology into urology. The radiographic representation of soft tissues and body cavities was more difficult and the development of contrast agents in particular posed a serious problem. Several patients died during this research. A new diagnostic dimension was revealed when radiography and cystography were combined to form the method of retrograde pyelography. However, the problem of how urologists could learn how to read the new images remained. In order to allow trainee physicians to practice interpreting radiograms atlases were produced which offered explanatory texts and drawings for radiographic images of the kidneys, the bladder etc. Thus, urologists developed a self-contained semiotics which facilitated the appropriation of a unique urological radiographical gaze.

  3. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  4. Tc-99m imaging agents

    International Nuclear Information System (INIS)

    Weininger, J.; Trumper, J.

    1984-01-01

    A wide range of pharmaceuticals for labeling with Tc-99m, developed by the Soreq Radiopharmaceuticals Department, is described. Details of the production and quality control of 13 kits are given, as well as the range of results required for consistently high quality imaging agents

  5. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  6. Present practice of diagnostic imaging in the newborn infants

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi

    1994-01-01

    The present practice of diagnostic imaging in our NICU (which includes premature unit) was studied, surveying the total 637 admitted newborn infants during the year of 1992. The total number of diagnostic imaging performed other than scout radiography was 939. The number of ultrasonography of the heart and the brain, and brain CT was 752 or 80.0% of the total. These were done more frequently in the cases of very low birth weight infants. In our NICU, ultrasonography including pulse-doppler method, is performed for diagnosis of structural and functional abnormality of the cardiopulmonary systems and also for finding intracranial lesion, on the basis of finding in plain chest films. In spite of various limitation, we are performing, as the necessity commands, fluoroscopic contrast study, angiography, scintigraphy and MRI for the low birth weight (≥1,500g) and mature infants. Some of the actual cases in which diagnostic imaging was helpful were presented. Recently, upon admittance to the NICU for the specific abnormality of the newborn and premature infants, orginally, asymptomatic diseases are often found and diagnosed. This should be the results of progress in diagnostic imaging in recent years. (author)

  7. Nanoparticles as image enhancing agents for ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jun [Biomedical Engineering Department, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210 (United States); Levine, Andrea L [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Mattoon, John S [Department of Veterinary Clinical Sciences, Ohio State University, 1151 Veterinary Hospital, 601 Vernon Tharp St., Columbus, OH 43210 (United States); Yamaguchi, Mamoru [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Lee, Robert J [Division of Pharmaceutics, College of Pharmacy, NCI Comprehensive Cancer Center, and NSF Nanoscale Science and Engineering Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210 (United States); Pan Xueliang [Department of Statistics, Ohio State University, 1958 Neil Avenue, Columbus, OH 43210 (United States); Rosol, Thomas J [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States)

    2006-05-07

    Nanoparticles have drawn great attention as targeted imaging and/or therapeutic agents. The small size of the nanoparticles allows them to target cells that are beyond capillary vasculature, such as cancer cells. We investigated the effect of solid nanoparticles for enhancing ultrasonic grey scale images in tissue phantoms and mouse livers in vivo. Silica nanospheres (100 nm) were dispersed in agarose at 1-2.5% mass concentration and imaged by a high-resolution ultrasound imaging system (transducer centre frequency: 30 MHz). Polystyrene particles of different sizes (500-3000 nm) and concentrations (0.13-0.75% mass) were similarly dispersed in agarose and imaged. Mice were injected intravenously with nanoparticle suspensions in saline. B-mode images of the livers were acquired at different time points after particle injection. An automated computer program was used to quantify the grey scale changes. Ultrasonic reflections were observed from nanoparticle suspensions in agarose gels. The image brightness, i.e., mean grey scale level, increased with particle size and concentration. The mean grey scale of mouse livers also increased following particle administration. These results indicated that it is feasible to use solid nanoparticles as contrast enhancing agents for ultrasonic imagin000.

  8. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Science.gov (United States)

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-11-01

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. A comparison of positron-emitting blood pool imaging agents

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Kulprathipanja, S.; Evans, G.; Elmaleh, D.

    1979-01-01

    The three agents, 11 C-carboxyhaemoglobin, 68 Ga-transferrin and 68 Ga-labelled red cells have been compared in dogs to assess their relative merits for blood-pool imaging. For 1 h following administration of each agent, periodic blood samples were withdrawn for counting in a NaI (Tl) well counter while conventional two-dimensional images were obtained simultaneously on the Massachusetts General Hospital positron camera. Count rates in regions about the heart, liver and spleen were obtained for each image. The disappearance of blood activity as shown from the results of counting the blood samples and from the counting rates in regions about the heart was found to be identical within experimental error for the three agents. In the liver and spleen regions, the highest count rates were obtained with 68 Ga-transferrin and the lowest with 68 Ga-labelled red cells; count rates in these regions with labelled red cells were virtually constant throughout the 1 h study. It may be concluded that with the exceptions noted above, the three agents are approximately equivalent for blood-pool imaging. (author)

  10. Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1.

    Science.gov (United States)

    Fanfone, Deborah; Despretz, Nadège; Stanicki, Dimitri; Rubio-Magnieto, Jenifer; Fossépré, Mathieu; Surin, Mathieu; Rorive, Sandrine; Salmon, Isabelle; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N; Saussez, Sven; Burtea, Carmen

    2017-10-06

    The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.

  11. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    Science.gov (United States)

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  12. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    International Nuclear Information System (INIS)

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  13. MR imaging diagnostic protocol for unilocular lesions of the jaw

    Directory of Open Access Journals (Sweden)

    Hironobu Konouchi

    2012-08-01

    Using our MR imaging diagnostic protocol to diagnose 31 cases, we obtained a positivity rate of 71.0%. The use of our MR imaging diagnostic protocol for unilocular lesions, which are especially difficult to differentiate by radiography, would improve the morphological and qualitative diagnosis of soft tissue lesions.

  14. Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents.

    Science.gov (United States)

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Poillot, Cathy; Giardiello, Marco; Tisseyre, Céline; Barbier, Emmanuel L; Fries, Pascal Henry; de Waard, Michel; Reiss, Peter; Mazzanti, Marinella

    2011-10-25

    Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.

  15. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  16. Lipoprotein Nanoplatform for Targeted Delivery of Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jerry D. Glickson

    2008-03-01

    Full Text Available Low-density lipoprotein (LDL provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs. Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL] to over a micron (chylomicrons is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains, surface loading (intercalation into the phospholipid monolayer, and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core. Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (≤ 400/LDL have been attached by core loading. Protein loading was used to reroute the LDL from its natural receptor (LDLR to folate receptors and could be used to target other receptors. A semisynthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles with carboxylated cholesterol and overlaying a monolayer of phospholipid to which apolipoprotein A1 or E was adsorbed for targeting HDL or adsorbing synthetic amphipathic helical peptides ltargeting LDL or folate receptors. These particles can be used for in situ loading of magnetite into cells for MRI-monitored cell tracking or gene expression.

  17. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    Science.gov (United States)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  18. Diagnostic imaging in focal epilepsy

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2013-01-01

    Focal epilepsies account for 60% of all seizure disorders worldwide. In this review the classic and new classification system of epileptic seizures and syndromes as well as genetic forms are discussed. Magnetic resonance (MR) is the technique of choice for diagnostic imaging in focal epilepsy because of its sensitivity and high tissue contrast. The review is focused on the lack of consensus of imaging protocols and reported findings in refractory epilepsy. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics are depicted. Diagnosis of hippocampal sclerosis and malformations of cortical development as two major causes of refractory focal epilepsy is described in details. Some promising new techniques as positron emission tomography computed tomography (PET/CT) and MR and PET/CT fusion are briefly discussed. Also the relevance of adequate imaging in focal epilepsy, some practical points in imaging interpretation and differential diagnosis are highlighted. (author)

  19. Magnetic resonance imaging using paramagnetic contrast agents in the clinical evaluation of myocardial infarction. Chapter 15

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der

    1992-01-01

    MRI is noninvasive and specific method for production of high resolution tomographic images in blocks of 3D information. Apart from scintigraphic techniques and computed tomography for evaluation of myocardial ischemia and infarcts, MRI has emerged as a new diagnostic technique to study the extent of anatomical and functional abnormalities in patients with coronary artery disease. Conventional noncontrast MRI can identify acute-infarcted myocardial areas, although the difficulty in identifying myocardial ischemia and infarct with noncontrast MRI suggests a potential role for contrast enhanced MRI. Use of the paramagnetic contrast agent gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) improves depiction of infarcted myocardium on T1-weighted spin -echo MR images that are obtained soon after acute myocardial infarction. This is of particular interest for the estimation of myocardial infarct size. Furthermore, ultrafast subsecond imaging, in combination with Gd-DTPA, offers the potential to analyze cardiac first pass and myocardial perfusion. The development of nontoxic paramagnetic contrast agents which are selectively taken up by viable myocardium would be helpful in assessing the presence of ischemic/infarcted myocardium salvage by MRI following reperfusion. (author). 58 refs., 6 figs

  20. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  1. Advances in optical imaging

    International Nuclear Information System (INIS)

    Bremer, C.; Ntziachristos, V.; Mahmood, U.; Tung, C.H.; Weissleder, R.

    2001-01-01

    Different optical imaging technologies have significantly progressed over the last years. Besides advances in imaging techniques and image reconstruction, new 'smart' optical contrast agents have been developed which can be used to detect molecular targets (such as endogenous enzymes) in vivo. The combination of novel imaging technologies coupled with smart agents bears great diagnostic potential both clinically and experimentally. This overview outlines the basic principles of optical imaging and summarizes the current state of the art. (orig.) [de

  2. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  3. Diagnostic imaging in fertility disorders

    International Nuclear Information System (INIS)

    Winfield, A.C.; Fleischer, A.C.

    1987-01-01

    Some 10%-15% of married couples are affected by a fertility disorder. The number of infertile couples seeking medical assistance has increased dramatically in the past decade. The roles of diagnostic imaging with radiography and US (conventional and transvaginal) is emphasized in the assessment of couples with fertility disorders and an unexpectedly higher incidence of fetal wastage secondary to unsuspected uterine anomalies. The most frequently utilized radiographic examination in infertile patients is hysterosalpingography (HSG). Techniques and complications of HSG are illustrated. The normal anatomy, variants, and congenital anomalies of the uterus and fallopian tubes are demonstrated, as are the numerous abnormalities such as filling defects of the uterine cavity, synechiae, effects of maternal diethylstilbestrol exposure, inflammatory tubal disease, and the more common HSG findings following uterine and tubal surgery. The role of diagnostic imaging in male infertility, including vasography and varicocele detection, are addressed. Conventional and transvaginal US in the management of gynecologic fertility disorders are examined, with an emphasis on follicular monitoring, guided follicular aspirations, endometrial evaluations, and evaluation of other disorders (such as endometriosis) associated with infertility

  4. Fast, fat-suppressed diagnostic imaging of the breast

    International Nuclear Information System (INIS)

    Metzger, G.J.; Weatherall, P.

    1999-01-01

    Maximum sensitivity and diagnostic precision of MR imaging of the breast can be achieved only with fat-suppressed diagnostic scans with high resolution. Optimal results were obtained with a 3D-FFE sequence and excitation by a binomial pulse and an amplitude-modulated binomial pulse. (orig./CB) [de

  5. Magnetic resonance imaging of the wrist: Diagnostic performance statistics

    International Nuclear Information System (INIS)

    Hobby, Jonathan L.; Tom, Brian D.M.; Bearcroft, Philip W.P.; Dixon, Adrian K.

    2001-01-01

    AIM: To review the published diagnostic performance statistics for magnetic resonance imaging (MRI) of the wrist for tears of the triangular fibrocartilage complex, the intrinsic carpal ligaments, and for osteonecrosis of the carpal bones. MATERIALS AND METHODS: We used Medline and Embase to search the English language literature. Studies evaluating the diagnostic performance of MRI of the wrist in living patients with surgical confirmation of MR findings were identified. RESULTS: We identified 11 studies reporting the diagnostic performance of MRI for tears of the triangular fibrocartilage complex for a total of 410 patients, six studies for the scapho-lunate ligament (159 patients), six studies for the luno-triquetral ligament (142 patients) and four studies (56 patients) for osteonecrosis of the carpal bones. CONCLUSIONS: Magnetic resonance imaging is an accurate means of diagnosing tears of the triangular fibrocartilage and carpal osteonecrosis. Although MRI is highly specific for tears of the intrinsic carpal ligaments, its sensitivity is low. The diagnostic performance of MRI in the wrist is improved by using high-resolution T2* weighted 3D gradient echo sequences. Using current imaging techniques without intra-articular contrast medium, magnetic resonance imaging cannot reliably exclude tears of the intrinsic carpal ligaments. Hobby, J.L. (2001)

  6. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring.

    Science.gov (United States)

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.

  7. Synthesis and Development of Diagnostic Tools for Medical Imaging

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Henrik

    was the synthesis of different materials. The first project introduces the development of injectable fiducial markers within the field of image-guided radiotherapy. Fiducial markers for computed tomography (CT)-imaging are today needed in order to correlate the positioning of the tumor to provide a more precise...... loading of liposomes. Long circulating contrast agents for blood pool imaging by CT-imaging are of interest due to the current limitations of short retention times and the considerable amounts needed to achieve a proper contrast. A small library of contrast agents designed for remote loading of liposomes...

  8. Diagnostic imaging of exotic pets

    International Nuclear Information System (INIS)

    Silverman, S.

    1993-01-01

    Radiographic, ultrasonographic, and computed tomographic (CT) imaging are important diagnostic modalities in exotic pets. The use of appropriate radiographic equipment, film-screen combinations, and radiographic projections enhances the information obtained from radiographs. Both normal findings and common radiographic abnormalities are discussed. The use of ultrasonography and CT scanning for exotic small mammals and reptiles is described

  9. Improving diagnostic accuracy using agent-based distributed data mining system.

    Science.gov (United States)

    Sridhar, S

    2013-09-01

    The use of data mining techniques to improve the diagnostic system accuracy is investigated in this paper. The data mining algorithms aim to discover patterns and extract useful knowledge from facts recorded in databases. Generally, the expert systems are constructed for automating diagnostic procedures. The learning component uses the data mining algorithms to extract the expert system rules from the database automatically. Learning algorithms can assist the clinicians in extracting knowledge automatically. As the number and variety of data sources is dramatically increasing, another way to acquire knowledge from databases is to apply various data mining algorithms that extract knowledge from data. As data sets are inherently distributed, the distributed system uses agents to transport the trained classifiers and uses meta learning to combine the knowledge. Commonsense reasoning is also used in association with distributed data mining to obtain better results. Combining human expert knowledge and data mining knowledge improves the performance of the diagnostic system. This work suggests a framework of combining the human knowledge and knowledge gained by better data mining algorithms on a renal and gallstone data set.

  10. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    Science.gov (United States)

    Wachter, Eric A.; Fisher, Walter G.; Dees, H. Craig

    1998-01-01

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  11. Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents

    Science.gov (United States)

    Wachter, Eric A [Oak Ridge, TN; Fisher, Walter G [Knoxville, TN; Dees, H Craig [Knoxville, TN

    2008-03-18

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  12. Diagnostic imaging in pregraduate integrated curricula

    International Nuclear Information System (INIS)

    Kainberger, F.; Kletter, K.

    2007-01-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula. (orig.)

  13. [Diagnostic imaging in pregraduate integrated curricula].

    Science.gov (United States)

    Kainberger, F; Kletter, K

    2007-11-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula.

  14. Development of 99mTc agents for imaging central neural system receptors

    International Nuclear Information System (INIS)

    2004-01-01

    Radiopharmaceuticals that bind to central neural system (CNS) receptors in vivo are potentially useful for understanding the pathophysiology of anumber of neurological and psychiatric disorders, their diagnosis and treatment. Carbon-11 labelled compounds and positron emission tomography(PET) imaging have played a vital role in establishing the usefulness of imaging the dopaminergic, cholinergic, serotonergic and benzodiazapine receptors, and relating the receptor density to disease status. Since the use of 11C agents is constrained due to their 20 min half-life, various radiohalogenated analogues based on the structure of 11C compounds have been successfully developed, providing comparable information. Iodine- 123 is the most widely employed of these radioisotopes; it has a longer, 13 h, half-life. Through the use of 123I, there has been a steady growth in CNS receptor imaging studies employing single photon emission computerized tomography (SPECT). SPECT, as compared with PET, has slightly inferior image resolution but has the advantage of being readily available worldwide. However, the 123I radiopharmaceutical is expensive and the distribution system outside of the major markets is not well developed for its supply on a routine basis. The ideal radioisotope for SPECT imaging is 99mTc, due to its low cost per dose, availability through commercially available generator systems and physical decay characteristics. Over 80% of all diagnostic nuclear medicine imaging studies worldwide are conducted using this radioisotope. Development of 99mTc radiopharmaceuticals for imaging CNS receptors is therefore of considerable importance. On the basis of the recommendations of a consultants meeting, the International Atomic Energy Agency (IAEA) initiated in 1996 a Co-ordinated Research Project (CRP) on Development of Agents for Imaging CNS Receptors based on 99mTc. At that time there were no 99mTc CNS receptor imaging radiopharmaceuticals available even though work on

  15. Modular strategies for PET imaging agents

    International Nuclear Information System (INIS)

    Hooker, J.M.

    2010-01-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  16. Diagnostic nuclear medicine. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schiepers, C.

    2006-01-01

    The field of nuclear medicine is undergoing rapid expansion, and is evolving into diagnostic molecular imaging. During recent years, dual-modality imaging with PET/CT has gained acceptance and this is currently the fastest-growing technique for oncological imaging applications. The glucose analogue FDG has held its place in diagnostic oncology, assessment of myocardial viability and diagnosis of neuro-degenerative disorders. Peptides have become even more important as imaging agents. The accuracy of hepatobiliary scintigraphy has been enhanced by cholecystokinin. The use of ACE inhibitors in the evaluation of renovascular hypertension has become the standard in renography. New instrumentation has led to faster scanners, and computer development to better image processing software. Automatic processing is more common, and standardization of protocols can be accomplished easily. The field of gene imaging has progressed, although routine clinical applications are not yet available. The present text, supplemented with many detailed and informative illustrations, represents an adjunct to the standard knowledge of diagnostic nuclear medicine and provides both the student and the professional with an overview of developments during the past decade. (orig.)

  17. Post-graduate training in imaging diagnostics, nuclear medicine and radiotherapy for radiographers

    International Nuclear Information System (INIS)

    Petkova, E.; Velkova, K.; Shangova, M.; Karidova, S.

    2006-01-01

    Full text: The application of new technologies in imaging diagnostics, as well as the use of digital processing and storing of information, has increased the quality and scope of imaging diagnostics. The potentials of therapeutic methods connected with imaging diagnostics and nuclear medicine, interventional therapeutic procedures (dilatation, embolism, stent, etc.), basins with radio-pharmaceuticals, etc., are constantly increasing. The constant training of radiographers in working with the new, advanced image-diagnostic equipment has become an established international practice in the process of training the human resources of the imaging-diagnostic departments and centers. Objectives: 1. Investigating the potentials of post-graduate training for monitoring the dynamics in the development of the principles, methods and techniques in imaging diagnostics; 2. The attitude of radiographers towards post-graduate training. Systematic approach and critical analysis of published data and mathematical-statistical methods with regard to the need of post-graduate training. The processed data of the survey on the necessity for post-graduate training conducted among 3rd year students in the last 3 years - 75 % consider post-graduate training mandatory, 11% deem it necessary, and 14% have no opinion on the issue; and among the working radiographers in the last 3 years the results are as follows: mandatory - 91%, necessary - 7%, no opinion - 2%. The improvement and advances in imaging diagnostic equipment and apparatuses have considerably outstripped the professional training of radiographers. The key word in the race for knowledge is constant learning and training, which can successfully be achieved within the framework of post-graduate training

  18. Diagnostic accuracy of imaging modalities for internal derangements of temporomandibular joint

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Igarashi, Chinami; Yuasa, Masao; Imanaka, Masahiro; Kondoh, Toshirou

    1998-01-01

    The purpose of this study was to evaluate and review the diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value of imaging diagnosis for temporomandibular disorders. The role of diagnostic imaging is to detect and document specific anatomic abnormalities associated with the signs and symptoms in the temporomandibular joint. Magnetic resonance imaging (MR imaging) can accurately depict disc displacement and disc deformity. MR imaging is our first choice among the various imaging modalities for the patients with clinical signs and symptoms. However, it has been shown that intra-capsular adhesions and perforations of the disc and retrodiscal tissue are sometimes not detected by MR imaging. To improve the diagnostic technique for adhesions and perforations, double-contrast arthrotomography with fluoroscopy should be employed. The irregular surface of the eminences and the glenoid fossae shown by MR imaging and tomography are correlated with subchondral bone exposure by arthroscopy. Erosion of the condyles detected by MR imaging, tomography and rotational panoramic radiography is correlated with subchondral bone exposure detected by arthroscopy. (author). 69 refs

  19. The clinician's guide to diagnostic imaging: Cost-effective pathways. Second edition

    International Nuclear Information System (INIS)

    Grossman, Z.D.; Chew, F.S.; Ellis, D.A.; Brigham, S.C.

    1987-01-01

    The authors developed a cost-effective approach to imaging studies, based on initial selection of an exam that best addresses the specific clinical problem and obviates the need for additional diagnostic tests. Tightly reasoned arguments compare available imaging options with respect to diagnostic yield, feasibility, risk, and cost. To aid the clinician in making cost comparisons, each paper of the Second Edition lists the dollar cost of relevant imaging studies. The Second Edition has been thoroughly revised to reflect the important advances in diagnostic imaging of the past three years, highlighting CT's expanding role in thoracic and abdominal problems, magnetic resonance imaging as a spectacular diagnostic tool for the central nervous system, and the clinical application of many newly-developed radiopharmaceuticals. New chapters cover breast cancer screening, acute spinal trauma, search for primary cancer of unknown origin, acute anuria, blunt chest trauma, new onset seizures, and spinal cord compression from metastases. Other papers have been rewritten for greater clarity and to incorporate new techniques, like dipyridamole stress testing. A glossary and an introduction define and explain the capabilities and limitations of current techniques

  20. Diagnostic criteria in MR neurography

    International Nuclear Information System (INIS)

    Baeumer, P.

    2017-01-01

    Peripheral neuropathies are frequent and can mostly be correctly diagnosed by clinical examination and electrophysiology; however, diagnostically difficult cases are sometimes encountered especially with respect to precise localization of nerve lesions. Imaging of the peripheral nervous system has been shown to provide additional useful diagnostic information. In addition to the more widely available nerve sonography, magnetic resonance neurography (MRN) is the method of choice in diagnostically complex cases. The most important pulse sequence is a T2-weighted fat-saturated pulse sequence with high in-plane resolution and detects increased T2-weighted signals of nerve fascicles as a highly sensitive sign for nerve lesions. Further established diagnostic criteria are nerve caliber and, less commonly used, contrast agent uptake. The spatial pattern of nerve lesions aids in the diagnostic classification of neuropathies. Functional imaging techniques, such as diffusion tensor imaging (DTI) and nerve perfusion are currently under examination with respect to the clinical potential. If all other diagnostic methods, including clinical examination, electrophysiology and nerve sonography do not arrive at an unambiguous diagnosis of a peripheral neuropathy, MRN should be used. The special value of MRN is demonstrated particularly in complex nerve lesions, such as traumatic plexopathies and in partial fascicular neuropathies and many other indications. (orig.) [de

  1. Diagnostic imaging of lymphomas in pediatric patients

    International Nuclear Information System (INIS)

    Petrova, A.

    2010-01-01

    Lymphoma is the third most common malignancy in children, after leukemias and brain tumors, most commonly during early childhood before 14 years. In definite stages cancer can engage all organs and systems. These conditions associate with immunodeficiency, increased susceptibility to infections and second neoplasms. The social importance of the problem requires early diagnosis, accurate staging, and assessment of the treatment and determination of the risk for relapse of the disease. The aim of the present review is to represent the role of the modern methods of diagnostic imaging - ultrasonography (US), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emisson Tomography (PET) scan in the process of diagnostics, in the decision of therapeutic strategy and the follow-up of children with lymphomas

  2. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira; Rajabi, Hossein, E-mail: hrajabi@modares.ac.ir [Tarbiat Modares University, Department of Medical Physics (Iran, Islamic Republic of); Babaei, Mohammad Hossein [Nuclear Science and Technology Research Institute, Department of Radioisotope (Iran, Islamic Republic of); Akhlaghpoor, Shahram [Sina Hospital, Tehran Medical University, Noor Medical Imaging Center (Iran, Islamic Republic of)

    2011-06-15

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 {+-} 2.5 and 41 {+-} 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 {mu}g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  3. Basic artefacts of diagnostic imaging by the magnetic resonance method

    International Nuclear Information System (INIS)

    Vitak, T.; Seidl, Z.; Obenberger, J.; Vaneckova, M.; Danes, J.; Krasensky, J.; Peterkova, V

    2000-01-01

    Artefacts in diagnostic imaging are defined as a geometric or anatomic misrepresentation of the reality by the image formed. The article deals with artefacts due to field and frequency shifts, in particular due to the water-fat chemical shift and due to magnetic susceptibility. The physical nature of the artefacts is explained and their diagnostic significance is discussed. (P.A.)

  4. Diagnostic imaging in child abuse

    International Nuclear Information System (INIS)

    Stoever, B.

    2007-01-01

    Diagnostic imaging in child abuse plays an important role and includes the depiction of skeletal injuries, soft tissue lesions, visceral injuries in ''battered child syndrome'' and brain injuries in ''shaken baby syndrome''. The use of appropriate imaging modalities allows specific fractures to be detected, skeletal lesions to be dated and the underlying mechanism of the lesion to be described. The imaging results must be taken into account when assessing the clinical history, clinical findings and differential diagnoses. Computed tomography (CT) and magnetic resonance imaging (MRI) examinations must be performed in order to detect lesions of the central nervous system (CNS) immediately. CT is necessary in the initial diagnosis to delineate oedema and haemorrhages. Early detection of brain injuries in children with severe neurological symptoms can prevent serious late sequelae. MRI is performed in follow-up investigations and is used to describe residual lesions, including parenchymal findings. (orig.) [de

  5. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  6. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  7. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  8. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  9. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    International Nuclear Information System (INIS)

    Paulson, E

    2014-01-01

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  10. Diagnostic value of imaging in infective endocarditis: a systematic review.

    Science.gov (United States)

    Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu

    2017-01-01

    Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  12. Tissue-specific MR contrast agents. Impact on imaging diagnosis and future prospects

    International Nuclear Information System (INIS)

    Yoshimitsu, Kengo; Nakayama, Tomohiro; Kakihara, Daisuke; Irie, Hiroyuki; Tajima, Tsuyoshi; Asayama, Yoshiki; Hirakawa, Masakazu; Ishigami, Kousei; Honda, Hiroshi

    2005-01-01

    tumor vascularity and precise location. Unfortunately, however, its performance in depicting tumor vascularity was suggested to be less than that of multi detector row CT (MDCT) or dynamic MR using Gd-DTPA. Further investigation is needed to determine the true usefulness of Gd-EOB-DTPA in the imaging diagnosis of liver tumors. A number of other promising tissue-specific contrast agents currently are under development, including blood pool agents, lymphatic or lymph nodal agents, blood vessel wall agents, and so on. We, as radiologists, should keep in mind that the true efficacy and roles of these tissue-specific agents need to be evaluated not only from the viewpoint of diagnostic accuracy but also with reference to their socioeconomic aspects, particularly in this era of the Diagnosis-Related Group/Prospective Payment System. (author)

  13. Diagnostic imaging of the pancreas

    International Nuclear Information System (INIS)

    Araki, Tsutomu; Itai, Yuji

    1981-01-01

    Diagnostic imaging of the pancreas, ultrasonography (US), computed tomography (CT), radionuclide (RN) scintigraphy, angiography, and endoscopic retrograde pancreaticography (ERP). First three noninvasive methods, were the most effective to diagnose psudo-cyst or cystoadenoma. Especially, CT gives the clear image of inflammation and shows pancreatic stones and calcification, with high sensitivity. As for pancreatic carcinomas there was no noninvasive methods to apply at an early stage. In order to diagnose the cancer the combination of angiography and ERP was preferable. The problem was how to select the candidates for the investigation of combined method out of the patients with negative CT or US. (Tsunoda, M.)

  14. Leishmania Surveillance and Diagnostic Capability in Support of the Joint Biological Agent Identification and Diagnostic System (JBAIDS) and Leishmania Vector Surveillance

    Science.gov (United States)

    2013-02-07

    01-10-09 to 07-02-13 ’+. I II L~ J.\\NU :::OU~ Ill L~ :la. l-UI’I I 11J.\\l- I NUIVI~~I1 LEISHMANIA SURVEILLANCE AND DIAGNOSTIC CAPABILITY IN None...SUPPORT OF THE JOINT BIOLOGICAL AGENT IDENTIFICATION AND :lD. l:JI1J.\\NI NUIVI~~I1 DIAGNOSTIC SYSTEM (JBAIDS) None . ./ LEISHMANIA VECTOR...Field Station at Kisumu completed project activities through a resource sharing arrangement with the 59th MDW. Testing of the Leishmania epidemiology

  15. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  16. Primary ureteral carcinoma: MRI diagnosis and comparison with other diagnostic imaging facilities

    International Nuclear Information System (INIS)

    An Ningyu; Jiang Bo; Cai Youquan; Liang Yan

    2004-01-01

    Objective: To investigate MRI examination methods and imaging manifestations of primary ureteral carcinoma, and to evaluate its clinical values when comparing with other diagnostic imaging facilities. Methods: Eighty-seven cases of primary ureteral carcinoma who were operated within recent 8 years came into the study, among which, 35 cases had MRI examinations. For MRI examination, coronal heavy T 2 WI (water imaging) was performed to show the dilated ureter, then axial T 2 WI and T 1 WI were scanned at the obstruction level. 11 cases underwent additional Gd-DTPA dynamic contrast enhanced scans. The original pre-operative diagnostic reports of various imaging facilities were analyzed comparing with the results of operation and pathology. Results: MRI showed ureteral dilatation in 33 of 35 cases, no abnormal appearance in 1 case, and only primary kidney atrophy post renal transplantation in 1 case. Among the 33 cases with ureteral obstruction, soft mass at the obstruction level was detected on axial scans in 32 cases. The lesions showed gradual and homogeneous mild to moderate enhancement on contrast MRI. The overall employment rate of imaging facilities was as follows: ultrasound (94.3%), IVU (59.8%), CT (52.9%), MRI (40.2%), and RUP (35.6%). The accurate diagnostic rate was as follows :MRI (91.4%), RUP (80.6%), CT (63.0%), ultrasound (47.6%), and IVU (11.5%). Conclusion: Combination of MR water imaging and conventional sequences can demonstrate most primary ureteral carcinoma lesions and has a highest diagnostic accuracy among the current diagnostic imaging facilities. It should be taken as the first diagnostic imaging method of choice when primary ureteral carcinoma is suspected after ultrasound screening

  17. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  18. Contrast-enhanced peripheral MRA. Technique and contrast agents

    International Nuclear Information System (INIS)

    Nielsen, Yousef W.; Thomsen, Henrik S.

    2012-01-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X

  19. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  1. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    International Nuclear Information System (INIS)

    Jafari, Atefeh; Shayesteh, Saber Farjami; Salouti, Mojtaba; Heidari, Zahra; Rajabi, Ahmad Bitarafan; Boustani, Komail; Nahardani, Ali

    2015-01-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION–BBN in human blood serum. DSPION–BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION–BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T 2 -weighted and T 2 *-weighted color map MR images were acquired. The MRI study indicated that the DSPION–BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T 2 *-weighted color map MR images in mice with breast tumors. (paper)

  2. Synthesis and evaluation of novel Tc-99m labeled NGR-containing hexapeptides as tumor imaging agents.

    Science.gov (United States)

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-02-01

    Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Examining multi-component DNA-templated nanostructures as imaging agents

    Science.gov (United States)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  4. [EYECUBE as 3D multimedia imaging in macular diagnostics].

    Science.gov (United States)

    Hassenstein, Andrea; Scholz, F; Richard, G

    2011-11-01

    In the new generation of EYECUBE devices, the angiography image and the OCT are included in a 3D illustration as an integration. Other diagnostic procedures such as autofluorescence and ICG can also be correlated to the OCT. The aim was to precisely classify various two-dimensional findings in relation to each other. The new generation of OCT devices enables imaging with a low incidence of motion artefacts with very good fundus image quality - and with that, permits a largely automatic classification. The feature enabling the integration of the EYECUBE was further developed with new software, so that not only the topographic image (red-free, autofluorescence) can be correlated to the Cirrus OCT, but also all other findings gathered within the same time frame can be correlated to each other. These were brightened and projected onto the cube surface in a defined interval. The imaging procedures can be selected in a menu toolbar. Topographic volumetry OCT images can be overlayed. The practical application of the new method was tested on patients with macular disorders. By lightening up the results from various diagnostic procedures, it is possible of late to directly compare pathologies to each other and to the OCT results. In all patients (n = 45 eyes) with good single-image quality, the automated integration into the EYECUBE was possible (to a great extent). The application is not dependent on a certain type of device used in the procedures performed. The increasing level of precision in imaging procedures and the handling of large data volumes has led to the possibility of examining each macular diagnostics procedure from the comparative perspective: imaging (photo) with perfusion (FLA, ICG) and morphology (OCT). The exclusion of motion artefacts and the reliable scan position in the course of the imaging process increases the informative value of OCT. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Preclinical Assessment of a 68Ga-DOTA-Functionalized Depsipeptide as a Radiodiagnostic Infection Imaging Agent.

    Science.gov (United States)

    Ebenhan, Thomas; Mokaleng, Botshelo Brenda; Venter, Jacobus Daniel; Kruger, Hendrik Gert; Zeevaart, Jan Rijn; Sathekge, Mike

    2017-08-24

    The study assessed a radiolabeled depsipeptide conjugate ( 68 Ga-DOTA-TBIA101) for its potential as an imaging agent targeting infection or infection-associated inflammation. 68 Ga-labeled DOTA-TBIA101 imaging was performed in (NZR1) healthy rabbits; (NZR2) rabbits bearing muscular sterile inflammation and Staphylococcus aureus (SA) infection; and (NZR3) rabbits infected with Mycobacterium tuberculosis (MTB) combined with a subcutaneous scruff infection of SA in the same animal. All animals were imaged using a PET/CT scanner at 5 and 60 min post injection. Images showed elevated accumulation of 68 Ga-DOTA-TBIA101 in the sterile muscular inflammation site (T/NT ratio = 2.6 ± 0.37 (5 min) and 2.8 ± 2.3 (60 min)) and muscles infected with MTB (T/NT ratio = 2.6 ± 0.35 (5 min) and 2.8 ± 0.16 (60 min)). The findings suggest that 68 Ga-DOTA-TBIA101-PET/CT may detect MTB-associated inflammation, although more foundational studies need to be performed to rationalize the diagnostic value of this technique.

  6. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  7. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  8. Automatic volumetry on MR brain images can support diagnostic decision making

    Directory of Open Access Journals (Sweden)

    Aviv Richard I

    2008-05-01

    Full Text Available Abstract Background Diagnostic decisions in clinical imaging currently rely almost exclusively on visual image interpretation. This can lead to uncertainty, for example in dementia disease, where some of the changes resemble those of normal ageing. We hypothesized that extracting volumetric data from patients' MR brain images, relating them to reference data and presenting the results as a colour overlay on the grey scale data would aid diagnostic readers in classifying dementia disease versus normal ageing. Methods A proof-of-concept forced-choice reader study was designed using MR brain images from 36 subjects. Images were segmented into 43 regions using an automatic atlas registration-based label propagation procedure. Seven subjects had clinically probable AD, the remaining 29 of a similar age range were used as controls. Seven of the control subject data sets were selected at random to be presented along with the seven AD datasets to two readers, who were blinded to all clinical and demographic information except age and gender. Readers were asked to review the grey scale MR images and to record their choice of diagnosis (AD or non-AD along with their confidence in this decision. Afterwards, readers were given the option to switch on a false-colour overlay representing the relative size of the segmented structures. Colorization was based on the size rank of the test subject when compared with a reference group consisting of the 22 control subjects who were not used as review subjects. The readers were then asked to record whether and how the additional information had an impact on their diagnostic confidence. Results The size rank colour overlays were useful in 18 of 28 diagnoses, as determined by their impact on readers' diagnostic confidence. A not useful result was found in 6 of 28 cases. The impact of the additional information on diagnostic confidence was significant (p Conclusion Volumetric anatomical information extracted from brain

  9. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil.

    Science.gov (United States)

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.

  10. Advances in technetium chemistry towards 99mTc receptor imaging agents

    International Nuclear Information System (INIS)

    Johannsen, B.; Spies, H.

    1997-01-01

    The development of the chemistry of technetium and its non-radioactive surrogate rhenium has been prompted by the trends and needs of nuclear medicine, which predominantly uses 99m Tc radiopharmaceuticals for a broad range of diagnostics. Technetium-99m is the ideal radioisotope for tomographic single-photon emission tomography (SPECT) imaging due to its nuclear properties (6.2 h, E γ 140 keV) and ready availability through generator systems. Transition metals offer many opportunities for designing molecules by modifying the environment around the core, allowing certain biological properties to be imposed upon the molecule. Whereas research in the past was mainly concerned with biological properties that allow relatively unspecific functional imaging, as in brain or myocardium perfusion studies, nuclear medicine is now requiring more and more biochemical information on low capacity, high specificity targets. Many research groups have become involved in the search for new technetium-based compounds, called the third generation of 99m Tc radiopharmaceuticals, that employ the principles of modern pharmacology to achieve biochemical specificity. There has been considerable interest in imaging CNS and other receptors with 99m Tc receptor-binding ligands. Such a 99m Tc CNS receptor-imaging agent is currently not yet in use because of the significant hurdles to be overcome in attaining this ambitious goal. However, some Tc and Re complexes of remarkable affinity in vitro, and the first high-affinity 99m Tc probes able to label the dopamine transporter in the brain by SPECT imaging prove the feasibility of this approach. (Author)

  11. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  12. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  13. Diagnostic imaging of craniofacial trauma and fractures and their sequelae

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Kunz, C.

    2001-01-01

    The value and applications of the CT modalities are on the rise, particularly since the availability of spiral CT techniques, while conventional native diagnostics is increasingly used for special imaging purposes. Multiplanar spiral CT enables high-quality coronary 2D reconstructions which, in the acute phase, make redundant primary coronary imaging modalities. Exact knowledge of typical fracture patterns facilitates the analysis of images of the relevant facial areas. 3D reconstructions are indispensable in pin-pointed surgery planning, generation of stereolithographic models, and image-guided interventions for examination of post-traumatic deformities. Since a secondary correction only very rarely leads to restitutio ad integrum, it is necessary to detect the therapy-relevant injuries very early, during acute diagnostic imaging, in order to lay the basis for subsequent therapy and restoration of the craniofacial structures and functions. (orig./CB) [de

  14. Appropriate use of diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, P.E.S.; Cockshott, W.P.

    1984-11-16

    This article discusses ways in which more appropriate use can be made of roentgenography with a resulting decrease in radiation doses to the patient population. The authors recommend that fewer films be made and that traditional roentgenography be replaced with endoscopy, ultrasound, computerized tomography, or angiography where appropriate. They also recommend that medical schools and medical subspecialty groups study the World Health Organization document which provides indications for diagnostic imaging, the choice of procedure and the limitations of each.

  15. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    Science.gov (United States)

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  16. Multiwalled carbon nanotube hybrids as MRI contrast agents

    Directory of Open Access Journals (Sweden)

    Nikodem Kuźnik

    2016-07-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs, their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories.

  17. Novel MR imaging contrast agents for cancer detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2009-05-01

    Full Text Available

    • BACKGROUND: Novel potential MR imaging contrast agents Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP, Gd-hematoporphyrin (Gd-H, Gd-DTPA-9.2.27 against melanoma, Gd-DTPA-WM53 against leukemia and Gd-DTPAC595 against breast cancer cells were synthesized and applied to mice with different human cancer cells (melanoma MM-138, leukemia HL-60, breast MCF-7. The relaxivity, the biodistribution, T1 relaxation times, and signal enhancement of the contrast agents are presented and the results are compared.
    • METHODS: After preparation of contrast agents, the animal studies were performed. The cells (2×106 cells were injected subcutaneously in the both flanks of mice. Two to three weeks after tumor plantation, when the tumor diameter was 2-4 mm, mice were injected with the different contrast agents. The animals were sacrificed at 24 hr post IP injection followed by removal of critical organs. The T1 relaxation times and signal intensities of samples were measured using 11.4 T magnetic field and Gd concentration were measured using UV-spectrophotometer.
    • RESULTS: For Gd-H, the percent of Gd localized to the tumors measured by UV-spect was 28, 23 and 21 in leukemia, melanoma and breast cells, respectively. For Gd-TCP this amount was 21%, 18% and 15%, respectively. For Gd-DTPA-9.2.27, Gd-DTPA-WM53 and Gd-DTPA-C595 approximately 35%, 32% and 27% of gadolinium localized to their specific tumor, respectively.
    • CONCLUSION: The specific studied conjugates showed good tumor uptake in the relevant cell lines and low levels of Gd in the liver, kidney and spleen. The studied agents have considerable promise for further diagnosis applications of MR imaging.
    • KEYWORDS: Magnetic Resonance, Imaging, Monoclonal Antibody, Contrast Agents, Gadolinium, Early Detection of Cancer.

  18. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  19. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  20. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  1. Tree-structured vector quantization of CT chest scans: Image quality and diagnostic accuracy

    International Nuclear Information System (INIS)

    Cosman, P.C.; Tseng, C.; Gray, R.M.; Olshen, R.A.; Moses, L.E.; Davidson, H.C.; Bergin, C.J.; Riskin, E.A.

    1993-01-01

    The quality of lossy compressed images is often characterized by signal-to-noise ratios, informal tests of subjective quality, or receiver operating characteristic (ROC) curves that include subjective appraisals of the value of an image for a particular application. The authors believe that for medical applications, lossy compressed images should be judged by a more natural and fundamental aspect of relative image quality: their use in making accurate diagnoses. They apply a lossy compression algorithm to medical images, and quantify the quality of the images by the diagnostic performance of radiologists, as well as by traditional signal-to-noise ratios and subjective ratings. The study is unlike previous studies of the effects of lossy compression in that they consider non-binary detection tasks, simulate actual diagnostic practice instead of using paired tests or confidence rankings, use statistical methods that are more appropriate for non-binary clinical data than are the popular ROC curves, and use low-complexity predictive tree-structured vector quantization for compression rather than DCT-based transform codes combined with entropy coding. Their diagnostic tasks are the identification of nodules (tumors) in the lungs and lymphadenopathy in the mediastinum from computerized tomography (CT) chest scans. For the image modality, compression algorithm, and diagnostic tasks they consider, the original 12 bit per pixel (bpp) CT image can be compressed to between 1 bpp and 2 bpp with no significant changes in diagnostic accuracy

  2. [Fluorine-18 labeled androgens and progestins; imaging agents for tumors of prostate and breast]: Technical progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.

    1987-01-01

    This project develops fluorine-18 labeled steroids that possess high binding affinity and selectivity for androgen and progesterone receptors and can be used as positron-emission tomographic imaging agents for prostate tumors and breast tumors, respectively. These novel diagnostic agents may enable an accurate estimation of tumor dissemination, such as metastasis of prostate cancer and lymph node involvement of breast cancer, and an in vivo determination of the endocrine responsiveness of these tumors. They will provide essential information for the selection of alternative therapies thereby improving the management of prostate and breast cancer patients. 14 refs., 1 tab

  3. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    OpenAIRE

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-01-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register ...

  4. MRI-based diagnostic imaging of the intratemporal facial nerve

    International Nuclear Information System (INIS)

    Kress, B.; Baehren, W.

    2001-01-01

    Detailed imaging of the five sections of the full intratemporal course of the facial nerve can be achieved by MRI and using thin tomographic section techniques and surface coils. Contrast media are required for tomographic imaging of pathological processes. Established methods are available for diagnostic evaluation of cerebellopontine angle tumors and chronic Bell's palsy, as well as hemifacial spasms. A method still under discussion is MRI for diagnostic evaluation of Bell's palsy in the presence of fractures of the petrous bone, when blood volumes in the petrous bone make evaluation even more difficult. MRI-based diagnostic evaluation of the idiopatic facial paralysis currently is subject to change. Its usual application cannot be recommended for routine evaluation at present. However, a quantitative analysis of contrast medium uptake of the nerve may be an approach to improve the prognostic value of MRI in acute phases of Bell's palsy. (orig./CB) [de

  5. Study design for concurrent development, assessment, and implementation of new diagnostic imaging technology

    NARCIS (Netherlands)

    M.G.M. Hunink (Myriam); G.P. Krestin (Gabriel)

    2002-01-01

    textabstractWith current constraints on health care resources and emphasis on value for money, new diagnostic imaging technologies must be assessed and their value demonstrated. The state of the art in the field of diagnostic imaging technology assessment advocates a hierarchical

  6. Basic MR relaxation mechanisms and contrast agent design.

    Science.gov (United States)

    De León-Rodríguez, Luis M; Martins, André F; Pinho, Marco C; Rofsky, Neil M; Sherry, A Dean

    2015-09-01

    The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. © 2015 Wiley Periodicals, Inc.

  7. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  8. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  9. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  10. Patient dose with quality image under diagnostic reference levels

    International Nuclear Information System (INIS)

    Akula, Suresh Kumar; Singh, Gurvinder; Chougule, Arun

    2016-01-01

    Need to set Diagnostic Reference Level (DRL) for locations for all diagnostic procedures in local as compared to National. The review of DRL's should compare local with national or referenced averages and a note made of any significant variances to these averages and the justification for it. To survey and asses radiation doses to patient and reduce the redundancy in patient imaging to maintain DRLs

  11. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  12. Diagnostic imaging of the nose and paranasal sinuses

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.

    1988-01-01

    This book offers extensively illustrated and comprehensive coverage of diagnostic imaging techniques of the nose and paranasal sinuses. The important feature of the work is the way it correlates histology with CT and MRI and includes magnetic resonance contrast studies using Gadolinium DTPA. Furthermore, it is the first text to treat the imaging of the various types of tumors of the nose and paranasal sinuses on an individual basis

  13. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  14. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  15. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  16. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  17. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  18. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    Science.gov (United States)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  19. Bimodal MR-PET agent for quantitative pH imaging

    Science.gov (United States)

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  20. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  1. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  2. Thymic hyperplasia - clinical course and imaging diagnostic

    International Nuclear Information System (INIS)

    Drebov, R.; Panov, M.; Totev, M.; Deliverski, T.; Tcandev, I.; Velkovski, I.

    2006-01-01

    The real thymic hyperplasia is benign disease sometimes simulating malignant tumours. The aim of this study is to analyse the clinical symptoms of real thymic hyperplasia and the results from imaging diagnostic based on our clinical material. Clinical material include 27 children, aged from two months to 15 years, admitted in department of thoracic surgery, for a period of 20 years (1985 - 2004). We retrospectively analyze the clinical signs and results from X-ray investigation, CT (Siemens Somatom DRG and Philips Secura) and echocardiography (Acuson TX, 5 and 7 MHz). We discuss the diagnostic value of different methods as well as typical and atypical findings. (authors)

  3. Diagnostic Accuracy of Clinical Examination and Imaging Findings for Identifying Subacromial Pain.

    Science.gov (United States)

    Cadogan, Angela; McNair, Peter J; Laslett, Mark; Hing, Wayne A

    2016-01-01

    The diagnosis of subacromial pathology is limited by the poor accuracy of clinical tests for specific pathologies. The aim of this study was to estimate the diagnostic accuracy of clinical examination and imaging features for identifying subacromial pain (SAP) defined by a positive response to diagnostic injection, and to evaluate the influence of imaging findings on the clinical diagnosis of SAP. In a prospective, diagnostic accuracy design, 208 consecutive patients presenting to their primary healthcare practitioner for the first time with a new episode of shoulder pain were recruited. All participants underwent a standardized clinical examination, shoulder x-ray series and diagnostic ultrasound scan. Results were compared with the response to a diagnostic block of xylocaineTM injected into the SAB under ultrasound guidance using ≥80% post-injection reduction in pain intensity as the positive anaesthetic response (PAR) criterion. Diagnostic accuracy statistics were calculated for combinations of clinical and imaging variables demonstrating the highest likelihood of a PAR. A PAR was reported by 34% of participants. In participants with no loss of passive external rotation, combinations of three clinical variables (anterior shoulder pain, strain injury, absence of symptoms at end-range external rotation (in abduction)) demonstrated 100% specificity for a PAR when all three were positive (LR+ infinity; 95%CI 2.9, infinity). A full-thickness supraspinatus tear on ultrasound increased the likelihood of a PAR irrespective of age (specificity 98% (95%CI 94, 100); LR+ 6.2; 95% CI 1.5, 25.7)). Imaging did not improve the ability to rule-out a PAR. Combinations of clinical examination findings and a full-thickness supraspinatus tear on ultrasound scan can help confirm, but not exclude, the presence of subacromial pain. Other imaging findings were of limited value for diagnosing SAP.

  4. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  6. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  7. Diagnostic imaging of the kidney and the urinary tract in infancy

    International Nuclear Information System (INIS)

    Troeger, J.; Darge, K.; Rohrschneider, W.

    1999-01-01

    Imaging flow charts differ in pediatric and general radiology. The reasons are: Different illnesses, different consequences arising out of imaging results and different sequence of imaging methods. Ultrasound is always the first imaging method of the urinary tract in infancy and childhood starts with ultrasound with the exception of severe abdominal trauma which is investigated by computertomography. The decision 'normal or abnormal' is possible using ultrasound in the most pediatric cases. The diagnostic value and significance of ultrasound in infancy and childhood is far better than in general radiology because of the higher resolution of the high-frequency units taken. The result of the ultrasound examination should be the basis for the following imaging procedures. We will describe diagnostic flow charts starting with three important clinical symptoms: Prenatal pathology, urinary tract obstruction and urinary tract infection. (orig.) [de

  8. Design and Optimization of Gadolinium Based Contrast Agents for Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pereira, G.A.; Geraldes, C.F.G.C.; University of Coimbra

    2007-01-01

    The role of Gd 3+ chelates as contrast agents in Magnetic Resonance Imaging is discussed. The theory describing the different contributions to paramagnetic relaxation relevant to the understanding of the molecular parameters determining the relativity of those Gd 3+ chelates, is presented. The experimental techniques used to obtain those parameters are also described. Then, the various approaches taken to optimize those parameters, leading to maximum relativity (efficiency) of the contrast agents, are also illustrated with relevant examples taken from the literature. The various types of Gd 3+ -based agents, besides non-specific and hepatobiliary agents, are also discussed, namely blood pool, targeting, responsive and paramagnetic chemical shift saturation transfer (PARACEST) agents. Finally, a perspective is presented of some of the challenges lying ahead in the optimization of MRI contrast agents to be useful in Molecular Imaging. (author)

  9. Diagnostic imaging of the diabetic foot

    International Nuclear Information System (INIS)

    Ranachowska, C.; Lass, P.; Korzon-Burakowska, A.; Dobosz, M.

    2010-01-01

    Diabetic foot syndrome is a significant complication of diabetes. Diagnostic imaging is a crucial factor determining surgical decision and extent of surgical intervention. At present the gold standard is MRI scanning, whilst the role of bone scanning is decreasing, although in some cases it brings valuable information. In particular, in early stages of osteitis and Charcot neuro-osteoarthropathy, radionuclide imaging may be superior to MRI. Additionally, a significant contribution of inflammation-targeted scintigraphy should be noted. Probably the role of PET scanning will grow, although its high cost and low availability may be a limiting factor. In every case, vascular status should be determined, at least with Doppler ultrasound, with following conventional angiography or MR angiography. (authors)

  10. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  11. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  12. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  13. Diagnostic imaging in psychiatry; Bildgebende Verfahren in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Stoppe, G.; Hentschel, F.; Munz, D.L. (eds.)

    2000-07-01

    The textbook presents an exhaustive survey of diagnostic imaging methods available for clinical evaluation of the entire range of significant psychiatric symptoms via imaging of the anatomy and functions of the brain. The chapters discuss: The methods and their efficient use for given diagnostic objectives, image analysis, description and interpretation of findings with respect to the clinical symptoms. Morphology and functional correlation of findings. The book is intended to help psychiatrists and neurologists as well as doctors in the radiology and nuclear medicine departments. (orig./CB) [German] Die Entwicklung der modernen Bildgebung ermoeglicht faszinierende Einblicke in Anatomie und Funktionen des Gehirns und ihre Veraenderungen bei psychiatrischen Erkrankungen. Die Methodik der Untersuchungsverfahren und die Befunde bei allen wichtigen psychiatrischen Krankheitsbildern sind in diesem Buch systematisch und umfassend beschrieben: - gezielter und effizienter Einsatz der Verfahren, - Bildanalyse und Befundbeschreibung, - Bewertung der Befunde und Beziehung zum klinischen Bild, - morphologische und funktionelle Korrelate der Befunde. Psychiater und Neurologen werden ebenso angesprochen wie Radiologen und Nuklearmediziner. (orig.)

  14. Diagnostic imaging, a 'parallel' discipline. Can current technology provide a reliable digital diagnostic radiology department

    International Nuclear Information System (INIS)

    Moore, C.J.; Eddleston, B.

    1985-01-01

    Only recently has any detailed criticism been voiced about the practicalities of the introduction of generalised, digital, imaging complexes in diagnostic radiology. Although attendant technological problems are highlighted the authors argue that the fundamental causes of current difficulties are not in the generation but in the processing, filing and subsequent retrieval for display of digital image records. In the real world, looking at images is a parallel process of some complexity and so it is perhaps untimely to expect versatile handling of vast image data bases by existing computer hardware and software which, by their current nature, perform tasks serially. (author)

  15. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  16. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  17. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    Science.gov (United States)

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  18. In vivo imaging agents: an international market report

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this study is to provide a global perspective of the in vivo imaging agents business to market planning executives who are working for companies that develop, produce and distribute various types of in vivo imaging agents. Others that could find this study useful include investment bankers, regulatory and governmental authorities and purchasers of these products. The study attempts to diligently provide market data by type for important geographic markets - Western Europe, the U.S.A., and Japan. A competitive intelligence section which discusses companies involved in these markets constitutes the last part of this study. These profiles are not intended to extensively evaluate each company's marketing strengths or strategies but to provide a general idea of the market presence and prospects. A combination of primary and secondary research is used for all findings. (author)

  19. Diagnostic Imaging of Reproductive Tract Disorders in Reptiles.

    Science.gov (United States)

    Gumpenberger, Michaela

    2017-05-01

    Diagnostic imaging of the reproductive tract in reptiles is used for gender determination, evaluation of breeding status, detection of pathologic changes, and supervising treatment. Whole-body radiographs provide an overview and support detection of mineralized egg shells. Sonography is used to evaluate follicles, nonmineralized eggs, and the salpinx in all reptiles. Computed tomography is able to overcome imaging limitations in chelonian species. This article provides detailed information about the performance of different imaging techniques. Multiple images demonstrate the physiologic appearance of the male and female reproductive tract in various reptile species and pathologic changes. Advantages and disadvantages of radiography, sonography, and computed tomography are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  1. Diagnostic imaging in pediatric renal inflammatory disease

    International Nuclear Information System (INIS)

    Sty, J.R.; Wells, R.G.; Schroeder, B.A.; Starshak, R.J.

    1986-01-01

    Some form of imaging procedure should be used to document the presence of infection of the upper urinary tract in troublesome cases in children. During the past several years, sonography, nuclear radiology, and computed tomography (CT) have had a significant influence on renal imaging. The purpose of this article is to reevaluate the noninvasive imaging procedures that can be used to diagnose pediatric renal inflammatory disease and to assess the relative value of each modality in the various types of renal infection. The authors will not discuss the radiologic evaluation of the child who has had a previous renal infection, in whom cortical scarring or reflux nephropathy is a possibility; these are different clinical problems and require different diagnostic evaluation

  2. Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Jacques, Thomas S.; Sebire, Neil J.; Guy, Anna; Chong, W.K.; Gunny, Roxanna; Saunders, Dawn; Olsen, Oystein E.; Thayyil, Sudhin; Wade, Angie; Jones, Rod; Norman, Wendy; Taylor, Andrew M.; Scott, Rosemary; Robertson, Nicola J.; Owens, Catherine M.; Offiah, Amaka C.; Chitty, Lyn S.

    2016-01-01

    To compare the diagnostic yield of whole-body post-mortem computed tomography (PMCT) imaging to post-mortem magnetic resonance (PMMR) imaging in a prospective study of fetuses and children. We compared PMCT and PMMR to conventional autopsy as the gold standard for the detection of (a) major pathological abnormalities related to the cause of death and (b) all diagnostic findings in five different body organ systems. Eighty two cases (53 fetuses and 29 children) underwent PMCT and PMMR prior to autopsy, at which 55 major abnormalities were identified. Significantly more PMCT than PMMR examinations were non-diagnostic (18/82 vs. 4/82; 21.9 % vs. 4.9 %, diff 17.1 % (95 % CI 6.7, 27.6; p < 0.05)). PMMR gave an accurate diagnosis in 24/55 (43.64 %; 95 % CI 31.37, 56.73 %) compared to 18/55 PMCT (32.73 %; 95 % CI 21.81, 45.90). PMCT was particularly poor in fetuses <24 weeks, with 28.6 % (8.1, 46.4 %) more non-diagnostic scans. Where both PMCT and PMMR were diagnostic, PMMR gave slightly higher diagnostic accuracy than PMCT (62.8 % vs. 59.4 %). Unenhanced PMCT has limited value in detection of major pathology primarily because of poor-quality, non-diagnostic fetal images. On this basis, PMMR should be the modality of choice for non-invasive PM imaging in fetuses and children. (orig.)

  3. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses

    Directory of Open Access Journals (Sweden)

    Víctor M. González

    2016-12-01

    Full Text Available Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers’ properties as a real tool for viral infection detection and treatment.

  5. Diagnostic imaging of the hand. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schmitt, R.

    2004-01-01

    The second edition contains the following new features: Focus on cogenital, degenerative, inflammatory, tumourous, neurogenic and vascular diseases of the hands; new images of multiline spiral CT including 2D pictures and 3D reconstructions; new MRT images with examination protocols; synoptic presentation of all diseases according to their pathoanatomy, clinical symptoms, diagnostic imaging, differential diagnosis, therapeutic options; checklists for the doctor's everyday work. (orig.)

  6. Consideration on the diagnostic ability of various imaging techniques in relation to renal tumor

    International Nuclear Information System (INIS)

    Ike, Katsushi

    1984-01-01

    Radiological diagnosis of renal tumors is being improved with the increased imaging accuracy which has resulted from advancement in the various equipment used and improvement in techniques. However, at the clinical level, diagnostic procedures based on the characteristics of the delineated images are not yet established and the diverse diagnostic procedures are being conducted currently in a stereotyped manner. In this study, the images of 61 cases diagnosed as renal tumor were analysed retrospectively with the purpose of establishing the imaging accuracy, capacity for diagnosis based on image characteristics and a subseguent proper diagnostic procedure. It was found that CT and Angio gave similar diagnostic accuracy. It was further revealed that US images enabled to differentiate renal tumors from the more commonly experienced renal cystic disease. For determination of tunica involucrum infiltration, which is essential to diagnose Stage I and II renal tumors, CT was proved to be superior to Angio. CT and US were also to be so in the determination of metastasis to para-aortic lymph nodes which is a Stage III criterion. In recent years, CT and US imaging accuracies have increased, hence the improvement in the capacity to diagnose non-observable renal tumors is highly expected. (author)

  7. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  8. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  9. Comparison of positive and negative enteral contrast agents for MR imaging of the abdomen

    International Nuclear Information System (INIS)

    Kaminsky, S.; Langer, M.

    1994-01-01

    Following oral administration of a buffered gadopentetate-dimeglumine solution (Magnevist enteral R , 1 mmol/l, 6-17 ml/kg) T 1 -, proton-density- and T 2 -weighted spin-echo images of abdominal and retroperitoneal lesions were acquired (0.5 T). Gadopentetate is a signal-enhancing, positive MR contrast agent, intraluminar air served as a model of a signal-free, negative agent. In 21 patients contrast/noise ratios of gadopentetate and air versus lesions and fat were compared quantitatively (t-test). In T 1 - and T 2 -weighted images contrast/noise ratios of gadopentetate versus lesions were significantly higher than those of air. In proton-density images there was no significant difference. In T 1 - and proton-density images contrast/noise ratios of air versus abdominal fat were significantly higher than those of gadopentetate, in T 2 -weighted images gadopentetate had a significantly higher contrast/noise ratio than air. Signal-enhancing positive contrast agents seem advantageous over signal-free negative enteral MR contrast agents. (orig.) [de

  10. Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kwon, Ki Jeong; Koh, Kwang Joon

    2004-01-01

    To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities(P<0.05). The kappa value of inter-observer agreement was 0.42(range:0.28-0.60) and intra-observer agreement was 0.57(range:0.44-0.75). There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  11. Clinical value of MRI liver-specific contrast agents: a tailored examination for a confident non-invasive diagnosis of focal liver lesions

    International Nuclear Information System (INIS)

    Ba-Ssalamah, Ahmed; Uffmann, Martin; Bastati, Nina; Herold, Christian; Schima, Wolfgang; Saini, Sanjai

    2009-01-01

    Screening of the liver for hepatic lesion detection and characterization is usually performed with either ultrasound or CT. However, both techniques are suboptimal for liver lesion characterization and magnetic resonance (MR) imaging has emerged as the preferred radiological investigation. In addition to unenhanced MR imaging techniques, contrast-enhanced MR imaging can demonstrate tissue-specific physiological information, thereby facilitating liver lesion characterization. Currently, the classes of contrast agents available for MR imaging of the liver include non-tissue-specific extracellular gadolinium chelates and tissue-specific hepatobiliary or reticuloendothelial agents. In this review, we describe the MR features of the more common focal hepatic lesions, as well as appropriate imaging protocols. A special emphasis is placed on the clinical use of non-specific and liver-specific contrast agents for differentiation of focal liver lesions. This may aid in the accurate diagnostic workup of patients in order to avoid invasive procedures, such as biopsy, for lesion characterization. A diagnostic strategy that considers the clinical situation is also presented. (orig.)

  12. Image-guided pleural biopsy: diagnostic yield and complications

    International Nuclear Information System (INIS)

    Benamore, R.E.; Scott, K.; Richards, C.J.; Entwisle, J.J.

    2006-01-01

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease

  13. Image-guided pleural biopsy: diagnostic yield and complications

    Energy Technology Data Exchange (ETDEWEB)

    Benamore, R.E. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)]. E-mail: rachelbenamore@doctors.org.uk; Scott, K. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Richards, C.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Entwisle, J.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)

    2006-08-15

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease.

  14. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    International Nuclear Information System (INIS)

    Missailidis, Sotiris; Perkins, Alan; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario

    2008-01-01

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  15. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  16. A pancreas imaging agent-131I-HIPDM: the animal experiment and preliminary clinical application

    International Nuclear Information System (INIS)

    Shao Hesheng

    1988-01-01

    131 I-HIPDM has been used clinically for studying regional cerebral perfusion. The [ 131 I] HIPDM was prepared in a kit. The labelling yields were consistently more than 95%, as analyzed by the TLC-Silica gel. The labelled compound is stable in vitro and in vivo. S D Strain rats (170-220 g) and mice (18-22 g) were used. The pancreatic uptake of [ 131 I] HIPDM is rather slow in mice and rats. At 8 hr after iv, the pancreas activity and the pancreas to liver (P/L) ratio are highest in mice and rats. The effect of carrier loading dose from 0.010 to 6.0 mg/kg on blodistribution in mice has been studied. The liver uptake was increased by adding carrier HIPDM. The result indicates that administration between 0.010 and 0.05 mg/kg carrier dose is most suitable for the pancreas imaging. Gamma camera imaging of dog at 6 hr after iv with 300 μCi [ 131 I] HIPMD, 0.05 mg/kg body weight showed clear pancreas image. The P/L ratio of the dog is 0.40. Preliminary clinical tests were satisfactory. Using 1 to 1.5 mCi of [ 131 I] HIPDM, 0.05 mg/kg, the pancreas imaging was operated in 4 cases of volunteers and pancreas cyst respectively with the good diagnostic quality. The authors are of the opinion that this pancreas imaging agent may have potential value for routine use

  17. Diagnostic accuracy of postmortem imaging vs autopsy—A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Anders, E-mail: anders.eriksson@rmv.se [Section of Forensic Medicine, Dept of Community Medicine and Rehabilitation, Umeå University, PO Box 7016, SE-907 12 Umeå (Sweden); Gustafsson, Torfinn [Section of Forensic Medicine, Dept of Community Medicine and Rehabilitation, Umeå University, PO Box 7016, SE-907 12 Umeå (Sweden); Höistad, Malin; Hultcrantz, Monica [Swedish Agency for Health Technology Assessment and Assessment of Social Services, PO Box 3657, SE-103 59 Stockholm (Sweden); Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Jacobson, Stella; Mejare, Ingegerd [Swedish Agency for Health Technology Assessment and Assessment of Social Services, PO Box 3657, SE-103 59 Stockholm (Sweden); Persson, Anders [Department of Medical and Health Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85, Linköping Sweden (Sweden)

    2017-04-15

    Highlights: • The search generated 340 possibly relevant publications, of which 49 were assessed as having high risk of bias and 22 as moderate risk. • Due to considerable heterogeneity of included studies it was impossible to estimate the diagnostic accuracy of the various findings. • Future studies need larger materials and improved planning and methodological quality, preferentially from multi-center studies. - Abstract: Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity – in populations, techniques, analyses and reporting – of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem

  18. Diagnostic accuracy of postmortem imaging vs autopsy—A systematic review

    International Nuclear Information System (INIS)

    Eriksson, Anders; Gustafsson, Torfinn; Höistad, Malin; Hultcrantz, Monica; Jacobson, Stella; Mejare, Ingegerd; Persson, Anders

    2017-01-01

    Highlights: • The search generated 340 possibly relevant publications, of which 49 were assessed as having high risk of bias and 22 as moderate risk. • Due to considerable heterogeneity of included studies it was impossible to estimate the diagnostic accuracy of the various findings. • Future studies need larger materials and improved planning and methodological quality, preferentially from multi-center studies. - Abstract: Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity – in populations, techniques, analyses and reporting – of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem

  19. [Diagnostic imaging and radiation hazards].

    Science.gov (United States)

    Claudon, Michel; Guillaume, Luc

    2015-01-01

    For the last 20 years, the exposure of the population to medical radiation has been increased by 600%, mainly due to the extension of new imaging modalities such as CT or interventional radiology. The risk for radio-induced hazards is especially marked for children, because of the high sensivity of tissues to radiation especially during the first decade of the life. Two main ways allow to better control and reduce the mean effective dose per patient in diagnostic imaging: the introduction of recent technical improvement (i.e. low dose CT scans using iterative reconstruction algorithms, low dose technique for pediatric spine), and the substitution to non-radiating techniques such as ultrasound and MRI. The French National institute of Radioprotection and Nuclear Safety periodically publishes dose reference levels for conventional films and CT examinations, for both adults and pediatric patients. A close relationship between clinicians and radiologists remains essential for a better appreciation of the risk/benefit ratio of each individual examination using X-Rays.

  20. Doctoral theses in diagnostic imaging: a study of Spanish production between 1976 and 2011.

    Science.gov (United States)

    Machan, K; Sendra Portero, F

    2018-05-15

    To analyze the production of doctoral theses in diagnostic imaging in Spain in the period comprising 1976 through 2011 with the aim of a) determining the number of theses and their distribution over time, b) describing the production in terms of universities and directors, and c) analyzing the content of the theses according to the imaging technique, anatomic site, and type of research used. The TESEO database was searched for "radiología" and/or "diagnóstico por imagen" and for terms related to diagnostic imaging in the title of the thesis. A total of 1036 theses related to diagnostic imaging were produced in 37 Spanish universities (mean, 29.6 theses/year; range, 4-59). A total of 963 thesis directors were identified; 10 of these supervised 10 or more theses. Most candidates and directors were men, although since the 2000-2001 academic year the number of male and female candidates has been similar. The anatomic regions most often included in diagnostic imaging theses were the abdomen (22.5%), musculoskeletal system (21.8%), central nervous system (16.4%), and neck and face (15.6%). The imaging techniques most often included were ultrasonography in the entire period (25.5%) and magnetic resonance imaging in the last 5 years. Most theses (63.8%) were related to clinical research. Despite certain limitations, the TESEO database makes it possible to analyze the production of doctoral theses in Spain effectively. The annual mean production of theses in diagnostic imaging is higher than in other medical specialties. This analysis reflects the historic evolution of imaging techniques and research in radiology as well as the development of Spanish universities. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Balloon-assisted enteroscopy for suspected Meckel’s diverticulum and indefinite diagnostic imaging workup

    Science.gov (United States)

    Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira

    2016-01-01

    Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776

  2. Software for 3D diagnostic image reconstruction and analysis

    International Nuclear Information System (INIS)

    Taton, G.; Rokita, E.; Sierzega, M.; Klek, S.; Kulig, J.; Urbanik, A.

    2005-01-01

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  3. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential...

  4. Traumatic cervical root injury: Diagnostic value of MR imaging

    International Nuclear Information System (INIS)

    Lee, Seon Kyu; Chang, Kee Hyun; Han, Moon Hee; Kim, Ho Chul; Kim, Jea Seung; Cha, Sang Hoon

    1993-01-01

    Although superior soft tissue contrast and direct multiplanar imaging capability of MRI are well recognized, myelography has been the imaging modality of choice in evaluation cervical root injury. We assessed the role of MRI and compared its diagnostic accuracy with myelography in the evaluation of cervical root injury. MR imagings of cervical root injury in ten patients (55 roots) were retrospectively reviewed. In 26 explored roots (6 patients). MR findings were compared with myelography and surgical results. In 29 roots (8 patients), which were confirmed by myelography or exploration, the MR findings were focal extradural CSF collections (pseudomeningocele) in 21/29 (72.4%, 8 patients), thickening of extradural roots in 4/29 (13.6%, 5 patients), and thickening of dura in 12/29 (41.4%, 6 patients) roots. T2-weighted axial image was superior to T1-weighted and protein-density- weighted images for delineation root avulsion. The sensitivity and specificity of MRI were 72.7% and 93.3% respectively, while those of myelography were 83% and 90%. Overall diagnostic accuracy of MRI and myelography were comparable (84.6% vs 87.5%). In conclusion, myelography is still considered as the modality of choice in the preoperative evaluation of the cervical root avulsion because of its higher sensitivity. MRI, however, may obviate the myelography with some technical refinements

  5. Diagnostic imaging of craniopharyngioma; Diagnostyka obrazowa czaszkogardlakow

    Energy Technology Data Exchange (ETDEWEB)

    Gradzki, J.; Nowak, S.; Paprzycki, W. [Akademia Medyczna, Poznan (Poland)

    1993-12-31

    40 patients have been examined with operational and histological confirmation of craniopharyngioma. CT image and X-ray plane of skull were performed in case all of these patients. TMR was conformed to examine 4 patients. X-ray planes was compared to CT. CT permits tumor cyst detection. The efficacy of mentioned above diagnostic techniques was compared with surgical findings. (author). 7 refs, 5 figs, 2 tabs.

  6. Structured diagnostic imaging in patients with multiple trauma; Strukturierte radiologische Diagnostik beim Polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Universitaet Muenchen, Innenstadt (Germany); Kanz, K.G. [Chirurgische Klinik, Klinikum der Universitaet Muenchen, Innenstadt (Germany)

    2002-07-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [German] Fragestellung. Entwicklung eines strukturierten Konzeptes zur radiologischen Diagnostik polytraumatisierter Patienten.Methodik. Die Datenevaluation erfolgte auf Basis einer prospektiven interdisziplinaere Polytraumastudie mit ueber 2400 Patienten. Alle diagnostischen und therapeutischen Schritte werden jeweils unter Angabe von Zeitpunkt und auftretenden Komplikationen erfasst, ein primaeres oder sekundaeres Versterben und die 90-Tage-Letalitaet werden dokumentiert.Die strukturierte radiologische Diagnostik von Mehrfachverletzen verlangt die Integration eines erfahrenen Radiologen in

  7. Characterization of hepatic lesions (≤30 mm) with liver-specific contrast agents: A comparison between ultrasound and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Kamezaki, Hidehiro, E-mail: ugn29814@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Kanai, Fumihiko, E-mail: kanaif@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)

    2013-01-15

    Purpose: Imaging-based differentiation of hepatic lesions (≤30 mm) between well-differentiated hepatocellular carcinomas (w-HCC) and regenerative nodules (RN) presents difficulties. The aim was to compare the diagnostic abilities to differentiate w-HCC from RN using contrast-enhanced ultrasound and magnetic resonance imaging (MRI) both with liver-specific contrast agents. Materials and methods: This prospective study included 67 pathologically proven hepatic lesions (17.5 ± 5.4 mm, 54 w-HCCs, 13 RNs) in 56 patients with chronic hepatitis/cirrhosis (male 40, female 16; 29–79y). Hepatic-arterial/liver-specific phase enhancements were assessed quantitatively by ultrasound with perflubutane microbubble agent and MRI with gadolinium-ethoxybenzyl-diethylenetriamine with respect to the histological findings. Results: Sensitivity, specificity and accuracy of hepatic-arterial phase hyper-enhancement for w-HCC were 59.3%, 100% and 67.2% by ultrasound and 46.3%, 100% and 56.7% by MRI without significant difference. Meanwhile, those of liver-specific-phase hypo-enhancement for w-HCC were 44.4%, 100% and 55.2% by ultrasound and 87.0% (p < 0.0001), 46.2% (p = 0.0052) and 79.1% (p = 0.0032) by MRI. Diagnostic accuracies for w-HCC by area under the receiver operating characteristic curves were higher in the hepatic-arterial phase in ultrasound (0.8316) than MRI (0.6659, p = 0.0101) and similar in the liver-specific phase in ultrasound (0.7225) and MRI (0.7347, p = 0.8814). Conclusions: Hypervascularity is a significant feature which distinguishes w-HCC from RN, and ultrasound exerts a beneficial impact better than MRI for such characterization. However, both imaging have comparable abilities in the characterization of non-hypervascular lesions, compensating mutually for the poor sensitivity of ultrasound and the poor specificity of MRI in the liver-specific phase.

  8. Radiology and diagnostic images in the gastric cancer

    International Nuclear Information System (INIS)

    Duarte, Alfonso; Acosta, Nelson; Alvarez R, Alfonso and others

    1992-01-01

    This article deals with the chapter about diagnostic imaging included in the document of the first practical seminar about gastric carcinoma which took place at Betania (Huila) in the first few days of April 1992. This seminar was organized by the Colombian society of gastroenterology in coordination with other organization

  9. From 'Image Gently' to image intelligently: a personalized perspective on diagnostic radiation risk

    International Nuclear Information System (INIS)

    Guillerman, R.P.

    2014-01-01

    The risk of ionizing radiation from diagnostic imaging has been a popular topic in the radiology literature and lay press. Communicating the magnitude of risk to patients and caregivers is problematic because of the uncertainty in estimates derived principally from epidemiological studies of large populations, and alternative approaches are needed to provide a scientific basis for personalized risk estimates. The underlying patient disease and life expectancy greatly influence risk projections. Research into the biological mechanisms of radiation-induced DNA damage and repair challenges the linear no-threshold dose-response assumption and reveals that individuals vary in sensitivity to radiation. Studies of decision-making psychology show that individuals are highly susceptible to irrational biases when judging risks. Truly informed medical decision-making that respects patient autonomy requires appropriate framing of radiation risks in perspective with other risks and with the benefits of imaging. To follow the principles of personalized medicine and treat patients according to their specific phenotypic and personality profiles, diagnostic imaging should optimally be tailored not only to patient size, body region and clinical indication, but also to underlying disease conditions, radio-sensitivity and risk perception and preferences that vary among individuals. (orig.)

  10. Renal perfusion image using harmonic ultrasound with microbble contrast agent: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Choi, Jae Ho; Han, Dong Chul; Lee, Hi Bahl; Choi, Deuk Lin; Eun, Hyo Won; Lee, Hun Jae

    2003-01-01

    To compare, in terms of their feasibility and normal range, 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic ultrasound (US) with a microbubble contrast agent for the evaluation of renal perfusion after renal transplantation. During a six-month period, thirty patients who had received a renal transplant underwent both 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic US with a microbubble contrast agent. Sonographic renal perfusion images were obtained before and after a bolus injection of the microbubble contrast agent Levovist TM (SH U 5084; Schering AG, Berlin, Germany) every 3 seconds for 3 minutes. Sonographic renal perfusion images were converted into a renal perfusion curve by a computer program and T peak of the curve thus obtained was compared with that of the 99m Tc-DTPA curve. Average T peak of the 99m Tc-DTPA renal perfusion curve was 16.2 seconds in the normal group and 39.6 seconds in the delayed perfusion group, while average T peak of the sonographic renal perfusion curve was 23.7 seconds and 46.2 seconds, respectively. T peak of the sonographic renal perfusion curve showed a good correlation with that of the 99m Tc-DTPA curve (correlation coefficient=0.8209; p=0.0001). The cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds (sensitivity=90%, specificity=95%). In patients who have received a renal transplant, the findings of renal perfusion imaging using harmonic US with a microbubble contrast agent show close correlation with those of 99m Tc-DTPA renal perfusion imaging. The optimal cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds

  11. Child abuse. Diagnostic imaging of skeletal injuries; Kindesmisshandlung. Radiologische Diagnostik skelettaler Verletzungsfolgen

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, Martin; Mentzel, Hans-Joachim [Universitaetsklinikum Jena (Germany). Sektion Paediatrische Radiologie

    2012-06-15

    Diagnostic imaging, besides medical history and clinical examination, is a major component in assessment of cases of suspected physical child abuse. Performance of proper imaging technique, and knowledge of specific injury patterns is required for accurate image interpretation by the radiologist, and serves protection of the child in case of proven abuse. On the other side, it is essential to protect the family in unjustified accusations. The reader will be familiarised with essentials of the topic 'Physical child abuse', in order to be able to correctly assess quality, completeness, and results of X-ray films. Moreover, opportunities and limitations of alternative diagnostic modalities will be discussed. (orig.)

  12. Electronic viewbox: An integrated image diagnostic working station

    International Nuclear Information System (INIS)

    Minato, K.; Komori, M.; Hirakawa, A.; Kuwahara, M.; Yonekura, Y.; Torizuka, K.; Brill, A.B.

    1985-01-01

    Recent development in medical imaging technology have been introducing variety of digital images in clinical medicine, and handling these multi-modality digital images in one place is needed for efficient clinical diagnosis. The authors proposed a concept of an integrated image diagnostic working station, in which a physician can look into all clinical images, can select any key image for diagnosis and can read it in detail. A prototype working station named ''Electronic Viewbox'' has been developed for this purpose. It has three distinctive features. 1. The stored images of a patient are shown at a glance. In order to achieve this function, each original image is attached to a small image, where the data are compressed to reserve the essence of the image, and many of these small images are displayed on a CRT screen. This small image is used as an index for picking up a key image in the archived clinical images. 2. The working station is compact enough to be set on a desk. Only two CRTs and a pointing device are assembled. These two CRT screens are used mutually for retrieving key images and for displaying the original images. 3. All operations can be done interactively using cursor and icons

  13. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Directory of Open Access Journals (Sweden)

    Estelrich J

    2015-03-01

    Full Text Available Joan Estelrich,1,2 María Jesús Sánchez-Martín,1 Maria Antònia Busquets1,2 1Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain; 2Institut de Nanociència I Nanotecnologia (IN2UB, Barcelona, Catalonia, SpainAbstract: Magnetic resonance imaging (MRI has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions, providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of

  14. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  15. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    Science.gov (United States)

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  16. First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent

    International Nuclear Information System (INIS)

    Ni, Yicheng; Chen, Feng; Marchal, Guy; Huyghe, Dieter; Verbeke, Kristin; Verbruggen, Alfons M.; Bormans, Guy M.; Witte, Peter A. de; Nuyts, Johan; Mortelmans, Luc

    2006-01-01

    We have labelled hypericin, a polyphenolic polycyclic quinone found in St. John's wort (Hypericum perforatum), with 123 I and evaluated mono-[ 123 I]iodohypericin (MIH) as a potential necrosis-avid diagnostic tracer agent. MIH was prepared by an electrophilic radioiodination method. The new tracer agent was evaluated in animal models of liver infarction in the rat and heart infarction in the rabbit using single-photon emission computed tomography (SPECT), triphenyltetrazolium chloride (TTC) histochemical staining, serial sectional autoradiography and microscopy, and radioactivity counting techniques. Using in vivo SPECT imaging, hepatic and cardiac infarctions were persistently visualised as well-defined hot spots over 48 h. Preferential uptake of the tracer agent in necrotic tissue was confirmed by perfect match of images from post-mortem TTC staining, autoradiography (ARX) and histology. Radioactivity concentration in infarcted tissues was over 10 times (liver; 3.51% ID/g in necrotic tissue vs 0.38% ID/g in normal tissue at 60 h p.i.) and over 6 times (myocardium; 0.36% ID/g in necrotic tissue vs 0.054% ID/g in normal tissue; ratios up to 18 for selected parts on ARX images) higher than in normal tissues. The results suggest that hypericin derivatives may serve as powerful necrosis-avid diagnostic agents for assessment of tissue viability. (orig.)

  17. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Sethian, J.; Koch, J.A.; Holland, G.

    2000-01-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  18. X-ray imaging diagnostics for the inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aglitskiy, Y.; Lehecka, T. [Science Applications International Corp., McLean, VA (United States); Obenschain, S.; Pawley, C.; Sethian, J. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div; Brown, C.M.; Seely, J. [Naval Research Lab., Space Sciences Div, Washington, DC (United States); Koch, J.A. [Lawrence Livermore National Lab., CA (United States); Holland, G. [SFA, Landover MD (United States)

    2000-07-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  19. Radiation exposure from diagnostic imaging among patients with gastrointestinal disorders.

    LENUS (Irish Health Repository)

    Desmond, Alan N

    2012-03-01

    There are concerns about levels of radiation exposure among patients who undergo diagnostic imaging for inflammatory bowel disease (IBD), compared with other gastrointestinal (GI) disorders. We quantified imaging studies and estimated the cumulative effective dose (CED) of radiation received by patients with organic and functional GI disorders. We also identified factors and diagnoses associated with high CEDs.

  20. Eagle Syndrome: diagnostic imaging and therapy

    International Nuclear Information System (INIS)

    Nickel, J.; Andresen, R.; Sonnenburg, M.; Scheufler, O.

    2004-01-01

    In the case of clinical symptoms such as dysphagia, foreign-body sensation and chronic neck or facial pain close to the ear, an Eagle syndrome should be considered in the differential diagnosis. Rational diagnostics and therapy are elucidated on the basis of four case reports. Four patients presented in the out-patients clinic with chronic complaints on chewing and a foreign-body sensation in the tonsil region. Upon specific palpation below the mandibular angle, pain radiating into the ear region intensified. In all patients, local anaesthesia with lidocaine only led to a temporary remission of symptoms. Imaging diagnostics then performed initially included cranial survey radiograms according to Clementschitsch as well as in the lateral ray path and an OPTG. An axial spiral-CT was then performed using the thin-layer technique with subsequent 3-D reconstruction. Therapy consisted of elective resection with a lateral external incision from the retromandibular. From a symptomatic point of view, the cranial survey radiograms and the OPTG revealed hypertrophic styloid processes. The geometrically corrected addition of the axial CT images produced an absolute length of 51-58 mm. The 3-D reconstruction made it possible to visualise the exact spatial orientation of the styloid processes. An ossification of the stylohyoid ligament could definitely be ruled out on the basis of the imaging procedures. After resection of the megastyloid, the patients were completely free of symptoms. Spiral-CT with subsequent 3-D reconstruction is the method of choice for exact determination of the localisation and size of a megastyloid, while cranial survey radiograms according to Clementschitsch and in the lateral ray path or an OPTG can provide initial information. The therapy of choice is considered to be resection of the megastyloid, whereby an external lateral incision has proved effective. (orig.) [de

  1. Diagnostic imaging and radiation therapy equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    This is the third edition of CSA Standard C22.2 No. 114 (now CAN/CSA-C22.2 No. 114), which is one of a series of standards issued by the Canadian Standards Association under Part II of the Canadian Electrical Code. This edition marks an important shift towards harmonization of Canadian requirements with those of the European community and the United States. Also important to this edition is the expansion of its scope to include the complete range of diagnostic imaging and radiation therapy equipment, rather than solely radiation-emitting equipment. In so doing, equipment previously addressed by CSA Standard C22.2 No. 125, Electromedical Equipment, specifically lasers for medical applications and diagnostic ultrasound units, is now dealt with in the new edition. By virtue of this expanded scope, many of the technical requirements in the electromedical equipment standard have been introduced to the new edition, thereby bringing CSA Standard C22.2 No. 114 up to date. 14 tabs., 16 figs.

  2. Diagnostic imaging and radiation therapy equipment

    International Nuclear Information System (INIS)

    1990-05-01

    This is the third edition of CSA Standard C22.2 No. 114 (now CAN/CSA-C22.2 No. 114), which is one of a series of standards issued by the Canadian Standards Association under Part II of the Canadian Electrical Code. This edition marks an important shift towards harmonization of Canadian requirements with those of the European community and the United States. Also important to this edition is the expansion of its scope to include the complete range of diagnostic imaging and radiation therapy equipment, rather than solely radiation-emitting equipment. In so doing, equipment previously addressed by CSA Standard C22.2 No. 125, Electromedical Equipment, specifically lasers for medical applications and diagnostic ultrasound units, is now dealt with in the new edition. By virtue of this expanded scope, many of the technical requirements in the electromedical equipment standard have been introduced to the new edition, thereby bringing CSA Standard C22.2 No. 114 up to date. 14 tabs., 16 figs

  3. Diagnostic ability of the periapical radiographs and digital image in the detection of the artificial proximal caries

    International Nuclear Information System (INIS)

    Heo, Min Suk; You, Dong Soo

    1994-01-01

    Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference (p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  4. Innovation in diagnostic imaging services: assessing the potential for value-based reimbursement.

    Science.gov (United States)

    Garrison, Louis P; Bresnahan, Brian W; Higashi, Mitchell K; Hollingworth, William; Jarvik, Jeffrey G

    2011-09-01

    Innovation in the field of diagnostic imaging is based primarily on the availability of new and improved equipment that opens the door for new clinical applications. Payments for these imaging procedures are subject to complex Medicare price control schemes, affecting incentives for appropriate use and innovation. Achieving a "dynamically efficient" health care system-one that elicits a socially optimal amount of innovation-requires that innovators be rewarded in relation to the value they add and can demonstrate with evidence. The authors examine how and whether value-based reimbursement for diagnostic imaging services might better reward innovation explicitly for expected improvements in health and economic outcomes. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  5. Viscous optical clearing agent for in vivo optical imaging

    Science.gov (United States)

    Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui

    2014-07-01

    By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.

  6. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  7. Radiation exposure from diagnostic imaging in young patients with testicular cancer

    International Nuclear Information System (INIS)

    Sullivan, C.J.; Twomey, M.; O'Regan, K.N.; Murphy, K.P.; Maher, M.M.; O'Connor, O.J.; McLaughlin, P.D.; Power, D.G.

    2015-01-01

    Risks associated with high cumulative effective dose (CED) from radiation are greater when imaging is performed on younger patients. Testicular cancer affects young patients and has a good prognosis. Regular imaging is standard for follow-up. This study quantifies CED from diagnostic imaging in these patients. Radiological imaging of patients aged 18-39 years, diagnosed with testicular cancer between 2001 and 2011 in two tertiary care centres was examined. Age at diagnosis, cancer type, dose-length product (DLP), imaging type, and frequency were recorded. CED was calculated from DLP using conversion factors. Statistical analysis was performed with SPSS. In total, 120 patients with a mean age of 30.7 ± 5.2 years at diagnosis had 1,410 radiological investigations. Median (IQR) surveillance was 4.37 years (2.0-5.5). Median (IQR) CED was 125.1 mSv (81.3-177.5). Computed tomography accounted for 65.3 % of imaging studies and 98.3 % of CED. We found that 77.5 % (93/120) of patients received high CED (>75 mSv). Surveillance time was associated with high CED (OR 2.1, CI 1.5-2.8). Survivors of testicular cancer frequently receive high CED from diagnostic imaging, mainly CT. Dose management software for accurate real-time monitoring of CED and low-dose CT protocols with maintained image quality should be used by specialist centres for surveillance imaging. (orig.)

  8. Radiation exposure from diagnostic imaging in young patients with testicular cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, C.J.; Twomey, M.; O' Regan, K.N. [Cork and Mercy University Hospitals, Department of Radiology, Cork (Ireland); Murphy, K.P.; Maher, M.M.; O' Connor, O.J. [Cork and Mercy University Hospitals, Department of Radiology, Cork (Ireland); University College Cork, Department of Radiology, Cork (Ireland); McLaughlin, P.D. [Cork and Mercy University Hospitals, Department of Radiology, Cork (Ireland); Vancouver General Hospital, Department of Emergency and Trauma Radiology, Vancouver, British Columbia (Canada); Power, D.G. [Cork and Mercy University Hospitals, Department of Medical Oncology, Cork (Ireland)

    2015-04-01

    Risks associated with high cumulative effective dose (CED) from radiation are greater when imaging is performed on younger patients. Testicular cancer affects young patients and has a good prognosis. Regular imaging is standard for follow-up. This study quantifies CED from diagnostic imaging in these patients. Radiological imaging of patients aged 18-39 years, diagnosed with testicular cancer between 2001 and 2011 in two tertiary care centres was examined. Age at diagnosis, cancer type, dose-length product (DLP), imaging type, and frequency were recorded. CED was calculated from DLP using conversion factors. Statistical analysis was performed with SPSS. In total, 120 patients with a mean age of 30.7 ± 5.2 years at diagnosis had 1,410 radiological investigations. Median (IQR) surveillance was 4.37 years (2.0-5.5). Median (IQR) CED was 125.1 mSv (81.3-177.5). Computed tomography accounted for 65.3 % of imaging studies and 98.3 % of CED. We found that 77.5 % (93/120) of patients received high CED (>75 mSv). Surveillance time was associated with high CED (OR 2.1, CI 1.5-2.8). Survivors of testicular cancer frequently receive high CED from diagnostic imaging, mainly CT. Dose management software for accurate real-time monitoring of CED and low-dose CT protocols with maintained image quality should be used by specialist centres for surveillance imaging. (orig.)

  9. Diagnostic radiology of apoplexy - imaging of cerebral ischemia

    International Nuclear Information System (INIS)

    Rieber, A.; Tomczak, R.; Brambs, H.J.

    1998-01-01

    The recent enhancements achieved in CT and MR imaging techniques have launched a debate about the techniques preferrably to be applied for diagnostic evaluation of acute cerebral stroke. At present, CT still is the modality of choice for primary evaluation of cerebral ischemia, due to relative cost-effectiveness, high availability, and the capability to reliably differentiate ischemia from hemorrhage. MRI on the other hand is superior to CT in detecting and imaging the infarction area within the first few hours, especially if the technique of diffusion-weighted sequencing is applied. Current research focuses on determining whether MRI with perfusion and diffusion-weighted sequencing will yield images distinctly showing the penumbra on the one hand, and the damaged brain tissue on the other. It remains to be seen whether improved tomographic imaging will lead to novel approaches for therapy. (orig./CB) [de

  10. Diagnostic Imaging of the Lower Respiratory Tract in Neonatal Foals: Radiography and Computed Tomography.

    Science.gov (United States)

    Lascola, Kara M; Joslyn, Stephen

    2015-12-01

    Diagnostic imaging plays an essential role in the diagnosis and monitoring of lower respiratory disease in neonatal foals. Radiography is most widely available to equine practitioners and is the primary modality that has been used for the characterization of respiratory disease in foals. Computed tomography imaging, although still limited in availability to the general practitioner, offers advantages over radiography and has been used diagnostically in neonatal foals with respiratory disease. Recognition of appropriate imaging protocols and patient-associated artifacts is critical for accurate image interpretation regardless of the modality used. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Diagnostic imaging in oncology: New challenges and changing strategies

    International Nuclear Information System (INIS)

    Castellino, Ronald A.; Schwartz, Lawrence H.

    1997-01-01

    Diagnostic radiology and nuclear medicine studies, both imaging and therapeutic, play important roles in screening, staging, monitoring of treatment, and in long term surveillance of oncologic patients. Frequently, information from these studies, as well as from ancillary data (such as the clinical examination and laboratory studies) overlap, and it is sometimes unclear which tests and examinations to perform. Current changes in the delivery and funding of health care are prompting all specialties to evaluate their patterns of care. Some of the important questions to be addressed in medical imaging include: Which studies are pertinent at initial staging, e.g., those that impact patient management, serve as important baselines for comparison with subsequent studies, etc? How sensitive and specific are these studies, e.g., when can they obviate the need for more invasive confirmatory exams? What are the critical questions in monitoring response to therapy, e.g., the significance of the 'post treatment residual mass' and ways to elucidate its etiology? Which tests should be performed in surveillance for disease relapse, and how frequently should they be done? Purpose/Objective: To develop a set of guidelines for developing rational approaches for utilizing diagnostic imaging studies

  12. Diagnostic imaging in oncology: New challenges and changing strategies

    International Nuclear Information System (INIS)

    Castellino, Ronald; Schwartz, Lawrence H.

    1996-01-01

    Purpose/Objective: To develop a set of guidelines for developing rational approaches for utilizing diagnostic imaging studies. Diagnostic radiology and nuclear medicine studies, both imaging and therapeutic, play important roles in screening, staging, monitoring of treatment, and in long term surveillance of oncologic patients. Frequently, information from these studies, as well as from ancillary data (such as the clinical examination and laboratory studies) overlap, and it is sometimes unclear which tests and examinations to perform. Current changes in the delivery and funding of health care are prompting all specialties to evaluate their patterns of care. Some of the important questions to be addressed in medical imaging include: Which studies are pertinent at initial staging, e.g., those that impact patient management, serve as important baselines for comparison with subsequent studies, etc? How sensitive and specific are these studies, e.g., when can they obviate the need for more invasive confirmatory exams? What are the critical questions in monitoring response to therapy, e.g., the significance of the 'post treatment residual mass' and ways to elucidate its etiology? Which tests should be performed in surveillance for disease relapse, and how frequently should they be done?

  13. Diagnostic accuracy of postmortem imaging vs autopsy-A systematic review.

    Science.gov (United States)

    Eriksson, Anders; Gustafsson, Torfinn; Höistad, Malin; Hultcrantz, Monica; Jacobson, Stella; Mejare, Ingegerd; Persson, Anders

    2017-04-01

    Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity - in populations, techniques, analyses and reporting - of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem imaging and its usefulness in conjunction with, or as an alternative to autopsy. To correctly determine the usefulness of postmortem imaging, future studies need improved planning, improved methodological quality and larger materials, preferentially obtained from multi-center studies. Copyright © 2016. Published by Elsevier B.V.

  14. Diagnostic imaging capabilities of the Ocelot -Optical Coherence Tomography System, ex-vivo evaluation and clinical relevance

    International Nuclear Information System (INIS)

    Dohad, Suhail; Shao, John; Cawich, Ian; Kankaria, Manish; Desai, Arjun

    2015-01-01

    Optical coherence tomography (OCT) is a high-resolution sub-surface imaging modality using near-infrared light to provide accurate and high contrast intra-vascular images. This enables accurate assessment of diseased arteries before and after intravascular intervention. This study was designed to corroborate diagnostic imaging equivalence between the Ocelot and the Dragonfly OCT systems with regards to the intravascular features that are most important in clinical management of patients with atherosclerotic vascular disease. These intravascular features were then corroborated in vivo during treatment of peripheral arterial disease (PAD) pathology using the Ocelot catheter. In order to compare the diagnostic information obtained by Ocelot (Avinger Inc., Redwood City, CA) and Dragonfly (St. Jude Medical, Minneapolis, MN) OCT systems, we utilized ex-vivo preparations of arterial segments. Ocelot and Dragonfly catheters were inserted into identical cadaveric femoral peripheral arteries for image acquisition and interpretation. Three independent physician interpreters assessed the images to establish accuracy and sensitivity of the diagnostic information. Histologic evaluation of the corresponding arterial segments provided the gold standard for image interpretation. In vivo clinical images were obtained during therapeutic interventions that included crossing of peripheral chronic total occlusions (CTOs) using the Ocelot catheter. Strong concordance was demonstrated when matching image characteristics between both OCT systems and histology. The Dragonfly and Ocelot system’s vessel features were interpreted with high sensitivity (91.1–100 %) and specificity (86.7–100 %). Inter-observer concordance was documented with excellent correlation across all vessel features. The clinical benefit that the Ocelot OCT system provided was demonstrated by comparable procedural images acquired at the point of therapy. The study demonstrates equivalence of image acquisition and

  15. Study of new 113mIn-BAT complexes for myocardial imaging agents

    International Nuclear Information System (INIS)

    Zhu Lin; Liu Boli; Kojima, M.

    1991-01-01

    Some new BAT derivatives are designed and synthesized in order to find some ideal myocardial imaging agents. These ligands form pentacoordinated complexes with indium cation. The structures of ligand BAT-TE and complexes In-BAT-TE and In-BAT-ETE are determined by X-ray crystallography at first. Biodistribution shows that the higher lipophilicity of complex induces apparently higher myocardial accumulation. Up to date, complex B is the best 113m In-labeled myocardial imaging agent. It is also suited to 111 In

  16. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  17. The improvement of diagnostic and therapeutic imaging in Africa

    International Nuclear Information System (INIS)

    2015-02-01

    The 8. Pan-African Congress of Radiology and Imaging on the improvement of diagnostic and therapeutic imaging in Africa was hosted in Nairobi Kenya. The conference focusses on Review of Radiation Safety in Medical X-Ray Diagnosis, Medical Practitioners of Radiology & Imaging in the Dock. It also addresses issues Knowledge, Attitude, and Practice of Clinicians, Practicing at the Kenyatta National Hospital on Ionizing Radiation and Procurement in the Imaging Department. The Need for Understanding Technical Specifications,Students Experience in Radiography, Radioiodine Therapy for Graves’ Disease, Role of ultrasound in the diagnosis and management of gestational trophoblastic disease in Rural health facilities were areas interest. Diabetes Mellitus and the Musculoskeletal System, Imaging the Traumatized Spine ‘Clearing the Cervical Spine’, The Radiation Safety Culture: Image Gently and Radiation Protection of the Young Patient: Kenya perspective were discussed during the conference

  18. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  19. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  20. Additional diagnostic value of 99Tcm-MIBI imaging over 'cold' nodules in 99Tcm thyroid imaging proved by ROC analysis

    International Nuclear Information System (INIS)

    Mei Ping; Qin Yongde; Wang Saigang; Ruxianguli; Baya; Lv Jie; Xie Bing; Sun Xiaoyan

    2007-01-01

    Objective: More studies have found that 99 Tc m -MIBI thyroid imaging may provide more differential diagnostic value than traditional 99 Tc m O 4 - thyroid imaging. This study attempted to analyze the receiver operating characteristic (ROC) curves to verify the additional diagnostic value of 99 Tc m -MIBI over 99 Tc m O 4 - thyroid imaging in the differentiation of the 'cold' nodules. Methods: Sixty-eight patients initially diagnosed with 'cold' nodules in 99 Tc m O 4 - thyroid scintigraphy were selected for further 99 Tc m -MIBI thyroid imaging at early (15 min after 99 Tc m -MIBI intravenous injection, ER) and delayed phase (2 h after injection, DR). Semi-quantitative analysis was performed using tumor/normal tissue (T/N) ratio both at ER and DR, with 0.8 defined as the threshold for differential diagnoses. In ROC curves analyses, the ratios from tumor/submaxillary gland (T/S) and tumor/heart (T/H) were derived to obtain the most proper differential diagnostic thresholds. Results: Of all patients with the 'cold' nodules, only eight cases were finally diagnosed on pathology with thyroid malignancy, while other 60 were benign. For differential diagnoses, the sensitivity, specificity and accuracy of semi-quantitative 99 Tc m -MIBI thyroid imaging were 100.0%, 76.7% and 79.4% respectively. However, with thresholds of T/N=0.995, T/S=0.995, T/H=1.005 derived from ROC curves for DR 99 Tc m -MIBI imaging, the differential diagnostic sensitivities were 100.0%, 87.5%, 75.0% and the specificities were 90.0%, 85.0%, 83.3% respectively. The areas under the ROC curves were 0.949, 0.876 and 0. 867 respectively for DR, all significantly larger than those of ER. Statistical difference was also evident between threshold values of 0.8 and 0.995 (χ 2 =6.125, P 99 Tc m -MIBI thyroid imaging provide additional diagnostic value over 99 Tc m O 4 - thyroid imaging for the differentiation of the 'cold' nodules. For 99 Tc m -MIBI thyroid imaging, DR is more valuable than ER in the ROC

  1. Effective choices for diagnostic imaging in clinical practice. Excerpts from a report of a WHO Scientific Group on Clinical Diagnostic Imaging

    International Nuclear Information System (INIS)

    1992-01-01

    There are so many different methods of diagnostic imaging that medical practitioners may need guidance to choose the best through the maze of options for each clinical problem. Advice may be required for more than just the first choice, because the first imaging procedure does not always give the desired answer and, depending on the results, further imaging may have to undertaken. The alternative is to submit the patient to a barrage of imaging and hope that one type, at least provides the diagnosis. This is a quite unacceptable way to practice medicine because of the cost and the risk of radiation damage from unnecessary examinations. The choice of the most effective imaging is often difficult and frequently controversial. The sequence to be followed vries with many factors: the equipment available, the skills of the practitioner, the expected quality of the results, the quality of interpretation, and conclusion which can be drawn

  2. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  3. Diagnostic accuracy of new imaging techniques in breast diseases

    Energy Technology Data Exchange (ETDEWEB)

    Gordenne, W; Bauduin, E [Liege Univ. (Belgium)

    1989-01-01

    During the last decade, the hypothetical carcinogenic effects of mammography have lead to new technical developments in X-ray diagnosis and to use of other imaging techniques such as ultrasonography (US), transillumination, magnetic resonance imaging (MRI). Many preliminary studies were published but few clinical trials are really convincing. According to the definition of a diagnostic tool, none of these new modalities is supposed to supplant mammography in the diagnosis of breast cancer. Improvements are expected by digital mammography in the near future. (Authors).

  4. Active imaging for monitoring and technical diagnostics

    Directory of Open Access Journals (Sweden)

    Marek Piszczek

    2014-08-01

    Full Text Available The article presents the results of currently running work in the field of active imaging. The term active refers to both the image acquisition methods, so-called methods of the spatio-temporal framing and active visualization method applying augmented reality. Also results of application of the HMD and 6DoF modules as well as the experimental laser photography device are given. The device works by methods of spatio-temporal framing and it has been developed at the IOE WAT. In terms of image acquisition - active imaging involves the use of illumination of the observed scene. In the field of information visualization - active imaging directly concerns the issues of interaction human-machine environment. The results show the possibility of using the described techniques, among others, rescue (fire brigade, security of mass events (police or the protection of critical infrastructure as well as broadly understood diagnostic problems. Examples presented in the article show a wide range of possible uses of the methods both in observational techniques and measurement. They are relatively innovative solutions and require elaboration of series of hardware and algorithmic issues. However, already at this stage it is clear that active acquisition and visualization methods indicate a high potential for this type of information solutions.[b]Keywords[/b]: active imaging, augmented reality, digital image processing

  5. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  6. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  7. Computerized method for evaluating diagnostic image quality of calcified plaque images in cardiac CT: Validation on a physical dynamic cardiac phantom

    International Nuclear Information System (INIS)

    King, Martin; Rodgers, Zachary; Giger, Maryellen L.; Bardo, Dianna M. E.; Patel, Amit R.

    2010-01-01

    Purpose: In cardiac computed tomography (CT), important clinical indices, such as the coronary calcium score and the percentage of coronary artery stenosis, are often adversely affected by motion artifacts. As a result, the expert observer must decide whether or not to use these indices during image interpretation. Computerized methods potentially can be used to assist in these decisions. In a previous study, an artificial neural network (ANN) regression model provided assessability (image quality) indices of calcified plaque images from the software NCAT phantom that were highly agreeable with those provided by expert observers. The method predicted assessability indices based on computer-extracted features of the plaque. In the current study, the ANN-predicted assessability indices were used to identify calcified plaque images with diagnostic calcium scores (based on mass) from a physical dynamic cardiac phantom. The basic assumption was that better quality images were associated with more accurate calcium scores. Methods: A 64-channel CT scanner was used to obtain 500 calcified plaque images from a physical dynamic cardiac phantom at different heart rates, cardiac phases, and plaque locations. Two expert observers independently provided separate sets of assessability indices for each of these images. Separate sets of ANN-predicted assessability indices tailored to each observer were then generated within the framework of a bootstrap resampling scheme. For each resampling iteration, the absolute calcium score error between the calcium scores of the motion-contaminated plaque image and its corresponding stationary image served as the ground truth in terms of indicating images with diagnostic calcium scores. The performances of the ANN-predicted and observer-assigned indices in identifying images with diagnostic calcium scores were then evaluated using ROC analysis. Results: Assessability indices provided by the first observer and the corresponding ANN performed

  8. Image quality, radiation dose and diagnostic accuracy of 70 kVp whole brain volumetric CT perfusion imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiao Kun; Ni, Qian Qian; Zhou, Chang Sheng; Chen, Guo Zhong; Luo, Song; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States); Fuller, Stephen R.; De Cecco, Carlo N. [Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States)

    2016-11-15

    To evaluate image quality and diagnostic accuracy for acute infarct detection and radiation dose of 70 kVp whole brain CT perfusion (CTP) and CT angiography (CTA) reconstructed from CTP source data. Patients were divided into three groups (n = 50 each): group A, 80 kVp, 21 scanning time points; groups B, 70 kVp, 21 scanning time points; group C, 70 kVp, 17 scanning time points. Objective and subjective image quality of CTP and CTA were compared. Diagnostic accuracy for detecting acute infarct and cerebral artery stenosis ≥ 50 % was calculated for CTP and CTA with diffusion weighted imaging and digital subtraction angiography as reference standards. Effective radiation dose was compared. There were no differences in any perfusion parameter value between three groups (P > 0.05). No difference was found in subjective image quality between three groups (P > 0.05). Diagnostic accuracy for detecting acute infarct and vascular stenosis showed no difference between three groups (P > 0.05). Compared with group A, radiation doses of groups B and C were decreased by 28 % and 37 % (both P < 0.001), respectively. Compared with 80 kVp protocol, 70 kVp brain CTP allows comparable vascular and perfusion assessment and lower radiation dose while maintaining high diagnostic accuracy in detecting acute infarct. (orig.)

  9. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    International Nuclear Information System (INIS)

    Goebel, Georg; Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph; Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene

    2011-01-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [ 123 I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP ND ) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP ND image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [ 123 I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [ 123 I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [ 123 I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  10. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders.

    Science.gov (United States)

    Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph

    2011-04-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.

  11. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    Science.gov (United States)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  12. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  13. Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent

    Directory of Open Access Journals (Sweden)

    Krisztián Szigeti

    2018-01-01

    Full Text Available Background. The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with 201Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well. Methods. The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs (iron(II;iron(III;octadecacyanide doped with 201Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm3 were calculated from the SPECT scans for each dedicated volume of interest (VOI of liver, kidneys, salivary glands, heart, lungs, and brain. Results. PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points. Conclusion. We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications.

  14. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  15. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    Directory of Open Access Journals (Sweden)

    Lee H

    2015-08-01

    Full Text Available Haisung Lee,1 Dongkyung Sung,2 Jinhoon Kim,3 Byung-Tae Kim,3 Tuntun Wang,4 Seong Soo A An,5 Soo-Won Seo,6 Dong Kee Yi4 1Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, 2Department of Life Sciences, Graduate School of Korea University, 3Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, 4Department of Chemistry, Myongji University, Seoul, 5Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, 6Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea Abstract: In this study, fluorescent dye-conjugated magnetic resonance (MR imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. Keywords: dual bioimaging, MR imaging, silica colloid, T1 contrast imaging, nanohybrid

  16. Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes

    Directory of Open Access Journals (Sweden)

    Peter Vaupel

    2014-03-01

    Full Text Available Hypoxic tissue subvolumes are a hallmark feature of solid malignant tumors, relevant for cancer therapy and patient outcome because they increase both the intrinsic aggressiveness of tumor cells and their resistance to several commonly used anticancer strategies. Pathogenetic mechanisms leading to hypoxia are diverse, may coexist within the same tumor and are commonly grouped according to the duration of their effects. Chronic hypoxia is mainly caused by diffusion limitations resulting from enlarged intercapillary distances and adverse diffusion geometries and — to a lesser extent — by hypoxemia, compromised perfusion or long-lasting microregional flow stops. Conversely, acute hypoxia preferentially results from transient disruptions in perfusion. While each of these features of the tumor microenvironment can contribute to a critical reduction of oxygen availability, the delivery of imaging agents (as well as nutrients and anticancer agents may be compromised or remain unaffected. Thus, a critical appraisal of the effects of the various mechanisms leading to hypoxia with regard to the blood-borne delivery of imaging agents is necessary to judge their ability to correctly represent the hypoxic phenotype of solid malignancies.

  17. Patient dosimetry and image quality in conventional diagnostic radiology. An experience from a local Serbian hospital

    International Nuclear Information System (INIS)

    Olivera Ciraj-Bjelac; Milojko Kovacevic; Dusko Kosutic; Milan Loncar; Dajana Veljkovic

    2007-01-01

    Complete test of publication follows. The optimization of image quality vs. patient dose ins an important task in medical imaging. Maximal validity of optimization has to be based on clinical images. Simultaneous measurement of patient dose levels and image quality assessment is used to investigate possibilities for dose reduction and maintain image quality. The survey was conducted in a local hospital performing more than 60000 images annually and representing typical Serbian practice. For four most frequent diagnostic procedures (seven projections) patient exposure was measured using kerma area product meter. Image quality was assessed by experienced radiologists using 'European Guidelines on Quality Criteria for Diagnostic Radiographic Images'. Following examination types were included into the survey: chest PA, chest LAT, pelvis AP, lumbar spine AP, lumbar spine LAT and LSJ, skull PA and skull LAT. Comparing actual radiographic technique with recommended technique in European Guidelines, modification of practice was proposed and implemented and image quality was re-assessed. At least 10 adult patients were followed for each projection, before and after corrective actions. Large dose saving without compromising diagnostic information were found for some examination types, showing that this simple method is very efficient dose reduction tool in conventional diagnostic radiology. Also, need for staff training and difficulties related to practical implementation of optimization methods in Serbia were discussed.

  18. Diagnostic imaging features of normal anal sacs in dogs and cats.

    Science.gov (United States)

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo; Lee, Kichang

    2016-09-30

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions.

  19. Moyamoya disease: Diagnostic imaging

    International Nuclear Information System (INIS)

    Tarasów, Eugeniusz; Kułakowska, Alina; Łukasiewicz, Adam; Kapica-Topczewska, Katarzyna; Korneluk-Sadzyńska, Alicja; Brzozowska, Joanna; Drozdowski, Wiesław

    2011-01-01

    Moyamoya disease is a progressive vasculopathy leading to stenosis of the main intracranial arteries. The incidence of moyamoya disease is high in Asian countries; in Europe and North America, the prevalence of the disease is considerably lower. Clinically, the disease may be of ischaemic, haemorrhagic and epileptic type. Cognitive dysfunction and behavioral disturbance are atypical symptoms of moyamoya disease. Characteristic angiographic features of the disease include stenosis or occlusion of the arteries of the circle of Willis, as well as the development of collateral vasculature. Currently, magnetic resonance angiography and CT angiography with multi-row systems are the main imaging methods of diagnostics of the entire range of vascular changes in moyamoya disease. The most common surgical treatment combines the direct arterial anastomosis between the superficial temporal artery and middle cerebral, and the indirect synangiosis involving placement of vascularised tissue in the brain cortex, in order to promote neoangiogenesis. Due to progressive changes, correct and early diagnosis is of basic significance in selecting patients for surgery, which is the only effective treatment of the disease. An appropriate qualification to surgery should be based on a comprehensive angiographic and imaging evaluation of brain structures. Despite the rare occurrence of moyamoya disease in European population, it should be considered as one of causes of ischaemic or haemorrhagic strokes, especially in young patients

  20. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  1. Diagnostic value of imaging in infective endocarditis : a systematic review

    NARCIS (Netherlands)

    Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu

    Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of

  2. Diagnostic imaging of acute aortic dissection

    International Nuclear Information System (INIS)

    Ohya, Tohru; Kumazaki, Tatsuo

    1991-01-01

    One hundred and nineteen patients with aortic dissection who underwent diagnostic imaging were reviewed and angiographic findings as well as those of CT were analysed. Thirty eight cases (43.1%) had non-contrast opacified false lumen, the type of which we call 'thrombosed type aortic dissection'. A comparative study of the thrombosed type with the patent type of false lumens was made particularly from the stand point of the characteristic diagnostic imagings (CT and angiography). At the same time, the pitfalls of these imagings in thrombosed type aortic dissection were studied. At the onset the average age of thrombosed type was 62.3 years old, while that of the patent type was 57.3. A statistical significance between the two groups was p<0.05. Thrombosed type in all cases was caused by atherosclerosis, whereas patent type was caused by the Marfan's syndrome in 11 cases. Other clinical findings, such as initial symptoms and blood pressure revealed no significant differences between the two groups. Pre-contrast CT in acute thrombosed type aortic dissection showed 'hyperdense crescent sign' in 89.4%. However, in 3 cases with thrombosed type in which the pre-contrast CT showed 'hyperdense crescent sign' contrast-enhanced CT detected no clear evidence of aortic dissection in the same site. This was due to obscurity induced by contrast medium. Angiographic findings of thrombosed type were classified into 3 groups: normal type, stenosed true lumen type and ulcer-like projection type. The incidence of normal type was estimated to be 48.4%, whereas stenosed true lumen type was 24.2% and ulcer-like projection was 27.7%. The present study concluded that thrombosed type is not rare in acute aortic dissection and contrast-enhanced CT as well as pre-contrast CT, is of great value in diagnosing thrombosed type. 'Hyperdense crescent sign' in pre-contrast CT is characteristic of intramural hematoma. (author)

  3. SIMS imaging of gadolinium isotopes in tissue from Nephrogenic Systemic Fibrosis patients: Release of free Gd from magnetic resonance imaging (MRI) contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Jerrold L. [Department of Pathology, SUNY Upstate Medical University, Syracuse, New York (United States); Chandra, Subhash [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853 (United States)], E-mail: sc40@cornell.edu; Thakral, Charu [Department of Pathology, SUNY Upstate Medical University, Syracuse, New York (United States); Abraham, Joshua M. [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853 (United States)

    2008-12-15

    Recently, Gd-based magnetic resonance imaging (MRI) contrast agents (GBMCA) have been linked to a new disease, Nephrogenic Systemic Fibrosis (NSF), with skin and systemic toxicity and death in certain patients with renal failure. Due to widespread use of GBMCA in diagnostic MRI, it is essential to study their excretion, metabolism, and target sites in cells and tissues. A CAMECA IMS-3f SIMS ion microscope and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) were used for imaging Gd isotopes in relation to calcium distributions in histologic sections of human tissues. SIMS imaging revealed two types of Gd localization in skin biopsies of patients who received GBMCA. The Gd was present in micrometer size deposits in association with calcium, and in detectable amounts in a more diffuse cellular distribution. Only the Gd-containing deposits associated with Ca and P were detectable using SEM/EDS. As only insoluble deposits remain in the biopsy tissues after aqueous and organic solvent processing of the tissue, our observations support release of free Gd from the GBMCA and selective localization of insoluble Gd in the target tissue from patients with NSF. This study opens new novel applications of SIMS for characterization of the safety of GBMCA.

  4. Functional mesoporous silica nanoparticles for bio-imaging applications.

    Science.gov (United States)

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  5. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  6. Requesting diagnostic imaging examinations: a position paper of the Canadian Association of Radiologists. Special article

    International Nuclear Information System (INIS)

    Stolberg, H.O.; Hynes, D.M.; Rainbow, A.J.; Moran, L.A.

    1997-01-01

    The present document is directed at physicians who request diagnostic imaging examinations. Many of the imaging examinations currently requested are not useful in managing clinical problems. The intention is to provide general guidelines for the prescription of appropriate imaging examinations. This document does not address the use of specific imaging modalities in particular clinical situations. The purpose is to help doctors make the best use of the imaging examination by providing general guidelines to assist in deciding upon the most appropriate situation in which to use the examination. Similar guidelines for the prescription of diagnostic x-ray examinations have been suggested previously. (author). 19 refs.,

  7. Assessing Leg length Discrepancy Using a Biplane Low Dose Imaging System. A Comparative Diagnostic Study

    DEFF Research Database (Denmark)

    Jensen, Janni; Mussmann, Bo Redder; Torfing, Trine

    study was to evaluate the diagnostic accuracy of leg length (LL) measurements performed on low dose pre-view images acquired using a new bi-planar imaging system. The administered radiation dose from the pre-view image is approximately 20,17μGycm2 vs. 2670μGycm2 when acquiring the diagnostic image.......84) for the tibial measurements and the mean difference for total LLD was 0.01cm (p=0.92) and 0.03cm (p=0.73). All ICC calculations were >.99 indicating excellent inter- and intra-rater reliability. Conclusion. The results strongly imply that LL measurements performed on pre-view images acquired with a new bi...

  8. Optimization of diagnostic imaging use in patients with acute abdominal pain (OPTIMA): Design and rationale

    NARCIS (Netherlands)

    Laméris, Wytze; van Randen, Adrienne; Dijkgraaf, Marcel G. W.; Bossuyt, Patrick M. M.; Stoker, Jaap; Boermeester, Marja A.

    2007-01-01

    ABSTRACT: BACKGROUND: The acute abdomen is a frequent entity at the Emergency Department (ED), which usually needs rapid and accurate diagnostic work-up. Diagnostic work-up with imaging can consist of plain X-ray, ultrasonography (US), computed tomography (CT) and even diagnostic laparoscopy.

  9. Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Chunan (Korea, Republic of)

    2016-12-15

    This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

  10. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  11. Towards a framework for agent-based image analysis of remote-sensing data.

    Science.gov (United States)

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  12. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  13. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  14. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    Science.gov (United States)

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  15. DIAGNOSTIC IMAGING IN A DIRECT-ACCESS SPORTS PHYSICAL THERAPY CLINIC: A 2-YEAR RETROSPECTIVE PRACTICE ANALYSIS.

    Science.gov (United States)

    Crowell, Michael S; Dedekam, Erik A; Johnson, Michael R; Dembowski, Scott C; Westrick, Richard B; Goss, Donald L

    2016-10-01

    While advanced diagnostic imaging is a large contributor to the growth in health care costs, direct-access to physical therapy is associated with decreased rates of diagnostic imaging. No study has systematically evaluated with evidence-based criteria the appropriateness of advanced diagnostic imaging, including magnetic resonance imaging (MRI), when ordered by physical therapists. The primary purpose of this study was to describe the appropriateness of magnetic resonance imaging (MRI) or magnetic resonance arthrogram (MRA) exams ordered by physical therapists in a direct-access sports physical therapy clinic. Retrospective observational study of practice. Greater than 80% of advanced diagnostic imaging orders would have an American College of Radiology (ACR) Appropriateness Criteria rating of greater than 6, indicating an imaging order that is usually appropriate. A 2-year retrospective analysis identified 108 MRI/MRA examination orders from four physical therapists. A board-certified radiologist determined the appropriateness of each order based on ACR appropriateness criteria. The principal investigator and co-investigator radiologist assessed agreement between the clinical diagnosis and MRI/surgical findings. Knee (31%) and shoulder (25%) injuries were the most common. Overall, 55% of injuries were acute. The mean ACR rating was 7.7; scores from six to nine have been considered appropriate orders and higher ratings are better. The percentage of orders complying with ACR appropriateness criteria was 83.2%. Physical therapist's clinical diagnosis was confirmed by MRI/MRA findings in 64.8% of cases and was confirmed by surgical findings in 90% of cases. Physical therapists providing musculoskeletal primary care in a direct-access sports physical therapy clinic appropriately ordered advanced diagnostic imaging in over 80% of cases. Future research should prospectively compare physical therapist appropriateness and utilization to other groups of providers and

  16. Computerized method for evaluating diagnostic image quality of calcified plaque images in cardiac CT: Validation on a physical dynamic cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    King, Martin; Rodgers, Zachary; Giger, Maryellen L.; Bardo, Dianna M. E.; Patel, Amit R. [Department of Radiology, Committee on Medical Physics, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637 (United States); Department of Diagnostic Radiology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239 (United States); Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 5084, Chicago, Illinois 60637 (United States)

    2010-11-15

    Purpose: In cardiac computed tomography (CT), important clinical indices, such as the coronary calcium score and the percentage of coronary artery stenosis, are often adversely affected by motion artifacts. As a result, the expert observer must decide whether or not to use these indices during image interpretation. Computerized methods potentially can be used to assist in these decisions. In a previous study, an artificial neural network (ANN) regression model provided assessability (image quality) indices of calcified plaque images from the software NCAT phantom that were highly agreeable with those provided by expert observers. The method predicted assessability indices based on computer-extracted features of the plaque. In the current study, the ANN-predicted assessability indices were used to identify calcified plaque images with diagnostic calcium scores (based on mass) from a physical dynamic cardiac phantom. The basic assumption was that better quality images were associated with more accurate calcium scores. Methods: A 64-channel CT scanner was used to obtain 500 calcified plaque images from a physical dynamic cardiac phantom at different heart rates, cardiac phases, and plaque locations. Two expert observers independently provided separate sets of assessability indices for each of these images. Separate sets of ANN-predicted assessability indices tailored to each observer were then generated within the framework of a bootstrap resampling scheme. For each resampling iteration, the absolute calcium score error between the calcium scores of the motion-contaminated plaque image and its corresponding stationary image served as the ground truth in terms of indicating images with diagnostic calcium scores. The performances of the ANN-predicted and observer-assigned indices in identifying images with diagnostic calcium scores were then evaluated using ROC analysis. Results: Assessability indices provided by the first observer and the corresponding ANN performed

  17. The clinician's guide to diagnostic imaging: Cost effective pathways

    International Nuclear Information System (INIS)

    Grossman, Z.D.; Chew, F.S.; Ellis, D.A.; Brigham, S.C.

    1987-01-01

    This book presents logical, step-by-step imaging sequences for 47 medical, surgical, and pediatric problems. Topics considered include breast cancer screening, acute spinal trauma, search for primary cancer of unknown origin, acute anuria, blunt chest trauma, new onset seizures, and spinal cord compression from metastases. Other chapters have been rewritten to enhance the clarity of presentation and to incorporate new techniques such as magnetic resonance imaging, dipyridamole stress testing, and single photon emission computed tomography. The book highlights the expanding role of CT in evaluation of thoracic and abdominal problems, the emergence of magnetic resonance imaging as a vital diagnostic tool for the central nervous system, and the clinical utility of many newly developed radiopharmaceuticals

  18. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E. [Sandia National Labs., Livermore, CA (United States)

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  19. First preclinical evaluation of mono-[{sup 123}I]iodohypericin as a necrosis-avid tracer agent

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicheng; Chen, Feng; Marchal, Guy [University Hospital Gasthuisberg, Department of Radiology, Leuven (Belgium); Huyghe, Dieter; Verbeke, Kristin; Verbruggen, Alfons M.; Bormans, Guy M. [University of Leuven, Laboratory of Radiopharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Leuven (Belgium); Witte, Peter A. de [University of Leuven, Laboratory of Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Leuven (Belgium); Nuyts, Johan; Mortelmans, Luc [University Hospital Gasthuisberg, Department of Nuclear Medicine, Leuven (Belgium)

    2006-05-15

    We have labelled hypericin, a polyphenolic polycyclic quinone found in St. John's wort (Hypericum perforatum), with{sup 123}I and evaluated mono-[{sup 123}I]iodohypericin (MIH) as a potential necrosis-avid diagnostic tracer agent. MIH was prepared by an electrophilic radioiodination method. The new tracer agent was evaluated in animal models of liver infarction in the rat and heart infarction in the rabbit using single-photon emission computed tomography (SPECT), triphenyltetrazolium chloride (TTC) histochemical staining, serial sectional autoradiography and microscopy, and radioactivity counting techniques. Using in vivo SPECT imaging, hepatic and cardiac infarctions were persistently visualised as well-defined hot spots over 48 h. Preferential uptake of the tracer agent in necrotic tissue was confirmed by perfect match of images from post-mortem TTC staining, autoradiography (ARX) and histology. Radioactivity concentration in infarcted tissues was over 10 times (liver; 3.51% ID/g in necrotic tissue vs 0.38% ID/g in normal tissue at 60 h p.i.) and over 6 times (myocardium; 0.36% ID/g in necrotic tissue vs 0.054% ID/g in normal tissue; ratios up to 18 for selected parts on ARX images) higher than in normal tissues. The results suggest that hypericin derivatives may serve as powerful necrosis-avid diagnostic agents for assessment of tissue viability. (orig.)

  20. Pharmacological studies of dopamine transporter imaging agent 125/131I-β-CIT

    International Nuclear Information System (INIS)

    Ding Shiyu; Zhou Xiang; Chen Zhengping; Wu Chunying; Lin Yansong; Ji Shuren; Lu Chunxiong; Fang Ping; Tang Jun; Wang Feng

    2001-01-01

    To prepare 125/131 I-β-CIT (2β-carbomethoxy-3β-(4-iodophenyl) tropane) as an imaging agent for dopamine transporter (DAT), the labelling method from tributylstannyl precursor with peracetic acid has been reported. The radiochemical purity (RCP) of the labelled compound was over 95% determined by HPLC and TLC. The stability, partition coefficients were also determined. The pharmacological studies of the imaging agent were performed in rats, mice, rabbits and normal monkey. The ligand showed preferable uptake in brain (1.9% ID/organ in rats and 4.5% ID/organ in mice at 5 min). The ratios of striatum/cerebellum, hippocampus/cerebellum and cortex/cerebellum were 28.9, 3.97 and 4.75 at 6 h in rats, and 8.52, 2.99 and 3.06 at 6 h in mice, respectively. In monkey brain imaging the ratios of striatum/frontal cortex (ST/FC) and striatum/occipital cortex (ST/OC) were 5.14 and 5.97 at 4h, respectively. All of above showed the high affinity of the ligand to DAT. The compound was primarily metabolized in liver because the hepatic uptake was much higher than other organs (75.4% ID/organ at 18h). The half-life of blood elimination was 5 min. The dose received by mice was 2500 times as high as that received by human in the test of undue toxicity, which evaluated the safety of the agent. All the results suggest that β-CIT can be used as a potential DAT imaging agent

  1. Distributed decision making in action: diagnostic imaging investigations within the bigger picture.

    Science.gov (United States)

    Makanjee, Chandra R; Bergh, Anne-Marie; Hoffmann, Willem A

    2018-03-01

    Decision making in the health care system - specifically with regard to diagnostic imaging investigations - occurs at multiple levels. Professional role players from various backgrounds are involved in making these decisions, from the point of referral to the outcomes of the imaging investigation. The aim of this study was to map the decision-making processes and pathways involved when patients are referred for diagnostic imaging investigations and to explore distributed decision-making events at the points of contact with patients within a health care system. A two-phased qualitative study was conducted in an academic public health complex with the district hospital as entry point. The first phase included case studies of 24 conveniently selected patients, and the second phase involved 12 focus group interviews with health care providers. Data analysis was based on Rapley's interpretation of decision making as being distributed across time, situations and actions, and including different role players and technologies. Clinical decisions incorporating imaging investigations are distributed across the three vital points of contact or decision-making events, namely the initial patient consultation, the diagnostic imaging investigation and the post-investigation consultation. Each of these decision-making events is made up of a sequence of discrete decision-making moments based on the transfer of retrospective, current and prospective information and its transformation into knowledge. This paper contributes to the understanding of the microstructural processes (the 'when' and 'where') involved in the distribution of decisions related to imaging investigations. It also highlights the interdependency in decision-making events of medical and non-medical providers within a single medical encounter. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation

  2. A novel computer-assisted image analysis of [{sup 123}I]{beta}-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Georg [Innsbruck Medical University, Department of Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2011-04-15

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [{sup 123}I]{beta}-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP{sub ND}) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP{sub ND} image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [{sup 123}I]{beta}-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [{sup 123}I]{beta}-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [{sup 123}I]{beta}-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  3. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    Science.gov (United States)

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A review of 99mTc labeled myocardial imaging agents for tumor-positive imaging

    International Nuclear Information System (INIS)

    Xing Shian; Zhang Yongxue; An Rui

    2002-01-01

    The tumor-positive imaging with high sensitivity and specificity was useful in primary tumor and recurrences and metastases. The 99m Tc labeled myocardial imaging agents are easily available and stable and the radiochemical purity is high. 99m Tc is the preferred choice in routine works because its physical properties. The preparation, quality control, mechanism of accumulation and the clinical use of 99m Tc-sestamibi, 99m Tc-tetrofosmin, 99m Tc-furifosmin, and 99m Tc-N-NOET were reviewed

  5. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    International Nuclear Information System (INIS)

    Kuwahara, D.; Shinohara, S.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.

    2015-01-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA

  6. Gd-DTPA as a paramagnetic contrast agent in MR imaging of focal liver lesions

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Wolf, K.J.; Felix, R.; Weinmann, H.J.

    1986-01-01

    Gd-DTPA enhances signal intensity in healthy liver and in intrahepatic tumors. However, after contrast agent administration, tumor enhances significantly more than liver parenchyma (2α≤ 0.05). Doubling the dose of Gd-DTPA from 0.1 to 0.2 mmol/kg of body weight increases the enhancement of intrahepatic tumors (2α≤ 0.05) and optimizes the contrast between tumor and liver in T1-weighted spin-echo sequences. However, the contrast between tumor and liver on inversion-recovery and T2-weighted images obtained before contrast agent administration is much greater than the difference on T1-weighted images obtained after contrast agent administration (2α≤ 0.05). In fast images the contrast between liver and tumor can be markedly improved by administering Gd-DTPA

  7. A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties.

    Science.gov (United States)

    Mastrogiacomo, S; Güvener, N; Dou, W; Alghamdi, H S; Camargo, W A; Cremers, J G O; Borm, P J A; Heerschap, A; Oosterwijk, E; Jansen, J A; Walboomers, X F

    2017-10-15

    Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a

  8. Analysis of utilization patterns and associated costs of the breast imaging and diagnostic procedures after screening mammography

    Directory of Open Access Journals (Sweden)

    Vlahiotis A

    2018-03-01

    Full Text Available Anna Vlahiotis,1 Brian Griffin,2 A Thomas Stavros,3 Jay Margolis1 1Value Based Care, Outcomes Research, Truven Health Analytics, an IBM Company, Bethesda, MD USA; 2Value Based Care, Outcomes Research, Truven Health Analytics, an IBM Company, Newark, NJ, USA; 3Seno Medical Instruments, Inc., San Antonio, TX, USA Background: Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam.Objectives: To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures.Materials and methods: Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event, with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes.Results: The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients, 6,987,399 breast ultrasounds (42.4% of patients, and 1,585,856 biopsies (10.3% of patients. Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD costs for diagnostic mammograms of US$349 ($493, ultrasounds US$132 ($134, and biopsies US$1,938 ($2,343 contributed

  9. Adrenal scintiscanning with NP-59: a new radioiodinated cholesterol agent

    International Nuclear Information System (INIS)

    Miles, J.M.; Wahner, H.W.; Carpenter, P.C.; Salassa, R.M.; Northcutt, R.C.

    1979-01-01

    Adrenal imaging in the past has been limited in its clinical application by the long interval between administration of dose and visualization of adrenal glands. We review our experience with the use of a newer labeling agent, NP-59, in 29 patients with various adrenal disorders and in 4 normal subjects. With this agent, identification of adrenal lesions is possible with a high degree of accuracy, and diagnostic information is usually available within 48 hrs. NP-59 is particularly useful in evaluating primary aldosteronism and selected cases of Cushing's syndrome

  10. Magnetic resonance imaging in the cranio-cervical region

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    Since the introduction of nuclear magnetic resonance imaging (NMR) in the neurosurgical and neurological diagnostic this new imaging modality has shown to be of high diagnostic value - especially in disease process of the cranio-vertebral junction. Other imaging moralities such as x-ray CT and myelography are of inferior quality as the images are degraded by bone artifacts and superposition of other structures. NMR can reveal many aspects of the cranio-vertebral region in a single examination without artifacts from surrounding structures. A further improvement of NMR is the introduction of para-magnetic agents, such as gadolinium-DTPA, as it increases the specifity by dynamic magnetic resonance imaging. The authors present a review of their clinical experience

  11. From 'Image Gently' to image intelligently: a personalized perspective on diagnostic radiation risk

    Energy Technology Data Exchange (ETDEWEB)

    Guillerman, R.P. [Department of Pediatric Radiology, Texas Children' s Hospital, Baylor College of Medicine, Houston, TX (United States)

    2014-10-15

    The risk of ionizing radiation from diagnostic imaging has been a popular topic in the radiology literature and lay press. Communicating the magnitude of risk to patients and caregivers is problematic because of the uncertainty in estimates derived principally from epidemiological studies of large populations, and alternative approaches are needed to provide a scientific basis for personalized risk estimates. The underlying patient disease and life expectancy greatly influence risk projections. Research into the biological mechanisms of radiation-induced DNA damage and repair challenges the linear no-threshold dose-response assumption and reveals that individuals vary in sensitivity to radiation. Studies of decision-making psychology show that individuals are highly susceptible to irrational biases when judging risks. Truly informed medical decision-making that respects patient autonomy requires appropriate framing of radiation risks in perspective with other risks and with the benefits of imaging. To follow the principles of personalized medicine and treat patients according to their specific phenotypic and personality profiles, diagnostic imaging should optimally be tailored not only to patient size, body region and clinical indication, but also to underlying disease conditions, radio-sensitivity and risk perception and preferences that vary among individuals. (orig.)

  12. Radiation exposure and image quality in X-ray diagnostic radiology. Physical principles and clinical applications. 2. ed.

    International Nuclear Information System (INIS)

    Saebel, Manfred; Aichinger, Horst; Dierker, Joachim; Joite-Barfuss, Sigrid

    2012-01-01

    Diagnostic X-rays are the largest contributor to radiation exposure to the general population, and protecting the patient from radiation damage is a major aim of modern health policy. Once the decision has been taken to use ionising radiation for imaging in a particular patient, it is necessary to optimize the image acquisition process taking into account the diagnostic quality of the images and the radiation dose to the patient. Both image quality and radiation dose are affected by a number of parameters, knowledge of which permits scientifically based decision making. The authors of this second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology have spent many years studying the optimization of radiological imaging. In this book they present in detail the basic physical principles of diagnostic radiology and their application to clinical problems. Particular attention is devoted to evaluation of the dose to the patient, the influence of scattered radiation on image quality, the use of antiscatter grids, and optimization of image quality and dose. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader's own programs. Since the first edition, the text, figures, tables, and references have all been thoroughly updated, and more detailed attention is now paid to image quality and radiation exposure when using digital imaging and computed tomography. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers. (orig.)

  13. Impact of amyloid imaging on drug development in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, Chester A. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)], E-mail: mathisca@upmc.edu; Lopresti, Brian J. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Klunk, William E. [Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2007-10-15

    Imaging agents capable of assessing amyloid-beta (A{beta}) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect A{beta} plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several A{beta} imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional A{beta} plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of A{beta} plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.

  14. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  15. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    International Nuclear Information System (INIS)

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content

  16. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie; Tourassi, Georgia D. [Biomedical Science and Engineering Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pinto, Frank [School of Engineering, Science, and Technology, Virginia State University, Petersburg, Virginia 23806 (United States); Morin-Ducote, Garnetta; Hudson, Kathleen B. [Department of Radiology, University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee 37920 (United States)

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  17. Optimized diagnostic performance of brain magnetic resonance imaging in children with idiopathic growth hormone deficiency

    International Nuclear Information System (INIS)

    Rac, M.

    2006-01-01

    Purpose: The aim of this study was to search for correlations between anatomic changes in the pituitary gland and hormonal disturbances in children with short stature. Material and methods: Children with short stature were enrolled when criteria of pituitary growth hormone deficiency were partly or completely met. Magnetic resonance imaging was performed in 87 children and particular attention was given to the pituitary gland. Measurements were compared with pituitary dimensions accepted as normal in the literature. Contrast with GdDTPA was used to visualize the pituitary gland and associated structures (stalk, infundibulum). T1-weighted images in the sagittal and coronal planes were obtained. The results were statistically analyzed with non-parametric tests. Conclusions: 1. Magnetic resonance imaging is a very sensitive method for detecting changes in the pituitary gland and may well be recommended as a method of choice even though the percentage of changes detected with it is rather small. 2. The use of contrast agent may be abandoned to limit costs when searching for cause of growth deficit in children with idiopathic growth hormone deficiency, save for the following cases: hypoplasia or aplasia of the pituitary gland, transection of the stalk, empty sella syndrome or tumor in the central nervous system. 3. Pituitary volume and height appear to be of greatest diagnostic significance, while width (which varies little) can serve as an auxiliary parameter. (author)

  18. Diagnostic usefulness of endorectal magnetic resonance imaging with dynamic contrast-enhancement in patients with localized prostate cancer. Mapping studies with biopsy specimens

    International Nuclear Information System (INIS)

    Tanaka, Nobumichi; Samma, Shoji; Joko, Masanori; Akiyama, Tatsuya; Takewa, Megumi; Kitano, Satoru; Okajima, Eigoro

    1999-01-01

    New diagnostic criteria for dynamic magnetic resonance (MR) imaging in prostate cancer are presented. The diagnostic usefulness of endorectal MR imaging with dynamic contrast-enhancement in localized prostate cancer and the validity of these criteria were evaluated. Eighteen untreated patients who were suspected of localized prostate cancer were included in the study. They received endorectal dynamic MR imaging before systematic sextant needle biopsy. First, a mapping study with the findings of MR images and histopathology of biopsy specimens was performed in eight patients out of 18 to compare the difference in T2-weighted images with the endorectal coil and the body coil in the same individuals. Second, another mapping study was performed in all 18 patients by analyzing the findings of endorectal dynamic MR images. For the diagnosis of prostate cancer in MR imaging, we offered diagnostic criteria from our experience in addition to those in plain T2-weighted images from the literature. The overall diagnostic rates of endorectal dynamic MR imaging were 88.9% in accuracy, 100% in sensitivity, and 81.8% in specificity. In the comparison of the endorectal and body coils in T2-weighted images in eight patients, there was no difference in the diagnostic rates except for one more histopathologic false positive portion in endorectal MR imaging. In the second mapping study in 18 patients, the diagnostic rates were 92.6% in accuracy, 88.9% in sensitivity and 93.3% in specificity. Endorectal dynamic imaging raised the diagnostic sensitivity from 77.8 to 88.9%. The data demonstrated the validity of this diagnostic criteria and the diagnostic usefulness of endorectal dynamic MR imaging in localized prostate cancer. (author)

  19. Usefulness of diagnostic imaging in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Sekiyama, Kazuya; Akakura, Koichiro; Mikami, Kazuo; Mizoguchi, Ken-ichi; Tobe, Toyofusa; Nakano, Koichi; Numata, Tsutomu; Konno, Akiyoshi; Ito, Haruo

    2003-01-01

    In patients with primary hyperparathyroidism, prevention of urinary stone recurrence can be achieved by surgical removal of the enlarged parathyroid gland. To ensure the efficacy of surgery for primary hyperparathyroidism, preoperative localization of the enlarged gland is important. In the present study, usefulness of diagnostic imaging for localization of the enlarged gland was investigated in primary hyperparathyroidism. We retrospectively examined the findings of imaging studies and clinical records in 79 patients (97 glands) who underwent surgical treatment for primary hyperparathyroidism at Chiba University Hospital between 1976 and 2000. The detection rates of accurate localization were investigated for imaging techniques, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) thallium-201 and technetium-99m pertechnetate (Tl-Tc) subtraction scintigraphy and 99m Tc-methoxyisobutylisonitrile (MIBI) scintigraphy, and analysed in relation to the size and weight of the gland and pathological diagnosis. The detection rates by US, CT, MRI, Tl-Tc subtraction scintigraphy and MIBI scintigraphy were 70%, 67%, 73%, 38% and 78%, respectively. The overall detection rate changed from 50% to 88% before and after 1987. The detection rate of MIBI scintigraphy was superior to Tl-Tc subtraction scintigraphy. In primary hyperparathyroidism, improvement of accurate localization of an enlarged parathyroid gland was demonstrated along with recent advances in imaging techniques including MIBI scintigraphy. (author)

  20. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    Science.gov (United States)

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Diagnostic imaging of the acutely injured patient

    International Nuclear Information System (INIS)

    Berquist, T.H.

    1985-01-01

    This book provides an analysis of pathophysiologic concepts of trauma and reviews the effectiveness of the available imaging modalities in acute trauma of various organ system. Topics covered are chest injuries; abdominal trauma; fractures of long bones; the foot and ankle; the knee; hand and wrist; the elbow; the shoulder; the pelvis hips; the spine; the skull and facial trauma and the clinical assessment of multiple injuries patients. Comparative evaluation of diagnostic techniques of radiography is discussed. Normal anatomy and bone fractures along with soft-tissue injuries are described

  2. Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Maria-Helena E-mail: marleen.smet@uz.kuleuven.ac.be; Marchal, Guy J.; Baert, Albert L.; Hoe, Lieven van; Cleynenbreugel, Johan van; Daniels, Hans; Molenaers, Guy; Moens, Pierre; Fabry, Guy

    2000-04-01

    Objective: To investigate the diagnostic value and the impact on surgical type classification of three-dimensional (3D) images for pre-surgical evaluation of dysplastic hips. Materials and methods: Three children with a different surgical type of hip dysplasia were investigated with helical computed tomography. For each patient, two-dimensional (2D) images, 3D, and a stereolithographic model of the dysplastic hip were generated. In two separate sessions, 40 medical observers independently analyzed the 2D images (session 1), the 2D and 3D images (session 2), and tried to identify the corresponding stereolithographic hip model. The influence of both image presentation (2D versus 3D images) and observer (degree of experience, radiologist versus orthopedic surgeon) were statistically analyzed. The SL model choice reflected the impact on surgical type classification. Results: Image presentation was a significant factor whereas the individual observer was not. Three-dimensional images scored significantly better than 2D images (P=0.0003). Three-dimensional imaging increased the correct surgical type classification by 35%. Conclusion: Three-dimensional images significantly improve the pre-surgical diagnostic assessment and surgical type classification of dysplastic hips.

  3. Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification

    International Nuclear Information System (INIS)

    Smet, Maria-Helena; Marchal, Guy J.; Baert, Albert L.; Hoe, Lieven van; Cleynenbreugel, Johan van; Daniels, Hans; Molenaers, Guy; Moens, Pierre; Fabry, Guy

    2000-01-01

    Objective: To investigate the diagnostic value and the impact on surgical type classification of three-dimensional (3D) images for pre-surgical evaluation of dysplastic hips. Materials and methods: Three children with a different surgical type of hip dysplasia were investigated with helical computed tomography. For each patient, two-dimensional (2D) images, 3D, and a stereolithographic model of the dysplastic hip were generated. In two separate sessions, 40 medical observers independently analyzed the 2D images (session 1), the 2D and 3D images (session 2), and tried to identify the corresponding stereolithographic hip model. The influence of both image presentation (2D versus 3D images) and observer (degree of experience, radiologist versus orthopedic surgeon) were statistically analyzed. The SL model choice reflected the impact on surgical type classification. Results: Image presentation was a significant factor whereas the individual observer was not. Three-dimensional images scored significantly better than 2D images (P=0.0003). Three-dimensional imaging increased the correct surgical type classification by 35%. Conclusion: Three-dimensional images significantly improve the pre-surgical diagnostic assessment and surgical type classification of dysplastic hips

  4. Australian diagnostic radiographers' attitudes and perceptions of imaging obese patients: A study of self, peers and students

    International Nuclear Information System (INIS)

    Aweidah, L.; Robinson, J.; Cumming, S.; Lewis, S.

    2016-01-01

    Introduction and Objective: Imaging obese patients poses a number of challenges for diagnostic radiographers through positioning, radiation exposure, communication and care. Furthermore, the increasing prevalence of obesity in Australian society ensures these imaging challenges are more frequent however little is known about this area. This study aims to explore the attitudes and perceptions of diagnostic radiographers toward imaging obese patients through a mixed methods study. Methods: Ethics approval was granted to interview and survey diagnostic radiographers about their attitudes and perceptions of imaging obese patients. Twelve diagnostic radiographers who are designated clinical educators (DR CEs) took part in a 30–45 min semi-structured interview as well as a 20 min computer-based Weight Implicit Association Test (Weight-IAT) and self-report questionnaire of explicit attitudes. An additional 25 experienced Diagnostic Radiographers who were associate supervisors completed the Weight-IAT/explicit questionnaire only. Results: Thematic analysis of the interviews revealed that DR CEs adopted an image-focussed or patient-focussed approach to obese patients. Key themes with a negative bias included blame, tolerance and insecurity of skill. Positively associated key themes were empathy and experience in radiography. The sample overall showed a significant negative implicit weight bias (P = 0.016) as measured by the Weight-IAT and there was no evidence of negative explicit attitudes. Conclusion: Australian diagnostic radiographers in this study exhibited significant negative implicit weight bias, with interview results highlighting attitudes of blame and frustration towards obese patients. DR CEs were more likely to be focussed on image acquisition rather than patient considerations, with fewer responses related to empathy and equity. - Highlights: • Mixed-methods study combining qualitative interviews and implicit–explicit bias towards imaging obese

  5. Strategic planning for radiology: opening an outpatient diagnostic imaging center.

    Science.gov (United States)

    Leepson, Evan

    2003-01-01

    Launching a new diagnostic imaging center involves very specific requirements and roadmaps, including five major areas of change that have a direct impact on planning: Imaging and communication technology Finances and reimbursement Ownership structure of imaging entities Critical workforce shortages Imaging is moving outside radiology First, planning must focus on the strategic level of any organization, whether it is a multi-national corporation or a six-person radiology group. Think of all organizations as a triangle with three horizontal levels: strategic, managerial and operational. The strategic level of decision-making is at the top of the triangle, and here is where planning must take place. For strategic planning to work, there must be focused time and energy spent on this activity, usually away from the reading room and imaging center. There are five planning strategies, which must have the explicit goal of developing and growing the imaging center. The five strategies are: Clinical and quality issues, Governance and administration, Technology, Relationships, Marketing and business development. The best way to plan and implement these strategies is to create work groups of radiologists, technologists, and administrative and support staff. Once the group agrees on the strategy and tactic, it takes responsibility for implementation. Embarking on the launch of a new outpatient diagnostic imaging center is no small undertaking, and anyone who has struggled with such an endeavor can readily attest to the associated challenges and benefits. Success depends on many things, and one of the most important factors relates to the amount of time and the quality of effort spent on strategic planning at the outset. Neglecting or skimping on this phase may lead to unforeseen obstacles that could potentially derail the project.

  6. Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application

    Science.gov (United States)

    Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire

    2015-10-01

    Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.

  7. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Zu T Shen

    Full Text Available Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd-based contrast agent (GBCA-HDL using high density lipoproteins (HDL-like particles significantly enhances the detection of plaques in an apolipoprotein (apo E knockout (KO mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the

  9. Molecular Imaging Agents Specific for the Annulus Fibrosus of the Intervertebral Disk

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2010-05-01

    Full Text Available Low back pain is a prevalent medical condition that is difficult to diagnose and treat. Current imaging methods are unable to correlate pain reliably with spinal structures, and surgical removal of painful damaged or degenerating disks is technically challenging. A contrast agent specific for the intervertebral disk could assist in the detection, diagnosis, and surgical treatment of low back pain. The styryl pyridinium (FM fluorophores were characterized and structure-activity relationships between chemical structure and in vivo uptake were established. Two novel FM fluorophores with improved optical properties for imaging the intervertebral disks were synthesized and evaluated in mice, rats, and pigs. After a single systemic injection, eight of eight FM fluorophores provided high-contrast imaging of the trigeminal ganglia, whereas six of eight provided high-contrast imaging of the dorsal root ganglia. Unexpectedly, three of eight FM fluorophores provided high-contrast imaging of annulus fibrosus tissue of the intervertebral disks, confirmed histologically. We present the first known contrast agent specific for the intervertebral disks and identify the chemical structural motif that mediates uptake. FM fluorophores could be used for image-guided surgery to assist in the removal of intervertebral disk and lay the foundation for derivatives for magnetic resonance imaging and positron emission tomography.

  10. Discovery of Radioiodinated Monomeric Anthraquinones as a Novel Class of Necrosis Avid Agents for Early Imaging of Necrotic Myocardium.

    Science.gov (United States)

    Wang, Qin; Yang, Shengwei; Jiang, Cuihua; Li, Jindian; Wang, Cong; Chen, Linwei; Jin, Qiaomei; Song, Shaoli; Feng, Yuanbo; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2016-02-16

    Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early imaging after administration to assess myocardial viability. Since dianthraquinones can be composed by coupling two molecules of monomeric anthraquinone and the active center can be found by splitting chemical structure, we propose that monomeric anthraquinones may be effective functional groups for necrosis targetability. In this study, eight radioiodinated monomeric anthraquinones were evaluated as novel necrosis avid agents (NAAs) for imaging of necrotic myocardium. All (131)I-anthraquinones showed high affinity to necrotic tissues and (131)I-rhein emerged as the most promising compound. Infarcts were visualized on SPECT/CT images at 6 h after injection of (131)I-rhein, which was earlier than that with (131)I-Hyp. Moreover, (131)I-rhein showed satisfactory heart-to-blood, heart-to-liver and heart-to-lung ratios for obtaining images of good diagnostic quality. (131)I-rhein was a more promising "hot spot imaging" tracer for earlier visualization of necrotic myocardium than (131)I-Hyp, which supported further development of radiopharmaceuticals based on rhein for SPECT/CT ((123)I and (99m)Tc) or PET/CT imaging ((18)F and (124)I) of myocardial necrosis.

  11. Advanced MR diagnostic imaging in pediatric glial cell tumors: from morphological to pathophysiological evaluation

    International Nuclear Information System (INIS)

    Balev, B.; Georgiev, R.; Novakova, M.

    2013-01-01

    Full text: Introduction: The conventional MR imaging is important, and in most cases necessary imaging tool for studying the macroscopic structure, for localization and distribution of a glial brain tumor. It is an integral part of the optimal MR protocol, which further comprises a diffusion, perfusion techniques, techniques for the permeability and oxygenation assessment, as well as MR spectroscopy to the metabolism assessment. What you will learn: Glial brain tumors in children - incidence, histology, classification, diagnosis; Nature and principles of MR diffusion, perfusion, techniques for permeability and oxygenation assessment, MR spectroscopy; Contemporary techniques allowing to obtain not only MR morphological information but also to evaluate the tumor the pathophysiology: the cellular atypia, cellularity, tumor neovascularization, oxygen consumption, metabolism, status of the blood-brain barrier. This assessment determines the biological potential of the tumor, treatment options and prognosis. Discussion: The findings from conventional MR examinations, incl. administration of gadolinium contrast agents are associated with the degree of glioma and can be useful for their classification. Taking into account that from 20% to 45 % of the unenhanced supratentorial gliomas are malignant, some low-grade gliomas enhance (ganglioglioma, pilocytic astrocytoma, oligodendroglioma), 9% of malignant gliomas have no contrast enhancement, and in general, the contrast enhancement is not seen as a reliable indicator for the infiltration extent. The contemporary MR techniques improve the assessment of the pathophysiology of the tumor which is relevant to its histology and biological potential. Conclusion: Modern MR techniques besides purely diagnostic advantages (determine the extent and distribution of glioma), enable: differentiation of tumor recurrence from radiation necrosis; identification of optimal locations for biopsy or operative resection; prognosis, planning and

  12. Accreditation of diagnostic imaging services in developing countries.

    Science.gov (United States)

    Jiménez, Pablo; Borrás, Cari; Fleitas, Ileana

    2006-01-01

    In recent decades, medical imaging has experienced a technological revolution. After conducting several surveys to assess the quality and safety of diagnostic imaging services in Latin America and the Caribbean, the Pan American Health Organization (PAHO) developed a basic accreditation program that can be implemented by the ministry of health of any developing country. Patterned after the American College of Radiology's accreditation program, the PAHO program relies on a national accreditation committee to establish and maintain accreditation standards. The process involves a peer review evaluation of: (1) imaging and processing equipment, (2) physician and technologist staff qualifications, (3) quality control and quality assurance programs, and (4) image quality and, where applicable, radiation dose. Public and private conventional radiography/fluoroscopy, mammography, and ultrasound services may request accreditation. The radiography/fluoroscopy accreditation program has three modules from which to choose: chest radiography, general radiography, and fluoroscopy. The national accreditation committee verifies compliance with the standards. On behalf of the ministry of health, the accreditation committee also issues a three-year accreditation certificate. As needed, the accreditation committee consults with foreign technical and clinical experts.

  13. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    Science.gov (United States)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  14. Iron-EHPG as an hepatobiliary MR contrast agent: initial imaging and biodistribution studies

    International Nuclear Information System (INIS)

    Lauffer, R.B.; Greif, W.L.; Stark, D.D.; Vincent, A.C.; Saini, S.; Wedeen, V.J.; Brady, T.J.

    1988-01-01

    A paramagnetic relaxation agent targeted to functioning hepatocytes of the liver and excreted into the bile would be useful in the enhancement of normal liver and biliary anatomy in MR imaging. We sought to demonstrate the feasibility of this approach using the prototype hepatobiliary MR contrast agent, iron(III) ethylenebis-(2-hydroxyphenylglycine) (Fe(EHPG) - ). The biodistribution, relaxation enhancement, and imaging characteristics of Fe(EHPG) - were compared to those of the non-specific iron chelate iron(III) diethylenetriaminepentaacetic acid (Fe(DTPA) 2- ), which has a comparable effect on water proton relaxation times. (author)

  15. The superiority and benefits of whole body imaging after radioiodine -131 therapy over radioiodine 131 diagnostic imaging in management of thyroid carcinomas.

    Energy Technology Data Exchange (ETDEWEB)

    Aleid, M A [Al-Mostansyria university, college of medicine P.O.Box 14132, Baghdad, (Iraq)

    1995-10-01

    A comparison between diagnostic and post therapeutic radioiodine imaging methods utilized in detection of thyroid metastases in 34 patients with well differentiated thyroid cancer was performed. The study revealed that the differences in detection on neck activity only between the two methods for papillary and follicular thyroid cancer were 35% and 27% respectively. While the overall detection percentages in both papillary and follicular thyroid cancers cases were 23% in diagnostic and 76% in post therapy scintigrams and the detection difference between the methods was 53% when all lesions throughout the body were seen on scintigram for only follicular thyroid cancer cases were counted, the detection percentage was increased up to 109%. It is clear that post therapeutic scans visualize an additional site activity not shown in diagnostic scans. There fore, post therapeutic imaging method is far superior to diagnostic imaging method and highly sensitive in visualization of thyroid metastases. On the other hand, this research also achieves many scientific and financial benefits. Therefore. This method should be adopted in management and follow up of well differentiated malignancies. 2 figs., 2 tabs.

  16. The superiority and benefits of whole body imaging after radioiodine -131 therapy over radioiodine 131 diagnostic imaging in management of thyroid carcinomas

    International Nuclear Information System (INIS)

    Aleid, M.A.

    1995-01-01

    A comparison between diagnostic and post therapeutic radioiodine imaging methods utilized in detection of thyroid metastases in 34 patients with well differentiated thyroid cancer was performed. The study revealed that the differences in detection on neck activity only between the two methods for papillary and follicular thyroid cancer were 35% and 27% respectively. While the overall detection percentages in both papillary and follicular thyroid cancers cases were 23% in diagnostic and 76% in post therapy scintigrams and the detection difference between the methods was 53% when all lesions throughout the body were seen on scintigram for only follicular thyroid cancer cases were counted, the detection percentage was increased up to 109%. It is clear that post therapeutic scans visualize an additional site activity not shown in diagnostic scans. There fore, post therapeutic imaging method is far superior to diagnostic imaging method and highly sensitive in visualization of thyroid metastases. On the other hand, this research also achieves many scientific and financial benefits. Therefore. This method should be adopted in management and follow up of well differentiated malignancies. 2 figs., 2 tabs

  17. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  18. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  19. Current status of diagnostic imaging in dental university hospitals in Japan

    International Nuclear Information System (INIS)

    Sasaki, Takehito; Fujita, Minoru; Katoh, Tsuguhisa; Kobayashi, Kaoru; Okano, Tomohiro; Sato, Kenji; Wada, Shinichi

    2004-01-01

    The diagnostic imaging examinations in all 29 dental university hospitals in Japan were analyzed during a 1-year period from April 1999 to March 2000. The total number of patients examined was 790859, which corresponded to 27271 patients per hospital on average, with a range from 7872 to 62904. Relative to the total number of patients, intraoral radiography was found to have been most frequently performed, 59% on average, with a range from 40% to 80%, depending on the hospital. Extraoral radiography, mostly panoramic radiography, was 36% on average with the range from 18% to 56%. A significant inverse correlation was observed between the percentages of intraoral and extraoral radiography, relative to the total number of all types of imaging examinations. Computed tomography (CT) examinations were performed with their own apparatuses in 27 hospitals with a frequency of 2.9% of patients in all imaging examinations on average and 9.1% at maximum. The scanning parameter of milliampere seconds (mAs) for individual types of routinely performed CT examinations varied widely, and thus the patient dose can be expected to be considerably reduced, without reducing the amount of diagnostic information to be obtained. Other imaging examinations performed were magnetic resonance imaging in 11 hospitals, X-ray fluoroscopy in 8 hospitals, ultrasonography in 20, nuclear medicine in 5, and bone densitometry in 1 hospital. (author)

  20. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  1. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent

    Science.gov (United States)

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean

    2015-01-01

    Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637

  2. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    International Nuclear Information System (INIS)

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  3. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis

    Directory of Open Access Journals (Sweden)

    Joshua D Webster

    2012-01-01

    Full Text Available The extent to which histopathology pattern recognition image analysis (PRIA agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression. Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1. Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  4. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis.

    Science.gov (United States)

    Webster, Joshua D; Michalowski, Aleksandra M; Dwyer, Jennifer E; Corps, Kara N; Wei, Bih-Rong; Juopperi, Tarja; Hoover, Shelley B; Simpson, R Mark

    2012-01-01

    The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  5. Fatal anaphylactic reaction to intravenous gadobutrol, a gadolinium-based MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Sabine Franckenberg, MD

    2018-02-01

    Full Text Available We present the rare case of a fatal anaphylactic reaction to gadobutrol, a magnetic resonance imaging contrast agent, in a 42-year-old man. The patient underwent elective magnetic resonance imaging for diagnostic clarification of a suspicious finding in the abdomen. The patient had undergone contrast-enhanced computed tomography previously without the occurrence of any adverse effects. Adverse drug reactions in gadobutrol have a very low prevalence of 0.32%-3.5%, with serious adverse drug reactions in <0.1%. There are only a few cases of fatal anaphylactoid reactions to gadolinium-based contrast agents in general. However, if an anaphylactoid reaction occurs, it can present itself with a fulminant course within minutes.

  6. The synthesis of radioiodinated carbohydrates and butyrothenones as potential imaging agents for computed tomography

    International Nuclear Information System (INIS)

    Waterhouse, R.N.

    1993-01-01

    Positron Emission tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are two relatively new imaging techniques which allow for the non-invasive evaluation of biochemical processes in living subjects. Currently, SPECT is more widely accessible than PET, however, only a limited number of radiotracers have been successfully developed for imaging by SPECT. Two classes of radioiodinated compounds were developed as potential imaging agents for SPECT: (1) Radioiodinated carbohydrates for the assessment of glucose metabolism and (2) Radioiodinated butyrothienones for the evaluation of dopamine D 2 receptors in the brain. In both classes of compounds, the radioiodine was attached to an sp 2 hybridized carbon atom to provide radiotracers that were chemically and metabolically stable. Radioiodine incorporation was easily accomplished by radioiododestannylation of vinyl- and aryl-trialkylstannanes in the presence of an oxidizing agent. The incorporation of radioiodine into small molecules can have a significant effect on the biological activity of the resulting radiotracer because of the relatively large size and lipophilicity of the iodine atom. Preliminary evaluations of the effectiveness of the radioiodinated carbohydrates and butyrothienones as imaging agents are presented

  7. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  8. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    Science.gov (United States)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  9. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  10. Metal complex-based templates and nanostructures for magnetic resonance/optical multimodal imaging agents

    NARCIS (Netherlands)

    Galindo Millan, Jealemy

    2012-01-01

    In this thesis, new approaches directed towards simple and functional imaging agents (IAs) for magnetic resonance (MR) and fluorescence multimodal imaging are proposed. In Chapter 3, hybrid silver nanostructures (hAgNSs), grown using a polyamino carboxylic acid scaffold, namely

  11. Diagnostic imaging of the hand. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2015-01-01

    The book on diagnostic imaging of the hand covers the following issues: projection radiography, cinematography, MRT and CR arthrography, arthroscopy, arteriography, skeleton scintiscanning, sonography, computerized tomography, magnetic resonance tomography, anatomy of forearm and carpus, anatomy of metacarpus and fingers, carpal function and morphometry, postoperative X-ray diagnostic, growing hand skeleton, normative variants, malformations and deformities, trauma of the distal forearm, lesions of the ulnocarpal complex (TFCC), scaphoid fractures, scaphoid arthrosis, fractures of other carpus bones, carpal luxations and luxation fractures, carpal instabilities, fractures of the metacarpalla, finger fractures, arthrosis deformans, enthesiopathies, sport induced soft tissue lesions, osteonecrosis, impingement syndromes, osteopenic skeletal diseases, metabolis diseases, crystal-induced osteoarthropaties, rheumatoid arthritis, spondyloarthritis, rheumatic fever, collagenoses, infective arthritis, osteomyelitis, soft tissue infections, cystoids bone lesions, skeletal tumors, soft tissue tumors, carpal tunnel syndrome, nerve compression syndrome, arterial perfusion disturbances, differential diagnostic tables on hand lesions.

  12. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  13. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  14. Delving into cornerstones of hypersensitivity to antineoplastic and biological agents: value of diagnostic tools prior to desensitization.

    Science.gov (United States)

    Alvarez-Cuesta, E; Madrigal-Burgaleta, R; Angel-Pereira, D; Ureña-Tavera, A; Zamora-Verduga, M; Lopez-Gonzalez, P; Berges-Gimeno, M P

    2015-07-01

    Evidence regarding drug provocation test (DPT) with antineoplastic and biological agents is scarce. Our aim was to assess the usefulness of including DPT as a paramount gold standard diagnostic tool (prior to desensitization). Prospective, observational, longitudinal study with patients who, during a 3-year period, were referred to the Desensitization Program at Ramon y Cajal University Hospital. Patients underwent a structured diagnostic protocol by means of anamnesis, skin tests (ST), risk assessment, and DPT. Oxaliplatin-specific IgE was determined in oxaliplatin-reactive patients (who underwent DPT regardless of oxaliplatin-specific IgE results). Univariate analysis and multivariate analysis were used to identify predictors of the final diagnosis among several variables. A total of 186 patients were assessed. A total of 104 (56%) patients underwent DPT. Sixty-four percent of all DPTs were negative (i.e., hypersensitivity was excluded). Sensitivity for oxaliplatin-specific IgE (0.35 UI/l cutoff point) was 34%, specificity 90.3%, negative predictive value 45.9%, positive predictive value 85%, negative likelihood ratio 0.7, and positive likelihood ratio 3.5. These are the first reported data based on more than 100 DPTs with antineoplastic and biological agents (paclitaxel, oxaliplatin, rituximab, infliximab, irinotecan, and other drugs). Implementation of DPT in diagnostic protocols helps exclude hypersensitivity (in 36% of all referred patients), and avoids unnecessary desensitizations in nonhypersensitive patients (30-56% of patients, depending on culprit-drug). Drug provocation test is vital to validate diagnostic tools; consequently, quality data are shown on oxaliplatin-specific IgE and oxaliplatin-ST in the largest series of oxaliplatin-reactive patients reported to date (74 oxaliplatin-reactive patients). Identifying phenotypes and predictors of a diagnosis of hypersensitivity may be helpful for tailored plans. © 2015 John Wiley & Sons A/S. Published by

  15. Paired-agent fluorescent imaging to detect micrometastases in breast sentinel lymph node biopsy: experiment design and protocol development

    Science.gov (United States)

    Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.

    2018-02-01

    Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.

  16. Diagnostic value of sectional images obtained by emission tomography

    International Nuclear Information System (INIS)

    Roucayrol, J.C.

    1981-01-01

    It is now possible to obtain clear images of the various planes in and around a structure with ultra-sounds (echotomography), X-rays (computerized tomography) and recently, gamma-rays from radioactive substances (emission tomography). Axial transverse tomography, which is described here, is to conventional scintigraphy what CT scan is to radiography. It provides images of any structure capable of concentrating sufficiently a radioactive substance administered intravenously. These images are perpendicular to the longitudinal axis of the body. As shown by examples in the liver, lungs and myocardium, lesions which had passed unnoticed with other exploratory techniques can now be demonstrated, and the location, shape and extension of known lesions can be more accurately assessed. Emission tomography already has its place in modern diagnostic procedures side by side with echotomography and CT scan [fr

  17. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    Science.gov (United States)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  18. Automated synthesis of the estrogen receptors imaging agent 18F-FES

    International Nuclear Information System (INIS)

    Guo Shen; Chen Guobao; Dai Hongfeng; Lin Meifu; Chen Wenxin

    2011-01-01

    Objective: 18 F-16α-17β-fluoroestradiol ( 18 F-FES), an estrogen receptors imaging agent, is synthesized with Tracerlab FX FN system. Methods: 18 F-FES is obtained by two steps reactions, including the nucleophilic displacement reaction of no-carrier-added 18 F-fluoride with 3-O-methoxymethyl-16, 17-O-sulfuryl-16-epiesteriol, then the intermediate is evaporated and hydrolyzed with HCI and finally gives 18 F-FES. Results: The synthesis of 18 F-FES can be completed in about 80 min.The radiochemical yield and radio-chemical purity are about 10% and 95% respectively. Conclusion: The procedure of synthesis is simple and automatical. 18 F-FES has an extremely low toxicity, which suggests that 18 F-FES may be a safe, a nd effective estrogen receptors imaging agent. (authors)

  19. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    Science.gov (United States)

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations

  20. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents

    International Nuclear Information System (INIS)

    Rinck, P.A.; Muller, R.N.

    1999-01-01

    The relaxivities r 1 and r 2 of magnetic resonance contrast agents and the T 1 relaxation time values of tissues are strongly field dependent. We present quantitative data and simulations of different gadolinium-based extracellular fluid contrast agents and the modulation of their contrast enhancement by the magnetic field to be able to answer the following questions: How are the dose and field dependences of their contrast enhancement? Is there an interrelationship between dose and field dependence? Should one increase or decrease doses at specific fields? Nuclear magnetic relaxation dispersion data were acquired for the following contrast agents: gadopentetate dimeglumine, gadoterate meglumine, gadodiamide injection, and gadoteridol injection, as well as for several normal and pathological human tissue samples. The magnetic field range stretched from 0.0002 to 4.7 T, including the entire clinical imaging range. The data acquired were then fitted with the appropriate theoretical models. The combination of the diamagnetic relaxation rates (R 1 = 1/T 1 and R 2 = 1/T 2 ) of tissues with the respective paramagnetic contributions of the contrast agents allowed the prediction of image contrast at any magnetic field. The results revealed a nearly identical field and dose-dependent increase of contrast enhancement induced by these contrast agents within a certain dose range. The target tissue concentration (TTC) was an important though nonlinear factor for enhancement. The currently recommended dose of 0.1 mmol/kg body weight seems to be a compromise close to the lower limits of diagnostically sufficient contrast enhancement for clinical imaging at all field strengths. At low field contrast enhancement might be insufficient. Adjustment of dose or concentration, or a new class of contrast agents with optimized relaxivity, would be a valuable contribution to a better diagnostic yield of contrast enhancement at all fields. (orig.)

  1. Dose classification scheme for digital imaging techniques in diagnostic radiology

    International Nuclear Information System (INIS)

    Hojreh, A.

    2002-04-01

    Purpose: image quality in diagnostic radiology is determined in crucial extent by the signal-noise-ratio, which is proportional to the applied x-ray dose. Onward technological developments in the diagnostic radiology are therefore frequently connected with a dose increase, which subjectively is hardly or even not perceptible. The aim of this work was to define reproducible standards for image quality as a function of dose and expected therapeutical consequence in case of computed tomography of the paranasal sinuses and the upper and lower jaw (dental CT), whereby practical-clinical purposes are considered. Materials and methods: the image quality of computed tomography of the paranasal sinuses and dental CT was determined by standard deviation of the CT-numbers (pixel noise) in a region of interest of the phantom of American Association of Physicists in Medicine (AAPM phantom) and additionally in the patients CT images. The diagnostic quality of the examination was classified on the basis of patients CT images in three dose levels (low dose, standard dose and high dose). Results: the pixel noise of CT of the paranasal sinuses with soft tissue reconstruction amounts to 19.3 Hounsfield units (HU) for low dose, 8.8 HU for standard dose, and below 8 HU for high dose. The pixel noise of the dental CT with bone (high resolution) reconstruction amounts to 344 HU for low dose, 221 HU for standard dose, and below 200 HU for high dose. Suitable indications for low dose CT are the scanning of body regions with high contrast differences, like the bony delimitations of air-filled spaces of the facial bones, and radiological follow-up examinations with dedicated questions such as axis determination in dental implantology, as well as the images of objects with small diameter such as in case of children. The standard dose CT can be recommended for all cases, in which precise staging of the illness plays an indispensable role for the diagnosis and therapy planning. With high dose

  2. Magnetic resonance imaging for diagnostic evaluation of hernia of an invertebral disk

    International Nuclear Information System (INIS)

    Beyer, H.K.; Oppel, G.; Bluemm, R.; Uhlenbrock, D.

    1988-01-01

    The article reports experience gained within three years with diagnostic NMR imaging of the lumbar spine. On the basis of results obtained by almost 500 examinations, an optimisation concept with regard to measuring sequences and orientation of sectional cuts is presented. Imaging of the spine in three planes, with sectional layer thickness between 3 and 5 mm, using a 1.5 Tesla system, seems to yield the diagnostic optimum, and in our opinion is superior over invasive myelography and CT scanning. A prospective study we made indicates a hit rate of 97.2%, and of 100% for evaluation of the results obtained with the 1.5 Tesla system together with an evaluation of the paraxial sections. The magnetic field intensity of 1.5 Tesla especially improves the quality of images of paraxial cuts as compared with the 0.5 Tesla field system, due to the better contrast-to-noise ratio, and thinner sections. (orig.) [de

  3. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    Science.gov (United States)

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P  .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  4. Fundamental studies of oral contrast agents for MR. Comparison of manganese agent and iron agent

    International Nuclear Information System (INIS)

    Fujita, Osamu; Hiraishi, Kumiko; Suginobu, Yoshito; Takeuchi, Masayasu; Narabayashi, Isamu

    1996-01-01

    We investigated and compared signal intensity and the effect of imaging the upper abdomen with blueberry juice (B.J.), a Mn agent utilizing the properties of paramagnetic metals, and FerriSeltz (F.S.), an iron agent. Since the relaxation effect was much stronger with B.J. than with F.S., the signal intensity required of a peroral contrast agent was able to be obtained at a much lower concentration of B.J. In imaging the upper abdomen, B.J. had a positive effect on imaging in T1-weighted images, and a negative effect in T2-weighted images. F.S. had a positive imaging effect in both, and because it showed extremely high signals in T2-weighted images, motion artifact arose. (author)

  5. Lymphatic imaging in unsedated infants and children

    Science.gov (United States)

    Rasmussen, John C.; Balaguru, Duraisamy; Douglas, William I.; Breinholt, John P.; Greives, Matthew R.; Aldrich, Melissa B.; Sevick-Muraca, Eva M.

    2017-02-01

    Primary lymphedema and lymphatic malformations in the pediatric population remains poorly diagnosed and misunderstood due to a lack of information on the underlying anatomy and function of the lymphatic system. Diagnostics for the lymphatic vasculature are limited, consisting of lymphoscintigraphy or invasive lymphangiography, both of which require sedation that can restrict use in infants and children. As a result, therapeutic protocols for pediatric patients with lymphatic disorders remain sparse and with little evidence to support them. Because near-infrared fluorescence (NIRF) imaging enables image acquisition on the order of tenths of seconds with trace administration of fluorescent dye, sedation is not necessary. The lack of harmful radiation and radioactive contrast agents further facilitates imaging. Herein we summarize our experiences in imaging infants and children who are suspected to have disorders of the lymphatic vascular system using indocyanine green (ICG) and who have developed chylothorax following surgery for congenital heart defects. The results show both anatomical as well as functional lymphatic deficits in children with congenital disease. In the future, NIRF lymphatic imaging could provide new opportunities to tailor effective therapies and monitor responses. The opportunity to use expand NIRF imaging for pediatric diagnostics beyond the lymphatic vasculature is also afforded by the rapid acquisition following trace administration of NIRF contrast agent.

  6. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long Jiang; Qi, Li; Tang, Chun Xiang; Zhou, Chang Sheng; Ji, Xue Man; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Wang, Jing [Medical School of Nanjing University, Department of Cardiology, Jinling Hospital, Nanjing, Jiangsu (China); Spearman, James V.; De Cecco, Carlo Nicola; Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2014-07-15

    To evaluate the feasibility, image quality and radiation dose of prospectively ECG-triggered high-pitch coronary CT angiography (CCTA) with 30 mL contrast agent at 70 kVp. Fifty-eight patients with suspected coronary artery disease, a body mass index (BMI) of less than 25 kg/m{sup 2}, sinus rhythm and a heart rate (HR) of less than 70 beats per minute (bpm) were prospectively enrolled in this study. Thirty mL of 370 mg I/mL iodinated contrast agent was administrated at a flow rate of 5 mL/s. All patients underwent prospectively ECG-triggered high-pitch CCTA on a second-generation dual-source CT system at 70 kVp using automated tube current modulation. Fifty-six patients (96.6 %) had diagnostic CCTA images and two patients (3.4 %) had one vessel with poor image quality each rated as non-diagnostic. No significant effects of HR, HR variability and BMI on CCTA image quality were observed (all P > 0.05). Effective dose was 0.17 ± 0.02 mSv and the size-specific dose estimate was 1.03 ± 0.13 mGy. Prospectively ECG-triggered high-pitch CCTA at 70 kVp with 30 mL of contrast agent can provide diagnostic image quality at a radiation dose of less than 0.2 mSv in patients with a BMI of less than 25 kg/m{sup 2} and an HR of less than 70 bpm. (orig.)

  7. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  8. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    Science.gov (United States)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  9. Diagnostic value of curved multiplanar reformatted images in multislice CT for the detection of resectable pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Fukushima, Hiromichi; Takada, Akira; Mori, Yoshimi; Suzuki, Kojiro; Sawaki, Akiko; Iwano, Shingo; Satake, Hiroko; Ota, Toyohiro; Ishigaki, Takeo; Itoh, Shigeki; Ikeda, Mitsuru

    2006-01-01

    The purpose of this study was to assess the usefulness of curved multiplanar reformatted (MPR) images obtained by multislice CT for the depiction of the main pancreatic duct (MPD) and detection of resectable pancreatic ductal adenocarcinoma. This study included 28 patients with pancreatic carcinoma (size range 12-40 mm) and 22 without. Curved MPR images with 0.5-mm continuous slices were generated along the long axis of the pancreas from pancreatic-phase images with a 0.5- or 1-mm slice thickness. Seven blinded readers independently interpreted three sets of images (axial images, curved MPR images, and both axial and curved MPR images) in scrolling mode. The depiction of the MPD and the diagnostic performance for the detection of carcinoma were statistically compared among these images. MPR images were significantly superior to axial images in depicting the MPD, and the use of both axial and MPR images resulted in further significant improvements. For the detection of carcinoma, MPR images were equivalent to axial images, and the diagnostic performance was significantly improved by the use of both axial and MPR images. High-resolution curved MPR images can improve the depiction of the MPD and the diagnostic performance for the detection of carcinoma compared with axial images alone. (orig.)

  10. Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation

    Science.gov (United States)

    2018-01-01

    During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507

  11. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    International Nuclear Information System (INIS)

    Beitzke, Dietrich; Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-01-01

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  12. A photovoltaic module diagnostic setup for lock-in-thermography and lock-in electroluminescence imaging

    DEFF Research Database (Denmark)

    Parikh, Harsh; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    Electroluminescence (EL) imaging and infrared (IRT) thermography techniques have become indispensable tools in recent years for health diagnostic of PV modules in solar industry application. Complementary to these imaging methods, lock-in techniques can effectively remove noise by periodically...... modulating the input signal and averaging it over a desired number of periods. We propose a combined lock-in EL and lock-in IRT diagnostic setup for accurate analysis of different types of faults occurring in a solar module. The setup is built around a Goldeye CL-033 high-speed SWIR camera, which can acquire...... experimental work on a (36/72) cell solar module using combined (EL) or (IRT) lock-in-thermography. The setup allows one to investigate the different technological problems that can occur when performing PV diagnostics in drone-based inspections....

  13. Imaging nuclear medicine techniques for diagnostic evaluation of arterial hypertension

    International Nuclear Information System (INIS)

    Eisenberg, B.M.; Linss, G.

    1989-01-01

    Arterial hypertension may be caused by a malfunction of organs and in turn may lead to secondary organic lesions. Modern diagnostic nuclear medicine is applied for function studies in order to detect or exclude secondary hypertension and functional or perfusion disturbances due to hypertension, or to assess and follow up hemodynamic conditions and cardiac functions prior to and during therapy. The article presents a survey of imaging diagnostic nuclear medicine techniques for the eamination of the heart, the brain, the kidneys and endocrine glands in patients with arterial hypertension, discussing the methods with a view to obtainable information, limits of detection, and indications. (orig.) [de

  14. First set of gated x-ray imaging diagnostics for the Laser Megajoule facility

    Energy Technology Data Exchange (ETDEWEB)

    Rosch, R.; Trosseille, C.; Caillaud, T.; Allouche, V.; Bourgade, J. L.; Briat, M.; Brunel, P.; Burillo, M.; Casner, A.; Depierreux, S.; Gontier, D.; Jadaud, J. P.; Le Breton, J. P.; Llavador, P.; Loupias, B.; Miquel, J. L.; Oudot, G.; Perez, S.; Raimbourg, J.; Rousseau, A. [CEA-DAM Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex (France); and others

    2016-03-15

    The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

  15. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150080 (China); Wang Jinrui; Zhao Bo [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Liu Jibin, E-mail: zhifei.dai@hit.edu.cn, E-mail: ji-bin.liu@jefferson.edu [Ultrasound Research and Education Institute, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-04-09

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  16. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei; Wang Jinrui; Zhao Bo; Liu Jibin

    2010-01-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  17. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Science.gov (United States)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  18. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

    Directory of Open Access Journals (Sweden)

    Yunxiang Gao

    2018-02-01

    Full Text Available Magnetic resonance imaging (MRI is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.

  19. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model.

    Science.gov (United States)

    Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung

    2018-06-15

    We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Radiopharmaceuticals for hepatobiliary imaging

    International Nuclear Information System (INIS)

    Chervu, L.R.; Nunn, A.D.; Loberg, M.D.

    1982-01-01

    Tests for liver function have by and large centered around clinical laboratory diagnostic procedures for a number of years. Besides these, radiographic imaging procedures, including oral cholecystography and intravenous cholangiography, serve a very useful purpose, but several of them are invasive and involve a certain degree of risk from the administered contrast media as well as discomfort to the patient. The cholescintigraphic procedures, though noninvasive, have not played a significant role in the evaluation of hepatobiliary disorders prior to the introduction of the currently available /sup 99m/Tc-labeled IDAs. These new hepatobiliary agents offer many advantages over the previously utilized radiopharmaceuticals ( 131 I-rose bengal in particular) in terms of the high degree of specificity for localization in the gallbladder with rapid extraction rates by the polygonal cells of the liver and very low excretion via the GU tract. A detailed understanding of the structure distribution relationship of the various groups in the complex enable the design of agents with an improvement in hepatobiliary specificity and other desirable characteristics. In many clinical situations, even in patients with high bilirubin levels, the /sup 99m/Tc-labeled IDAs offer far superior clinical information over the alternative diagnostic imaging modalities. Further, the absorbed radiation dose imparted to the critical organs is far lower than with the older agents. Thus, the introduction of the cholescintigraphic procedures with the /sup 99m/Tc-labeled IDAs have ushered in a new phase in the diagnostic workup of patients with impaired hepatocellular function and other biliary disorders

  1. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    Energy Technology Data Exchange (ETDEWEB)

    Li, King C.P. [Department of Radiology, Methodist Hospital, Weill Cornell Medical College, 6565 Fannin Street, D280 Houston, TX 77030 (United States)], E-mail: kli@tmhs.org

    2009-05-15

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  2. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    Li, King C.P.

    2009-01-01

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  3. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  4. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    Science.gov (United States)

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  5. Diagnostic imaging for chronic plantar heel pain: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Barrett Joanna T

    2009-11-01

    Full Text Available Abstract Background Chronic plantar heel pain (CPHP is a generalised term used to describe a range of undifferentiated conditions affecting the plantar heel. Plantar fasciitis is reported as the most common cause and the terms are frequently used interchangeably in the literature. Diagnostic imaging has been used by many researchers and practitioners to investigate the involvement of specific anatomical structures in CPHP. These observations help to explain the underlying pathology of the disorder, and are of benefit in forming an accurate diagnosis and targeted treatment plan. The purpose of this systematic review was to investigate the diagnostic imaging features associated with CPHP, and evaluate study findings by meta-analysis where appropriate. Methods Bibliographic databases including Medline, Embase, CINAHL, SportDiscus and The Cochrane Library were searched electronically on March 25, 2009. Eligible articles were required to report imaging findings in participants with CPHP unrelated to inflammatory arthritis, and to compare these findings with a control group. Methodological quality was evaluated by use of the Quality Index as described by Downs and Black. Meta-analysis of study data was conducted where appropriate. Results Plantar fascia thickness as measured by ultrasonography was the most widely reported imaging feature. Meta-analysis revealed that the plantar fascia of CPHP participants was 2.16 mm thicker than control participants (95% CI = 1.60 to 2.71 mm, P P = 0.01. CPHP participants were also more likely to show radiographic evidence of subcalcaneal spur than control participants (OR = 8.52, 95% CI = 4.08 to 17.77, P Conclusion This systematic review has identified 23 studies investigating the diagnostic imaging appearance of the plantar fascia and inferior calcaneum in people with CPHP. Analysis of these studies found that people with CPHP are likely to have a thickened plantar fascia with associated fluid collection, and that

  6. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    Science.gov (United States)

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  7. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

    International Nuclear Information System (INIS)

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-01-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. (orig.)

  8. Preparation of photo an video images during foot diagnostics in stress condition

    International Nuclear Information System (INIS)

    Katsarov, V; Stoyanov, K.; Panchev, P.; Belcheva, J.; Atanasov, A.

    2008-01-01

    The aim of this work is to present some practical issues concerning image scanning, processing and software application in orthopedics and traumatology for foot diagnostic purposes. Basic concepts in optical scanning, multi-position photography and technology with high informational value have been discussed. The use of Slide show, Clip and Mpeg graphic formats during preparation for capture and image processing has been also demonstrated

  9. Place of modern imaging methods and their influence on the diagnostic process

    International Nuclear Information System (INIS)

    Petkov, D.; Lazarova, I.

    1991-01-01

    The main trends in development of the modern imaging diagnostic methods are presented: increasing the specificity of CT, nuclear-magnetic resonance imaging, positron-emission tomography, digital substractional angiography, echography etc. based on modern technical improvements; objective representation of the physiological and biochemical divergencies in particular diseases; interventional radiology; integral application of different methods; improving the sensitivity and specificity of the methods based on developments in pharmacology (new contrast media, parmaceuticals influencing the function of examinated organs, etc.); the possibilities for data compilation and further computerized processing of primary data. Personal experience is reported with the exploitation of these methods in Bulgaria. Attention is also called to the unfavourable impact connected with the too strong technicization of the diagnostic and therapeutic process in a health, deontologic, economical and social respect. 15 refs

  10. Indices of diagnostic algorithm in imaging diagnosis of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Pomakov, P.

    2002-01-01

    The diagnostic algorithm (DA) is a method of consistent successive selection of the diagnostic imaging section in a given nosological entity. Depending on the diagnostic task undertaken one or more methods of consecutive investigation may be chosen - differing in scope, complexity and means of resolving the problem. The indices underlying the choice are divided up into two groups: primary effectiveness, accessibility, hazards and clinical relevance, and secondary - examiner, time, outfit and auxiliary means. For the purpose English terminology is used. The indices make part of the following formula: DA = RA (EOM) / DP (EOMT). In the numerator are included factors with positive effect, and in the denominator - factors with unfavourable effect. The primary factors are basic, leading and conclusive in nature, acting in all medical institutions and practicable in all nosological entities. Of the latter the most important is the obtained final result - R. The secondary factors are submitted in parenthesis. They vary within broad limits, changing in relatively short time intervals and having local relevance - only for the concrete medical facility where the imaging method is conducted. Not infrequently, the final outcome - diagnosis - is a function of the interaction between all the rest of the basic factors and those with local effect. (author)

  11. Cellular image segmentation using n-agent cooperative game theory

    Science.gov (United States)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  12. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors

    International Nuclear Information System (INIS)

    Pinker, K.; Noebauer-Huhmann, I.M.; Szomolanyi, P.; Weber, M.; Grabner, G.; Trattnig, S.; Stavrou, I.; Knosp, E.; Hoeftberger, R.; Stadlbauer, A.

    2008-01-01

    To demonstrate intratumoral susceptibility effects in malignant brain tumors and to assess visualization of susceptibility effects before and after administration of the paramagnetic contrast agent MultiHance (gadobenate dimeglumine; Bracco Imaging), an agent known to have high relaxivity, with respect to susceptibility effects, image quality, and reduction of scan time. Included in the study were 19 patients with malignant brain tumors who underwent high-resolution, susceptibility-weighted (SW) MR imaging at 3 T before and after administration of contrast agent. In all patients, Multihance was administered intravenously as a bolus (0.1 mmol/kg body weight). MR images were individually evaluated by two radiologists with previous experience in the evaluation of pre- and postcontrast 3-T SW MR images with respect to susceptibility effects, image quality, and reduction of scan time. In the 19 patients 21 tumors were diagnosed, of which 18 demonstrated intralesional susceptibility effects both in pre- and postcontrast SW images, and 19 demonstrated contrast enhancement in both SW images and T1-weighted spin-echo MR images. Conspicuity of susceptibility effects and image quality were improved in postcontrast images compared with precontrast images and the scan time was also reduced due to decreased TE values from 9 min (precontrast) to 7 min (postcontrast). The intravenous administration of MultiHance, an agent with high relaxivity, allowed a reduction of scan time from 9 min to 7 min while preserving excellent susceptibility effects and image quality in SW images obtained at 3 T. Contrast enhancement and intralesional susceptibility effects can be assessed in one sequence. (orig.)

  13. Diagnostic Performance of Three Phase Bone Scan for Complex Regional Pain Syndrome Type 1 with Optimally Modified Image Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Woo; Paeng, Jin Chul; Nahm, Francins Sahngun; Kim, Seog Gyun; Zehra, Tanzeel; Oh, So Won; Lee, Hyo Sang; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    Although the three phase bone scan (TBPS) is one of the widely used imaging studies for diagnosing complex regional pain syndrome type 1 (CRPS 1), there is some controversy regarding the TPBS image criteria for CRPS 1. In this study, we modified the image criteria using image pattern and quantitative analysis in the patients diagnosed using the most recent consensus clinical diagnostic criteria. The study included 140 patients with suspected CRPS 1 (CRPS 1, n=79; non CRPS, n=61; mean age 39{+-}15 years) who underwent TPBS. The clinical diagnostic criteria for CRPS 1 revised by the Budapest consensus group were used for confirmative diagnosis. Patients were classified according to flow/pool and delayed uptake (DU) image patterns, and the time interval between the initiating event and TPBS (TI{sup eventscan)}. Quantitative analysis for lesion to contralateral ratio (LCR) was performed. Modified TPBS image criteria were created and evaluated for optimal diagnostic performance. Both increased and decreased periarticular DU were significant image findings for CRPS 1 (CRPS 1 positive rate=73% in the increased DU group, 75% in the decreased DU group). The TI{sup eventscand}id not differ significantly between the different image pattern groups. Quantitative analysis revealed an LCR of 1.43 was the optimal cutoff value for CRPS 1 and diagnostic performance was significantly improved in the increased DU group (area under the curve=0.732). Given the modified image criteria, the sensitivity and specificity of TPBS for diagnosing CRPS 1 were 80% and 72%, respectively. Optimally modified TPBS image criteria for CRPS 1 were suggested using image pattern and quantitative analysis. With the criteria, TPBS is an effective imaging study for CRPS 1 even with the most recent consensus clinical diagnostic criteria.

  14. Diagnostic Performance of Three Phase Bone Scan for Complex Regional Pain Syndrome Type 1 with Optimally Modified Image Criteria

    International Nuclear Information System (INIS)

    Kwon, Hyun Woo; Paeng, Jin Chul; Nahm, Francins Sahngun; Kim, Seog Gyun; Zehra, Tanzeel; Oh, So Won; Lee, Hyo Sang; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2011-01-01

    Although the three phase bone scan (TBPS) is one of the widely used imaging studies for diagnosing complex regional pain syndrome type 1 (CRPS 1), there is some controversy regarding the TPBS image criteria for CRPS 1. In this study, we modified the image criteria using image pattern and quantitative analysis in the patients diagnosed using the most recent consensus clinical diagnostic criteria. The study included 140 patients with suspected CRPS 1 (CRPS 1, n=79; non CRPS, n=61; mean age 39±15 years) who underwent TPBS. The clinical diagnostic criteria for CRPS 1 revised by the Budapest consensus group were used for confirmative diagnosis. Patients were classified according to flow/pool and delayed uptake (DU) image patterns, and the time interval between the initiating event and TPBS (TI eventscan) . Quantitative analysis for lesion to contralateral ratio (LCR) was performed. Modified TPBS image criteria were created and evaluated for optimal diagnostic performance. Both increased and decreased periarticular DU were significant image findings for CRPS 1 (CRPS 1 positive rate=73% in the increased DU group, 75% in the decreased DU group). The TI eventscand id not differ significantly between the different image pattern groups. Quantitative analysis revealed an LCR of 1.43 was the optimal cutoff value for CRPS 1 and diagnostic performance was significantly improved in the increased DU group (area under the curve=0.732). Given the modified image criteria, the sensitivity and specificity of TPBS for diagnosing CRPS 1 were 80% and 72%, respectively. Optimally modified TPBS image criteria for CRPS 1 were suggested using image pattern and quantitative analysis. With the criteria, TPBS is an effective imaging study for CRPS 1 even with the most recent consensus clinical diagnostic criteria.

  15. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    Science.gov (United States)

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Experimental study of 99Tcm-tri-peptide as a novel tumor imaging agent

    International Nuclear Information System (INIS)

    Xie Wenhui; Cai Xiaojia; Liu Ciyi; Zeng Jun; Zhang Lihua; Lei Bei; Huang Gang

    2011-01-01

    Objective: To evaluate 99 Tc m -Arg-Glu-Ser ( 99 Tc m -RES) as a potential tumor imaging agent. Methods: RES was synthesized using solid phase peptide synthesis. The optimal labeling conditions of RES were determined under different reagents and reacting temperatures using SnC1 2 as reducing agent.The biodistribution of 99 Tc m -RES was studied in nude mice bearing human lung cancer A549. Results: The radiochemical purity of 99 Tc m -RES was up to 85% and the radiochemical purity was 75% ever after 6 h at room temperature. The tumor uptake of 99 Tc m -RES was obvious and the radioactivity ratios of tumor/blood, tumor/heart, tumor/liver, tumor/lung, tumor/spleen and tumor/muscle were 5.31, 1.88, 1.57, 3.58, 4.16 and 5.92, respectively at 6 h after 99 Tc m -RES injection. Gamma camera imaging showed that tumor uptake of 99 Tc m -RES was negative in rabbits with inflammatory mass but positive in those bearing tumor. The radioactivity ratio of tumor/inflammation was 3.12 at 6 h after injection. Conclusion: 99 Tc m -RES might possibly become a potential tumor imaging agent. (authors)

  17. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  18. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    Science.gov (United States)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  19. Imaging of chest trauma: radiological patterns of injury and diagnostic algorithms

    International Nuclear Information System (INIS)

    Lomoschitz, Fritz M.; Eisenhuber, Edith; Linnau, Ken F.; Peloschek, Philipp; Schoder, Maria; Bankier, Alexander A.

    2003-01-01

    In patients after chest trauma, imaging plays a key role for both, the primary diagnostic work-up, and the secondary assessment of potential treatment. Despite its well-known limitations, the anteroposterior chest radiograph remains the starting point of the imaging work-up. Adjunctive imaging with computed tomography, that recently is increasingly often performed on multidetector computed tomography units, adds essential information not readily available on the conventional radiograph. This allows better definition of trauma-associated thoracic injuries not only in acute traumatic aortic injury, but also in pulmonary, tracheobronchial, cardiac, diaphragmal, and thoracic skeletal injuries. This article reviews common radiographic findings in patients after chest trauma, shows typical imaging features resulting from thoracic injury, presents imaging algorithms, and recalls to the reader less common but clinically relevant entities encountered in patients after thoracic trauma

  20. Imaging of metastases to the liver

    International Nuclear Information System (INIS)

    Mahfouz, A.E.; Hamm, B.; Mathieu, D.

    1996-01-01

    Metastatic disease to the liver is an important disease from the diagnostic, prognostic and therapeutic points of view. Different imaging modalities, such as US, CT, scintigraphy, and MRI, have been used for detection, characterization, therapy planning, and follow-up of this disease with variable degrees of success and failure. This review handles the problems which face the different imaging modalities in diagnosis of liver metastases in view of the pathological background of the disease. It also discusses the indications, strong points, and shortcomings of each of the imaging modalities in diagnosis of metastases, and surveys the recent efforts done to improve their performance through the optimization of quality control and in the innovations in the field of contrast agents. Finally, a protocol is suggested for the clinical management of patients with liver metastases to optimize cost-effectiveness of the imaging modalities in this era of multimodality approach in diagnostic imaging. (orig.)

  1. Visible Imaging Diagnostic on Tore-Supra

    Energy Technology Data Exchange (ETDEWEB)

    Dachicourt, R.; Monier Garbet, P.; Beaute, A.; Habib-Naiim, M. [Association Euratom-CEA, CEA/DSM/IRFM, CEA Cadarache (France); Marandet, Y. [PIIM, CNRS-Universite de Provence, Marseille (France)

    2011-07-01

    Full text of publication follows: Research for thermonuclear fusion aims at energy production using fusion reactions between deuterium and tritium nuclei. To this end, a deuterium/tritium mixture has to be heated to a very high temperature (about 100 millions degrees). Chemical and physical sputtering erodes the plasma facing components (PFC), leading to an impurity influx to the plasma. Estimating this erosion source is important both for the PFC lifetime and the quality of the confinement. In fact, impurities reaching the plasma core radiate energy and dilute the fuel. In this contribution, we describe an erosion diagnostic operated on the Tore Supra tokamak, consisting in the combination of visible spectroscopy and filtered imaging over a full TPL (Toroidal Pumped Limiter) sector. Quantitative measurements of spectral lines brightness on four spectrometer chords monitoring the TPL top are used to process the corresponding filtered images, namely to remove background emission or unwanted lines. The particle influx from the TPL's vicinity is obtained from photon fluxes measurements [1], which require absolute calibration in intensity of the system. Filtered images provide the spatial pattern of erosion, from which the total eroded carbon flux is reconstructed. The variation of the particle influx with the input power is studied by analyzing a dedicated experimental campaign. References: [1] Behringer K. et al. Plasma Physics and Controlled Fusion, Vol. 31, No. 14, pp. 2059 to 2099, 1989. (authors)

  2. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)

    2017-01-15

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  3. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    International Nuclear Information System (INIS)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  4. Utilization Trends in Diagnostic Imaging for a Commercially Insured Population: A Study of Massachusetts Residents 2009 to 2013.

    Science.gov (United States)

    Flaherty, Stephen; Mortele, Koenraad J; Young, Gary J

    2018-06-01

    To report utilization trends in diagnostic imaging among commercially insured Massachusetts residents from 2009 to 2013. Current Procedural Terminology codes were used to identify diagnostic imaging claims in the Massachusetts All-Payer Claims Database for the years 2009 to 2013. We reported utilization and spending annually by imaging modality using total claims, claims per 1,000 individuals, total expenditures, and average per claim payments. The number of diagnostic imaging claims per insured MA resident increased only 0.6% from 2009 to 2013, whereas nonradiology claims increased by 6% annually. Overall diagnostic imaging expenditures, adjusted for inflation, were 27% lower in 2009 than 2013, compared with an 18% increase in nonimaging expenditures. Average payments per claim were lower in 2013 than 2009 for all modalities except nuclear medicine. Imaging procedure claims per 1,000 MA residents increased from 2009 to 2013 by 13% in MRI, from 147 to 166; by 17% in ultrasound, from 453 to 530; and by 12% in radiography (x-ray), from 985 to 1,100. However, CT claims per 1,000 fell by 37%, from 341 to 213, and nuclear medicine declined 57%, from 89 claims per 1,000 to 38. Diagnostic imaging utilization exhibited negligible growth over the study period. Diagnostic imaging expenditures declined, largely the result of falling payments per claim in most imaging modalities, in contrast with increased utilization and spending on nonimaging services. Utilization of MRI, ultrasound, and x-ray increased from 2009 to 2013, whereas CT and nuclear medicine use decreased sharply, although CT was heavily impacted by billing code changes. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Imaging and diagnostic criteria for multiple sclerosis: are we there yet?

    International Nuclear Information System (INIS)

    Josey, Lawrence; Curley, Michael; Mousavi, Foroogh Jafari; Taylor, Bruce V.; Lucas, Robyn; Coulthard, Alan

    2012-01-01

    Excluding post traumatic injury, Multiple Sclerosis (MS) is the most common disabling neurological disorder of young adults. Although the effect on mortality is limited, the association of a young demographic and significant morbidity combine to make MS a devastating disease. Since MS was given its first detailed description in 1868, diagnostic criteria continue to evolve. Recently, there has been an international commitment to combine both clinical and paraclinical tests to arrive at an earlier diagnosis. Widespread acceptance of the use of MRI in diagnosis, monitoring and research has made the role of the radiologist more critical than ever in this disease. The primary diagnostic criteria for MS are the International Panel criteria, commonly referred to as the McDonald criteria and it is essential that the radiology community is aware of the work preceding these criteria, so that they are understood in the correct context and the importance acknowledged. Literature review utilising key word search to obtain the historical and current context of magnetic resonance imaging in the diagnosis of MS. A succinct description of the evolution of criteria for the diagnosis of MS. Radiologists must recognise that there are specific diagnostic criteria for MS that continue to evolve as a result of new research, improved technology and clinical experience and it is crucial that these criteria be applied in daily practice. It should be evident that diagnostic imaging criteria for MS will be most effective when combined with standardised MRI protocols such as those published by the international Consortium of Multiple Sclerosis Centres.

  6. Study of paramagnetic contrast agents for NMR imaging: theoretical and experimental aspects (the case of Mn2+ ion)

    International Nuclear Information System (INIS)

    Chavoix, M.E.

    1984-06-01

    The use of contrast enhancing agents and the evaluation of magnetic properties of tissues, extend the diagnostic usefulness of Nuclear Magnetic Resonance (NMR) imaging. From this point of view, proton T 1 (spin-lattice) relaxation times of rat tissue, following parenteral administration of Mn(II) to increase the relaxation rate (R 1 =1/T 1 ), have been studied at 20 MHz. Differenciation of free (MF) and bound (Mb) manganese in these tissues was thus determined by measuring, total exogenous Mn ++ ions by Atomic Absorption spectrometry and free (non protein complexed) ions by Electron Spin Resonance Analysis. From these results, the diffusion of Mn ++ into various organs, was evaluated 15 min. after injection. A significant difference in the fixation of manganese occured between the liver and the pancreas with uptakes of 50% and 1% of the administration dose respectively [fr

  7. Development of I-123 labeled angiostatin as a novel cancer imaging agent

    International Nuclear Information System (INIS)

    Lee, Kyung Han; Lee, Sang Yoon; Choe, Yearn Seong; Paik, Jin Young; Kim, Sun A; Han, Yu Mi; Kim, Byung Tae

    2000-01-01

    Since angiostatin is a promising anticancer agent that target tumor endothelial cells, it may have advantages over many current tumor imaging agents by overcoming problems such as poor delivery or multi-drug resistance. We therefore synthesized radiolabeled agniostatin and tested it in vivo. 123 -angiostatin was synthesized using the Bolton Hunter method. 123 I labeled plasminogen lysin-binding-site (LBS) was also synthesized. Blood clearance of he radiotracer was measured in SD rats, while tissue distribution was assessed in ICR mice at 1,4, and 18 hr. Pinhole scintigraphy was performed in SD rats and in nude mice bearing RR 1022 tumors at various time points. Radiochemical yield of 123 I-angiostatin approximated 20%. In vivo distribution demonstrated stability of the label for at least 20 hr. 123 I-angiostatin was cleared from the circulation in a biexponential manner with rapid early clearance followed by a slower rate of elimination Tissue distribution in mice showed the highest uptake in the kidneys which was the major route of excretion. This was followed by the lung, liver, and myocardium whose uptake of 1.5∼2% ID/gm at 1 hrs gradually decreased over time (all p 123 I-angiostatin and 123 I-LBS images in SD rates showed a similar distribution. Blood pool activity gradually cleared while tumor uptake increased over time, resulting in a high tumor to non tumor ratio at 20 hr. 123 I-angiostatin has promising potential as a new tumor imaging agent. Further study is warranted to assess its mechanism of uptake and precise role in cancer imaging

  8. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  9. Research priorities for the influence of gender on diagnostic imaging choices in the emergency department setting.

    Science.gov (United States)

    Ashurst, John V; Cherney, Alan R; Evans, Elizabeth M; Kennedy Hall, Michael; Hess, Erik P; Kline, Jeffrey A; Mitchell, Alice M; Mills, Angela M; Weigner, Michael B; Moore, Christopher L

    2014-12-01

    Diagnostic imaging is a cornerstone of patient evaluation in the acute care setting, but little effort has been devoted to understanding the appropriate influence of sex and gender on imaging choices. This article provides background on this issue and a description of the working group and consensus findings reached during the diagnostic imaging breakout session at the 2014 Academic Emergency Medicine consensus conference "Gender-specific Research in Emergency Care: Investigate, Understand, and Translate How Gender Affects Patient Outcomes." Our goal was to determine research priorities for how sex and gender may (or should) affect imaging choices in the acute care setting. Prior to the conference, the working group identified five areas for discussion regarding the research agenda in sex- and gender-based imaging using literature review and expert consensus. The nominal group technique was used to identify areas for discussion for common presenting complaints to the emergency department where ionizing radiation is often used for diagnosis: suspected pulmonary embolism, suspected kidney stone, lower abdominal pain with a concern for appendicitis, and chest pain concerning for coronary artery disease. The role of sex- and gender-based shared decision-making in diagnostic imaging decisions is also raised. © 2014 by the Society for Academic Emergency Medicine.

  10. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    Grimm, J.; Wunder, A.

    2005-01-01

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  11. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  12. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Takenaka, Daisuke; Imai, Masatake; Ohbayashi, Chiho; Sugimura, Kazuro

    2004-01-01

    Objective: To evaluate the utility of multiplanar reconstruction (MPR) image for CT-guided biopsy and determine factors of influencing diagnostic accuracy and the pneumothorax rate. Materials and methods: 390 patients with 396 pulmonary nodules underwent transthoracic CT-guided aspiration biopsy (TNAB) and transthoracic CT-guided cutting needle core biopsy (TCNB) as follows: 250 solitary pulmonary nodules (SPNs) underwent conventional CT-guided biopsy (conventional method), 81 underwent CT-fluoroscopic biopsy (CT-fluoroscopic method) and 65 underwent conventional CT-guided biopsy in combination with MPR image (MPR method). Success rate, overall diagnostic accuracy, pneumothorax rate and total procedure time were compared in each method. Factors affecting diagnostic accuracy and pneumothorax rate of CT-guided biopsy were statistically evaluated. Results: Success rates (TNAB: 100.0%, TCNB: 100.0%) and overall diagnostic accuracies (TNAB: 96.9%, TCNB: 97.0%) of MPR were significantly higher than those using the conventional method (TNAB: 87.6 and 82.4%, TCNB: 86.3 and 81.3%) (P<0.05). Diagnostic accuracy were influenced by biopsy method, lesion size, and needle path length (P<0.05). Pneumothorax rate was influenced by pathological diagnostic method, lesion size, number of punctures and FEV1.0% (P<0.05). Conclusion: The use of MPR for CT-guided lung biopsy is useful for improving diagnostic accuracy with no significant increase in pneumothorax rate or total procedure time

  13. Breast Imaging: How We Manage Diagnostic Technology at a Multidisciplinary Breast Center

    Directory of Open Access Journals (Sweden)

    Alejandro Tejerina Bernal

    2012-01-01

    Full Text Available This paper discusses the most important aspects and problems related to the management of breast cancer imaging, at a center specialized in breast pathology. We review the established and emerging diagnostic techniques, their indications, and peculiarities: digital mammography, CAD systems, and the recent digital breast tomosynthesis, ultrasound and complementary elastography, molecular imaging techniques, magnetic resonance imaging, advanced sequences (diffusion, and positron emission mammography (PEM. The adequate integration and rational management of these techniques is essential, but this is not always easy, in order to achieve a successful diagnosis.

  14. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balasubramaniam; Collins, Daphne; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Potkin, Steven G.; Mukherjee, Jogeshwar

    2006-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3 H-cytisine exhibited a K i =0.50 nM for the α4β2 sites. The radiosynthesis of 2- 18 F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ( 18 F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18 F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18 F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18 F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18 F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  15. Brain perfusion imaging with iodinated amines

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Traditional nuclear medicine brain study using 99m Tc pertechnetate, glucoheptonate or diethlenetriaminepentacetic acid (DTPA) and planar imaging has experienced a significant decline in the past 10 years. This is mainly due to the introduction of X-ray CT and more recently the nuclear magnetic resonance (NMR) imaging, by which detailed morphology of the brain, including the detection of breakdown of the blood-brain barrier, can be obtained. The nuclear medicine brain imaging is only prescribed as a complementary test when X-ray CT is negative or equivocal and clinical suspicion remains. The attention of nuclear medicine brain imaging has been shifted from the detection of the breakdown of the blood-brain barrier to the study of brain function-perfusion, metabolism, and receptor binding, etc. The functional brain imaging provides diagnostic information usually unattainable by other radiological techniques. In this article, the iodinated amines as brain perfusion imaging agents are reviewed. Potential clinical application of these agents is discussed

  16. Magnetic resonance imaging of the cirrhotic liver: Anupdate

    Institute of Scientific and Technical Information of China (English)

    Agnes Watanabe; Miguel Ramalho; Mamdoh AlObaidy; Hye Jin Kim; Fernanda G Velloni; Richard C Semelka

    2015-01-01

    Noninvasive imaging has become the standard forhepatocellular carcinoma (HCC) diagnosis in cirrhoticlivers. In this review paper, we go over the basics ofMR imaging in cirrhotic livers and describe the imagingappearance of a spectrum of hepatic nodules markingthe progression from regenerative nodules to low- andhigh-grade dysplastic nodules, and ultimately to HCCs.We detail and illustrate the typical imaging appearancesof different types of HCC including focal, multifocal,massive, diffuse/infiltrative, and intra-hepaticmetastases; with emphasis on the diagnostic value ofMR in imaging these lesions. We also shed some lighton liver imaging reporting and data system, and therole of different magnetic resonance imaging (MRI)contrast agents and future MRI techniques includingthe use of advanced MR pulse sequences and utilizationof hepatocyte-specific MRI contrast agents, and howthey might contribute to improving the diagnosticperformance of MRI in early stage HCC diagnosis.

  17. Image processing methods and architectures in diagnostic pathology.

    Directory of Open Access Journals (Sweden)

    Oscar DĂŠniz

    2010-05-01

    Full Text Available Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory.

  18. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  19. Diagnostic Value of Nineteen Different Imaging Methods for Patients with Breast Cancer: a Network Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Zhang

    2018-04-01

    Full Text Available Background/Aims: We performed a network meta-analysis (NMA to investigate and compare the diagnostic value of 19 different imaging methods used for breast cancer (BC. Methods: Cochrane Library, PubMed and EMBASE were searched to collect the relevant literature from the inception of the study until November 2016. A combination of direct and indirect comparisons was performed using an NMA to evaluate the combined odd ratios (OR and draw the surface under the cumulative ranking curves (SUCRA of the diagnostic value of different imaging methods for BC. Results: A total of 39 eligible diagnostic tests regarding 19 imaging methods (mammography [MG], breast-specific gamma imaging [BSGI], color Doppler sonography [CD], contrast-enhanced magnetic resonance imaging [CE-MRI], digital breast tomosynthesis [DBT], fluorodeoxyglucose positron-emission tomography/computed tomography [FDG PET/CT], fluorodeoxyglucose positron-emission tomography [FDG-PET], full field digital mammography [FFDM], handheld breast ultrasound [HHUS], magnetic resonance imaging [MRI], automated breast volume scanner [ABUS], magnetic resonance mammography [MRM], scintimammography [SMM], single photon emission computed tomography scintimammography [SPECT SMM], ultrasound elastography [UE], ultrasonography [US], mammography + ultrasonography [MG + US], mammography + scintimammography [MG + SMM], and ultrasound elastography + ultrasonography [UE + US] were included in the study. According to this network meta-analysis, in comparison to the MG method, the CE-MRI, MRI, MRM, MG + SMM and UE + US methods exhibited relatively higher sensitivity, and the specificity of the FDG PET/CT method was higher, while the BSGI and MRI methods exhibited higher accuracy. Conclusion: The results from this NMA indicate that the diagnostic value of the BSGI, MG + SMM, MRI and CE-MRI methods for BC were relatively higher in terms of sensitivity, specificity and accuracy.

  20. Silicon nanoparticles as contrast agents in the methods of optical biomedical diagnostics

    Science.gov (United States)

    Zabotnov, S. V.; Kashaev, F. V.; Shuleiko, D. V.; Gongalsky, M. B.; Golovan, L. A.; Kashkarov, P. K.; Loginova, D. A.; Agrba, P. D.; Sergeeva, E. A.; Kirillin, M. Yu

    2017-07-01

    The efficiency of light scattering by nanoparticles formed using the method of picosecond laser ablation of silicon in water and by nanoparticles of mechanically grinded mesoporous silicon is compared. The ensembles of particles of both types possess the scattering coefficients sufficient to use them as contrast agents in optical coherence tomography (OCT), particularly in the range of wavelengths 700-1000 nm, where the absorption of both silicon and most biological and mimicking tissues is small. According to the Mie theory the main contribution to the scattering in this case is made by the particles having a relatively large size (150-300 nm). In the experiments on visualising the agar phantom surface by means of OCT, the contrast of the medium boundary, provided by nanoparticles amounted to 14 dB and 30 dB for the ablated particles and the porous silicon powder, respectively. The numerical simulation of OCT images of skin in the presence of nanoparticles, confirmed the efficiency of using them as a contrast agent.

  1. Imaging mammary diagnostics. Diagnostic techniques, archetypical findings, differential diagnostcs and interventions. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heywang-Koebrunner, S.; Schreer, I.

    2008-01-01

    The book includes the following chapters: I. Methodology: anamnesis and interview; clinical evidence, mammography, sonography, magnetic resonance tomography, new imaging techniques (scintigraphy, PET), transcutaneous biopsy, pre-operative marking; II. phenotypes: normal mammary glands, mastopathics, cysts, benign tumors, inflammatory diseases, in-situ carcinomas, invasive carcinomas, lymphomas, other semi-malign and malign tumors, post-traumatic, post-surgical and post-therapeutic changes, skin changes, male mamma, screening, continuative diagnostics of screening evidence and problem solving for symptomatic patients

  2. Diagnostic utility of intravenous contrast for MR imaging in pediatric appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Gray R.; Renjen, Pooja; Kovanlikaya, Arzu [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Radiology, New York, NY (United States); Askin, Gulce; Giambrone, Ashley E. [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Biostatistics and Epidemiology, New York, NY (United States); Beneck, Debra [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Pathology, New York, NY (United States)

    2017-04-15

    Magnetic resonance imaging (MRI) is increasingly employed as a diagnostic modality for suspected appendicitis in children. However, there is uncertainty as to which MRI sequences are sufficient for safe, timely and accurate diagnosis. Several recent studies have described different MRI protocols, including exams both with and without the use of intravenous contrast. We hypothesized that intravenous contrast may be useful in some patients but could be safely omitted in others. All MRI examinations (n=112) performed at our institution for evaluating appendicitis in children were retrospectively reevaluated. Exams were reread by pediatric radiologists under three conditions: With postcontrast images, Without postcontrast images, and Without/With - selective use of postcontrast sequences only when needed for diagnostic certainty. Samples were scored as positive, negative or equivocal for appendicitis. Findings were compared to pathological or clinical follow-up in the medical record. Without the use of intravenous contrast yielded more equivocal results (12.4%) compared to With contrast (3.4%). By selectively using postcontrast sequences, the Without/With group yielded fewer equivocal results (1.1%) compared to Without while also reducing contrast use 79.8% compared to the With contrast group. No significant differences in conditional sensitivity or conditional specificity were detected among the three groups. MRI diagnosis of acute appendicitis can be performed without contrast for most patients; injection of contrast can be reserved for only those patients with equivocal non-contrast imaging. (orig.)

  3. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

  4. MRI contrast agents from molecules to particles

    CERN Document Server

    Laurent, Sophie; Stanicki, Dimitri; Boutry, Sébastien; Lipani, Estelle; Belaid, Sarah; Muller, Robert N; Vander Elst, Luce

    2017-01-01

    This book describes the multiple aspects of (i) preparation of the magnetic core, (ii) the stabilization with different coatings, (iii) the physico-chemical characterization and (iv) the vectorization to obtain specific nanosystems. Several bio-applications are also presented in this book. In the early days of Magnetic Resonance Imaging (MRI), paramagnetic ions were proposed as contrast agents to enhance the diagnostic quality of MR images. Since then, academic and industrial efforts have been devoted to the development of new and more efficient molecular, supramolecular and nanoparticular systems. Old concepts and theories, like paramagnetic relaxation, were revisited and exploited, leading to new scientific tracks. With their high relaxivity payload, the superparamagnetic nanoparticles are very appealing in the context of molecular imaging but challenges are still numerous: absence of toxicity, specificity, ability to cross the biological barriers, etc. .

  5. Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates

    International Nuclear Information System (INIS)

    Nossin-Manor, Revital; Chung, Andrew D.; Morris, Drew; Thomas, Bejoy; Shroff, Manohar M.; Soares-Fernandes, Joao P.; Cheng, Hai-Ling M.; Whyte, Hilary E.A.; Taylor, Margot J.; Sled, John G.

    2011-01-01

    T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable. To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value. Thirty preterm neonates born between 24 and 32 weeks' gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences. No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images. High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information. (orig.)

  6. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    International Nuclear Information System (INIS)

    Braunschweig, R.; Kaden, Ingmar; Schwarzer, J.; Sprengel, C.; Klose, K.

    2009-01-01

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  7. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, R.; Kaden, Ingmar [Klinik fuer Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost Halle (Germany); Schwarzer, J.; Sprengel, C. [Dept. of Management Information System and Operations Research, Martin-Luther-Univ. Halle Wittenberg (Germany); Klose, K. [Medizinisches Zentrum fuer Radiologie, Philips-Univ. Marburg (Germany)

    2009-07-15

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  8. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  9. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  10. Myocardial Contrast Agents – Safety Considerations and Clinical Efficacy in Stress Echocardiography

    Directory of Open Access Journals (Sweden)

    Maier Anca

    2016-11-01

    Full Text Available Transthoracic echocardiographic examination is known to be a safe, non-invasive and reproducible method, used in every day clinical practice to obtain important information about cardiac structure and function. Unfortunately, a significant proportion of studies have highlighted the considerable technically difficultly in producing diagnostic images due to a poor acoustic window and more than 33% of patients undergoing stress echocardiography have suboptimal echocardiographic images. All these limitations have led to the use of contrast agents to improve the quality of standard ultrasound examination to provide a better delineation of left ventricle endocardial borders or to obtain information that cannot be achieved by using standard echocardiography, such as assessing myocardial microcirculation and therefore perfusion. This paper sought to review the clinical efficacy and safety of ultrasound contrast agents focusing on stress echocardiography.

  11. Patterns of diagnostic imaging and associated radiation exposure among long-term survivors of young adult cancer: a population-based cohort study

    International Nuclear Information System (INIS)

    Daly, Corinne; Urbach, David R.; Stukel, Thérèse A.; Nathan, Paul C.; Deitel, Wayne; Paszat, Lawrence F.; Wilton, Andrew S.; Baxter, Nancy N.

    2015-01-01

    Survivors of young adult malignancies are at risk of accumulated exposures to radiation from repetitive diagnostic imaging. We designed a population-based cohort study to describe patterns of diagnostic imaging and cumulative diagnostic radiation exposure among survivors of young adult cancer during a survivorship time period where surveillance imaging is not typically warranted. Young adults aged 20–44 diagnosed with invasive malignancy in Ontario from 1992–1999 who lived at least 5 years from diagnosis were identified using the Ontario Cancer Registry and matched 5 to 1 to randomly selected cancer-free persons. We determined receipt of 5 modalities of diagnostic imaging and associated radiation dose received by survivors and controls from years 5–15 after diagnosis or matched referent date through administrative data. Matched pairs were censored six months prior to evidence of recurrence. 20,911 survivors and 104,524 controls had a median of 13.5 years observation. Survivors received all modalities of diagnostic imaging at significantly higher rates than controls. Survivors received CT at a 3.49-fold higher rate (95 % Confidence Interval [CI]:3.37, 3.62) than controls in years 5 to 15 after diagnosis. Survivors received a mean radiation dose of 26 miliSieverts solely from diagnostic imaging in the same time period, a 4.57-fold higher dose than matched controls (95 % CI: 4.39, 4.81). Long-term survivors of young adult cancer have a markedly higher rate of diagnostic imaging over time than matched controls, imaging associated with substantial radiation exposure, during a time period when surveillance is not routinely recommended. The online version of this article (doi:10.1186/s12885-015-1578-1) contains supplementary material, which is available to authorized users

  12. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    Science.gov (United States)

    2017-10-01

    are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...phase 0) application to the FDA by the end of the funding period. The small molecule imaging agents under study home to prostate specific membrane...funding period. The small molecule imaging agents under study home to prostate specific membrane antigen (PSMA) that is prevalent on a majority of

  13. Diagnostic sensitivity of radiography, ultrasonography, and magnetic resonance imaging for detecting shoulder osteochondrosis/osteochondritis dissecans in dogs.

    Science.gov (United States)

    Wall, Corey R; Cook, Cristi R; Cook, James L

    2015-01-01

    Radiography, magnetic resonance imaging (MRI), and ultrasonography are commonly used for diagnosis of shoulder osteochondrosis and osteochondritis dissecans (OC/OCD) in dogs, however there is a lack of published information on the relative diagnostic sensitivities of these modalities. The purpose of this prospective study was to compare diagnostic sensitivities of these modalities for detecting shoulder OC/OCD in a group of dogs, using arthroscopy as the reference standard. Inclusion criteria were history and clinical findings consistent with osteochondrosis and/or osteochondritis dissecans involving at least one shoulder. With informed client consent, both shoulders for all included dogs were examined using standardized radiography, ultrasonography, MRI, and arthroscopy protocols. One of three veterinary surgeons recorded clinical and arthroscopic findings without knowledge of diagnostic imaging findings. One of two veterinary radiologists recorded diagnostic imaging findings without knowledge of clinical and arthroscopic findings. Eighteen client-owned dogs (n = 36 shoulders) met inclusion criteria. Diagnostic sensitivity, specificity, and accuracy (correct classification rate) values for detecting presence or absence of shoulder osteochondrosis/osteochondritis dissecans were as follows: radiography (88.5%, 90%, 88.9%), ultrasonography (92%, 60%, 82.6%), and MRI (96%, 88.9%, 94.4%). Odds of a correct diagnosis for MRI were 3.2 times more than ultrasonography and two times more than radiography. For MRI detection of lesions, the sagittal T2 or PD-FAT SAT sequences were considered to be most helpful. For radiographic detection of lesions, the additional supinated-mediolateral and pronated-mediolateral projections were considered to be most helpful. Findings from the current study support more evidence-based diagnostic imaging recommendations for dogs with clinically suspected shoulder osteochondrosis or osteochondritis dissecans. © 2014 American College of

  14. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  15. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru [Chiba Univ. (Japan). School of Medicine

    1994-09-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author).

  16. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru

    1994-01-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author)

  17. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy.

    Science.gov (United States)

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.

  18. Magnetic resonance imaging of the abdomen

    International Nuclear Information System (INIS)

    Kulkarni, M.V.

    1986-01-01

    MRI of the abdomen currently competes with CT and ultrasonography as an imaging technique for abdominal pathology. Although ultrasonography has certain advantages, such as real-time scanning, the major comparison is to be made between MR and CT. CT has slightly superior spatial resolution and minimal motion artifacts, and enables the use of contrast agents in bowel. MR, on the other hand, has improved capabilities in contrasting soft tissues and providing multiplanar imaging. The greatest advantage of CT is the experience that the medical community has gained with it over the last decade. Further development in technology and improvement in the clinical experience with MR will be important in determining its future role in abdominal imaging. Large series of clinical trials are required for further experience. Chemical spectroscopy with proton and possibly other nuclei may improve diagnostic specificity. Paramagnetic contrast agents for bowel specification would certainly improve imaging quality. Thus, MR will play a significant role in abdominal imaging in the future

  19. Synthesis Of Gd-dtpa-folat For Magnetic Resonance Imaging Contrast Agent And Characterization By Using 153gd-dtpa-folate Radioactive

    OpenAIRE

    G., Adang H; S., Yono; Maskur

    2012-01-01

    Contrast agent was used to clarify the image of the organ that is difficult to distinguish by MRI (Magnetic Resonance Imaging) techniques, particularly in soft tissues of the central nervous system, liver, digestive system, lymphatic system, breast, cardiovascular and pulmonary systems. One of the commonly used contrast agents in hospitals is Gadolinium-DieThylenetriamine Pentaacetic Acid (Gd-DTPA). Gd-DTPA is non specific contrast agent, therefore it has led to develop a contrast agent that ...

  20. Diagnostic Accuracy of Imaging Modalities and Injection Techniques for the Diagnosis of Femoroacetabular Impingement/Labral Tear

    DEFF Research Database (Denmark)

    Reiman, Michael P.; Thorborg, Kristian; Goode, Adam P.

    2017-01-01

    Background: Diagnosing femoroacetabular impingement/acetabular labral tear (FAI/ALT) and subsequently making a decision regarding surgery are based primarily on diagnostic imaging and intra-articular hip joint injection techniques of unknown accuracy. Purpose: Summarize and evaluate the diagnostic...... probability of disease was demonstrated. Positive imaging findings increased the probability that a labral tear existed by a minimal to small degree with the use of magnetic resonance imaging/magnetic resonance angiogram (MRI/MRA) and ultrasound (US) and by a moderate degree for CTA. Negative imaging findings...... decreased the probability that a labral tear existed by a minimal degree with the use of MRI and US, a small to moderate degree with MRA, and a moderate degree with CTA. Clinical Relevance: Although findings of the included studies suggested potentially favorable use of these modalities for the diagnosis...