WorldWideScience

Sample records for diacylglycerol lactone derivatives

  1. A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients

    DEFF Research Database (Denmark)

    Belsito, D.; Bickers, D.; Bruze, M.

    2011-01-01

    The Macrocyclic Lactone and Lactide derivative (ML) group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.47% to 11.15%; systemic exposures vary from 0.0008 to 0.25 mg/kg/day. ......The Macrocyclic Lactone and Lactide derivative (ML) group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.47% to 11.15%; systemic exposures vary from 0.0008 to 0.25 mg...

  2. Corymbiferan lactones from Penicillium hordei

    DEFF Research Database (Denmark)

    Overy, David Patrick; Blunt, J.W.

    2004-01-01

    Cultivation of a strain of Penicillium hordei on macerated tulip tissue agar resulted in the stimulated production of a series of four novel hydroxymethyl naphthalene carboxylic acid lactones from the fungus. The naphthalene derivatives were isolated using a combination of vacuum liquid chromatog......Cultivation of a strain of Penicillium hordei on macerated tulip tissue agar resulted in the stimulated production of a series of four novel hydroxymethyl naphthalene carboxylic acid lactones from the fungus. The naphthalene derivatives were isolated using a combination of vacuum liquid...... chromatography and preparative HPLC. Their structures were determined by 1D and 2D NMR techniques in conjunction with high-resolution electrospray mass spectrometry (HRESIMS). These metabolites were given the trivial names corymbiferan lactones A-D (1-4)....

  3. Discovery of a novel series of benzimidazole derivatives as diacylglycerol acyltransferase inhibitors.

    Science.gov (United States)

    Lee, Kyeong; Goo, Ja-Il; Jung, Hwa Young; Kim, Minkyoung; Boovanahalli, Shanthaveerappa K; Park, Hye Ran; Kim, Mun-Ock; Kim, Dong-Hyun; Lee, Hyun Sun; Choi, Yongseok

    2012-12-15

    A novel series of benzimidazole derivatives was prepared and evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity using microsome from rat liver. Among the newly synthesized compounds, furfurylamine containing benzimidazole carboxamide 10j showed the most potent DGAT inhibitory effect (IC(50)=4.4 μM) and inhibited triglyceride formation in HepG2 cells. Furthermore, compound 10j reduced body weight gain of Institute of Cancer Research mice on a high-fat diet and decreased levels of total triglyceride, total cholesterol, and LDL-cholesterol in the blood accompanied with a significant increase in HDL-cholesterol level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The formation mechanism of lactones in Gouda cheese

    NARCIS (Netherlands)

    Alewijn, M.; Smit, B.; Sliwinski, E.L.; Wouters, J.T.M.

    2007-01-01

    Lactones are fat-derived aroma compounds, but the formation mechanism of these compounds during ripening of Gouda cheese is unknown. Both enzymatic and chemical formation pathways were investigated in this study. Lactone formation from milk triglycerides or free fatty acids by lactic acid bacteria

  5. Five new lactone derivatives from the stems of Dendrobium nobile.

    Science.gov (United States)

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Chen, Jun; Sun, Chong-Ge

    2016-12-01

    Five new lactone derivatives decumbic acids A and B (1 and 2), (-)-decumbic acid (3a), (-)- and (+)-dendrolactone (4a and 4b) together with four known compounds (3b and 5-7) were isolated from the stems of Dendrobium nobile. Their structures were elucidated using comprehensive spectroscopic methods. Compounds 3a and 3b, 4a and 4b were isolated as two pair of enantiomers by chiral HPLC. The absolute configurations of 1, 2, 3a, 4a and 4b were determined by optical rotation and X-ray crystallographic analysis. The inhibitory activities of all compounds against nine phytopathogenic fungi and three cancer cell lines were evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium)

    DEFF Research Database (Denmark)

    Ramirez, Aldana M; Saillard, Nils; Yang, Ting

    2013-01-01

    The daisy-like flowers of pyrethrum (Tanacetum cinerariifolium) are used to extract pyrethrins, a botanical insecticide with a long history of safe and effective use. Pyrethrum flowers also contain other potential defense compounds, particularly sesquiterpene lactones (STLs), which represent...... these reported bioactivities and industrial significance, the biosynthetic origin of pyrethrum sesquiterpene lactones remains unknown. In the present study, we show that germacratrien-12-oic acid is most likely the central precursor for all sesquiterpene lactones present in pyrethrum. The formation...... of the lactone ring depends on the regio- (C6 or C8) and stereo-selective (α or β) hydroxylation of germacratrien-12-oic acid. Candidate genes implicated in three committed steps leading from farnesyl diphosphate to STL and other oxygenated derivatives of germacratrien-12-oic acid were retrieved from a pyrethrum...

  7. Diterpene lactones with labdane, halimane and clerodane frameworks.

    Science.gov (United States)

    Silva, Lúcia; Gomes, Arlindo C; Rodilla, Jesus M L

    2011-04-01

    The labdane, halimane and clerodane type diterpenoids are compounds that have been isolated in plants of several families. These molecules and their derivatives with a lactone group on the side chain or on the decaline system, have a great interest because of their biological properties as insect antifeedant, antiviral, cytotoxic and trypanocidal. The scope of this review is lactones diterpenoids with labdane, halimane and clerodane frameworks.

  8. Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition

    Directory of Open Access Journals (Sweden)

    Aboukhatwa Marwa A

    2010-01-01

    Full Text Available Abstract Background Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol. Results Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with p-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues. Conclusion Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence

  9. Sesquiterpene lactones from Taraxacum obovatum.

    Science.gov (United States)

    Michalska, Klaudia; Kisiel, Wanda

    2003-02-01

    Two new guaianolide glucosides, deacetylmatricarin 8-O-beta-glucopyranoside and 11beta-hydroxyleukodin 11-O-beta-glucopyranoside, were isolated from roots of Taraxacum obovatum, along with four known sesquiterpene lactones, deacetylmatricarin, sonchuside A, taraxinic acid beta-glucopyranosyl ester and its 11beta,13-dihydro derivative. Their structures were established by spectral methods.

  10. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun; Wu, Hui Xian; Wang, Chang Yun; Liu, Qing Ai; Xu, Ying; Wei, Mei Yan; Qian, Pei Yuan; Gu, Yu Cheng; Zheng, Cai Juan; She, Zhi Gang; Lin, Yong Cheng

    2011-01-01

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  11. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  12. Structure-Activity Relationship Study of Sesquiterpene Lactones and Their Semi-Synthetic Amino Derivatives as Potential Antitrypanosomal Products

    Directory of Open Access Journals (Sweden)

    Stefanie Zimmermann

    2014-03-01

    Full Text Available Sesquiterpene lactones (STLs are natural products that have potent antitrypanosomal activity in vitro and, in the case of cynaropicrin, also reduce parasitemia in the murine model of trypanosomiasis. To explore their structure-antitrypanosomal activity relationships, a set of 34 natural and semi-synthetic STLs and amino-STLs was tested in vitro against T. b. rhodesiense (which causes East African sleeping sickness and mammalian cancer cells (rat bone myoblast L6 cells. It was found that the α-methylene-γ-lactone moiety is necessary for both antitrypanosomal effects and cytotoxicity. Antitrypanosomal selectivity is facilitated by 2-(hydroxymethylacrylate or 3,4-dihydroxy-2-methylenebutylate side chains, and by the presence of cyclopentenone rings. Semi-synthetic STL amines with morpholino and dimethylamino groups showed improved in vitro activity over the native STLs. The dimethylamino derivative of cynaropicrin was prepared and tested orally in the T. b. rhodesiense acute mouse model, where it showed reduced toxicity over cynaropicrin, but also lost antitrypanosomal activity.

  13. Hydrolysis of diacylglycerols by lipoprotein lipase.

    Science.gov (United States)

    Morley, N H; Kuksis, A; Buchnea, D; Myher, J J

    1975-05-10

    Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.

  14. Diverse antidepressants increase CDP-diacylglycerol production and phosphatidylinositide resynthesis in depression-relevant regions of the rat brain

    Directory of Open Access Journals (Sweden)

    Undieh Ashiwel S

    2008-01-01

    can mobilize CDP-diacylglycerol from additional pools lying outside of the inositol cycle. Further, unlike direct serotonergic, muscarinic, or α-adrenergic agonists that elicited comparable or lower effects on CDP-diacylglycerol versus inositol phosphates, the antidepressants dose-dependently induced significantly greater accumulations of CDP-diacylglycerol. Conclusion Chemically divergent antidepressant agents commonly and significantly enhanced the accumulation of CDP-diacylglycerol. The latter is not only a derived product of phosphoinositide hydrolysis but is also a crucial intermediate in the biosynthesis of several signaling substrates. Hence, altered CDP-diacylglycerol signaling might be implicated in the pathophysiology of depression or the mechanism of action of diverse antidepressant medications.

  15. O-Succinyl-L-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol.

    Science.gov (United States)

    Hong, Kuk-Ki; Kim, Jeong Hyun; Yoon, Jong Hyun; Park, Hye-Min; Choi, Su Jin; Song, Gyu Hyeon; Lee, Jea Chun; Yang, Young-Lyeol; Shin, Hyun Kwan; Kim, Ju Nam; Cho, Kyung Ho; Lee, Jung Ho

    2014-10-01

    There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-L-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.

  16. Relationship between Menthiafolic Acid and Wine Lactone in Wine.

    Science.gov (United States)

    Giaccio, Joanne; Curtin, Chris D; Sefton, Mark A; Taylor, Dennis K

    2015-09-23

    Menthiafolic acid (6-hydroxy-2,6-dimethylocta-2,7-dienoic acid, 2a) was quantified by GC-MS in 28 white wines, 4 Shiraz wines, and for the first time in 6 white grape juice samples. Menthiafolic acid was detected in all but one of the wine samples at concentrations ranging from 26 to 342 μg/L and in the juice samples from 16 to 236 μg/L. Various model fermentation experiments showed that some menthiafolic acid in wine could be generated from the grape-derived menthiafolic acid glucose ester (2b) during alcoholic and malolactic fermentation. Samples containing high concentrations of menthiafolic acid were also analyzed by enantioselective GC-MS and were shown to contain this compound in predominantly the (S)-configuration. Enantioselective analysis of wine lactone (1) in one of these samples, a four-year-old Chardonnay wine showed, for the first time, the presence of the 3R,3aR,7aS isomer of wine lactone (1b), which is the enantiomer of the form previously reported as the sole isomer present in young wine samples. The weakly odorous 3R,3aR,7aS 1b form comprised 69% of the total wine lactone in the sample. On the basis of the enantioselectivity of the hydrolytic conversion of menthiafolic acid to wine lactone at pH 3.0 determined previously and the relative proportions of (R)- and (S)-menthiafolic acid in the Chardonnay wine, the predicted ratio of wine lactone enantiomers that would be formed from hydrolysis at ambient temperature of the menthiafolic acid present in this wine was close to the ratio measured, which was consistent with menthiafolic acid being the major or sole precursor to wine lactone in this sample.

  17. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Lactones in Beagle Dog Plasma by Ultra-Performance ... School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, ... Matrix effect derived from QC samples was in the range of 85.09 – 113.14 %. ..... with the suitable weighting factor of 1/x. .... pharmacokinetic studies of G. biloba and its.

  18. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    Science.gov (United States)

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  19. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    Science.gov (United States)

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  20. Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kelley, M.J.; Carman, G.M.

    1987-01-01

    The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase was purified 2300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism

  1. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    produced at least eight different acylated homoserine lactones (AHLs) with N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL) being the dominant molecule. Also, some uncommon AHL, N-(3-oxoheptanoyl)-l-homoserine lactone (3-oxo-C7-HSL) and N-(3-oxononanoyl)-l-homoserine lactone (3-oxo-C9-HSL), were...

  2. Discovery of new lactones in sweet cream butter oil.

    Science.gov (United States)

    Sarrazin, Elise; Frerot, Eric; Bagnoud, Alain; Aeberhardt, Kasia; Rubin, Mark

    2011-06-22

    Sweet cream butter oil was analyzed to identify new volatile compounds that may contribute to its flavor, with an emphasis on lactones. The volatile part of butter oil was obtained by using short-path distillation. As some previously unknown lactones were detected in this first extract, it was fractionated further. The fatty acids were removed, and the extract was fractionated by flash chromatography. Three lactonic fractions possessing a creamy, buttery, and fatty character were investigated in depth by gas chromatography (GC) and mass spectrometry (MS) (EI and CI) and high-resolution GC-time-of-flight MS. Many lactones were identified by their mass fragmentation and by comparison with reference materials synthesized during this work. Six γ-lactones, five δ-lactones, and one ε-lactone were identified for the first time in butter oil, seven of them for the first time in a natural product. The possible contribution of these new lactones to the aroma of butter oil is briefly discussed.

  3. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases.

    Science.gov (United States)

    Eichmann, Thomas O; Kumari, Manju; Haas, Joel T; Farese, Robert V; Zimmermann, Robert; Lass, Achim; Zechner, Rudolf

    2012-11-30

    Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.

  4. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  5. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography

    Science.gov (United States)

    Shaw, Paul D.; Ping, Gao; Daly, Sean L.; Cha, Chung; Cronan, John E.; Rinehart, Kenneth L.; Farrand, Stephen K.

    1997-01-01

    Many Gram-negative bacteria regulate gene expression in response to their population size by sensing the level of acyl-homoserine lactone signal molecules which they produce and liberate to the environment. We have developed an assay for these signals that couples separation by thin-layer chromatography with detection using Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. With the exception of N-butanoyl-l-homoserine lactone, the reporter detected acyl-homoserine lactones with 3-oxo-, 3-hydroxy-, and 3-unsubstituted side chains of all lengths tested. The intensity of the response was proportional to the amount of the signal molecule chromatographed. Each of the 3-oxo- and the 3-unsubstituted derivatives migrated with a unique mobility. Using the assay, we showed that some bacteria produce as many as five detectable signal molecules. Structures could be assigned tentatively on the basis of mobility and spot shape. The dominant species produced by Pseudomonas syringae pv. tabaci chromatographed with the properties of N-(3-oxohexanoyl)-l-homoserine lactone, a structure that was confirmed by mass spectrometry. An isolate of Pseudomonas fluorescens produced five detectable species, three of which had novel chromatographic properties. These were identified as the 3-hydroxy- forms of N-hexanoyl-, N-octanoyl-, and N-decanoyl-l-homoserine lactone. The assay can be used to screen cultures of bacteria for acyl-homoserine lactones, for quantifying the amounts of these molecules produced, and as an analytical and preparative aid in determining the structures of these signal molecules. PMID:9177164

  6. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil

    Directory of Open Access Journals (Sweden)

    Hiroshi Honda

    Full Text Available The alpha-linolenic acid (ALA-diacylglycerol (DAG oil is an edible oil enriched with DAG (>80% and ALA (>50%. Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions. Keywords: Alpha-linolenic acid-rich diacylglycerol, Diacylglycerol, Alpha-linolenic acid, Fatty acid composition, Genotoxicity

  7. Diacylglycerol Acyltransferase-2 (DGAT2) and Monoacylglycerol Acyltransferase-2 (MGAT2) Interact to Promote Triacylglycerol Synthesis*

    Science.gov (United States)

    Jin, Youzhi; McFie, Pamela J.; Banman, Shanna L.; Brandt, Curtis; Stone, Scot J.

    2014-01-01

    Acyl CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that catalyzes triacylglycerol (TG) synthesis using diacylglycerol and fatty acyl CoA as substrates. DGAT2 resides in the endoplasmic reticulum (ER), but when cells are incubated with fatty acids, DGAT2 interacts with lipid droplets presumably to catalyze localized TG synthesis for lipid droplet expansion. Previous studies have shown that DGAT2 interacts with proteins that synthesize its fatty acyl CoA substrates. In this study, we provide additional evidence that DGAT2 is present in a protein complex. Using a chemical cross-linker, disuccinimidyl suberate (DSS), we demonstrated that DGAT2 formed a dimer and was also part of a protein complex of ∼650 kDa, both in membranes and on lipid droplets. Using co-immunoprecipitation experiments and an in situ proximity ligation assay, we found that DGAT2 interacted with monoacylglycerol acyltransferase (MGAT)-2, an enzyme that catalyzes the synthesis of diacylglycerol. Deletion mutagenesis showed that the interaction with MGAT2 was dependent on the two transmembrane domains of DGAT2. No significant interaction of DGAT2 with lipin1, another enzyme that synthesizes diacylglycerol, could be detected. When co-expressed in cells, DGAT2 and MGAT2 co-localized in the ER and on lipid droplets. Co-expression also resulted in increased TG storage compared with expression of DGAT2 or MGAT2 alone. Incubating McArdle rat hepatoma RH7777 cells with 2-monoacylglycerol caused DGAT2 to translocate to lipid droplets. This also led to the formation of large cytosolic lipid droplets, characteristic of DGAT2, but not DGAT1, and indicated that DGAT2 can utilize monoacylglycerol-derived diacylglycerol. These findings suggest that the interaction of DGAT2 and MGAT2 serves to channel lipid substrates efficiently for TG biosynthesis. PMID:25164810

  8. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol

  9. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences

  10. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, Jacob Alsbæk; Severinsen, Rune Eg; Rasmussen, Thomas Bovbjerg

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system....

  11. Application of pork fat diacylglycerols in meat emulsions

    DEFF Research Database (Denmark)

    Miklos, Rikke; Xu, Xuebing; Lametsch, Rene

    2011-01-01

    The properties of fat are of major importance when meat products are produced. By enzymatic modification triacylglycerols (TAGs) can be converted to diacylglycerols (DAGs) resulting in changes of the physical and chemical properties of the fat. In this study the texture as well as the hydration...... and binding properties were investigated in meat emulsions prepared with lard substituted with different amounts of DAGs derived from the lard. In emulsions prepared with DAGs the percentage of total expressible fluid decreased from 28.2% in products prepared with lard to 11.8% in emulsions prepared with 100....... The results suggest future opportunities for the application of DAGs to improve the quality of meat products....

  12. Vibrational spectra of N-butyryl-homoserine lactone

    DEFF Research Database (Denmark)

    Bak, J.

    A special class of organic compounds, N-acyl homoserine lactones (HSL), is synthesized in bacteria and takes part in the intercellular signaling designated quorum sensing. The outcome of the intercellular signaling is responsible for many of the interesting properties which characterize colony...... for a substantial part of morbidity and mortality in many medical specialties. Lactones are also interesting compounds from a spectroscopic point of view. The spectroscopic information about these compounds in the literature is very sparse. In this study we present the Mid-infrared spectra of homoserine lactones...

  13. The synthesis of some unsaturated 4-substituted-g-lactones

    Directory of Open Access Journals (Sweden)

    SUREN HUSINEC

    2000-02-01

    Full Text Available The synthesis of conjugated and nonconjugated unsaturated 4-substituted lactones of type 1 and 2 are described. The type 1 lactone was prepared by a two step procedure employing Bredereck's reagent. The type 2 lactone was synthesised by combining the Claisen-Ireland rearrangement and selenolactonisation.

  14. Plant PA signaling via diacylglycerol kinase

    NARCIS (Netherlands)

    Arisz, S.A.; Testerink, C.; Munnik, T.

    2009-01-01

    Accumulating evidence suggests that phosphatidic acid (PA) plays a pivotal role in the plant's response to environmental signals. Besides phospholipase D (PLD) activity, PA can also be generated by diacylglycerol kinase (DGK). To establish which metabolic route is activated, a differential

  15. Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis.

    Science.gov (United States)

    Jin, Youzhi; McFie, Pamela J; Banman, Shanna L; Brandt, Curtis; Stone, Scot J

    2014-10-10

    Acyl CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that catalyzes triacylglycerol (TG) synthesis using diacylglycerol and fatty acyl CoA as substrates. DGAT2 resides in the endoplasmic reticulum (ER), but when cells are incubated with fatty acids, DGAT2 interacts with lipid droplets presumably to catalyze localized TG synthesis for lipid droplet expansion. Previous studies have shown that DGAT2 interacts with proteins that synthesize its fatty acyl CoA substrates. In this study, we provide additional evidence that DGAT2 is present in a protein complex. Using a chemical cross-linker, disuccinimidyl suberate (DSS), we demonstrated that DGAT2 formed a dimer and was also part of a protein complex of ∼ 650 kDa, both in membranes and on lipid droplets. Using co-immunoprecipitation experiments and an in situ proximity ligation assay, we found that DGAT2 interacted with monoacylglycerol acyltransferase (MGAT)-2, an enzyme that catalyzes the synthesis of diacylglycerol. Deletion mutagenesis showed that the interaction with MGAT2 was dependent on the two transmembrane domains of DGAT2. No significant interaction of DGAT2 with lipin1, another enzyme that synthesizes diacylglycerol, could be detected. When co-expressed in cells, DGAT2 and MGAT2 co-localized in the ER and on lipid droplets. Co-expression also resulted in increased TG storage compared with expression of DGAT2 or MGAT2 alone. Incubating McArdle rat hepatoma RH7777 cells with 2-monoacylglycerol caused DGAT2 to translocate to lipid droplets. This also led to the formation of large cytosolic lipid droplets, characteristic of DGAT2, but not DGAT1, and indicated that DGAT2 can utilize monoacylglycerol-derived diacylglycerol. These findings suggest that the interaction of DGAT2 and MGAT2 serves to channel lipid substrates efficiently for TG biosynthesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Photolysis of Heterocyclic Lactones in Cryogenic Inert Matrices

    International Nuclear Information System (INIS)

    Kus, N.

    2008-01-01

    Heterocyclic lactones receive important uses in organic synthesis and are important biologically active compounds. Their weak toxicity and easy synthesis have made these compounds the subject of great interest and extensive investigation. Since long ago, lactones have been shown to possess an interesting photochemistry. Some representative six- and five-membered conjugated lactones [α-pyrone and some of its derivatives, including coumarin and 3-acetamido coumarin, 2(5H)-furanone] were recently investigated by infrared spectroscopy using the matrix isolation technique and quantum chemical calculations in our laboratories. Two main competitive photochemical reaction pathways could be identified: (i) ring-opening, leading to formation of the isomeric aldehyde-ketene, and (ii) ring-contraction leading to the corresponding Dewar isomers. For α-pyrone and 2(5H)-furanone, the ring-opening process dominates over the ring-contraction reaction, the same occurring for derivatives of these compounds bearing a voluminous substituent at position 3. In 2(5H)-furanone, the ring-opening reaction requires the simultaneous occurrence of a [1,2]-hydrogen atom migration, which was found to occur upon excitation at λ> 235 nm. Under the identical UV-irradiation (λ> 235 nm) of the six-membered analogues, the ring-opening reaction was more efficient in α-pyrone than in coumarin, and factors explaining this observation will be discussed. In turn, the Dewar forms of the studied compounds, resulting from the ring-contraction photoreaction, were found to undergo subsequent photo-elimination of CO 2 , with formation of the corresponding cycloalkenes. In the matrices, CO 2 and the simultaneously formed cycloalkenes were predicted by calculations to exist as associates, in which the CO 2 molecule is preferentially placed over the cycloalkene ring in a stacked-type geometry. For coumarin, a third photoreaction channel was observed, leading to formation of benzofurane and CO. This additional

  17. Penicimenolides A-F, Resorcylic Acid Lactones from Penicillium sp., isolated from the Rhizosphere Soil of Panax notoginseng.

    Science.gov (United States)

    An, Ya-Nan; Zhang, Xue; Zhang, Tian-Yuan; Zhang, Meng-Yue; Qian-Zhang; Deng, Xiao-Yu; Zhao, Feng; Zhu, Ling-Juan; Wang, Guan; Zhang, Jie; Zhang, Yi-Xuan; Liu, Bo; Yao, Xin-Sheng

    2016-06-08

    Five new 12-membered resorcylic acid lactone derivatives, penicimenolides A-E (1-5), one new ring-opened resorcylic acid lactone derivative penicimenolide F (6), and six known biogenetically related derivatives (7-12) were isolated from the culture broth of a strain of Penicillium sp. (NO. SYP-F-7919), a fungus obtained from the rhizosphere soil of Panax notoginseng collected from the Yunnan province of China. Their structures were elucidated by extensive NMR analyses, a modified Mosher's method, chemical derivatization and single crystal X-ray diffraction analysis. Compounds 2-4 exhibited potent cytotoxicity against the U937 and MCF-7 tumour cell lines and showed moderate cytotoxic activity against the SH-SY5Y and SW480 tumour cell lines. The substitution of an acetyloxy or 2-hydroxypropionyloxy group at C-7 significantly increased the cytotoxic activity of the resorcylic acid lactone derivatives. Subsequently, the possible mechanism of compound 2 against MCF-7 cells was preliminarily investigated by in silico analysis and experimental validation, indicating compound 2 may act as a potential MEK/ERK inhibitor. Moreover, proteomics analysis was performed to explore compound 2-regulated concrete mechanism underlying MEK/ERK pathway, which is still need further study in the future. In addition, compounds 2-4 and 7 exhibited a significant inhibitory effect on NO production induced by LPS.

  18. Determination of the lactone and lactone plus carboxylate forms of 9-aminocamptothecin in human plasma by sensitive high-performance liquid chromatography with fluorescence detection

    NARCIS (Netherlands)

    W.J. Loos (Walter); A. Sparreboom (Alex); J. Verweij (Jaap); K. Nooter (Kees); G. Stoter (Gerrit); J.H.M. Schellens (Jan)

    1997-01-01

    textabstractTwo sensitive reversed-phase high-performance liquid chromatographic fluorescence methods, with simple sample handling at the site of the patient, are described for the determination of the lactone and lactone plus carboxylate forms of g-aminocamptothecin (9AC). For 9AC lactone, the

  19. Covalent Modification of Human Serum Albumin by the Natural Sesquiterpene Lactone Parthenolide

    Directory of Open Access Journals (Sweden)

    Michael Plöger

    2015-04-01

    Full Text Available The reactivity of parthenolide (PRT, a natural sesquiterpene lactone from Tanacetum parthenium (Asteraceae, with human serum albumin (HSA was studied by UHPLC/+ESI-QqTOF MS analysis after tryptic digestion of albumin samples after incubation with this compound. It was found that the single free cysteine residue, C34, of HSA (0.6 mM reacted readily with PRT when incubated at approximately 13-fold excess of PRT (8 mM. Time-course studies with PRT and its 11β,13-dihydro derivative at equimolar ratios of the reactants revealed that PRT under the chosen conditions reacts preferably with C34 and does so exclusively via its α-methylene-γ-lactone moiety, while the epoxide structure is not involved in the reaction.

  20. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Science.gov (United States)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  1. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide

    Czech Academy of Sciences Publication Activity Database

    Harmatha, Juraj; Vokáč, Karel; Buděšínský, Miloš; Zídek, Zdeněk; Kmoníčková, Eva

    2015-01-01

    Roč. 107, Dec (2015), s. 90-99 ISSN 0367-326X R&D Projects: GA ČR GA305/07/0061 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : sesquiterpene lactones * guaianolides * trilobolide derivatives * nitric oxide * cytokines * immunoactivity Subject RIV: CC - Organic Chemistry Impact factor: 2.408, year: 2015

  2. Sesquiterpene lactones. XXIII. Isolation of sesquiterpene lactones from Centaurea L. species

    Directory of Open Access Journals (Sweden)

    Barbara Geppert

    2014-01-01

    Full Text Available Sesquiterpene lactones were isolated from 18 species or subspecies of the genus Centaurea L.: salonitenolide (I was found in C. crithmifolia Vis., C. friderici Vis., C, paniculata L., C. calcitrapa L., C. pontica Prodan et E. L' Nyarady, C. eriophora L., C. alba L. subsp. deusta (Ten. Nyman, C. alba L. subsp. caliacrae (Prodan Dostal and C. weldeniana Reichenb.; cnicin (II was found in: C. vallesiaca (DC. Jordan, C. calcitrapa L., C. aspera L. subsp. aspera, C. sphaerocephala L. subsp. lusitanica (Boiss. et Reuter Nyman, C. sulphurea Willd., C. eriophora L. and C. rocheliana (Heuffel Dostal; cynaropicrin (III was detected in C. debeauxii Gren. et Gordon subsp. thuillieri Dostal; acroptillin (V, repin (VI and janerin (VII in C. bella Trautv. Other unidentified sesquiterpene lactones were also found to be present in the examined plants.

  3. Arylation of beta, gamma-unsaturated lactones by a Heck-Matsuda reaction: an unexpected route to aryldiazene butenolides and pyridazinones

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jason G.; Correia, Carlos Roque D., E-mail: roque@iqm.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    The palladium catalysed coupling of aryldiazonium salts with {beta}-{gamma}-unsaturated lactones under basic conditions has been investigated. Both (3H)-furanone and {alpha}-angelicalactone were evaluated as substrates in the Heck Matsuda reaction but both failed to afford the desired arylated butenolides. Under basic conditions, {beta}-{gamma}-unsaturated lactones generate highly nucleophilic enolates that preferentially undergo azo coupling reactions with arenediazonium salts to afford aryldiazene butenolides. The electronic and steric effect of the substituents on the aryldiazonium salt in the azo coupling reaction is described. Aryldiazene-lactone derivatives were obtained in good yields from a highly facile and straightforward procedure. An aminoisomaleimide was formed from (3H)-furanone and cyclized to the corresponding pyridazinones in modest yield. (author)

  4. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. SESQUITERPENE LACTONES

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2016-01-01

    Full Text Available Artemisia annua is an herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpene lactones of artemisinin was isolated from the aboveground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment.The purpose of the study was the review of the information from the open sources about the study for sesquiterpene lactones of Artemisia annua referring to its pharmacological activity.Methods. The study was carried out using informational and search engines (PubMed, ScholarGoogle, library databases (eLibrary, Cyberleninca, and the results of our own researches.Results. It was established that apart from the essential oil and phenolic compounds, aboveground part of Artemisia annua, it contains a significant amount of sesquiterpene lactones. Qualitative content and quantitative composition of sesquiterpene lactones varies depending on the ecological and geographic factors, plants growing phase, cultivation technology, drying methods etc. Well-known pharmacological studies of the extracts from Artemisia annua herb with sesquiterpene lactones, as well as individual compounds of this group characterize this type of raw materials as a perspective source for more profound research.Conclusion. Our analysis of the open materials on the sesquiterpene lactones of Artemisia annua, including phytochemical and pharmacological ones, allows characterization of the Artemisia annua herb as a perspective source for new drugs working out.

  5. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    ELFITA

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  6. In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha

    Directory of Open Access Journals (Sweden)

    D.A. Saúde-Guimarães

    2014-06-01

    Full Text Available The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae, which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA, against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50% (LC50 for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM. Lychnopholide showed an interesting profile of antitumor activity. The α-methylene-γ-lactone present in the structure of lychnopholide, besides two α,β- unsaturated carbonyl groups, might be responsible for the better activity and higher cytotoxicity of this compound in relation to eremantholide C.

  7. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs terminate diacylglycerol (DAG signaling and promote phosphatidic acid (PA production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse.When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.

  8. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  9. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  10. SESQUITERPENE LACTONES OF LEAVES AND FRUITS OF LAURUS NOBILIS L.

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2014-01-01

    Full Text Available Bay laurel (Laurus nobilis L. is common in the Mediterranean region, Europe and America. Widely cultivated in the countries of the Arabian Peninsula and North Africa. As the basic active substances in plants: essential oil components, sesquiterpene lactones, alkaloids, and phenolic compounds (flavonoids, phenolic acids and lignans are described.In the plant more than 30 sesquiterpene lactones are found. Structural types of these compounds include eudesmanolides, germacranolides, guaianolides.Sesquiterpene lactones isolated from the leaves and fruits of Laurus nobilis, possess antibacterial, antifungal, anti-diabetic, anti-inflammatory, hepatoprotective, neuroprotective and cytotoxic activity. They inhibit the absorption of alcohol increases the activity of hepatic glutathione-S-transferase. Most of these types of activity of sesquiterpene lactones from laurel due to the presence within their structure of α-methylene--butyrolactone part.Thus, sesquiterpene lactones-containing leaves and fruits Laurus nobilis could have been an important source of raw materials for the creation of new medicines

  11. Synthesis of antirrhinolide, a new lactone from Antirrhinum majus

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    1998-01-01

    In addition to the known iridoid glucosides antirrhinoside (1), antirrhide (3), antirrhinoside (1), linarioside (5) and chaenorrhinoside (6), a novel nonglucosidic iridoid lactone was isolated in trace amount from Antirrhinum majus (Scrophulariaceae). This lactone, named antirrhinolide (4a...

  12. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.

    2013-01-01

    triazole-containing analogs of natural N-acyl l-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(i)-catalyzed azide–alkyne couplings...

  13. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the

  14. Allergenic sesquiterpene lactones from cushion bush (Leucophyta brownii Cass.)

    DEFF Research Database (Denmark)

    Paulsen, Evy; Gade Hyldgaard, Mette; Andersen, Klaus E.

    2017-01-01

    BACKGROUND: The Australian cushion bush (Leucophyta brownii) of the Compositae family of plants has become a popular pot and container plant. The plant produces the sesquiterpene lactone allergen calocephalin. OBJECTIVES: To assess the sensitizing potential of sesquiterpene lactones from cushion ...

  15. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    Science.gov (United States)

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-02

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety.

  16. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.

    Science.gov (United States)

    Banaś, Walentyna; Sanchez Garcia, Alicia; Banaś, Antoni; Stymne, Sten

    2013-06-01

    The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.

  17. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  18. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human...... salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine...... lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeii. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida...

  19. Chemoselective synthesis of sialic acid 1,7-lactones.

    Science.gov (United States)

    Allevi, Pietro; Rota, Paola; Scaringi, Raffaella; Colombo, Raffaele; Anastasia, Mario

    2010-08-20

    The chemoselective synthesis of the 1,7-lactones of N-acetylneuraminic acid, N-glycolylneuraminic acid, and 3-deoxy-d-glycero-d-galacto-nononic acid is accomplished in two steps: a simple treatment of the corresponding free sialic acid with benzyloxycarbonyl chloride and a successive hydrogenolysis of the formed 2-benzyloxycarbonyl 1,7-lactone. The instability of the 1,7-lactones to protic solvents has been also evidenced together with the rationalization of the mechanism of their formation under acylation conditions. The results permit to dispose of authentic 1,7-sialolactones to be used as reference standards and of a procedure useful for the preparation of their isotopologues to be used as inner standards in improved analytical procedures for the gas liquid chromatography-mass spectrometry (GLC-MS) analysis of 1,7-sialolactones in biological media.

  20. Herbicidal and Fungicidal Activities of Lactones in Kava (Piper methysticum).

    Science.gov (United States)

    Xuan, T D; Elzaawely, A A; Fukuta, M; Tawata, S

    2006-02-08

    This is the first report showing that kava lactones are plant and plant fungus growth inhibitors. Aqueous extract of kava roots showed high allelopathic potential and strongly suppressed germination and growth of lettuce, radish, barnyardgrass, and monochoria. Nine kava lactones were detected using GC-MS including desmethoxyyagonin, kavain, 7,8-dihydrokavain, hydroxykavain, yagonin, 5,6,7,8-tetrahydroxyyagonin, methysticin, dihydromethysticin, and 11-hydroxy-12-methoxydihydrokavain. Quantities of desmethoxyyagonin, kavain, 7,8-dihydrokavain, yagonin, methysticin, and dihydromethysticin detected were 4.3, 6.9, 18.6, 5.7, 1.4, and 5.4 mg/g of dry weight, respectively. These six major lactones in kava roots showed great herbicidal and antifungal activities. Growth of lettuce and barnyardgrass were significantly inhibited at 1-10 ppm, and four plant fungi including Colletotrichum gloeosporides, Fusarium solani, Fusarium oxysporum, and Trichoderma viride were significantly inhibited at 10-50 ppm. The biological activities of kava lactones were characterized by different double-bond linkage patterns in positions 5,6 and 7,8. The findings of this study suggest that kava lactones may be useful for the development of bioactive herbicides and fungicides.

  1. Carboxymethyl glycoside lactone(CMGL) synthons:Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers

    Institute of Scientific and Technical Information of China (English)

    CHAMBERT; Stéphane; BERNARD; Julien; FLEURY; Etienne; QUENEAU; Yves

    2010-01-01

    Carboxymethyl glycoside lactones(CMGLs) are bicyclic synthons which open readily for accessing new types of pseudo-glycoconjugates,such as sugar-amino acid hybrids,neoglycolipids,pseudodisaccharides,and membrane imaging systems.After lactone opening,free OH-2 is available for further functionalization,leading to 1,2-bisfunctionalized derivatives.This strategy is illustrated herein with new polymerizable systems of the AB type bearing both azide and alkyne functions prepared from α or β gluco-CMGL synthons.After the reaction of lactones with propargylamine,an azido group was introduced by two different sequences leading to either the 2-manno-azido or the 6-gluco-azido products.The capability of these AB monomers to undergo step growth polymerization through copper(I) catalyzed alkyne-azide cycloaddition(CuAAC) and generate glycopolytriazoles was evidenced.

  2. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. © 2015 Wiley Periodicals, Inc.

  3. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana.

    Science.gov (United States)

    Raupp, Frank M; Spring, Otmar

    2013-11-06

    Orobanche cumana is a serious threat for cultivation of sunflower in Europe and Asia. Germination of the parasite is induced by metabolites released from the host root system. The first germination stimulant from sunflower root exudate was recently identified as dehydrocostus lactone, a sesquiterpene lactone. Bioassay-guided fractionation of root exudates now showed the release of additional sesquiterpene lactones. Besides dehydrocostus lactone, costunolide, tomentosin, and 8-epixanthatin were purified and identified spectroscopically. All four compounds induced germination of O. cumana at nano- to micromolar concentrations. Costunolide and dehydrocostus lactone concentrations above 1 μM reduced the activity, and application of 100 μM inhibited germination irreversibly. Seeds of Phelipanche ramosa could not be induced with costunolide. O. cumana seeds also germinated with GR24, a synthetic strigolactone. No bioactive fraction of sunflower contained compounds of this type. This supports previous findings that sesquiterpene lactones instead of strigolactones trigger the sunflower/O. cumana interaction.

  4. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    Science.gov (United States)

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  5. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A role played by the lactone moiety.

    Science.gov (United States)

    Qiu, Haibo; Qian, Shan; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-10-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, a new analog ZJ-109 was designed and synthesized to probe the importance of the lactone moiety of the molecule by replacing the lactone in ZJ-101 with a lactam. The biological evaluation showed that ZJ-109 is about 8-12 times less active against cancer cells in vitro than ZJ-101, suggesting that the lactone moiety of the molecule is important for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Catalytic synthesis of enantiopure mixed diacylglycerols - synthesis of a major M. tuberculosis phospholipid and platelet activating factor

    NARCIS (Netherlands)

    Fodran, Peter; Minnaard, Adriaan J.

    2013-01-01

    An efficient catalytic one-pot synthesis of TBDMS-protected diacylglycerols has been developed, starting from enantiopure glycidol. Subsequent migration-free deprotection leads to stereo- and regiochemically pure diacylglycerols. This novel strategy has been applied to the synthesis of a major

  7. Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Otani Koichi

    2009-08-01

    Full Text Available Abstract Background Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level. Results In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in vitro (DIV and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect. Conclusion In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.

  8. Locust adipokinetic hormone mobilizes diacylglycerols selectively

    Czech Academy of Sciences Publication Activity Database

    Tomčala, Aleš; Bártů, Iva; Šimek, Petr; Kodrík, Dalibor

    2010-01-01

    Roč. 156, č. 1 (2010), s. 26-32 ISSN 1096-4959 R&D Projects: GA ČR GA522/07/0788; GA ČR GAP501/10/1215 Grant - others:University of South Bohemia(CZ) 58/2006/P-BF; University of South Bohemia(CZ) 56/2006/P-BF Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z40550506 Keywords : AKH * lipid * diacylglycerol Subject RIV: ED - Physiology Impact factor: 1.989, year: 2010

  9. Biodegradable poly lactone-family polymer and their applications in medical field

    International Nuclear Information System (INIS)

    Wang, S.; Bei, J.

    2005-01-01

    Poly lactone-family polymers such as poly lactide, poly glycolide and polycaprolactone are kind aliphatic polyester. Since they can degrade by hydrolysis reaction under all the ph condition and possess biocompatibility, biodegradability and other good properties, especially they included not peptide bond in their molecules, they are non-antigen and non-immunization, as well as have no-toxicity and no-stimulation. So they are interested biomaterials and very useful in medical field. However the properties of all of the homo-poly lactones can not be changed in a large range, the limited properties result in limited applications of these homo-poly lactones. Based on macromolecular design, a series of copolylactones such as poly(lactide-co-glycolide) (PLGA), poly(glycolide-co-lactide-co-caprolactone) tri- component copolymer (PGLC), tri- and multi-block poly lactide/poly(ethylene oxide) copolymer (TPLE and BPLE), as well as polycaprolactone/poly lactide/poly(ethylene oxide) copolymer (PCEL) et al were synthesized by copolymerization among various lactone monomers or lactone monomers with poly(ethylene glycol). These copolylactones have wide range of degradation life from several months to years and different mechanical properties. After plasma treatment the surface property of the copolylactones were improved further and cell affinity of the copolylactones was improved obviously. The applications of these poly lactone-family polymers in medical field for used as drug carrier in drug delivery system, and as cell scaffold in tissue engineering were discussed

  10. Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development

    Directory of Open Access Journals (Sweden)

    Gary A. Koretzky

    2013-03-01

    Full Text Available Diacylglycerol kinases (DGKs are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG, a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA. Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes.

  11. Oxidative stability of diacylglycerol oil and butter blends containing diacylglycerols

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Nielsen, Nina Skall; Jacobsen, Charlotte

    2006-01-01

    Diacylglycerol (DAG) oils produced from sunflower oil and traditional sunflower oil were stored for 20 wk at 38 degrees C, and their oxidative stability was measured. Moreover, two butter blends were produced containing 40 wt-% DAG oil made from sunflower oil or rapeseed oil, respectively, as well...... as two control butter blends with sunflower oil or rapeseed oil. Their oxidative stability during storage at 5 degrees C for up to 12 wk was examined by similar means as for the pure oils. The storage study of the oils indicated that the DAG oil was oxidatively less stable as compared to sunflower oil......, but that they had similar sensory quality. Storage of the butter blends revealed that blends with the two types of rapeseed oil (triacylglycerol (TAG) or DAG oil) were oxidatively more stable than the blends containing oils from sunflower. There was no unambiguous indication of DAG butter blends having a different...

  12. Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Fakas, Stylianos; Han, Gil-Soo; Barbosa, Antonio Daniel; Siniossoglou, Symeon; Carman, George M

    2013-10-04

    In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.

  13. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic

    DEFF Research Database (Denmark)

    Persson, T.; Rasmussen, Thomas Bovbjerg; Skindersoe, M.

    2005-01-01

    within the binding-site and structural motifs in molecular components isolated from garlic, 7 and 8, shown to be quorum-sensing inhibitors but not antibiotics. A potent quorum-sensing inhibitor N-(heptylsulfanylacetyl)-L-homoserine lactone (10c) was identified. Together with data collected for the other...

  14. Comparison of simultaneous patch testing with parthenolide and sesquiterpene lactone mix

    DEFF Research Database (Denmark)

    Orion, E; Paulsen, Evy; Andersen, Klaus Ejner

    1998-01-01

    Several studies have pointed out that the sesquiterpene lactone (SL) mix is a safe, though inadequate, screen for Compositae allergy. To test the usefulness of the sesquiterpene lactone parthenolide as a supplementary Compositae screening test to the mix, both were included in the standard series...

  15. Cytotoxic sesquiterpene lactones and other constituents of Centaurea omphalotricha

    Energy Technology Data Exchange (ETDEWEB)

    Kolli, El Hadj; Leon, Francisco; Benayache, Samir, E-mail: jfleon@ipna.csic.es, E-mail: sbenayache@yahoo.com [Laboratoire de Valorisation des Ressources Naturelles et Synthese de Substances Bioactives, Equipe Associee a l' A.N.D.R.S., Universite Mentouri, Constantine (Algeria); Benayache, Fadila [Laboratoire de Phytochimie et Analyses Physico-Chimiques et Biologiques, Universite Mentouri, Constantine (Algeria); Estevez, Sara; Quintana, Jose; Estevez, Francisco [Departamento de Bioquimica, Unidad Asociada al CSIC, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria (Spain); Instituto Canario de Investigacion del Cancer, Las Palmas de Gran Canaria, Gran Canaria (Spain); Brouard, Ignacio; Bermejo, Jaime [Instituto de Productos Naturales y Agrobiologia, CSIC, La Laguna, Tenerife (Spain)

    2012-05-15

    Phytochemical research of the aerial parts of Centaurea omphalotricha led to the isolation of three new sesquiterpene lactones, 4'-acetyl cynaropicrin, 4'-acetyl cebellin F and 15-acetyl dehydromelitensin, together with twelve known compounds, seven sesquiterpene lactones, two isoprenoids and three flavonoids. The structures of the new compounds were elucidated by means of extensive 1D and 2D NMR, and MS, and by comparison with reported data in the literature. The effect of sesquiterpene lactones on the viability of the human tumor cell lines HL-60 and U937 was also investigated and 3-acetyl cynaropicrin, and 4'-acetyl cynaropicrin were found to be the most cytotoxic compounds against human leukemia cells with an IC{sub 50} values of 2.0 =- 0.9 and 5.1 +- 0.4 {mu}mol L{sup -1}, respectively. (author)

  16. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    Directory of Open Access Journals (Sweden)

    Bianca Ivanescu

    2015-01-01

    Full Text Available Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation.

  17. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  18. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  19. Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases

    International Nuclear Information System (INIS)

    Siegel, D.P.; Banschbach, J.; Alford, D.; Ellens, H.; Lis, L.J.; Quinn, P.J.; Yeagle, P.L.; Bentz, J.

    1989-01-01

    In a previous paper, it was shown that liposome fusion rates are substantially enhanced under the same conditions which induce isotropic 31 P NMR resonances in multilamellar dispersions of the same lipid. Both of these phenomena occur within the same temperature interval, ΔT I , below the L α /H II phase transition temperature, T H . T H and ΔT I can be extremely sensitive to the lipid composition. The present work shows that 2 mol % of diacylglycerols like those produced by the phosphatidylinositol cycle in vivo can lower T H , ΔT I , and the temperature for fast membrane fusion by 15-20 degree C. N-Monomethylated dioleoylphosphatidylethanolamine is used as a model system. These results show that physiological levels of diacylglycerols can substantially increase the susceptibility of phospholipid membranes to fusion. This suggests that, in addition to their role in protein kinase C activation, diacylglycerols could play a more direct role in the fusion event during stimulus-exocytosis coupling in vivo

  20. Transcription Factor Reb1p Regulates DGK1-encoded Diacylglycerol Kinase and Lipid Metabolism in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Fakas, Stylianos; Han, Gil-Soo; Barbosa, Antonio Daniel; Siniossoglou, Symeon; Carman, George M.

    2013-01-01

    In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, −166 to −160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism. PMID:23970552

  1. Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings.

    Science.gov (United States)

    Yamauchi, Satoshi; Wukirsari, Tuti; Ochi, Yoshiaki; Nishiwaki, Hisashi; Nishi, Kosuke; Sugahara, Takuya; Akiyama, Koichi; Kishida, Taro

    2017-09-01

    The new lignano-9,9'-lactones (α,β-dibenzyl-γ-butyrolactone lignans), which showed the higher cytotoxicity than arctigenin, were synthesized. The well-known cytotoxic arctigenin showed activity against HL-60 cells (EC 50 =12μM), however, it was inactive against HeLa cells (EC 50 >100μM). The synthesized (3,4-dichloro, 2'-butoxy)-derivative 55 and (3,4-dichloro, 4'-butyl)-derivative 66 bearing the lignano-9,9'-lactone structures showed the EC 50 values of 10μM and 9.4μM against HL-60 cells, respectively. Against HeLa cells, the EC 50 value of the derivative 66 was 27μM. By comparing the activities with the corresponding 9,9'-epoxy structure (tetrahydrofuran compounds), the importance of the lactone structure of 55 and 66 for the higher activities was shown. The substituents on the aromatic ring of the lignano-9,9'-lactones affected the cytotoxicity level, observing more than 10-fold difference. Copyright © 2017. Published by Elsevier Ltd.

  2. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    DEFF Research Database (Denmark)

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα......GDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest...

  3. Homoserine Lactone as a Structural Key Element for the Synthesis of Multifunctional Polymers

    Directory of Open Access Journals (Sweden)

    Fabian Marquardt

    2017-04-01

    Full Text Available The use of bio-based building blocks for polymer synthesis represents a milestone on the way to “green” materials. In this work, two synthetic strategies for the preparation of multifunctional polymers are presented in which the key element is the functionality of homoserine lactone. First, the synthesis of a bis cyclic coupler based on a thiolactone and homoserine lactone is displayed. This coupler was evaluated regarding its regioselectivity upon reaction with amines and used in the preparation of multifunctional polymeric building blocks by reaction with diamines. Furthermore, a linear polyglycidol was functionalized with homoserine lactone. The resulting polyethers with lactone groups in the side chain were converted to cationic polymers by reaction with 3-(dimethylamino-1-propylamine followed by quaternization with methyl iodide.

  4. Absorption difference between diacylglycerol oil and butter blend containing diacylglycerol oil

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Jørgensen, Henry; Mu, Huiling

    2012-01-01

    butter blend (BDAG), triacylglycerol (TAG) butter blend (BTAG), DAG oil (ODAG) or TAG oil (OTAG) were prepared, and each was fed to a group of 8 male Wistar rats. The design of the experiment was a combined balance and feeding experiment. The rats fed the BTAG and ODAG‐diets had a significantly higher......This study aims at investigating whether the intake of butter blends containing diacylglycerol (DAG) oil may result in reduced fat accumulation, in similarity to DAG oil, and the potential metabolic differences between butter blends and DAG oil. Four experimental diets containing either 10 wt% DAG...... protein content than rats fed the BDAG and OTAG‐diets, and the fat content was significantly lower in rats fed the ODAG‐diet as compared to rats fed the OTAG and BDAG‐diets. A significantly higher content of ash was observed in rats fed the two TAG diets. The ratio of abdominal fat weight/body weight...

  5. Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents

    Science.gov (United States)

    Dumesic, James A.; Ribeiro Gallo, Jean Marcel; Alonso, David

    2014-07-08

    Described is a process to produce hydroxymethyl furfural (HMF) from biomass-derived sugars. The process includes the steps of reacting a C5 and/or C6 sugar-containing reactant derived from biomass in a monophasic or biphasic reaction solution comprising water and a co-solvent. The co-solvent can be beta-, gamma-, and/or delta-lactones derived from biomass, tetrahydrofuran (THF) derived from biomass, and/or methyltetrahydrofuran (MTHF) derived from biomass. The reaction takes place in the presence of an acid catalyst and a dehydration catalyst for a time and under conditions such that at least a portion of glucose or fructose present in the reactant is converted to HMF.

  6. Synthesis of 5α-Androstane-17-spiro-δ-lactones with a 3-Keto, 3-Hydroxy, 3-Spirocarbamate or 3-Spiromorpholinone as Inhibitors of 17β-Hydroxysteroid Dehydrogenases

    Directory of Open Access Journals (Sweden)

    Donald Poirier

    2013-01-01

    Full Text Available We synthesized two series of androstane derivatives as inhibitors of type 3 and type 5 17β-hydroxysteroid dehydrogenases (17β-HSDs. In the first series, four monospiro derivatives at position C17 were prepared from androsterone (ADT or epi-ADT. After the protection of the alcohol at C3, the C17-ketone was alkylated with the lithium acetylide of tetrahydro-2-(but-3-ynyl-2-H-pyran, the triple bond was hydrogenated, the protecting groups hydrolysed and the alcohols oxidized to give the corresponding 3-keto-17-spiro-lactone derivative. The other three compounds were generated from this keto-lactone by reducing the ketone at C3, or by introducing one or two methyl groups. In the second series, two dispiro derivatives at C3 and C17 were prepared from epi-ADT. After introducing a spiro-δ-lactone at C17 and an oxirane at C3, an aminolysis of the oxirane with L-isoleucine methyl ester provided an amino alcohol, which was treated with triphosgene or sodium methylate to afford a carbamate- or a morpholinone-androstane derivative, respectively. These steroid derivatives inhibited 17β-HSD3 (14–88% at 1 μM; 46–94% at 10 μM and 17β-HSD5 (54–73% at 0.3 μM; 91–92% at 3 μM. They did not produce any androgenic activity and did not bind steroid (androgen, estrogen, glucocorticoid and progestin receptors, suggesting a good profile for prostate cancer therapy.

  7. Sesquiterpene lactones in two endemic Anthemis species

    International Nuclear Information System (INIS)

    Staneva, J.; Todorova, M.; Evstatieva, L.; Dimitrov, D.

    2006-01-01

    The aerial parts of Anthemis stribrnyi subsp.tracica and A. macedonica afforded four and nine sesquiterpene lactones, respectively. Their structures were elucidated by spectral methods. Acetylisospiciformin is a new natural compound. (authors)

  8. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  9. Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649

    Directory of Open Access Journals (Sweden)

    Dongjuan Yuan

    2014-06-01

    Full Text Available Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1 from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1, Penicillium camembertii lipase U-150 (PCL, and Aspergillus oryzae lipase (AOL. Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.

  10. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.

    Science.gov (United States)

    Roelants, Sophie L K W; Ciesielska, Katarzyna; De Maeseneire, Sofie L; Moens, Helena; Everaert, Bernd; Verweire, Stijn; Denon, Quenten; Vanlerberghe, Brecht; Van Bogaert, Inge N A; Van der Meeren, Paul; Devreese, Bart; Soetaert, Wim

    2016-03-01

    Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently. © 2015 Wiley Periodicals, Inc.

  11. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    Science.gov (United States)

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  12. 3-Epiabruslactone A, a New Triterpene Lactone Isolated from Austroplenckia populnea

    Directory of Open Access Journals (Sweden)

    Silva Grácia Divina de Fátima

    1998-01-01

    Full Text Available A new lactonic triterpene isolated from the heartwood of Austroplenckia populnea (Celastraceae was characterized as 3alpha-hydroxyolean-12-en-29,22alpha-olide (the gamma-lactone of the 3alpha,22alpha-dihydroxyolean-12-en-29alpha-oic acid, the 3-epimer of the abruslactone A, on the basis of its spectral data, chemical transformations, and single crystal X-ray analysis.

  13. Analysis, potency and occurrence of (Z)-6-dodeceno-γ-lactone in white wine.

    Science.gov (United States)

    Siebert, Tracey E; Barker, Alice; Barter, Sheridan R; de Barros Lopes, Miguel A; Herderich, Markus J; Francis, I Leigh

    2018-08-01

    (Z)-6-Dodeceno-γ-lactone is a potent aroma compound that has been little studied and its prevalence in wines is unknown. An efficient stable isotope dilution assay was developed using a simple, direct immersion solid-phase microextraction and gas chromatography-tandem mass spectrometry method suitable for routine use with a low ng/L limit of quantitation. Using this method, 99 out of 104 young white wines analysed were found to contain detectable (Z)-6-dodeceno-γ-lactone. The highest concentrations were found in Riesling and Viognier wines. (Z)-6-Dodeceno-γ-lactone was found to have an aroma detection threshold of 700 ng/L in a neutral white wine. This study established that (Z)-6-dodeceno-γ-lactone is widely present in Australia's most popular white wine varieties, but generally at concentrations below its aroma detection threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7 -C10 gasoline-like hydrocarbons.

    Science.gov (United States)

    Mascal, Mark; Dutta, Saikat; Gandarias, Inaki

    2014-02-10

    Dehydration of biomass-derived levulinic acid under solid acid catalysis and treatment of the resulting angelica lactone with catalytic K2 CO3 produces the angelica lactone dimer in excellent yield. This dimer serves as a novel feedstock for hydrodeoxygenation, which proceeds under relatively mild conditions with a combination of oxophilic metal and noble metal catalysts to yield branched C7 -C10 hydrocarbons in the gasoline volatility range. Considering that levulinic acid is available in >80 % conversion from raw biomass, a field-to-tank yield of drop-in, cellulosic gasoline of >60 % is possible. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Confirmation of the definitive structure of Fleishmann's lactone by NMR

    International Nuclear Information System (INIS)

    Figueroa Villar, Jose Daniel

    1993-01-01

    The reaction between 4-hydroxy-6-methyl-pyrone and ethyl-acetic-acetate produces a compound known since the beginning of the century, named Fleishman lactone in honor to its discover. The structure of this compound has been the aim of several researches due to its similarity with several poly-pyrones which are important in synthesis of important products. This work presents the accurate determination of the structure of the Fleishman lactone. The methodology is presented as well as confirmation tests

  16. Variability of sesquiterpene lactones in Neurolaena lobata of different origin.

    Science.gov (United States)

    Passreiter, C M; Aldana, B E

    1998-06-01

    Leaves of Neurolaena lobata (L.) R. Br. originating from Guatemala, were analyzed using HPLC for their qualitative and quantitative sesquiterpene lactone contents. Significant differences in the individual amounts of neurolenins and furanoheliangolides were found between four natural populations. When plants were cultivated on proving fields at two different localities in Guatemala, their sesquiterpene lactone patterns matched the natural population, but differed quantitatively. The meaning of these differences for the use of N. lobata in traditional medicine and its cultivation is discussed.

  17. Arachidonoyl-specific diacylglycerol kinase ε and the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nakano

    2016-11-01

    Full Text Available The endoplasmic reticulum (ER comprises an interconnected membrane network, which is made up of lipid bilayer and associated proteins. This organelle plays a central role in the protein synthesis and sorting. In addition, it represents the synthetic machinery of phospholipids, the major constituents of the biological membrane. In this process, phosphatidic acid (PA serves as a precursor of all phospholipids, suggesting that PA synthetic activity is closely associated with the ER function. One enzyme responsible for PA synthesis is diacylglycerol kinase (DGK that phosphorylates diacylglycerol (DG to PA. DGK is composed of a family of enzymes with distinct features assigned to each isozyme in terms of structure, enzymology and subcellular localization. Of DGKs, DGKε uniquely exhibits substrate specificity toward arachidonate-containing DG and is shown to reside in the ER. Arachidonic acid, a precursor of bioactive eicosanoids, is usually acylated at the sn-2 position of phospholipids, being especially enriched in phosphoinositide. In this review, we focus on arachidonoyl-specific DGKε with respect to the historical context, molecular basis of the substrate specificity and ER-targeting, and functional implications in the ER.

  18. Stereoselective synthesis of highly substituted bicyclic γ-lactones using homoaldol addition of 1-(1-cycloalkenyl)methyl carbamates

    DEFF Research Database (Denmark)

    Özlügedik, M.; Kristensen, Jesper Langgaard; Reuber, J.

    2004-01-01

    Stereoselective addition of aldehydes 4 to metallated 1-(1-cycloalkenyl) methyl N,N-diisopropylcarbamates 1 gave cyclic homoaldol adducts 6. By applying the (-)-sparteine method, enantiomerically enriched products were obtained. These were oxidatively cyclized to diastereomerically pure ¿-lactones...... 8 via the ¿-lactol ethers 7. After deprotonation of ¿-lactones 8 with lithium hexamethyldisilazide, a further substitution was achieved. By trapping the lactone enolates 11 with ß-naphthylmethyl bromide, single diastereomers of ¿-lactones 12 were produced....

  19. N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule.

    Science.gov (United States)

    Vial, Ludovic; Cuny, Caroline; Gluchoff-Fiasson, Katia; Comte, Gilles; Oger, Phil M; Faure, Denis; Dessaux, Yves; Bally, René; Wisniewski-Dyé, Florence

    2006-11-01

    Forty Azospirillum strains were tested for their ability to synthesize N-acyl-homoserine lactones (AHLs). AHL production was detected for four strains belonging to the lipoferum species and isolated from a rice rhizosphere. AHL molecules were structurally identified for two strains: Azospirillum lipoferum TVV3 produces 3O,C(8)-HSL (N-3-oxo-octanoyl-homoserine-lactone), C(8)-HSL (N-3-octanoyl-homoserine-lactone), 3O,C(10)-HSL (N-3-oxo-decanoyl-homoserine-lactone), 3OH,C(10)-HSL (N-3-hydroxy-decanoyl-homoserine-lactone) and C(10)-HSL (N-3-decanoyl-homoserine-lactone), whereas A. lipoferum B518 produced 3O,C(6)-HSL (N-3-oxo-hexanoyl-homoserine-lactone), C(6)-HSL (N-3-hexanoyl-homoserine-lactone), 3O,C(8)-HSL, 3OH,C(8)-HSL and C(8)-HSL. Genes involved in AHL production were characterized for A. lipoferum TVV3 by generating a genomic library and complementing an AHL-deficient strain with sensor capabilities. Those genes, designated alpI and alpR, were found to belong to the luxI and luxR families, respectively. When cloned in a suitable heterologous host, alpI and alpR could direct the synthesis of the five cognate AHLs present in A. lipoferum TVV3. These two adjacent genes were found to be located on a 85 kb plasmid. Southern hybridization experiments with probes alpI/R indicated that genes involved in AHL production in the three other AHL-producing strains were not closely related to alpI and alpR. This study demonstrates that AHL-based quorum-sensing is not widespread among the genus Azospirillum and could be found only in some A. lipoferum strains.

  20. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: influence of growth conditions and serotype

    DEFF Research Database (Denmark)

    Buchholtz, Chrstiane; Nielsen, Kristian Fog; L. Milton, Debra

    2006-01-01

    Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production...... concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could...... not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from...

  1. Enthalpies of combustion and formation of {alpha}-D-glucoheptono-1,4-lactone and {alpha},{beta}-glucooctanoic-1,4-lactone

    Energy Technology Data Exchange (ETDEWEB)

    Amador, Patricia [Facultad de Ciencias Qui' micas, Benemerita Universidad Autonoma de Puebla, 14 Sur y Av. San Claudio, Col. Manuel, C.P. 72570 Puebla Pue (Mexico)], E-mail: cs000721@siu.buap.mx; Mata, Marian Y.; Flores, Henoc [Facultad de Ciencias Qui' micas, Benemerita Universidad Autonoma de Puebla, 14 Sur y Av. San Claudio, Col. Manuel, C.P. 72570 Puebla Pue (Mexico)

    2008-05-15

    The standard molar energies of combustion, {delta}{sub c}U{sub m}{sup 0}(cr,298.15K), of {alpha}-D-glucoheptono-1,4-lactone (GH) and {alpha},{beta}-glucooctanoic-1,4-lactone (GO) were obtained by micro-combustion calorimetry. The obtained values are -(2924.6 {+-} 2.3) kJ . mol{sup -1} and -(3459.5 {+-} 2.5) kJ . mol{sup -1}, respectively. From combustion energies, the standard molar enthalpies of formation in crystalline phase, {delta}{sub f}H{sub m}{sup 0}(cr,298.15K), for GH and GO were determined as -(1546.2 {+-} 2.5) kJ . mol{sup -1} and -(1690.6 {+-} 2.7) kJ . mol{sup -1}, respectively. Also it was found that when the hydroxyl group number increases in the aldonolactones their standard molar enthalpies of formation increase too.

  2. Systemic allergic dermatitis caused by sesquiterpene lactones

    DEFF Research Database (Denmark)

    Paulsen, Evy

    2017-01-01

    Patients with Compositae sensitization are routinely warned against the ingestion of vegetables, spices, teas and herbal remedies from this family of plants. The evidence for the occurrence of systemic allergic dermatitis caused by sesquiterpene lactone-containing plants is mostly anecdotal...

  3. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Jakobsen, Tim H.; Bang, Claus Gunnar

    2015-01-01

    the pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify the structural elements important for antagonistic or agonistic activity against the Pseudomonas aeruginosa LasR protein, we report the synthesis and screening of new triazole-containing mimics of natural N-acyl homoserine lactones....... A series of azide- and alkyne-containing homoserine lactone building blocks was used to prepare an expanded set of 123 homoserine lactone analogues through a combination of solution- and solid-phase synthesis methods. The resulting compounds were subjected to cell-based quorum sensing screening assays...

  4. Sesquiterpene lactones from neurolaena oaxacana

    Science.gov (United States)

    Passreiter; Sandoval-Ramirez; Wright

    1999-08-01

    Twelve sesquiterpene lactones, two new (1 and 2) and 10 known neurolenin-type germacranolides and furanoheliangolides (3-12) were isolated from Neurolaena oaxacana, and their structures were elucidated by NMR and GC-MS analysis. The chemotaxonomic importance of these findings is discussed. As N. lobata is used against dysenteries, neurolenin B (4) and a mixture of the neurolenins C (5) and D (6) were tested against Entamoeba histolytica and Giardia intestinalis.

  5. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    Science.gov (United States)

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  6. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    International Nuclear Information System (INIS)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.; Vincent, J.S.

    1984-01-01

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoic acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging

  7. Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65.

    Science.gov (United States)

    Monte Blanco, S F M; Santos, J S; Feltes, M M C; Dors, G; Licodiedoff, S; Lerin, L A; de Oliveira, D; Ninow, J L; Furigo, A

    2015-12-01

    The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL(®) IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76% of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.

  8. Expression of tung seed diacylglycerol acyltransferases (DGAT) in E. coli and yeast

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG, resist obesity, and/or lack milk secretion. Over-expression of the DGATs increases TAG content in seeds and other t...

  9. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Noriya Okutsu

    2015-12-01

    Full Text Available The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxohexanoyl-l-homoserine lactone (3-oxo-C6-HSL, and N-(3-oxooctanoyl-l-homoserine lactone (3-oxo-C8-HSL. AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10-HSL. This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  10. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Gohari

    2015-06-01

    Full Text Available Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0, (39.0, 11.8, and (55.7, 15.3 μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  11. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Liquid Chromatography-Tandem - Mass Spectrometry: 1. ... Results: The method showed high selectivity of the flavonols and terpene ... Lower limit of quantification (LLOQ) was 1.232, 0.240, 0.200, ... flavonoid glycosides and terpene lactones.

  12. Dehalogenation Activity of Selected Fungi Toward δ-Iodo-γ-Lactone Derived from trans,trans-Farnesol.

    Science.gov (United States)

    Gliszczyńska, Anna; Gładkowski, Witold; Świtalska, Marta; Wietrzyk, Joanna; Szumny, Antoni; Gębarowska, Elżbieta; Wawrzeńczyk, Czesław

    2016-04-01

    Time-course of biotransformation of racemic trans-4-((E)-4',8'-dimethylnona-3',7'-dien-1-yl)-5-iodomethyl-4-methyldihydrofuran-2-one (1) in fungal and yeast cultures was investigated. In these conditions, the substrate 1 was enantioselectively dehalogenated yielding 4-((E)-4',8'-dimethylnona-3',7'-dien-1-yl)-4-methyl-5-methylenedihydrofuran-2-one (2) and its structure was established based on the spectroscopic data. The most effective biocatalyst used was Didymosphaeria igniaria, which catalyzed the process with highest rate and enantioselectivity (ee of product = 76%). The antiproliferative activity of δ-iodo-γ-lactone 1, product of its biotransformation 2, and starting substrate (farnesol) were evaluated toward two cancer cell lines: A549 (human lung adenocarcinoma) and HL-60 (human promyelocytic leukemia). © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Triacetic acid lactone production from Saccharomyces cerevisiae

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  14. Influence of bradykinin on diacylglycerol and phosphatidic acid accumulation in cultured bovine adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P J; Boarder, M R

    1991-09-01

    Earlier studies have shown that bradykinin stimulated release of catecholamines from chromaffin cells by an influx of calcium through dihydropyridine-insensitive channels, and also that bradykinin stimulated (poly)phosphoinositide hydrolysis. To investigate membrane-bound second messengers in chromaffin cells, and to elucidate any role these may play in stimulus-secretion coupling, we have studied the influence of bradykinin on diacylglycerol and phosphatidic acid (PA). Using equilibrium labelling of primary cultures of chromaffin cells with [3H]arachidonic acid or [3H]glycerol, we found no influence of bradykinin (10 nM) on labelled diacylglycerol formation, either in the presence or absence of inhibitors of diacylglycerol lipase or kinase. However, when we used cells prelabelled with 32Pi for 2.5 h, we found that bradykinin produced a substantial stimulation of label found in PA, with an EC50 value of about 1 nM. This bradykinin stimulation of [32P]PA formation was only partially dependent on extracellular calcium, in contrast to the smaller response to nicotine, which was completely dependent on extracellular calcium. Short (10 min) pretreatment with tetradecanoylphorbol acetate (TPA) almost completely eliminated the bradykinin-stimulated formation of inositol phosphates, but failed to affect bradykinin stimulation of label in PA, suggesting that PA production in response to bradykinin is not downstream of phospholipase C activation. TPA alone failed to stimulate [32P]PA substantially, whereas long-term (24 or 48 h) treatment with TPA failed to attenuate the response to bradykinin. Diacylglycerol kinase inhibitors were also without effect on the bradykinin stimulation of [32P]PA. These results suggest that bradykinin stimulates PA production by a mechanism independent of the activation of protein kinase C.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Lactone Enol Cation-Radicals. Gas-Phase Generation, Structure, Energetics, and Reactivity of the Ionized Enol of Butane-4-Lactone

    Czech Academy of Sciences Publication Activity Database

    Tureček, F.; Vivekananda, S.; Sadílek, M.; Polášek, Miroslav

    2002-01-01

    Roč. 37, - (2002), s. 829-839 ISSN 1076-5174 R&D Projects: GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : lactone enol ions * dissociation mechanisms * isotope effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.781, year: 2002

  16. Biosynthesis of Sesquiterpene Lactones in Pyrethrum (Tanacetum cinerariifolium)

    NARCIS (Netherlands)

    Ramirez, A.M.; Saillard, N.; Yang, T.; Franssen, M.C.R.; Bouwmeester, H.J.; Jongsma, M.A.

    2013-01-01

    The daisy-like flowers of pyrethrum (Tanacetum cinerariifolium) are used to extract pyrethrins, a botanical insecticide with a long history of safe and effective use. Pyrethrum flowers also contain other potential defense compounds, particularly sesquiterpene lactones (STLs), which represent

  17. Patch testing with the "sesquiterpene lactone mix"

    DEFF Research Database (Denmark)

    Ducombs, G; Benezra, C; Talaga, P

    1990-01-01

    6278 patients were patch tested with a sesquiterpene lactone mix (SL-mix) in 10 European clinics. 4011 patients were tested only with 0.1% SL-mix, 63 (approximately 1.5%) of whom were positive, with 26 (41%) of these cases being considered clinically relevant. There were no cases of active...

  18. Lactone size dependent reactivity in Candida antarctica lipase B: A molecular dynamics and docking study

    NARCIS (Netherlands)

    Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.

    2009-01-01

    Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of

  19. Sesquiterpene lactones. XXXVI. Sesquiterpene lactones in several subgenera of the genus Centaurea L.

    Directory of Open Access Journals (Sweden)

    Gerard Nowak

    2014-01-01

    Full Text Available The occurrence of both known and new sesquiterpene lactones was determined in six species classified in different subgenera of Centaurea L. Chlorojanerin, cynaropicrin and janerin were isolated from C. phaeopappoides Bordz. and C. thracica (Janka Hayek. C. marschalliana Spreng. was found to contain acroptilin, chlorojanerin, cebellin D and janerin while C. adjarica Alb. had repin, acroptilin, chlorojanerin, centaurepensin, janerin, repidiolide, cebellin D, E, F and L A new, hitherto underscribed cebellin J quaianolide was found in C. bella Trautv. and another germacranolide, 3α, 15-dihydroxycostunolide was found in C. sphaerocephala subsp. lusitanica (Boiss. et Reuter Nyman.

  20. Paraoxonase (PON1 and PON3 polymorphisms: impact on liver expression and atorvastatin-lactone hydrolysis

    Directory of Open Access Journals (Sweden)

    Stephan eRiedmaier

    2011-07-01

    Full Text Available Atorvastatin δ-lactone, a major, pharmacologically inactive metabolite, has been associated with toxicity. In a previous study we showed that polymorphisms of UGT1A3 influence atorvastatin δ-lactone formation. Here we investigated the reverse reaction, atorvastatin δ-lactone hydrolysis, in a human liver bank. Screening of microarray data revealed paraoxonases PON1 and PON3 among 17 candidate esterases. Microsomal δ-lactone hydrolysis was significantly correlated to PON1 and PON3 protein (rs=0.60; rs=0.62, respectively; P<0.0001. PON1 and PON3 were strongly correlated to each other (rs=0.60 but PON1 was shown to be more extensively glycosylated than PON3. In addition a novel splice variant of PON3 was identified. Genotyping of 40 polymorphisms within the PON-locus identified PON1 promoter polymorphisms (-108T>C, -832G>A, -1741G>A and a tightly linked group of PON3 polymorphisms (-4984A>G, -4105G>A, -1091A>G, -746C>T and F21F to be associated with changes in atorvastatin δ-lactone hydrolysis and expression of PON1 but not PON3. However, carriers of the common PON1 polymorphisms L55M or Q192R showed no difference in δ-lactone hydrolysis or PON expression. Haplotype analysis revealed decreased δ-lactone hydrolysis in carriers of the most common haplotype *1 compared to carriers of haplotypes *2, *3, *4 and *7. Analysis of non-genetic factors showed association of hepatocellular and cholangiocellular carcinoma with decreased PON1 and PON3 expression, respectively. Increased C-reactive protein and γ-glutamyl transferase levels were associated with decreased protein expression of both enzymes, and increased bilirubin levels, cholestasis and pre-surgical exposure to omeprazole or pantoprazole were related to decreased PON3 protein. In conclusion, PON-locus polymorphisms affect PON1 expression whereas non-genetic factors have an effect on PON1 and PON3 expression. This may influence response to therapy or adverse events in statin treatment.

  1. Unusual Multiple Production of N-Acylhomoserine Lactones a by Burkholderia sp. Strain C10B Isolated from Dentine Caries

    Directory of Open Access Journals (Sweden)

    Share Yuan Goh

    2014-05-01

    Full Text Available Bacteria realize the ability to communicate by production of quorum sensing (QS molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs. This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL, N-octanoyl-L-homoserine lactone (C8-HSL, N-decanoyl-L-homoserine lactone (C10-HSL and N-dodecanoyl-L-homoserine lactone (C12-HSL.

  2. A strategic approach to [6,6]-bicyclic lactones

    DEFF Research Database (Denmark)

    Jepsen, Tue Heesgaard; Glibstrup, Emil; Crestey, Francois Louis Jean

    2017-01-01

    We report an effective synthetic protocol to access [6,6]-bicyclic lactone moieties through a regio- and stereoselective intramolecular Mizoroki–Heck cross-coupling reaction followed by a 6π-electrocyclization. This method enabled the first synthesis of the elusive CD fragment of the Erythrina...

  3. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Lactones in Beagle Dog Plasma by Ultra-Performance ... School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China ... Purpose: To evaluate the pharmacokinetics of the major compounds in Ginkgo leaf dosage ... pharmacological effect. .... conversion factor was calculated as in Eq 1.

  4. Sesquiterpene Lactones of Amphoricarpos autariatus ssp. autariatus from Montenegro - Antifungal Leaf - Surface Constituents

    Directory of Open Access Journals (Sweden)

    Milka Jadranin

    2013-05-01

    Full Text Available The composition of leaf cuticular neutral lipids of Amphoricarpos autariatus ssp. autariatus collected at canyon of river Tara (North Montenegro was investigated by GC/MS (nonpolar fraction, LC-ESI TOF MS and 1H NMR spectroscopy (more polar fraction. The nonpolar fraction (ca. 15% of the whole surface extract contained C 27 - 33 n-alkanes, those with odd-number of carbons predominating. The LC-ESI MS and 1H NMR of the more polar fraction revealed 13 sesquiterpene lactones, constituting ca. 97.5% of the lactone mixture, identified as the known guaianolides, so-called amphoricarpolides, found previously in the aerial parts of the genus. The lactone fraction exhibited considerable in vitro effect against eight fungi, i.e. Aspergillus ochraceus , A. niger, A. versicolor , Penicillium funiculosum, P. ochrochloron, Trichoderma viride, Fusarium verticillioides and Fulvia fulvum.

  5. Lactones with Methylcyclohexane Systems Obtained by Chemical and Microbiological Methods and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Małgorzata Grabarczyk

    2015-02-01

    Full Text Available Eight new lactones (δ-chloro-, δ-bromo- and δ-iodo-γ-lactones, each with a methylcyclohexane ring, were obtained by chemical means from (4-methylcyclohex-2-en-1-yl acetic acid or (6-methylcyclohex-2-en-1-yl acetic acid. Whole cells of ten fungal strains (Fusarium species, Syncephalastrum racemosum and Botrytis cinerea were tested on their ability to convert these lactones into other products. Some of the tested fungal strains transformed chloro-, bromo- and iodolactone with a methyl group at C-5 into 2-hydroxy-5-methyl-9-oxabicyclo[4.3.0]nonan-8-one during hydrolytic dehalogenation. When the same lactones had the methyl group at C-3, no structural modifications of halolactones were observed. In most cases, the optical purity of the product was low or medium, with the highest rate for chlorolactone (45.4% and iodolactone (45.2% and 47.6%. All of the obtained compounds were tested with reference to their smell. Seven halolactones and the hydroxylactone obtained via biotransformation of halolactones with 5-methylcyclohexane ring were examined for their antimicrobial activity. These compounds were capable of inhibiting growth of some bacteria, yeasts and fungi.

  6. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides

    KAUST Repository

    Zhao, Junpeng

    2015-02-04

    Organocatalytic ring-opening polymerization (ROP) reactions of three renewable 5-alkyl δ-lactones, namely δ-hexalactone (HL), δ-nonalactone (NL) and δ-decalactone (DL), using diphenyl phosphate (DPP) were investigated. Room temperature, together with a relatively high monomer concentration (≥3 M), was demonstrated to be suitable for achieving a living ROP behavior, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, containing a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the compounds with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ-lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers. Therefore, this reinforces the previously developed "catalyst switch" strategy, making it a more versatile tool for the synthesis of well-defined polyether-polyester block copolymers from a large variety of epoxide and lactone monomers. © The Royal Society of Chemistry 2015.

  7. High-performance electrolyte in the presence of dextrose and its derivatives for aluminum electrolytic capacitors

    Science.gov (United States)

    Tsai, Ming-Liao; Lu, Yi-Fang; Do, Jing-Shan

    Dextrose and its derivatives (e.g. glucose, gluconic acid and gluconic lactone) are added to modify the characteristics of electrolytes used in aluminum electrolytic capacitors. The results show that the conductivity and sparking voltage of the electrolytes are severely affected by the concentration of dextrose gluconic acid and gluconic lactone. In addition, the pH of the electrolyte is only slightly affected by the quantity of gluconic acid and gluconic lactone. The capacitance, dissipation factor, and leakage current of capacitors impregnated with the electrolytes prepared in this work are periodically measured under storage conditions and loading at 105 °C.

  8. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  9. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  10. Sesquiterpene lactones. XXXII. Guaianolides in species from the genus Chartolepis Cass.

    Directory of Open Access Journals (Sweden)

    Gerard Nowak

    2014-01-01

    Full Text Available Differences in the composition of the "lactone fraction" of 4 species from the genus Chartolepis Cass. were observed. Cynaropierin was isolated from the above-ground parts of Chartolepis intermedia Boiss. and the occurrence there of grossheimin was confirmed. The following compounds were isolated from the above-ground parts of Chartolepis glastifolia (L. Cass.: centaurepensin, repin, cebellin C, acroptillin, cebellin D, cynaropicrin, cebellin F and janerin. Centaurepensin, repin, cebellin C, acroptillin, cynaropicrin, janerin and a new guaianolide, pterocaulin were isolated from the herb Chartolepis biebersteinii Jaub. et Spach. In addition to the lactones found in Chartolepis biebersteinii, Chartolepis pterocaula (Trautv. Czer. also accumulated grossheimin.

  11. preparation of bicyclic lactones using lewis acids catalyzed ene

    African Journals Online (AJOL)

    Administrator

    The synthesis of the cis-fused bicyclic lactones relies extensively on the Lewis acid ... having an allylic hydrogen (an"ene") and a compound containing an electron .... observed that the lithium enolate obtained from 3-methyl-2(5H)- furanone ...

  12. Solid‐Phase Synthesis and Biological Evaluation of N‐Dipeptido L‐Homoserine Lactones as Quorum Sensing Activators

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Le Quement, Sebastian Thordal; Jakobsen, Tim Holm

    2014-01-01

    ‐homoserine lactones. With the goal of identifying non‐native compounds capable of modulating bacterial QS, a virtual library of N‐dipeptido L‐homoserine lactones was screened in silico with two different crystal structures of LasR. The 30 most promising hits were synthesized on HMBA‐functionalized PEGA resin...

  13. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    Science.gov (United States)

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  14. Natural sesquiterpen lactones as acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    HOMA HAJIMEHDIPOOR

    2014-06-01

    Full Text Available Background and the purpose of the study: The amount of elder people who suffer from Alzheimer disease is continuously increasing every year. Cholinesterase inhibitors have shown to be effective in alleviating the symptoms of the disease, thus opening a field of research for these treatments. Herbal products, owning a reputation as effective agents in many biological studies are now drawing attention for inhibiting acetylcholinesterase, in other words, Alzheimer disease. In the present study, the ability of three sesquiterpene lactones from Inula oculus-christi and I. aucheriana to inhibit AChE has been evaluated through Ellman assay.Materials and Methods: Gaillardin and pulchellin C were obtained from I. oculus-christi and britannin from I. aucheriana by chromatographic methods. They were dissolved in methanol in concentration of 3 mg/mL and the AChEI activity of the compounds was determined by Ellman method using Acethylthiocholine iodide as the substrate and 5, 5′-dithiobis-2-nitrobenzoic acid as the reagent, in 96-well plates at 405 nm.Results: AChEI activity of the examined compounds was obtained as 67.0, 25.2 and 10.9% in concentration of 300 µg/L for gaillardin, britannin and pulchellin C, respectively.Conclusion: Among the three sesquiterpene lactones, gaillardin with 67% inhibition of AChE could be considered a good candidate for future Alzheimer studies.

  15. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    Erah

    2011-03-24

    , A.A 1226, Medellín, Colombia. Abstract. The parasite resistance .... respectively, and cytotoxicity on U-937 cells with LD50 of 2.1 and 1.0 µg/mL, .... to the lipophilic central chain joining the lactone rings. However, the central ...

  16. Sesquiterpene lactones of Vernonia - influence of glaucolide-A on the growth rate and survival of Lepidopterous larvae.

    Science.gov (United States)

    Jones, Samuel B; Burnett, William C; Coile, Nancy C; Mabry, Tom J; Betkouski, M F

    1979-01-01

    Sesquiterpene lactone glaucolide-A from Vernonia, incorporated in the rearing diets of five species of Lepidoptera, significantly reduced the rate of growth of larvae of the southern armyworm, Spodoptera eridania; fall armyworm, S. frugiperda; and yellowstriped armyworm, S. ornithogalli. Quantitative feeding tests demonstrated that decreased feeding levels and reduced growth resulted from ingestion of a sesquiterpene lactone. Ingestion of glaucolide-A increased the number of days to pupation in four of the species. In the southern armyworm, it significantly reduced pupal weight. Glaucolide-A decidedly reduced percentage of survival of southern and fall armyworms. Yellow woollybear, Diacrisia virginica, and cabbage looper, Trichoplusia ni, larvae were essentially uneffected by the ingestion of the sesquiterpene lactone. Sesquiterpene lactones adversely affect growth rate and survival of certain insects that feed upon plants containing them. They apparently function as defensive products, screening out a portion of the potential herbivores.

  17. Structure-cytotoxicity relationships of some helenanolide-type sesquiterpene lactones

    NARCIS (Netherlands)

    Beekman, AC; Woerdenbag, HJ; vanUden, W; Pras, N; Konings, AWT; Wikstrom, HV; Schmidt, TJ

    This study deals with the cytotoxicity of helenanolide-type (10 alpha-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the

  18. Diacylglycerol kinase zeta positively controls the development of iNKT-17 cells.

    Directory of Open Access Journals (Sweden)

    Jinhong Wu

    Full Text Available Invariant natural killer T (iNKT cells play important roles in bridging innate and adaptive immunity via rapidly producing a variety of cytokines. A small subset of iNKT cells produces IL-17 and is generated in the thymus during iNKT-cell ontogeny. The mechanisms that control the development of these IL-17-producing iNKT-17 cells (iNKT-17 are still not well defined. Diacylglycerol kinase ζ (DGKζ belongs to a family of enzymes that catalyze the phosphorylation and conversion of diacylglycerol to phosphatidic acid, two important second messengers involved in signaling from numerous receptors. We report here that DGKζ plays an important role in iNKT-17 development. A deficiency of DGKζ in mice causes a significant reduction of iNKT-17 cells, which is correlated with decreased RORγt and IL-23 receptor expression. Interestingly, iNKT-17 defects caused by DGKζ deficiency can be corrected in chimeric mice reconstituted with mixed wild-type and DGKζ-deficient bone marrow cells. Taken together, our data identify DGKζ as an important regulator of iNKT-17 development through iNKT-cell extrinsic mechanisms.

  19. Determination of ursolic acid and ursolic acid lactone in the leaves of Eucalyptus tereticornis by HPLC

    International Nuclear Information System (INIS)

    Maurya, Anupam; Srivastava, Santosh Kumar

    2012-01-01

    A simple isocratic HPLC method has been developed for the simultaneous quantification of two bioactive triterpenes, ursolic acid and ursolic acid lactone in E. tereticornis leaves. Samples were analyzed on RP-18 (4.6 x 250 mm, 5 m u m ) column with methanol and water acidified to pH 3.5 with TFA (88:12) at 210 nm. The method was validated and applied for the simultaneous quantification of the individual triterpenes in E. tereticornis extract. The calibration curves were linear over a concentration range of 0.05-0.3 mg mL -1 (r = 0.999 and 0.998, respectively). The limits of detection and quantification were 0.190 and 0.644 μg for ursolic acid, and 0.176 and 0.587 μg for ursolic acid lactone, while the percentage recoveries were 97.32 and 96.23% for ursolic acid and ursolic acid lactone, respectively. This is the first report on the HPLC method of ursolic acid lactone with high precision and accuracy. (author)

  20. Determination of ursolic acid and ursolic acid lactone in the leaves of Eucalyptus tereticornis by HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Anupam; Srivastava, Santosh Kumar [Analytical Chemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow (India)

    2012-03-15

    A simple isocratic HPLC method has been developed for the simultaneous quantification of two bioactive triterpenes, ursolic acid and ursolic acid lactone in E. tereticornis leaves. Samples were analyzed on RP-18 (4.6 x 250 mm, 5 {sup m}u{sup m}) column with methanol and water acidified to pH 3.5 with TFA (88:12) at 210 nm. The method was validated and applied for the simultaneous quantification of the individual triterpenes in E. tereticornis extract. The calibration curves were linear over a concentration range of 0.05-0.3 mg mL{sup -1} (r = 0.999 and 0.998, respectively). The limits of detection and quantification were 0.190 and 0.644 {mu}g for ursolic acid, and 0.176 and 0.587 {mu}g for ursolic acid lactone, while the percentage recoveries were 97.32 and 96.23% for ursolic acid and ursolic acid lactone, respectively. This is the first report on the HPLC method of ursolic acid lactone with high precision and accuracy. (author)

  1. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL...

  2. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Valeria P Sülsen

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin

  3. Reorientational properties of fluorescent analogues of the protein kinase C cofactors diacylglycerol and phorbol ester.

    NARCIS (Netherlands)

    Pap, E.H.W.; Ketelaars, M.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.

    1996-01-01

    The reorientational properties of the fluorescently labelled protein kinase C (PKC) cofactors diacylglycerol (DG) and phorbol ester (PMA) in vesicles and mixed micelles have been investigated using time-resolved polarised fluorescence. The sn-2 acyl chain of DG was replaced by diphenylhexatriene-

  4. Synthesis of novel O-acylated-D-ribono-1,5-lactones and structural assignment supported by conventional NOESY-NMR and X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Marcus M.; Silveira, Gustavo P.; Caro, Miguel S.B. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica]. E-mail: msa@qmc.ufsc.br; Ellena, Javier [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2008-07-01

    A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner's lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data. (author)

  5. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  6. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Hultqvist, Louise Dahl; Alhede, Maria; Jakobsen, Tim Holm

    2018-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  7. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  8. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  9. Parameters affecting diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Skands, Anja

    1999-01-01

    Diacylglycerols (DAGs) are important intermediates in lipase-catalyzed interesterification, but a high DAG concentration in the reaction mixture results in a high DAG content in the final product. We have previously shown that a high DAG concentration in the reaction mixture increases the degree ...

  10. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Nina Yusrina Muhamad Yunos

    2014-06-01

    Full Text Available Quorum sensing (QS is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs. We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL and N-decanoyl-l-homoserine lactone (C10-HSL. To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.

  11. Synthesis and antiproliferative activity of some A- and B modified D-homo lactone androstane derivatives

    Directory of Open Access Journals (Sweden)

    Savić Marina P.

    2013-01-01

    Full Text Available An efficient synthesis of several A- and B-modified D-homo lactone androstane derivatives from 3β-hydroxy-17-oxa-D-homoandrost-5-en-16-one (1 is reported. 17-Oxa-Dhomoandrost- 4-ene-3,16-dione (2, obtained by the Oppenauer oxidation of compound 1, was converted via the unstable intermediate 3,16-dioxo-4,17-dioxa-D-homoandrostane- 5α-carboxaldehyde (3 to 17-oxa-D-homo-3,5-seco-4-norandrostan-5-one-3-carboxylic acid (4, which was also obtained directly from compound 2. Compound 1 was acetylated to give 17-oxa-D-homoandrost-5-en-16-on-3β-yl acetate (5 which was then oxidized with chromium(VI-oxide in 50% acetic acid or with meta-chlorperbenzoic acid and chromium(VI-oxide to yield compounds 6-8 and 5α-hydroxy-17-oxa-D-homoandrostane- 6,16-dion-3β-yl acetate (9, respectively. The oximination of compound 9 gave a mixture of 6(E-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (10 and 6(Z-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (11, the hydrolysis of which gave 6(E-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan- 16-one (12 and 6(Z-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan-16-one (13. 6-Nitrile-17-oxa-5,6-seco-D-homoandrostane-5,16-dion-3β-yl acetate (14 was obtained under the Beckmann fragmentation of compounds 10 and 11. Only pure and stable compounds (1, 2, 4, 5, 9 and 14 were tested in vitro on six malignant cell lines (MCF-7, MDA-MB-231, PC-3, HeLa, HT-29, K562 and one non-tumor MRC-5 cell line. Significant antiproliferative activity against MDA-MB-231 cells showed compounds 1, 5 and 9, while compound 2 exhibited a strong antiproliferative activity. Only compound 14 showed weak antiproliferative activity against MCF-7 cells. All tested compounds were not toxic on MRC-5 cells, whereas Doxorubicin was highly toxic on these cells. [Projekat Ministarstva nauke Republike Srbije, br. 172021

  12. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of anticancer properties of a new α-methylene-δ-lactone DL-249 on two cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pomorska Dorota K.

    2017-06-01

    Full Text Available The anticancer activity of a new synthetic α-methylene-δ-lactone DL-249 was reported in leukemia HL-60 and breast cancer MCF-7 cells and compared with the activity of a natural α-methylene-γ-lactone from Tanacetum parthenium, parthenolide.

  14. Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides

    Science.gov (United States)

    Ômura, Hisashi; Yakumaru, Kazuhisa; Honda, Keiichi; Itoh, Takao

    2013-04-01

    Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/ S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts—forewings, hindwings, and body—of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs.

  15. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    The parasite resistance and side effects of drugs used to treat protozoal diseases have led to the search for new therapies, both natural and synthetic. Studies have shown that various α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and ...

  16. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  17. Eukaryotic interference with homoserine lactone mediated procaryotic signalling

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; de Nys, Rocky; Gram, Lone

    1996-01-01

    Acylated homoserine lactones (AHLs) plays a widespread role in intercellular communication among bacteria. The Australian macroalga Delisea pulchra produces secondary metabolites which have structural similarities to AHL molecules. We report here that these metabolites inhibited AHL-controlled pr......-controlled processes in prokaryotes. Our results suggest that the interaction between higher organisms and their surface-associated bacteria may be mediated by interference with bacterial regulatory systems....

  18. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    Science.gov (United States)

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  19. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods

    DEFF Research Database (Denmark)

    Gram, Lone; Christensen, A.B.; Flodgaard, Lars

    1999-01-01

    Bacteria are able to communicate and gene regulation can be mediated through the production of acylated homoserine lactone (AHL) signal molecules. These signals play important roles in several pathogenic and symbiotic bacteria. The following study was undertaken to investigate whether AHLs...... indicated that N-3-oxohexanoyl homoserine lactone was the major AHL of several of the strains isolated from cold-smoked salmon and meat. AHL-positive strains cultured at 5 degrees C in medium supplemented with 4% NaCl produced detectable amounts of AHL(s) at cell densities of 10(6) CFU/ml. AHLs were...

  20. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  1. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Nielsen, Kristian Fog; Machado, Henrique

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the en......Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae...... violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were...

  2. A validated Fourier transform infrared spectroscopy method for quantification of total lactones in Inula racemosa and Andrographis paniculata.

    Science.gov (United States)

    Shivali, Garg; Praful, Lahorkar; Vijay, Gadgil

    2012-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a technique widely used for detection and quantification of various chemical moieties. This paper describes the use of the FT-IR spectroscopy technique for the quantification of total lactones present in Inula racemosa and Andrographis paniculata. To validate the FT-IR spectroscopy method for quantification of total lactones in I. racemosa and A. paniculata. Dried and powdered I. racemosa roots and A. paniculata plant were extracted with ethanol and dried to remove ethanol completely. The ethanol extract was analysed in a KBr pellet by FT-IR spectroscopy. The FT-IR spectroscopy method was validated and compared with a known spectrophotometric method for quantification of lactones in A. paniculata. By FT-IR spectroscopy, the amount of total lactones was found to be 2.12 ± 0.47% (n = 3) in I. racemosa and 8.65 ± 0.51% (n = 3) in A. paniculata. The method showed comparable results with a known spectrophotometric method used for quantification of such lactones: 8.42 ± 0.36% (n = 3) in A. paniculata. Limits of detection and quantification for isoallantolactone were 1 µg and 10 µg respectively; for andrographolide they were 1.5 µg and 15 µg respectively. Recoveries were over 98%, with good intra- and interday repeatability: RSD ≤ 2%. The FT-IR spectroscopy method proved linear, accurate, precise and specific, with low limits of detection and quantification, for estimation of total lactones, and is less tedious than the UV spectrophotometric method for the compounds tested. This validated FT-IR spectroscopy method is readily applicable for the quality control of I. racemosa and A. paniculata. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines.

    Science.gov (United States)

    Pons, Alexandre; Allamy, Lucile; Lavigne, Valérie; Dubourdieu, Denis; Darriet, Philippe

    2017-10-01

    Organic extracts of musts and red wines marked by dried fruit and cooked fruit aromas were analyzed by gas chromatography coupled to olfactometry and mass spectrometry. Thanks to this analytical approach we identified a fragrant lactone corresponding to an odorant zone reminiscent of coconut and dried figs as 5,6-dihydro-6-pentyl-2H-pyran-2-one (C10 massoia lactone). Using chiral GC-GC-MS, we show that only the (R)-C10 massoia lactone is found in musts and wines. Its detection thresholds were 10µg/L and 11µg/L in must and wine model solution, respectively. In Merlot and Cabernet Sauvignon musts marked by dried fruit flavors from overripe grapes, its concentration reached 68µg/L. In contrast, in wines marked by these flavors, it never exceeded 20µg/L. We show that (R)-C10 massoia lactone is reduced to (R)-δ-decalactone during alcoholic fermentation. In addition, we underline the contribution of temperature during the growing season on its level in old red wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sesquiterpene Lactones from Gynoxys verrucosa and their Anti-MRSA Activity

    Science.gov (United States)

    Ordóñez, Paola E.; Quave, Cassandra L.; Reynolds, William F.; Varughese, Kottayil I.; Berry, Brian; Breen, Philip J.; Malagón, Omar; Smeltzer, Mark S.; Compadre, Cesar M.

    2011-01-01

    Ethnopharmacological relevance Because of its virulence and antibiotic resistance, Staphylococcus aureus is a more formidable pathogen now than at any time since the pre-antibiotic era. In an effort to identify and develop novel antimicrobial agents with activity against this pathogen, we have examined Gynoxys verrucosa Wedd (Asteraceae), an herb used in traditional medicine in southern Ecuador for the treatment and healing of wounds. Materials and Methods The sesquiterpene lactones leucodine (1) and dehydroleucodine (2) were extracted and purified from the aerial parts of G. verrucosa, and their structure was elucidated by spectroscopic methods and single-crystal X-ray analysis. The in vitro anti-microbial activity of G. verrucosa extracts and its purified constituents was determined against six clinical isolates including S. aureus and Staphylococcus epidermidis strains with different drug-resistance profiles, using the microtiter broth method. Results Compound 1 has very low activity, while compound 2 has moderate activity with MIC50s between 49 and195 μg/mL. The extract of G. verrucosa has weak activity with MIC50s between 908 and 3290 μg/mL. Conclusions We are reporting the full assignment of the 1H-NMR and 13C-NMR of both compounds, and the crystal structure of compound 2, for the first time. Moreover, the fact that compound 2 has antimicrobial activity and compound 1 does not, demonstrates that the exocyclic conjugated methylene in the lactone ring is essential for the antimicrobial activity of these sesquiterpene lactones. However, the weak activity observed for the plants extracts, does not explain the use of G. verrucosa in traditional medicine for the treatment of wounds and skin infections. PMID:21782013

  5. Castor diacylglycerol acyltransferase type1(DGAT1)displays greater activity with diricinolein than Arabidopsis DGAT1

    Science.gov (United States)

    Castor oil contains the hydroxy fatty acid ricinoleate as a major (90%) component. The diacylglycerol acyltransferase (DGAT) carries out the final reaction step in the biosynthesis of triacylglycerol, the principal constituent of seed oil, and has been considered to be the step that controls the oil...

  6. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide

    Czech Academy of Sciences Publication Activity Database

    Škorpilová, Ludmila; Rimpelová, S.; Jurášek, M.; Buděšínský, Miloš; Lokajová, Jana; Effenberg, R.; Slepička, P.; Ruml, T.; Kmoníčková, Eva; Drašar, P. B.; Wimmer, Zdeněk

    2017-01-01

    Roč. 13, JUL 4 (2017), s. 1316-1324 ISSN 1860-5397 R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:68378041 Keywords : BODIPY conjugates * Cancer targeting * Drug delivery * Liposomes * Natural compounds * Sesquiterpene lactone trilobolide Subject RIV: CC - Organic Chemistry ; FR - Pharmacology ; Medidal Chemistry (UEM-P) OBOR OECD: Organic chemistry ; Pharmacology and pharmacy (UEM-P) Impact factor: 2.337, year: 2016

  7. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    Science.gov (United States)

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  8. Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Pejchar, Přemysl; Potocký, Martin; Novotná, Z.; Veselková, Štěpánka; Kocourková, Daniela; Valentová, O.; Schwarzerová, K.; Martinec, Jan

    2010-01-01

    Roč. 188, č. 1 (2010), s. 150-160 ISSN 0028-646X R&D Projects: GA ČR GA522/07/1614 Institutional research plan: CEZ:AV0Z50380511 Keywords : aluminium (AL) * BY-2 * diacylglycerol (DAG) Subject RIV: ED - Physiology Impact factor: 6.516, year: 2010

  9. Aromaticine, a sesquiterpene lactone from Amblyopappus pusillus

    Directory of Open Access Journals (Sweden)

    Matías López-Rodríguez

    2008-02-01

    Full Text Available Aromaticine (systematic name: 4a,8-dimethyl-3-methylene-3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione, C15H18O3, is a natural lactone isolated from Amblyopappus pusillus. The molecular structure and conformation agree with the results of Romo, Joseph-Nathan & Díaz [(1964. Tetrahedron, 20, 79–85]. The fused-ring system contains a seven-membered ring in a twist-boat conformation and two five-membered rings trans fused in envelope conformations.

  10. Spectrophotometric determination of total lactones in Andrographis paniculata Nees

    Directory of Open Access Journals (Sweden)

    Napaporn Jantakun

    2005-11-01

    Full Text Available A spectrophotometric method for determination of total lactones in Andrographis paniculata was established by using dinitrobenzoic acid and potassium hydroxide solutions as colour forming agents. The absorbance of the solution was determined at 536 nm. The linearity range was 12-72 × 10-6 g.ml-1. The detection limit was 1.2 μg, the quantitation limit was 4.23 μg. The intraday variation had an average of slope 6082.97 g.ml-1, % RSD 0.10; an average intercept 0.2786, %RSD 3.66 (n=3. The interday variation had an average of 6146 g.ml-1 with the %RSD of 6.30 and an average intercept 0.2628, %RSD 4.95 (n=4. The coefficients of determination were 0.998-0.999. The total lactones content, calculated as andrographolide, determined by this method was 8.61±0.52% (n=4 and by the official method, Thai Herbal Pharmacopoeia, was 8.12±0.34% (n=2. The results of the two methods do not differ significantly at P=0.05 (P(|t|>0.903 = 0.53

  11. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  12. EFSA ; Scientific Opinion on Flavouring Group Evaluation 98 (FGE.98): Consideration of three ring-unsaturated delta-lactones)

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of three unsaturated delta-lactones [FL-no: 10.031, 10.037 and 10.044] previously evaluated by the JECFA at their 49th meeting in 1997. The JECFA considered that further information...... on the metabolism of these three substances was required and that they should be evaluated together with other substances containing alpha,beta-unsaturation and that, therefore, their evaluation should be deferred. However, the EFSA Panel has considered that these three JECFA evaluated aliphatic lactones can...... be hydrolysed and metabolised to innocuous products in line with the aliphatic lactones evaluated by EFSA in FGE.10Rev2. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern...

  13. Two new diterpenoid lactones isolated from Andrographis paniculata.

    Science.gov (United States)

    Wang, Gui-Yang; Wen, Ting; Liu, Fei-Fei; Tian, Hai-Yan; Chun-Lin, Fan; Huang, Xiao-Jun; Ye, Wen-Cai; Wang, Ying

    2017-06-01

    In the present study, two new diterpenoid lactones, 3-deoxy-andrographoside (1) and 14-deoxy-15-methoxy-andrographolide (2), were isolated from the aerial parts of Andrographis paniculata. Their structures were elucidated by combination of NMR, MS, and chemical methods. The configurations of 1 and 2 were established based on the analysis of ROESY data and single crystal X-ray diffraction experiment. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Synthesis and study of rare earth complexes with ortho-hydroxyphenyliminodiacetic acid containing lactone ring

    International Nuclear Information System (INIS)

    Martynenko, L.I.; Mitrofanova, N.D.; Muratova, N.M.; Kurbatova, S.V.

    1978-01-01

    Solid complex compounds of o-oxyphenyliminodiacetic acid with rare earth elements of the composition of LnA 2 Clx6H 2 O and LnA 3 x5H 2 O (where Ln=La, Pr, Nd, Eu, Dy, Er, and Y) not described earlier, have been synthesized. The thermographic analysis of the compounds has been performed. It is shown by infrared spectroscopy that a lactone ring is retained in the dicomplex structure. The presence of the absorption bands of non-ionized COOH-groups in the infrared spectra of tricomplexonates of heavy r.e.e. points to opening of the lactone ring in the ligand part

  15. Insights into the structure-activity relationship of the anticancer compound ZJ-101, a derivative of marine natural product superstolide A: A critical role played by the conjugated trienyl lactone moiety.

    Science.gov (United States)

    Qian, Shan; Shah, Aashay K; Head, Sarah A; Liu, Jun O; Jin, Zhendong

    2016-08-01

    Compound ZJ-101, a structurally simplified analog of the marine natural product superstolide A, was previously developed in our laboratory. In the subsequent structure-activity relationship study, two new analogs, ZJ-105 and ZJ-106, were designed and synthesized to probe the importance of the conjugated trienyl lactone moiety of the molecule by replacing the C2-C3 double bond in ZJ-101 with a single bond and switching the geometry of the C4-C5 double bond in ZJ-101 from Z to E, respectively. Biological evaluation showed that ZJ-105 completely loses antiproliferative activity whereas ZJ-106 is significantly less active against cancer cells in vitro than ZJ-101, suggesting that the conjugated trienyl lactone moiety of the molecule is critical for its anticancer activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Free radical-scavenging delta-lactones from Boletus calopus.

    Science.gov (United States)

    Kim, Jin-Woo; Yoo, Ick-Dong; Kim, Won-Gon

    2006-12-01

    The methanol extracts from the fruiting body of the mushroom Boletus calopus showed free radical-scavenging activity. Bioactivity-guided fractionation of the methanol extracts led to a new hydroxylated calopin named calopin B, along with the known delta-lactones calopin and cyclocalopin A. The structure of the new calopin analogue was elucidated by spectroscopic methods. All compounds showed potent free radical-scavenging activity against superoxide, DPPH, and ABTS radicals with IC (50) values of 1.2 - 5.4 microg/mL.

  17. Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.).

    Science.gov (United States)

    Deshpande, Ashish B; Chidley, Hemangi G; Oak, Pranjali S; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-06-01

    Uniqueness and diversity of mango flavour across various cultivars are well known. Among various flavour metabolites lactones form an important class of aroma volatiles in certain mango varieties due to their ripening specific appearance and lower odour detection threshold. In spite of their biological and biochemical importance, lactone biosynthetic pathway in plants remains elusive. Present study encompasses quantitative real-time analysis of 9-lipoxygenase (Mi9LOX), epoxide hydrolase 2 (MiEH2), peroxygenase, hydroperoxide lyase and acyl-CoA-oxidase genes during various developmental and ripening stages in fruit of Alphonso, Pairi and Kent cultivars with high, low and no lactone content and explains their variable lactone content. Study also covers isolation, recombinant protein characterization and transient over-expression of Mi9LOX and MiEH2 genes in mango fruits. Recombinant Mi9LOX utilized linoleic and linolenic acids, while MiEH2 utilized aromatic and fatty acid epoxides as their respective substrates depicting their role in fatty acid metabolism. Significant increase in concentration of δ-valerolactone and δ-decalactone upon Mi9LOX over-expression and that of δ-valerolactone, γ-hexalactone and δ-hexalactone upon MiEH2 over-expression further suggested probable involvement of these genes in lactone biosynthesis in mango. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    Science.gov (United States)

    Bansal, Sunil; Durrett, Timothy P.

    2016-01-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773

  19. Synthesis of ellagic acid and its 4,4'-di-Ο-alky derivatives from gallic acid

    OpenAIRE

    Alam, Ashraful; 高口, 豊; 坪井, 貞夫

    2005-01-01

    Synthesis of ellagic acid and its 4,4'-di-Ο-alkyl derivatives from gallic acid is described. Ellagic acid is prepared by oxidative coupling of gallic acid with ο-chloranil. Functionalized methyl bormogallate underwent Ullmann coupling to give the biphenyl that upon lactonization resulted in the ellagic acid and its alkoxy derivatives.

  20. Diacylglycerol kinases in the coordination of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2016-08-01

    Full Text Available Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP and long-term depression (LTD. Recent evidence indicate that DAG kinases (DGKs, which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  1. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    Science.gov (United States)

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

  2. Interkingdom signaling: The role of homoserine lactones in early responses and resistance in barley (Hordeum vulgare L.)

    OpenAIRE

    Rankl, Simone

    2017-01-01

    N-Acyl-D/L-homoserine lactones (AHLs) are produced as microbial signaling compounds during bacterial intra- and inter-specific communication in the rhizosphere. Thus, plants are naturally exposed to these compounds and respond with tissue-specific reactions. In the present study the impact of AHLs on the monocot barley (Hordeum vulgare L.) was investigated. The treatment with C8- and C12- homoserine lactones (HSL) resulted in root and shoot biomass gain as well as in the formation of lat...

  3. Production of acyl-homoserine lactone quorum-sensing signals is widespread in gram-negative Methylobacterium.

    Science.gov (United States)

    Poonguzhali, Selvaraj; Madhaiyan, Munusamy; Sa, Tongmin

    2007-02-01

    Members of Methylobacterium, referred as pink-pigmented facultative methylotrophic bacteria, are frequently associated with terrestrial and aquatic plants, tending to form aggregates on the phyllosphere. We report here that the production of autoinducer molecules involved in the cell-to-cell signaling process, which is known as quorum sensing, is common among Methylobacterium species. Several strains of Methylobacterium were tested for their ability to produce N-acyl-homoserine lactone (AHL) signal molecules using different indicators. Most strains of Methylobacterium tested could elicit a positive response in Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. The synthesis of these compounds was cell-density dependent, and the maximal activity was reached during the late exponential to stationary phases. The bacterial extracts were separated by thin-layer chromatography and bioassayed with A. tumefaciens NT1 (traR, tra::lacZ749). They revealed the production of various patterns of the signal molecules, which are strain dependent. At least two signal molecules could be detected in most of the strains tested, and comparison of their relative mobilities suggested that they are homologs of N-octanoyl-DL-homoserine lactone (C8-HSL) and N-decanoyl-DL-homoserine lactone (C10-HSL).

  4. Sesquiterpene lactones and other chemical constituents of Mikania hoehnei R.

    Directory of Open Access Journals (Sweden)

    Chaves Juliana S.

    2003-01-01

    Full Text Available Phytochemical study of Mikania hoehnei yielded lupeyl acetate, stigmasterol, b-sitosterol, campesterol, b-sitosteryl glucopyranoside, stigmasteryl glucopyranoside, benzil 2,6-dimethoxybenzoate, luteolin, kaempferol and two sesquiterpene lactones: dehydrocostuslactone and 8b-hydroxyzaluzanin D. IR, ¹H and 13C NMR and MS spectroscopic analyses and comparisons with previously reported data were used for the identification of these compounds.

  5. Aminocyclopentanols as sugar mimics. Synthesis from unsaturated bicyclic lactones by Overman rearrangement

    DEFF Research Database (Denmark)

    Bøjstrup, Marie; Fanefjord, Mette; Lundt, Inge

    2007-01-01

    Bicyclic cyclopentane lactones, prepared from bromodeoxyaldonolactones, were transformed into aminocyclopentanols with an Overman rearrangement as the key step. Two of the compounds prepared, 7 and 19, were found to be good inhibitors of jack bean alpha-mannosidase and beta-D-N-acetylglucosaminid...

  6. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    S. J. Pérez-Olivero

    2014-01-01

    Full Text Available Application of headspace solid-phase microextraction (HS-SPME coupled with high-resolution gas chromatographic (HRGC analysis was studied for determining lactones in wines. Six different SPME fibers were tested, and the influence of different factors such as temperature and time of desorption, ionic strength, time of extraction, content of sugar, ethanol, tannins and anthocyanins, and pH and influence of SO2 were studied. The proposed HS-SPME-GC method is an appropriate technique for the quantitative analysis of γ-butyrolactone, γ-hexalactone, trans-whiskey lactone, γ-octalactone, cis-whiskey lactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-undecalactone in wines. Method reproducibility and repeatability ranged between 0.6 and 5.2% for all compounds. Detection limit for γ-butyrolactone was 0.17 mg/L and a few μg/L for the rest of the compounds. The optimized method has been applied to several wine samples.

  7. Mass spectrometry of the lithium adducts of diacylglycerols containing hydroxy FA in castor oil and two normal FA

    Science.gov (United States)

    Castor oil can be used in industry. The molecular species of triacylglycerols containing hydroxy fatty acids (FA) in castor oil have been identified. We report here the identification of twelve diacylglycerols (DAG) containing hydroxy FA in castor oil using positive ion electrospray ionization mass ...

  8. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana.

    Science.gov (United States)

    Joel, Daniel M; Chaudhuri, Swapan K; Plakhine, Dina; Ziadna, Hammam; Steffens, John C

    2011-05-01

    The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower. Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone. We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Sesquiterpene lactone dermatitis in the young: is atopy a risk factor?

    DEFF Research Database (Denmark)

    Paulsen, Evy; Otkjaer, Aksel; Andersen, Klaus E

    2008-01-01

    was to present another 2 cases in children and review the literature. Screening with sesquiterpene lactone (SL) mix has shown prevalence of 0.5% and 1.8% in 2 studies, while screening with 2 different Compositae mixes detected 4.2% and 2.6% positives among children and adolescents. All individual case reports...

  10. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Dalgaard, Paw; Andersen, Jens Bo

    2005-01-01

    Bioluminescence is a common phenotype in marine bacteria, such As Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets......) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non...

  11. Sesquiterpene lactone trilobolide activates production of interferon-γ and nitric oxide

    Czech Academy of Sciences Publication Activity Database

    Kmoníčková, Eva; Harmatha, Juraj; Vokáč, Karel; Kostecká, Petra; Farghali, H.; Zídek, Zdeněk

    2010-01-01

    Roč. 81, č. 8 (2010), s. 1213-1219 ISSN 0367-326X R&D Projects: GA ČR GA305/07/0061 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : trilobolide * nitric oxide * sesquiterpene lactones Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.899, year: 2010

  12. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower.

    Science.gov (United States)

    Ueno, Kotomi; Furumoto, Toshio; Umeda, Shuhei; Mizutani, Masaharu; Takikawa, Hirosato; Batchvarova, Rossitza; Sugimoto, Yukihiro

    2014-12-01

    Root exudates of sunflower (Helianthus annuus L.) line 2607A induced germination of seeds of root parasitic weeds Striga hermonthica, Orobanche cumana, Orobanche minor, Orobanche crenata, and Phelipanche aegyptiaca. Bioassay-guided purification led to the isolation of a germination stimulant designated as heliolactone. FT-MS analysis indicated a molecular formula of C20H24O6. Detailed NMR spectroscopic studies established a methylfuranone group, a common structural component of strigolactones connected to a methyl ester of a C14 carboxylic acid via an enol ether bridge. The cyclohexenone ring is identical to that of 3-oxo-α-ionol and the other part of the molecule corresponds to an oxidized carlactone at C-19. It is a carlactone-type molecule and functions as a germination stimulant for seeds of root parasitic weeds. Heliolactone induced seed germination of the above mentioned root parasitic weeds, while dehydrocostus lactone and costunolide, sesquiterpene lactones isolated from sunflower root exudates, were effective only on O. cumana and O. minor. Heliolactone production in aquacultures increased when sunflower seedlings were grown hydroponically in tap water and decreased on supplementation of the culture with either phosphorus or nitrogen. Costunolide, on the other hand, was detected at a higher concentration in well-nourished medium as opposed to nutrient-deficient media, thus suggesting a contrasting contribution of heliolactone and the sesquiterpene lactone to the germination of O. cumana under different soil fertility levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.

    Science.gov (United States)

    Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé

    2016-06-28

    Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.

  14. Vapor pressures and enthalpies of vaporization of a series of γ and δ-lactones by correlation gas chromatography

    International Nuclear Information System (INIS)

    Kozlovskiy, Mikhail; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone are reported. • Equations for predicting the vapor pressures over the temperature range T = (298.15 to 350) K are provided. • Vaporization enthalpies are compared to predicted values. - Abstract: The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone used commercially as flavor ingredients are reported as are their vapor pressures over the temperature range T = (298.15 to 350) K. Vaporization enthalpies at T = 298.15 K of: (66.0 ± 3.9), (79.4 ± 4.4), (80.1 ± 4.5), (83.9 ± 4.6), and (84.61 ± 4.7) kJ · mol −1 and vapor pressures also at T = 298.15 K of: (2.8 ± 0.9), (0.12 ± 0.05), (0.09 ± 0.04), (0.04 ± 0.02), and (0.03 ± 0.02) Pa, respectively, have been evaluated by correlation gas chromatography experiments. The vaporization enthalpies of the lactones studied are reproduced within ±0.5 kJ · mol −1 using a group additivity scheme reported previously for γ- and δ-lactones. The vaporization enthalpies of the γ- and δ-lactones are compared to a similar series of ω-lactones

  15. Métodos de preparação de lactonas de anel médio Methods for the preparation of medium ring lactones

    Directory of Open Access Journals (Sweden)

    Luiz S. Longo Junior

    2007-04-01

    Full Text Available There are several natural products bearing medium ring lactone moieties, which are those containing a ring size in the range of 8 to 11 members. This review intends to cover the last 10 years (1996-2005 of the literature concerning the synthesis of medium ring lactones.

  16. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    International Nuclear Information System (INIS)

    Amin, D.

    1986-01-01

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with ( 14 C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A 2 activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents

  17. The formation of fat-derived flavour compounds during the ripening of Gouda-type cheese

    NARCIS (Netherlands)

    Alewijn, M.

    2006-01-01

    Cheese flavour is an important quality attribute, and is mainly formed during cheese ripening. Besides compounds that are formed from protein and carbohydrates, milk fat-derived compounds are essential for cheese flavour. Before, but mainly during ripening, free fatty acids, lactones, ketones,

  18. ROLE OF MEMBRANE LIPID-COMPOSITION IN THE CYTOTOXICITY OF THE SESQUITERPENE LACTONE EUPATORIOPICRIN

    NARCIS (Netherlands)

    VANDERLINDE, JCC; WOERDENBAG, HJ; MALINGRE, TM; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    The aim of the present study was to investigate a possible role of lipid peroxidation in the cytotoxicity of eupatoriopicrin, the principal sesquiterpene lactone from Eupatorum cannabinum L. Incorporation of arachidonic acid acyl chains in the phospholipids of cellular membranes of mouse fibroblast

  19. Cytotoxic and antibacterial activities of sesquiterpene lactones isolated from Tanacetum praeteritum subsp praeteritum

    NARCIS (Netherlands)

    Goren, N; Woerdenbag, HJ; BozokJohansson, C

    1996-01-01

    Ten sesquiterpene lactones and one sesquiterpene isolated from Tanacetum praeteritum subsp. praeteritum: 1 alpha,6 alpha-dihydroxyisocostic acid methyl ester (2), 1 alpha-hydroxy-1-deoxoarglanine (3), douglanin (5), santamarin (6), reynosin (7), 1-epi-tatridin B (8), ludovicin A (10), armexin (12),

  20. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene.

    Science.gov (United States)

    Elshikh, M; Moya-Ramírez, I; Moens, H; Roelants, S; Soetaert, W; Marchant, R; Banat, I M

    2017-11-01

    To assess the efficacy of rhamnolipid (mixture of monorhamnolipid and dirhamnolipid congeners), purified monorhamnolipid, dirhamnolipid and lactonic sophorolipid biosurfactants against pathogens important for oral hygiene. Acquired and produced biosurfactants were fully characterized to allow the antimicrobial activity to be assigned to the biosurfactant congeners. Antimicrobial activity was assessed using the resazurin-aided microdilution method. Mixed rhamnolipid JBR425 (MR) and lactonic sophorolipids (LSLs) demonstrated the lowest minimum inhibitory concentration (MIC) which ranged between 100 and 400 μg ml -1 against Streptococcus mutans, Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis. Combining these biosurfactants with standard antimicrobial agents namely chlorhexidine, sodium lauryl sulphate, tetracycline HCl and ciprofloxacin showed a dramatic drop in the MIC values. In addition, in vitro studies demonstrated the biosurfactants' ability to prevent and disrupt oral pathogens biofilms. The increased permeability of microorganisms treated with biosurfactant, as shown using bisbenzimide dye, in part explains the inhibition effect. The results demonstrate that rhamnolipids and LSLs have the ability to inhibit oral pathogens both in planktonic and oral biofilm states. The findings indicate the potential value of biosurfactants for both oral hygiene and the pharmaceutical industries since there is a serious need to reduce the reliance on synthetic antimicrobials and antibiotics. © 2017 The Society for Applied Microbiology.

  1. N-acyl-L-homoserine lactone-mediated regulation of the Lip secretion system in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Riedel, K.; Ohnesorg, T.; Krogfelt, K.A.

    2001-01-01

    The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible for the secr......The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible...

  2. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  3. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata

    NARCIS (Netherlands)

    Francois, G; Passreiter, CM; Woerdenbag, HJ; VanLooveren, M

    Aqueous and lipophilic extracts of Neurolaena lobata (Asteraceae), obtained from Guatemala, were tested against Plasmodium falciparum in vitro. Moreover, sesquiterpene lactones, of the germacranolide and furanoheliangolide type, isolated from N. lobata, were shown to be active against P. falciparum

  4. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    Science.gov (United States)

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  5. Discovery and Optimization of Imidazopyridine-Based Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2).

    Science.gov (United States)

    Futatsugi, Kentaro; Kung, Daniel W; Orr, Suvi T M; Cabral, Shawn; Hepworth, David; Aspnes, Gary; Bader, Scott; Bian, Jianwei; Boehm, Markus; Carpino, Philip A; Coffey, Steven B; Dowling, Matthew S; Herr, Michael; Jiao, Wenhua; Lavergne, Sophie Y; Li, Qifang; Clark, Ronald W; Erion, Derek M; Kou, Kou; Lee, Kyuha; Pabst, Brandon A; Perez, Sylvie M; Purkal, Julie; Jorgensen, Csilla C; Goosen, Theunis C; Gosset, James R; Niosi, Mark; Pettersen, John C; Pfefferkorn, Jeffrey A; Ahn, Kay; Goodwin, Bryan

    2015-09-24

    The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.

  6. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Wu, H; Song, Z; Hentzer, Morten

    2000-01-01

    The pathogenesis of Pseudomonas aeruginosa is associated with expression of virulence factors, many of which are controlled by two N:-acylhomoserine lactone (AHL)-based quorum-sensing systems. Escherichia coli strains equipped with a luxR-based monitor system expressing green fluorescent protein ...

  7. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the form...

  8. A concise route to branched erythrono-gamma-lactones. Synthesis of the leaf-closing substance potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate

    DEFF Research Database (Denmark)

    Pedersen, Daniel Sejer; Robinson, Tony V; Taylor, Dennis K

    2009-01-01

    -94% yield), including the natural plant lactone (+/-)-2-C-d-methylerythrono-1,4-lactone 1. The latter compound was treated with aqueous potassium hydroxide to afford potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate 2, which is a leaf-closing substance of Leucaena leucocephalam....

  9. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Laure Aymé

    Full Text Available Diacylglycerol acyltransferases (DGAT are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0. A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1 is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  10. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  11. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and alpha-lactone recorded in gaseous reactions of CH3CO and O2.

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH(3)CO and O(2); IR absorption spectra of CH(3)C(O)OO and alpha-lactone were observed. Absorption bands with origins at 1851+/-1, 1372+/-2, 1169+/-6, and 1102+/-3 cm(-1) are attributed to t-CH(3)C(O)OO, and those at 1862+/-3, 1142+/-4, and 1078+/-6 cm(-1) are assigned to c-CH(3)C(O)OO. A weak band near 1960 cm(-1) is assigned to alpha-lactone, cyc-CH(2)C(=O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH(3)C(O)OO is more stable than c-CH(3)C(O)OO by 3+/-2 kJ mol(-1). Based on these observations, the branching ratio for the OH+alpha-lactone channel of the CH(3)CO+O(2) reaction is estimated to be 0.04+/-0.01 under 100 Torr of O(2) at 298 K. A simple kinetic model is employed to account for the decay of CH(3)C(O)OO.

  12. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin

    DEFF Research Database (Denmark)

    Frisvad, J.C.

    2018-01-01

    A very large number of filamentous fungi has been reported to produce the small lactone mycotoxins patulin, penicillic acid and moniliformin. Among the 167 reported fungal producers of patulin, only production by 29 species could be confirmed. Patulin is produced by 3 Aspergillus species, 3...

  13. Stimulation of phosphatidylcholine breakdown and diacylglycerol production by growth factors in Swiss-3T3 cells.

    Science.gov (United States)

    Price, B D; Morris, J D; Hall, A

    1989-01-01

    The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase. PMID:2690829

  14. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells

    DEFF Research Database (Denmark)

    Kristiansen, S.; Bjarnsholt, Thomas; Adeltoft, D.

    2008-01-01

    Pseudomonas aeruginosa uses acyl-homoserine lactones to coordinate gene transcription in a process called quorum sensing (QS). The QS molecules C-4-HSL and C-12-oxo-HSL are synthesized from the universal precursor S-adenosyl methionine, which is also a precursor of polyamines in human cells...

  15. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  16. Nitric Oxide Binds to and Modulates the Activity of a Pollen Specific Arabidopsis Diacylglycerol Kinase

    KAUST Repository

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  17. The diacylglycerol kinase α/atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness.

    Directory of Open Access Journals (Sweden)

    Elena Rainero

    Full Text Available Diacylglycerol kinase α (DGKα, by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells.

  18. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1

    NARCIS (Netherlands)

    Sio, CF; Otten, LG; Cool, RH; Diggle, SP; Braun, PG; Daykin, M; Camara, M; Williams, P; Quax, WJ; Bos, R

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase

  19. Production of acylated homoserine lactones by different serotypes of Vibrio anguillarum both in culture and during infection of rainbow trout

    DEFF Research Database (Denmark)

    Buch, C.; Sigh, J.; Nielsen, J.

    2003-01-01

    Onehundred and forty-eight out of onehundred and fifty strains of Vibrio anguillarum isolated from vibriosis in Danish marine aquaculture produced bacterial communication signals, acylated homoserine lactones, eliciting a response in the Agrobacterium tumefaciens (pZLR4) monitoring system. One...... strain, a serotype O4, induced a strong response in the Chromobacterium violaceum (CV026) monitoring system. Profiles of AHLs determined by TLC separation revealed the presence of at least four AHLs and a compound similar to N-3-oxo-decanoyl homoserine lactone (3-oxo-C10-HSL) was present in all strains...

  20. Gram-positive bacterial lipoglycans based on a glycosylated diacylglycerol lipid anchor are microbe-associated molecular patterns recognized by TLR2.

    Directory of Open Access Journals (Sweden)

    Landry Blanc

    Full Text Available Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs, of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.

  1. Routine patch testing with the sesquiterpene lactone mix in Europe: a 2-year experience

    DEFF Research Database (Denmark)

    Paulsen, E; Andersen, Klaus Ejner; Brandão, F M

    1999-01-01

    To test the screening value of the sesquiterpene lactone (SL) mix in Europe today and describe epidemiological and clinical features of Compositae-sensitive patients, the SL mix 0.1% pet. was included in the standard patch test series in 11 European clinics. 10,695 patients were tested, and 106 (1...

  2. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  3. Confirmation of the definitive structure of Fleishmann`s lactone by NMR; Confirmacao da estrutura definitiva da lactona de Fleishmann por RMN

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa Villar, Jose Daniel [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Quimica

    1993-12-31

    The reaction between 4-hydroxy-6-methyl-pyrone and ethyl-acetic-acetate produces a compound known since the beginning of the century, named Fleishman lactone in honor to its discover. The structure of this compound has been the aim of several researches due to its similarity with several poly-pyrones which are important in synthesis of important products. This work presents the accurate determination of the structure of the Fleishman lactone. The methodology is presented as well as confirmation tests 9 refs., 2 tabs.

  4. Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes.

    Science.gov (United States)

    Zulian, Sandra E; Ilincheta de Boschero, Mónica G; Giusto, Norma M

    2006-10-01

    The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity. Copyright 2006 Wiley-Liss, Inc.

  5. 9-Hydroxyfurodysinin-O-ethyl Lactone: A New Sesquiterpene Isolated from the Tropical Marine Sponge Dysidea arenaria

    Directory of Open Access Journals (Sweden)

    P. Karuso

    2005-10-01

    Full Text Available A new sesquiterpene, 9-hydroxyfurodysinin-O-ethyl lactone, has been isolated from a New Caledonian Dysidea arenaria, along with three known compounds. The possible incorporation of the ethyl ether from the extraction solvent is discussed.

  6. Sesquiterpene lactone mix as a diagnostic tool for Asteraceae allergic contact dermatitis: chemical explanation for its poor performance and Sesquiterpene lactone mix II as a proposed improvement.

    Science.gov (United States)

    Jacob, Mathias; Brinkmann, Jürgen; Schmidt, Thomas J

    2012-05-01

    Two preparations are currently in use for the diagnosis of allergic contact dermatitis caused by Asteraceae: (i) Sesquiterpene lactone (SL) mix [three pure sesquiterpene lactones (STLs)], whose use has been questioned, owing to an insufficient rate of true-positive results; and (ii) Compositae mix, consisting of five Asteraceae extracts, which is problematic because of lack of standardization and questionable reproducibility. To analyse the reasons for the narrow sensitivity of SL mix from a chemoinformatic point of view, and to propose a solution by rational selection of alternative constituents for a new SL mix II covering a broader cohort of allergic patients. Structural and biological information on allergenic STLs was retrieved from databases and the literature, and molecular modelling and chemoinformatic computations were performed. An explanation for the insufficient hit rate of SL mix is that the three constituents possess extremely similar molecular structures/properties and do not represent well the structural diversity of allergenic STLs. STLs that are known as constituents of Compositae mix plants show much a wider diversity, which explains the higher positive rate. On the basis of their positions in chemical property space, a new collection of STLs that more evenly cover the overall structural diversity spectrum is proposed. SL mix II is likely to detect a larger number of patients sensitized to Asteraceae. © 2012 John Wiley & Sons A/S.

  7. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.

    NARCIS (Netherlands)

    Leferink, N.G.H.; Berg, van den W.A.M.; Berkel, van W.J.H.

    2008-01-01

    l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant

  8. Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; de Wildeman, Stefaan

    2018-01-01

    Baeyer–Villiger monooxygenases (BVMOs) are biocatalysts that are able to convert cyclic ketones into lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.

  9. Exploring the substrate scope of Baeyer-Villiger monooxygenases with branched lactones as entry towards polyesters

    NARCIS (Netherlands)

    Delgove, Marie; Fürst, Maximilian; Fraaije, Marco; Bernaerts, Katrien; De Wildeman, Stefaan M A

    2018-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts able to convert cyclic ketones to lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters.The product

  10. Characteristics of N-Acylhomoserine Lactones Produced by Hafnia alvei H4 Isolated from Spoiled Instant Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Hong-Man Hou

    2017-04-01

    Full Text Available This study aimed to identify N-acylhomoserine lactone (AHL produced by Hafnia alvei H4, which was isolated from spoiled instant sea cucumber, and to investigate the effect of AHLs on biofilm formation. Two biosensor strains, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens KYC55, were used to detect the quorum sensing (QS activity of H. alvei H4 and to confirm the existence of AHL-mediated QS system. Thin layer chromatography (TLC and high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS analysis of the AHLs extracted from the culture supernatant of H. alvei H4 revealed the existence of at least three AHLs: N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxo-octanoyl-l-homoserine lactone (3-oxo-C8-HSL, and N-butyryl-l-homoserine lactone (C4-HSL. This is the first report of the production of C4-HSL by H. alvei. In order to determine the relationship between the production of AHL by H. alvei H4 and bacterial growth, the β-galactosidase assay was employed to monitor AHL activity during a 48-h growth phase. AHLs production reached a maximum level of 134.6 Miller unites at late log phase (after 18 h and then decreased to a stable level of about 100 Miller unites. AHL production and bacterial growth displayed a similar trend, suggesting that growth of H. alvei H4 might be regulated by QS. The effect of AHLs on biofilm formation of H. alvei H4 was investigated by adding exogenous AHLs (C4-HSL, C6-HSL and 3-oxo-C8-HSL to H. alvei H4 culture. Biofilm formation was significantly promoted (p < 0.05 by 5 and 10 µM C6-HSL, inhibited (p < 0.05 by C4-HSL (5 and 10 µM and 5 µM 3-oxo-C8-HSL, suggesting that QS may have a regulatory role in the biofilm formation of H. alvei H4.

  11. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Christensen, Allan Beck; Flodgaard, Lars

    2004-01-01

    Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL......-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an R-f value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS...

  12. Synthesis of novel kavain-like derivatives and evaluation of their cytotoxic activity

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Patricia de A.; Agustini, Taciane; Eifler-Lima, Vera L. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil). Faculdade de Farmacia. Lab. de Sintese Organica Medicinal; Petrignet, Julien; Cariou, Alexandre; Gree, Rene [Universite de Rennes 1, Rennes (France). Lab. de Chimie Therapeutique; Gouault, Nicolas; Lohezic-Ledevehat, Francoise; David, Michele [CNRS UMR, Universite de Rennes 1, Rennes (France). Lab. de Chimie et Photonique Moleculaires

    2009-07-01

    Palladium-catalyzed cross coupling reactions (Sonogashira-Hagihara, Suzuki-Miyaura, and Heck) coupling and nickel hydride-mediated tandem isomerization aldolisation have been used for the synthesis of three series of {delta}-valerolactones substituted in positions 3, 4, 5 and 6 of the lactone ring. The 26 kavaien-like derivatives were tested against three cell lines and five of them exhibited a weak cytotoxic activity. (author)

  13. Microbial Stereoselective One-Step Conversion of Diols to Chiral Lactones in Yeast Cultures

    Directory of Open Access Journals (Sweden)

    Filip Boratyński

    2015-12-01

    Full Text Available It has been shown that whole cells of different strains of yeast catalyze stereoselective oxidation of meso diols to the corresponding chiral lactones. Among screening-scale experiments, Candida pelliculosa ZP22 was selected as the most effective biocatalyst for the oxidation of monocyclic diols 3a–b with respect to the ratio of high conversion to stereoselectivity. This strain was used in the preparative oxidation, affording enantiomerically-enriched isomers of lactones: (+-(3aR,7aS-cis-hexahydro-1(3H -isobenzofuranone (2a and (+-(3aS,4,7,7aR-cis-tetrahydro-1(3H-isobenzofuranone (2b. Scaling up the culture growth, as well as biotransformation conditions has been successfully accomplished. Among more bulky substrates, bicyclic diol 3d was totally converted into enantiomerically-pure exo-bridged (+-(3aR,4S,7R,7aS-cis-tetrahydro-4,7-methanoisobenzofuran -1(3H-one (2d by Yarrovia lipolytica AR71. Microbial oxidation of diol 3f by Candida sake AM908 and Rhodotorula rubra AM4 afforded optically-pure cis-3-butylhexahydro-1(3H -isobenzofuranone (2f, however with low conversion.

  14. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  15. Evidence that Plasmodium falciparum diacylglycerol acyltransferase is essential for intraerythrocytic proliferation

    International Nuclear Information System (INIS)

    Palacpac, Nirianne Marie Q.; Hiramine, Yasushi; Seto, Shintaro; Hiramatsu, Ryuji; Horii, Toshihiro; Mitamura, Toshihide

    2004-01-01

    In triacylglycerol (TAG)-accumulating organisms, the physiological roles of diacylglycerol acyltransferase (DGAT), a principal enzyme in the major biosynthetic pathway for TAG, appear to be diverse. Apicomplexan parasite, Plasmodium falciparum, shows unique features in TAG metabolism and trafficking during intraerythrocytic development, and unlike most eukaryotes, only one open reading frame (ORF) encoding a candidate DGAT could be found in its genome. However, whether this candidate ORF encodes P. falciparum DGAT and its physiological relevance have not been assessed. Here, we demonstrate that the ORF is transcribed as a ∼3.6 kb single mRNA throughout intraerythrocytic development, markedly elevated at trophozoite, schizont, and segmented schizont, and indeed encodes a protein exhibiting DGAT activity. Further, we provide evidence that the parasite in which the ORF was disrupted via double crossover recombination cannot be enriched, implying a fundamental role of PfDGAT in intraerythrocytic proliferation

  16. N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant

    Czech Academy of Sciences Publication Activity Database

    Sieper, T.; Forczek, Sándor; Matucha, Miroslav; Kraemer, P.; Hartmann, A.; Schroeder, P.

    2014-01-01

    Roč. 201, č. 2 (2014), s. 545-555 ISSN 1469-8137 Institutional support: RVO:61389030 Keywords : barley (Hordeum vulgare) * monoclonal antibodies * N-acyl-homoserine lactones (HSLs) Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  17. (1S-1,2-O-Benzylidene-α-d-glucurono-6,3-lactone

    Directory of Open Access Journals (Sweden)

    David J. Watkin

    2009-02-01

    Full Text Available X-ray crystallographic analysis has established that the major product from the protection of d-glucoronolactone with benzaldehyde is (1S-1,2-O-benzylidene-α-d-glucurono-6,3-lactone, C13H12O6, rather than the R epimer. The crystal structure exists as O—H...O hydrogen-bonded chains of molecules lying parallel to the a axis. The absolute configuration was determined by the use of d-glucuronolactone as the starting material.

  18. Weak and saturable protein-surfactant interactions in the denaturation of apo-alpha-lactalbumin by acidic and lactonic sophorolipid

    Directory of Open Access Journals (Sweden)

    Kell K Andersen

    2016-11-01

    Full Text Available Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However knowledge of such interactions is limited. Here we present a study of the interactions between the model protein apo-alpha-lactalbumin and the biosurfactant sophorolipid (SL produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL is sparingly soluble and has a lower critical micelle concentration than the acidic form (acidSL. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL, with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL, it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and nonionic or zwitterionic surfactants. Inclusion of lactSL as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent industry.

  19. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata.

    Science.gov (United States)

    François, G; Passreiter, C M; Woerdenbag, H J; Van Looveren, M

    1996-04-01

    Aqueous and lipophilic extracts of Neurolaena lobata (Asteraceae), obtained from Guatemala, were tested against Plasmodium falciparum in vitro. Moreover, sesquiterpene lactones, of the germacranolide and furanoheliangolide type, isolated from N. lobata, were shown to be active against P. falciparum in vitro. In addition to their antiplasmodial activity, their cytotoxic effects on human carcinoma cell lines were evaluated. Structure-activity relationships are discussed.

  20. Effect of γ-lactones and γ-lactams compounds on Streptococcus mutans biofilms

    Directory of Open Access Journals (Sweden)

    Mariane Beatriz Sordi

    2018-02-01

    Full Text Available Abstract Considering oral diseases, antibiofilm compounds can decrease the accumulation of pathogenic species such as Streptococcus mutans at micro-areas of teeth, dental restorations or implant-supported prostheses. Objective To assess the effect of thirteen different novel lactam-based compounds on the inhibition of S. mutans biofilm formation. Material and methods We synthesized compounds based on γ-lactones analogues from rubrolides by a mucochloric acid process and converted them into their corresponding γ-hydroxy-γ-lactams by a reaction with isobutylamine and propylamine. Compounds concentrations ranging from 0.17 up to 87.5 μg mL-1 were tested against S. mutans. We diluted the exponential cultures in TSB and incubated them (37°C in the presence of different γ-lactones or γ-lactams dilutions. Afterwards, we measured the planktonic growth by optical density at 630 nm and therefore assessed the biofilm density by the crystal violet staining method. Results Twelve compounds were active against biofilm formation, showing no effect on bacterial viability. Only one compound was inactive against both planktonic and biofilm growth. The highest biofilm inhibition (inhibition rate above 60% was obtained for two compounds while three other compounds revealed an inhibition rate above 40%. Conclusions Twelve of the thirteen compounds revealed effective inhibition of S. mutans biofilm formation, with eight of them showing a specific antibiofilm effect.

  1. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism.

    Science.gov (United States)

    Yu, Yi-Hao; Ginsberg, Henry N

    2004-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC2.3.1.20), a key enzyme in triglyceride (TG) biosynthesis, not only participates in lipid metabolism but also influences metabolic pathways of other fuel molecules. Changes in the expression and/or activity levels of DGAT may lead to changes in systemic insulin sensitivity and energy homeostasis. The synthetic role of DGAT in adipose tissue, the liver, and the intestine, sites where endogenous levels of DGAT activity and TG synthesis are high, is relatively clear. Less clear is whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs. Future studies with tissue-specific overexpression and/or knockout in these animal models would be expected to shed additional light on these issues.

  2. 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase.

    Science.gov (United States)

    Kolesnick, R N; Clegg, S

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C

  3. Diacylglycerol kinase ζ inhibits myocardial atrophy and restores cardiac dysfunction in streptozotocin-induced diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sasaki Toshiki

    2008-02-01

    Full Text Available Abstract Background Activation of the diacylglycerol (DAG-protein kinase C (PKC pathway has been implicated in the pathogenesis of a number of diabetic complications. Diacylglycerol kinase (DGK converts DAG to phosphatidic acid and acts as an endogenous regulator of PKC activity. Akt/PKB is associated with a downstream insulin signaling, and PKCβ attenuates insulin-stimulated Akt phosphorylation. Methods and Results We examined transgenic mice with cardiac-specific overexpression of DGKζ (DGKζ-TG compared to wild type (WT mice in streptozotocin-induced (STZ, 150 mg/kg diabetic and nondiabetic conditions. After 8 weeks, decreases in heart weight and heart weight/body weight ratio in diabetic WT mice were inhibited in DGKζ-TG mice. Echocardiography at 8 weeks after STZ-injection demonstrated that decreases in left ventricular end-diastolic diameter and fractional shortening observed in WT mice were attenuated in DGKζ-TG mice. Thinning of the interventricular septum and the posterior wall in diabetic WT hearts were blocked in DGKζ-TG mice. Reduction of transverse diameter of cardiomyocytes isolated from the left ventricle in diabetic WT mice was attenuated in DGKζ-TG mice. Cardiac fibrosis was much less in diabetic DGKζ-TG than in diabetic WT mice. Western blots showed translocation of PKCβ and δ isoforms to membrane fraction and decreased Akt/PKB phosphorylation in diabetic WT mouse hearts. However in diabetic DGKζ-TG mice, neither translocation of PKC nor changes Akt/PKB phosphorylation was observed. Conclusion DGKζ modulates intracellular signaling and improves the course of diabetic cardiomyopathy. These data may suggest that DGKζ is a new therapeutic target to prevent or reverse diabetic cardiomyopathy.

  4. Skin penetration behaviour of sesquiterpene lactones from different Arnica preparations using a validated GC-MSD method.

    Science.gov (United States)

    Wagner, Steffen; Merfort, Irmgard

    2007-01-04

    Preparations of Arnica montana L. are widely used for the topical treatment of inflammatory diseases. The anti-inflammatory activity is mainly attributed to their sesquiterpene lactones (SLs) from the helenalin and 11alpha,13-dihydrohelenalin type. To study the penetration kinetics of SLs in Arnica preparations, a stripping method with adhesive tape and pig skin as a model was used. For the determination of SLs in the stripped layers of the stratum corneum (SC), a gas chromatography/mass spectrometry method was developed and validated. Thereby the amount of helenalin derivatives was calculated as helenalin isobutyrate, and 11alpha,13-dihydrohelenalin derivatives as 11alpha,13-dihydrohelenalin methacrylate. This GC-MSD method is suitable also to determine low amounts of SLs in Arnica preparations. The penetration behaviour of one gel preparation and two ointment preparations was investigated. The SLs of all preparations show a comparable penetration in and a permeation through the stratum corneum, the uppermost part of the skin. Interestingly, the gel preparation showed a decrease of the penetration rate over 4h, whereas the penetration rate of ointments kept constant over time. Moreover, we could demonstrate that the totally penetrated amount of SLs only depends on the kind of the formulation and of the SLs-content in the formulation but not on the SLs composition or on the used extraction agent.

  5. Therapeutic strategies for metabolic diseases: Small-molecule diacylglycerol acyltransferase (DGAT) inhibitors.

    Science.gov (United States)

    Naik, Ravi; Obiang-Obounou, Brice W; Kim, Minkyoung; Choi, Yongseok; Lee, Hyun Sun; Lee, Kyeong

    2014-11-01

    Metabolic diseases such as atherogenic dyslipidemia, hepatic steatosis, obesity, and type II diabetes are emerging as major global health problems. Acyl-CoA:diacylglycerol acyltransferase (DGAT) is responsible for catalyzing the final reaction in the glycerol phosphate pathway of triglycerol synthesis. It has two isoforms, DGAT-1 and DGAT-2, which are widely expressed and present in white adipose tissue. DGAT-1 is most highly expressed in the small intestine, whereas DGAT-2 is primarily expressed in the liver. Therefore, the selective inhibition of DGAT-1 has become an attractive target with growing potential for the treatment of obesity and type II diabetes. Furthermore, DGAT-2 has been suggested as a new target for the treatment of DGAT-2-related liver diseases including hepatic steatosis, hepatic injury, and fibrosis. In view the discovery of drugs that target DGAT, herein we attempt to provide insight into the scope and further reasons for optimization of DGAT inhibitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Diacylglycerol acyltransferase-1 (DGAT1 inhibition perturbs postprandial gut hormone release.

    Directory of Open Access Journals (Sweden)

    Hua V Lin

    Full Text Available Diacylglycerol acyltransferase-1 (DGAT1 is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1 and peptide YY (PYY only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4 inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.

  7. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.

    Science.gov (United States)

    Eichmann, Thomas Oliver; Lass, Achim

    2015-10-01

    The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

  8. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  9. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk

    NARCIS (Netherlands)

    Bovenhuis, H.; Visker, M.H.P.W.; Poulsen, N.A.; Sehested, J.; Valenberg, van H.J.F.; Arendonk, van J.A.M.; Larsen, L.B.; Buitenhuis, A.J.

    2016-01-01

    Several studies have described associations between the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and routinely collected milk production traits but not much is known about effects of the DGAT1 polymorphism on detailed milk composition. The aim of this study was to estimate

  10. A molecular mechanism for diacylglycerol-mediated promotion of negative caloric balance

    Directory of Open Access Journals (Sweden)

    Yanai H

    2009-12-01

    Full Text Available Hidekatsu Yanai1,2, Yoshiharu Tomono3, Kumie Ito1,2, Yuji Hirowatari4, Hiroshi Yoshida1,5, Norio Tada1,21Department of Internal Medicine, 2Institute of Clinical Medicine and Research, 3Department of Nutrition, 5Department of Laboratory Medicine, Jikei University School of Medicine, chiba, Japan; 4Bioscience Division, Tosoh Corporation, Kanagawa, JapanAims: A substitution of diacylglycerol (DAG oil for triacylglycerol (TAG oil in diet has been reported to reduce body fat and body weight, possibly by increasing postprandial energy expenditure (EE. We have previously studied plasma serotonin, which increases EE and exists in the small intestine, in individuals who ingested TAG and DAG oil, and found that DAG ingestion elevates plasma serotonin levels by about 50% compared with TAG ingestion. We studied the molecular mechanisms for DAG-mediated increase in serotonin and EE.Methods: We studied effects of 1-monoacylglycerol and 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells (the human intestinal cell line, n = 8. Further, we studied effects of 1- and 2-monoacylglycerol, and serotonin on expression of mRNA associated with β-oxidation, FA metabolism, and thermogenesis, in the Caco-2 cells (n = 5.Results: 1-monoacylglycerol (100 µM 1-monooleyl glycerol [1-MOG] significantly increased serotonin release from the Caco-2 cells compared with 2-monoacylglycerol (100 µM 2-MOG by 36.6%. Expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2 were significantly higher in 100 µM 1-MOG-treated Caco-2 cells than 100 µM 2-MOG-treated cells by 12.8%, 23.7%, and 35.1%, respectively. Further, expression of mRNA of ACO, medium-chain acyl-CoA dehydrogenase, FAT, and UCP-2 were significantly elevated in serotonin (400 nM-treated Caco-2 cells compared with cells incubated without serotonin by 28.7%, 30.1%, and 39.2%, respectively.Conclusions: Our

  11. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments

    Science.gov (United States)

    Lumaret, Jean-Pierre; Errouissi, Faiek; Floate, Kevin; Römbke, Jörg; Wardhaugh, Keith

    2012-01-01

    The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin

  12. Roles of Acyl-CoA:Diacylglycerol Acyltransferases 1 and 2 in Triacylglycerol Synthesis and Secretion in Primary Hepatocytes.

    Science.gov (United States)

    Li, Chen; Li, Lena; Lian, Jihong; Watts, Russell; Nelson, Randal; Goodwin, Bryan; Lehner, Richard

    2015-05-01

    Very low-density lipoprotein assembly and secretion are regulated by the availability of triacylglycerol. Although compelling evidence indicates that the majority of triacylglycerol in very low-density lipoprotein is derived from re-esterification of lipolytic products released by endoplasmic reticulum-associated lipases, little is known about roles of acyl-CoA:diacylglycerol acyltransferases (DGATs) in this process. We aimed to investigate the contribution of DGAT1 and DGAT2 in lipid metabolism and lipoprotein secretion in primary mouse and human hepatocytes. We used highly selective small-molecule inhibitors of DGAT1 and DGAT2, and we tracked storage and secretion of lipids synthesized de novo from [(3)H]acetic acid and from exogenously supplied [(3)H]oleic acid. Inactivation of individual DGAT activity did not affect incorporation of either radiolabeled precursor into intracellular triacylglycerol, whereas combined inactivation of both DGATs severely attenuated triacylglycerol synthesis. However, inhibition of DGAT2 augmented fatty acid oxidation, whereas inhibition of DGAT1 increased triacylglycerol secretion, suggesting preferential channeling of separate DGAT-derived triacylglycerol pools to distinct metabolic pathways. Inactivation of DGAT2 impaired cytosolic lipid droplet expansion, whereas DGAT1 inactivation promoted large lipid droplet formation. Moreover, inactivation of DGAT2 attenuated expression of lipogenic genes. Finally, triacylglycerol secretion was significantly reduced on DGAT2 inhibition without altering extracellular apolipoprotein B levels. Our data suggest that DGAT1 and DGAT2 can compensate for each other to synthesize triacylglycerol, but triacylglycerol synthesized by DGAT1 is preferentially channeled to oxidation, whereas DGAT2 synthesizes triacylglycerol destined for very low-density lipoprotein assembly. © 2015 American Heart Association, Inc.

  13. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  14. Molecular identification of tuliposide B-converting enzyme: a lactone-forming carboxylesterase from the pollen of tulip.

    Science.gov (United States)

    Nomura, Taiji; Murase, Tatsunori; Ogita, Shinjiro; Kato, Yasuo

    2015-07-01

    6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  15. Anthelmintic activity of chicory (Cichorium intybus): in vitro effects on swine nematodes and relationship to sesquiterpene lactone composition

    DEFF Research Database (Denmark)

    Williams, Andrew; Pena-Espinoza, Miguel Angel; Boas, Ulrik

    2016-01-01

    of a specific anthelmintic effect rather than generalized toxicity. Ultra-high liquid chromatography-mass spectrometry analysis revealed that the purified extracts were rich in sesquiterpene lactones (SL), and that the SL profile differed significantly between cultivars. This is the first report of anthelmintic...

  16. Sesquiterpene lactones. XXXIII. Guaianolides in the subgenus Psephellus (Cass. Schmalh., genus Centaurea L.

    Directory of Open Access Journals (Sweden)

    Gerard Nowak

    2014-01-01

    Full Text Available Sesquiterpene lactones were found to occur in all of the studied species of the subgenus Psephellus (Cass. Schmalh. Differing compositions were found in the representatives of three sections. In Centaurea declinata MB. from the section Leucophylle (Sosn. Sosn.. 15-deoxyrepin, linichlorin B and cynaropicrin were found. Linichlorin B dominated in Centaurea hypoleucu DC. from section Hypoleucae (Sosn. Sosn., while in the species classified in section Psephellus Sosn., repin, acroptilin, jenerin, centaurepensin and, in some, also cynaropicrin. dominated.

  17. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY USE IN ANALYSIS OF SESQUITERPENIC LACTONES OF LAURUS NOBILIS

    Directory of Open Access Journals (Sweden)

    S. P. Senchenko

    2015-01-01

    Full Text Available We have developed a methodology of quantitative determination of sesquiterpenic lactones (costunolide and dehydrocostuslactone in leaves of Laurus nobilis using reversed phase HPLC. We have determined optimal conditions for the substances under study extraction from active parts. Using the developed methods we have established that costunolide and dehydrocostuslactone content in Laurus nobilis samples in terms of absolutely dry active parts is 0.99 and 0.26% correspondingly.

  18. Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF

    DEFF Research Database (Denmark)

    Steidle, A.; Allesen-Holm, M.; Riedel, K.

    2002-01-01

    Recent reports have shown that several strains of Pseudomonas putida produce N-acylhomoserine lactones (AHLs). These signal molecules enable bacteria to coordinately express certain phenotypic traits in a density-dependent manner in a process referred to as quorum sensing. In this study we have...

  19. INVESTIGATION OF HYPOLIPIDEMIC EFFECT OF SESQUITERPENE Γ-LACTONE AHILLIN IN HEPATOMA TISSUE CULTURE (HTC CELLS

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone ahillin in hepatoma tissue culture (HTC cells.Material and methods. In this study we’ve evaluated the effect of γ-lactone sesquiterpene aсhillin and gemfibrozil (comparator drug on the lipid content in the hepatoma tissue culture (HTC cell which were incubated with a fat emulsion lipofundin by fluorescent method with vital dye Nile Redand staining the cells with the dye Oil Red O. The cell viability was investigated using the MTT-test and staining with Trypan blue.Results. Cultivation cells HTC with aсhillin and gemfibrozilat concentrations ranging from 0.5 to1.5 mM and from0.25 mM to0.5 mM, respectively, resulted in dose-dependent decrease of the fluorescence’s intensity Nile Red. It reflects a decrease in lipid content in the cells. At these concentrations the drugs didn’t have cytotoxic effect and the cell viability didn’t change compared to the control culture.An experimental hyperlipidemia in the hepatoma culture cells was induced by adding to the incubation medium a fat emulsion lipofundin at a final concentration 0.05%. The intensity of fluorescence Nile Red in the cells was increased 4 fold (p < 0.05. This result suggests the significant accumulation of lipids in the cell’s cytosol and confirmed by microscopy after staining neutral lipids with the dye Oil Red O. Under these conditions aсhillin and gemfibrozil reduced lipid content in cells and hadthe effect at concentrations of0.5 mM and0.25 mM respectively.Conclusion. In the lipofundin-mediated model of hyperlipidemia the sesquiterpene lactone aсhillin prevents the lipid accumulation in cells. It confirms by decrease of fluorescence Nile Red and reduction lipid drops which were stained with Oil Red O in cytosol. To establish the molecular targets of aсhillin’saction on lipid metabolism in cell culture HTC we need to investigate a gene expression of key enzymes of lipid metabolism.

  20. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  1. Functional assignment of Glu386 and Arg388 in the active site of l-galactono-¿-lactone dehydrogenase

    NARCIS (Netherlands)

    Leferink, N.G.H.; Jose, M.D.F.; Berg, van den W.A.M.; Berkel, van W.J.H.

    2009-01-01

    The flavoenzyme l-galactono-¿-lactone dehydrogenase (GALDH) catalyzes the terminal step of vitamin C biosynthesis in plants. Little is known about the catalytic mechanism of GALDH and related aldonolactone oxidoreductases. Here we identified an essential Glu–Arg pair in the active site of GALDH from

  2. Safety and clinical efficacy of tenvermectin, a novel antiparasitic 16-membered macrocyclic lactone antibiotics.

    Science.gov (United States)

    Fei, Chenzhong; She, Rufeng; Li, Guiyu; Zhang, Lifang; Fan, Wushun; Xia, Suhan; Xue, Feiqun

    2018-05-30

    Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD 50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD 50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing. Copyright © 2018 Elsevier B.V. All

  3. Synthesis and antifungal activity of new bis-{gamma}-lactones analogous to avenaciolide

    Energy Technology Data Exchange (ETDEWEB)

    Magaton, Andreia da Silva; Rubinger, Mayura M. M.; Macedo Junior, Fernando C. de [Vicosa Univ., MG (Brazil). Dept. de Quimica]. E-mail: mayura@ufv.br; Zambolim, Laercio [Vicosa Univ., MG (Brazil). Dept. de Fitopatologia

    2007-03-15

    In a study of the antifungal activity of selected compounds as potentials agrochemicals, we have prepared and characterized by elemental analyses, infrared and NMR spectroscopies three new bis-{gamma}-lactones analogous to avenaciolide, where the octyl group of this natural product was replaced by heptyl, hexyl and pentyl groups. The effects on the mycelia development and conidia germination of Colletotrichum gloesporioides of these compounds and their synthetic precursors were evaluated in vitro. The title compounds were active in the tested conditions, while all the synthetic precursors were inactive. The preparation and characterization of 15 new synthetic intermediates are also described. (author)

  4. Synthesis and study of rare earth ortho-hydroxyphenyliminodiacetates with open lactone ring

    International Nuclear Information System (INIS)

    Martynenko, L.I.; Mitrofanova, N.D.; Muratova, N.M.; Kurbatova, S.V.

    1978-01-01

    New La, Pr, Nd, Sm, Dy, Er, and Y o-oxyphenyliminodiacetates of Ln 2 (HL) 3 xnH 2 O composition have been synthesized using the reaction of Ln chloride solutions with o-oxyphenyliminodiacetic acid previously converted into a soluble K 2 HL salt. According to the data of infrared spectra, the ligand contains an open lactone ring and ionized carboxylic groups. At the temperature of 80-190 deg the complexes undergo dehydration. The order of dehydration reaction for La, Nd, and Y complexes is equal to 2, activation energies are equal to 16.9, 12.5 and 13.2 kcal/mol, respectively

  5. Rubrolides as model for the development of new lactones and their aza analogs as potential photosynthesis inhibitors.

    Science.gov (United States)

    Pereira, Ulisses A; Barbosa, Luiz C A; Demuner, Antônio J; Silva, Antônio A; Bertazzini, Michele; Forlani, Giuseppe

    2015-07-01

    Natural phytotoxins and their synthetic analogs are a potential source of new bioactive compounds for agriculture. Analogs of rubrolides, a class of γ-alkylidene-γ-lactones isolated from different ascidians, have been shown to interfere with the photosynthetic electron-transport chain, yet their activity needs to be improved. With this aim, ten 5-aryl-6-benzyl-4-bromopyridazin-3(2H)-ones were prepared in yields ranging from 44 to 88% by reaction of their correspondent γ-alkylidene-γ-lactones with NH2 NH2 . The structures of these rubrolide analogs were determined by (1) H- and (13) C-NMR, 2D-NMR (COSY and HETCOR), NOE difference, and MS techniques. These compounds were evaluated for their abilities of interfering with the light-driven reduction of ferricyanide by isolated spinach chloroplasts. Lactones with electron-withdrawing substituents in the para-position of the benzylidene ring were the most effective inhibitors. Characterization of the activity of 11b/11b' suggested a mechanism based on the interaction with the plastoquinone binding site of photosystem II. Addition of several compounds to the culture medium of a cyanobacterial model strain was found to inhibit algal growth. However, the relative effectiveness was not consistent with their activity in vitro, suggesting the occurrence of multiple targets and/or detoxyfication mechanisms. Indeed, the compounds showed differential effects on the heterotrophic growth of some crop species, Cucumis sativus and Sorghum bicolor. Pyridazin-3(2H)-ones 12e, 12i, and 12j, which have been found poorly active against the photosynthetic electron transport, were the most effective in inhibiting the growth of some weeds, Ipomoea grandifolia and Brachiaria decumbens, under greenhouse conditions. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis

    DEFF Research Database (Denmark)

    Geisenberger, O; Givskov, M; Riedel, K

    2000-01-01

    The N-acyl-L-homoserine lactones (AHLs) produced by sequential Pseudomonas aeruginosa isolates from chronically infected patients with cystic fibrosis were analyzed by thin-layer chromatography. It is demonstrated that both the amounts and the types of molecules synthesized by isolates from...

  7. Up-regulation of hepatic Acyl CoA: Diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.

    Science.gov (United States)

    Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui

    2004-07-01

    Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to

  8. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model.

    Science.gov (United States)

    Gorden, D Lee; Ivanova, Pavlina T; Myers, David S; McIntyre, J Oliver; VanSaun, Michael N; Wright, J Kelly; Matrisian, Lynn M; Brown, H Alex

    2011-01-01

    The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD. Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts. Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts. Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD.

  9. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  10. PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily

    NARCIS (Netherlands)

    Wahjudi, Mariana; Papaioannou, Evelina; Hendrawati, Oktavia; van Assen, Aart H. G.; van Merkerk, Ronald; Cool, Robbert H.; Poelarends, Gerrit J.; Quax, Wim

    The Pseudomonas aeruginosa PAO1 genome has at least two genes, pvdQ and quiP, encoding acylhomoserine lactone (AHL) acylases. Two additional genes, pa 1893 and pa0305, have been predicted to encode penicillin acylase proteins, but have not been characterized. Initial studies on a pa0305 transposon

  11. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  12. Effects of vitamin E and its derivativeson diabetic nephropathy in Ratsand identification of diacylglycerol kinase subtype involved in the improvement of diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Tomoko Kakehi

    2017-10-01

    Full Text Available Background: Diabetes is a significant social issue. Controlling diabetic complications such as nephropathy is very important for QOL of diabetic patients. One of the mechanisms which causes diabetic complications is the abnormal activation of protein kinase C (PKC by increased diacylglycerol (DG from hyperglycemia. Diacylglycerol kinase (DGK can attenuate PKC activity by converting DG to phosphatidic acid. Thus far, d-a-tocopherol (VtE treatment has been shown to prevent early changes of diabetic renal dysfunctions by activating DGK. However, it is still unknown whether VtE derivatives improve diabetic nephropathy similarly to VtE, and which DGK subtype is activated by VtE and/or the derivatives. Objective: The purpose of the study was to investigate effects of VtE and its derivatives on diabetic nephropathy in rats, in addition to identifying the DGK subtype involved in the improvement of nephropathy in vivo. Methods: To induce diabetes in rats, six weeks old male Sprague-Dawley rats were intraperitonealy administrated 65 mg/kg streptozocin (STZ in 20 mM citrate buffer. For two or eight weeks, 40 mg/kg VtE, 44 mg/kg acetate VtE (aVtE or 49.3 mg/kg succinate VtE (sVtE was intraperitonealy administrated every other day after STZ administration. The blood glucose level, body weight, and kidney weight, in addition to urinary volume, albumin, and BUN were measured every week after STZ administration. Additionally, in order to identify the DGK subtype activated by VtE and aVtE, the DGK subtype expressed in the rat glomerulus was checked by RT-PCR and western blotting, and the activity in the glomerulus from the rats before and after the VtE and aVtE treatments were measured in the presence or absence of EGTA. Results: Averages of kidney weight and BUN of rats treated with VtE, aVtE and sVtE for 8 weeks were reduced, compared to the control. However, the intraperitoneal administration of sVtE was toxic. Additionally, the amount of urine volume and

  13. Simultaneous quantitative determination of 11 sesquiterpene lactones in Jerusalem artichoke (Helianthus tuberosus L.) leaves by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Yuan, Xiaoyan; Yang, Qianxu

    2017-04-01

    A method of ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was developed for the simultaneous quantification of 11 sesquiterpene lactones in 11 Jerusalem artichoke leaf samples harvested in a number of areas at different periods. The optimal chromatographic conditions were achieved on a ZORBAX Eclipse Plus C 18 column (3.0 × 150 mm, 1.8 μm) with linear gradient elution of methanol and water in 8 min. Quantitative analysis was carried out under selective ion monitoring mode. All of the sesquiterpene lactones showed good linearity (R 2 ≥ 0.9949), repeatability (relative standard deviations Jerusalem artichoke leaf samples from different areas. Among them, the content of sesquiterpene lactones in the sample collected from Dalian, Liaoning province was the highest and the early flowering period was considered to be the optimal harvest time. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4)....

  15. Phytotoxic properties of cnicin, a sesquiterpene lactone fromcentaurea maculosa (spotted knapweed).

    Science.gov (United States)

    Kelsey, R G; Locken, L J

    1987-01-01

    Water and solvent extracts from the aerial tissues ofCentaurea maculosa, spotted knapweed, inhibited the root growth of lettuce. Column chromatography and lettuce bioassay of a chloroform extract led to the isolation of cnicin, a sesquiterpene lactone. Pure cnicin was bioassayed at 0, 1, 2, 4, 6, 8, and 10 mg/5 ml water with lettuce, created wheatgrass, bluebunch wheatgrass, rough fescue, western larch, lodgepole pine, and spotted knapweed. Germination was inhibited at one or more concentrations for all species except lodgepole pine and spotted knapweed. Growth, particularly of the roots, was retarded between 1 and 4 mg of cnicin. Lettuce, bluebunch wheatgrass, and spotted knapweed were inhibited significantly at all concentrations tested.

  16. Detection of the quorum sensing signal molecule N-Dodecanoyl-DL-homoserine lactone below 1 nanomolarconcentrations using surface enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Claussen, Anetta; Abdali, Salim; Berg, Rolf W.

    2013-01-01

    suitable tool for in situ measurements of low Acyl-Homoserine Lactone (AHL) concentrations in biofilms containing QS bacteria. Signal molecules communicate information about their environment and coordinate certain physiological activities in QS systems that exist in many bacteria. SERS enables detection...

  17. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations

    DEFF Research Database (Denmark)

    Thastrup, Ole; Linnebjerg, H; Bjerrum, P J

    1987-01-01

    We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release...

  18. CYTOTOXICITY OF FLAVONOIDS AND SESQUITERPENE LACTONES FROM ARNICA SPECIES AGAINST THE GLC(4) AND THE COLO-320 CELL-LINES

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MERFORT, [No Value; PASSREITER, CM; SCHMIDT, TJ; WILLUHN, G; VANUDEN, W; PRAS, N; KAMPINGA, HH; KONINGS, AWT

    1994-01-01

    The cytotoxicity of 21 flavonoids and 5 sesquiterpene lactones, as present in Arnica species, was studied in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. Following continuous incubation,

  19. Identification and Characterization of Diacylglycerol Acyltransferase from Oleaginous Fungus Mucor circinelloides.

    Science.gov (United States)

    Zhang, Luning; Zhang, Huaiyuan; Song, Yuanda

    2018-01-24

    Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a pivotal regulator of triacylglycerol (TAG) synthesis. The oleaginous fungus Mucor circinelloides has four putative DGATs: McDGAT1A, McDGAT1B, McDGAT2A, and McDGAT2B, classified into the DGAT1 and DGAT2 subfamilies, respectively. To identify and characterize DGATs in M. circinelloides, these four genes were expressed in Saccharomyces cerevisiae H1246 (TAG-deficient quadruple mutant), individually. TAG biosynthesis was restored only by the expression of McDGAT2B, and TAG content was significantly higher in the mutants with McDGAT2B expression than in a S. cerevisiae mutant with endogenous DGA1 expression. McDGAT2B prefers saturated fatty acids to monounsaturated fatty acids and has an obvious preference for C18:3 (ω-6) according to the results of substrate preference experiments. Furthermore, only the mRNA expression pattern of McDGAT2B correlated with TAG biosynthesis during a fermentation process. Our experiments strongly indicate that McDGAT2B is crucial for TAG accumulation, suggesting that it may be an essential target for metabolic engineering aimed at increasing lipid content of M. circinelloides.

  20. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket

    NARCIS (Netherlands)

    Bokhove, Marcel; Jimenez, Pol Nadal; Quax, Wim J.; Dijkstra, Bauke W.

    2010-01-01

    In many Gram-negative pathogens, their virulent behavior is regulated by quorum sensing, in which diffusible signals such as N-acyl homoserine lactones (AHLs) act as chemical messaging compounds. Enzymatic degradation of these diffusible signals by, e. g., lactonases or amidohydrolases abolishes AHL

  1. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass.

    Science.gov (United States)

    McKinnon, R; Binder, M; Zupkó, I; Afonyushkin, T; Lajter, I; Vasas, A; de Martin, R; Unger, C; Dolznig, H; Diaz, R; Frisch, R; Passreiter, C M; Krupitza, G; Hohmann, J; Kopp, B; Bochkov, V N

    2014-10-15

    Neurolaena lobata is a Caribbean medicinal plant used for the treatment of several conditions including inflammation. Recent data regarding potent anti-inflammatory activity of the plant and isolated sesquiterpene lactones raised our interest in further pharmacological studies. The present work aimed at providing a mechanistic insight into the anti-inflammatory activity of N. lobata and eight isolated sesquiterpene lactones, as well as a structure-activity relationship and in vivo anti-inflammatory data. The effect of the extract and its compounds on the generation of pro-inflammatory proteins was assessed in vitro in endothelial and monocytic cells by enzyme-linked immunosorbent assay. Their potential to modulate the expression of inflammatory genes was further studied at the mRNA level. In vivo anti-inflammatory activity of the chemically characterized extract was evaluated using carrageenan-induced paw edema model in rats. The compounds and extract inhibited LPS- and TNF-α-induced upregulation of the pro-inflammatory molecules E-selectin and interleukin-8 in HUVECtert and THP-1 cells. LPS-induced elevation of mRNA encoding for E-selectin and interleukin-8 was also suppressed. Furthermore, the extract inhibited the development of acute inflammation in rats. Sesquiterpene lactones from N. lobata interfered with the induction of inflammatory cell adhesion molecules and chemokines in cells stimulated with bacterial products and cytokines. Structure-activity analysis revealed the importance of the double bond at C-4-C-5 and C-2-C-3 and the acetyl group at C-9 for the anti-inflammatory activity. The effect was confirmed in vivo, which raises further interest in the therapeutic potential of the compounds for the treatment of inflammatory diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols

    DEFF Research Database (Denmark)

    Svetlichnyy, V.; Müller, P.; Günther-Pomorski, Thomas

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols...... containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids....... The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18...

  3. Diacylglycerol kinase zeta negatively regulates CXCR4-stimulated T lymphocyte firm arrest to ICAM-1 under shear flow.

    Science.gov (United States)

    Lee, Dooyoung; Kim, Jiyeon; Beste, Michael T; Koretzky, Gary A; Hammer, Daniel A

    2012-06-01

    T lymphocyte arrest within microvasculature is an essential process in immune surveillance and the adaptive immune response. Integrins and chemokines coordinately regulate when and where T cells stop under flow via chemokine-triggered inside-out activation of integrins. Diacylglycerol kinases (DGKs) regulate the levels of diacylglycerol (DAG) which in turn determine the activation of guanine nucleotide exchange factors (GEFs) and Ras proximity 1 (Rap1) molecules crucial to the activation of integrin lymphocyte function-associated antigen 1 (LFA-1). However, how the level of DGK regulates chemokine-stimulated LFA-1-mediated T cell arrest under flow is unknown. Using a combination of experiment and computational modeling, we demonstrate that DGKζ is a crucial regulator of CXCL12-triggered T cell arrest on surfaces presenting inter-cellular adhesion molecule 1 (ICAM-1). Using flow chamber assays, we found that the deficiency of DGKζ in T cells significantly increased firm arrest to ICAM-1-coated substrates and shortened the time to stop without altering the rolling velocity. These results suggest that DGKζ levels affect LFA-1-mediated T cell firm arrest, but not P-selectin-mediated rolling during CXCL12 stimulation. We accurately simulated the role of DGKζ in firm arrest of T cells computationally using an Integrated-Signaling Adhesive Dynamics (ISAD). In the absence of DGK catalytic reaction, the model cells rolled for a significantly shorter time before arrest, compared to when DGK molecules were present. Predictions of our model for T cell arrest quantitatively match experimental results. Overall these results demonstrate that DGKζ is a negative regulator of CXCL12-triggered inside-out activation of LFA-1 and firm adhesion of T cells under shear flow.

  4. Lipase-catalyzed glycerolysis of fish oil to obtain diacylglycerols

    Directory of Open Access Journals (Sweden)

    Baeza-Jiménez, R.

    2013-06-01

    Full Text Available Diacylglycerols (DAG rich in n-3 residues were successfully produced by Novozym 435-catalysed glycerolysis of n-3 PUFA rich fish oil. Orbital and magnetic agitations were evaluated in order to minimize mass transfer limitations and thus assure the homogeneity of the reactant mixture. Different temperatures (65, 70, 75, 80, 85 and 90 °C and speeds (300, 500, 700 and 900 rpm were tested. Optimal conditions to obtain the highest amount of DAG were: 65 °C, with a substrate molar ratio of 3:1 (oil:glycerol, 500 rpm and 15% enzyme load after 2.5 h, with a yield of 60%.Diacilglicéridos (DAG ricos en n-3 fueron producidos en la glicerolisis de aceite de pescado rico en n-3 PUFA catalizada por Novozym 435. Las agitaciones orbital y magnética fueron evaluadas con el propósito de minimizar las limitaciones de transferencia de masa y garantizar la homogeneidad de la mezcla de reactivos. Diferentes temperaturas (65, 70, 75, 80, 85 y 90 °C y velocidades de agitación (300, 500, 700 y 900 rpm fueron empleadas. Las condiciones óptimas para alcanzar la mayor cantidad de DAG fueron: 65 °C, una relación molar de sustratos 3:1 (aceite:glicerol, 500 rpm y 15% de enzima, después de 2.5 h, con un rendimiento de 60%.

  5. Anti-proliferative, Cytotoxic and NF-ĸB Inhibitory Properties of Spiro(Lactone-Cyclohexanone) Compounds in Human Leukemia.

    Science.gov (United States)

    Bouhenna, Mustapha M; Orlikova, Barbora; Talhi, Oualid; Schram, Ben; Pinto, Diana C G A; Taibi, Nadia; Bachari, Khaldoun; Diederich, Marc; Silva, Artur M S; Mameri, Nabil

    2017-09-01

    NF-ĸB affects most aspects of cellular physiology. Deregulation of NF-ĸB signaling is associated with inflammatory diseases and cancer. In this study, we evaluated the cytotoxic and NF-ĸB inhibition potential of new spiro(lactone-cyclohexanone) compounds in two different human leukemia cell lines (U937 and K562). The anti-proliferative effects of the spiro(lactone-cyclohexanone) compounds on human K562 and U937 cell lines was evaluated by trypan blue staining, as well as their involvement in NF-kB regulation were analyzed by luciferase reporter gene assay, Caspase-3/7 activities were evaluated to analyze apoptosis induction. Both spiro(coumarin-cyclohexanone) 4 and spiro(6- methyllactone-cyclohexanone) 9 down-regulated cancer cell viability and proliferation. Compound 4 inhibited TNF-α-induced NF-ĸB activation in a dose-dependent manner and induced caspase-dependent apoptosis in both leukemia cell lines. Results show that compound 4 and compound 9 have potential as anti-cancer agents. In addition, compound 4 exerted NF-kB inhibition activity in leukemia cancer cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    Science.gov (United States)

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  7. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones.

    Science.gov (United States)

    Cheng, Xiaokai; Yang, Bo; Hu, Xingen; Xu, Qing; Lu, Zhan

    2016-12-05

    A unique metal-free aerobic oxidation of primary amines via visible light photocatalytic double carbon-carbon bonds cleavage and multi carbon-hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cytochalasin B augments diacylglycerol levels in stimulated neutrophils

    International Nuclear Information System (INIS)

    Honeycutt, P.J.; Niedel, J.

    1986-01-01

    Diacylglycerol (DG) has gained wide acceptance as an important second messenger and intracellular activator of protein kinase C, but few studies have directly measured DG levels in cells or tissues. The authors measured the mass of DG in lipid extracts from normal human neutrophils by quantitative conversion of DG to [ 32 P] phosphatidic acid using E. coli DG kinase. The chemotactic peptide N-formyl-Met-Leu-Phe (fMLP) stimulated a transient 30% rise in DG that was maximal at 30 to 45 sec and returned to the basal level of 150 picomoles/10 7 cells by one min. This initial peak was followed by a slower, more prolonged 30% increase in DG that was maximal at 20 min. Cytochalasin B (CB) augments many biological responses of neutrophils to fMLP, including superoxide production and lysosomal enzyme release. CB alone caused no change in basal DG levels, but in the presence of CB, fMLP stimulated a rapid, large, and persistent DG response. DG levels increased to 290% of basal at 5 min with a t1/2 = 45 sec. The DG response to fMLP was maximal at 5 to 10 μm CB and 1 μM fMLP. The DG response to optimal fMLP and CB concentrations was decreased 40% by an fMLP antagonist, and no response was elicited by an inactive fMLP analog and CB. Protein kinase C has been implicated in fMLP-stimulated superoxide production and lysosomal enzyme release. These data are consistent with the hypothesis that CB may effect augmentation of biological responses by increasing DG levels

  9. Authentication of pineapple (Ananas comosus [L.] Merr.) fruit maturity stages by quantitative analysis of γ- and δ-lactones using headspace solid-phase microextraction and chirospecific gas chromatography-selected ion monitoring mass spectrometry (HS-SPME-GC-SIM-MS).

    Science.gov (United States)

    Steingass, Christof B; Langen, Johannes; Carle, Reinhold; Schmarr, Hans-Georg

    2015-02-01

    Headspace solid phase microextraction and chirospecific gas chromatography-mass spectrometry in selected ion monitoring mode (HS-SPME-GC-SIM-MS) allowed quantitative determination of δ-lactones (δ-C8, δ-C10) and γ-lactones (γ-C6, γ-C8, γ-C10). A stable isotope dilution assay (SIDA) with d7-γ-decalactone as internal standard was used for quantitative analysis of pineapple lactones that was performed at three progressing post-harvest stages of fully ripe air-freighted and green-ripe sea-freighted fruits, covering the relevant shelf-life of the fruits. Fresh pineapples harvested at full maturity were characterised by γ-C6 of high enantiomeric purity remaining stable during the whole post-harvest period. In contrast, the enantiomeric purity of γ-C6 significantly decreased during post-harvest storage of sea-freighted pineapples. The biogenetical background and the potential of chirospecific analysis of lactones for authentication and quality evaluation of fresh pineapple fruits are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Highly Functionalised Cyclopentanes by Radical Cyclisation of Unsaturated Bromolactones III. Preparation of Carbaaldohexofuranoses. - Determination of the Relative Configuration at C-4/C-5 of 2,3-Unsaturated heptono-1,4-lactones by Means of 1-H NMR Spectroscopy

    DEFF Research Database (Denmark)

    Lundt, Inge; Horneman, Anne Marie

    1999-01-01

    Two new carbaaldohexofuranoses, carba--D-glucofuranose and carba--L-mannofuranose have been prepared using 5,6-O-isopropylidene-D-glycero-L-galacto-heptono-1,4-lactone (6) as the starting material. The key step was a highly stereoselective intramolecular 5-exo-trig radical cyclisation of C-2......-substituted 2,3-unsaturated 7-bromo-7-deoxy-heptono-1,4-lactones promoted by tributyltin hydride. Assignment of the configuration of the unsaturated lactones was based upon NMR data of related compounds. The starting material, compound 6, was obtained by chain elongation of D-gulose, and a facile method...

  11. Lethal and sub-lethal effects of select macrocyclic lactones insecticides on forager worker honey bees under laboratory experimental conditions.

    Science.gov (United States)

    Abdu-Allah, Gamal A M; Pittendrigh, Barry R

    2018-01-01

    Selective insecticide application is one important strategy for more precisely targeting harmful insects while avoiding or mitigating collateral damage to beneficial insects like honey bees. Recently, macrocyclic lactone-class insecticides have been introduced into the market place as selective bio-insecticides for controlling many arthropod pests, but how to target this selectivity only to harmful insects has yet to be achieved. In this study, the authors investigated the acute toxicity of fourmacrocyclic lactone insecticides (commercialized as abamectin, emamectin benzoate, spinetoram, and spinosad) both topically and through feeding studies with adult forager honey bees. Results indicated emamectin benzoate as topically 133.3, 750.0, and 38.3-fold and orally 3.3, 7.6, and 31.7-fold more toxic, respectively than abamectin, spinetoram and spinosad. Using Hazard Quotients for estimates of field toxicity, abamectin was measured as the safest insecticide both topically and orally for honey bees. Moreover, a significant reduction of sugar solution consumption by treatment group honey bees for orally applied emamectin benzoate and spinetoram suggests that these insecticides may have repellent properties.

  12. NMR study of the preparation of 6 {alpha}, 7 {beta}-dihydroxyvouacapan-17 beta-oic acid mannich base derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flavio Jose Leite dos; Pilo-Veloso, Dorila [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Inst. de Ciencias Exatas. Dept. Quimica]. E-mail: dorila@zeus.qui.ufmg.br; Ferreira-Alves, Dalton L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Inst. de Ciencias Biologicas. Dept. de Farmacologia

    2007-07-01

    This work presents four new Mannich base compounds obtained by the Mannich reaction of a {delta}-keto-lactone derivative of 6{alpha}, 7{beta}-dihydroxyvouacapan- 17{beta}-oic acid, a furano diterpene isolated from the hexane extract of Pterodon polygalaeflorus Benth fruits, which shows anti-inflammatory and analgesic activities. The use of 1D and 2D NMR (COSY, DEPT-135, HMBC, HMQC) spectroscopy made it possible to characterize the new compounds. (author)

  13. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

    Directory of Open Access Journals (Sweden)

    Pedro A. Castelo-Branco

    2012-01-01

    Full Text Available Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

  14. Trypanocidal Activity of Smallanthus sonchifolius: Identification of Active Sesquiterpene Lactones by Bioassay-Guided Fractionation

    Directory of Open Access Journals (Sweden)

    F. M. Frank

    2013-01-01

    Full Text Available In order to find novel plant-derived biologically active compounds against Trypanosoma cruzi, we isolated, from the organic extract of Smallanthus sonchifolius, the sesquiterpene lactones enhydrin (1, uvedalin (2, and polymatin B (3 by bioassay-guided fractionation technique. These compounds showed a significant trypanocidal activity against the epimastigote forms of the parasite with IC50 values of 0.84 μM (1, 1.09 μM (2, and 4.90 μM (3. After a 24 h treatment with 10 μg/mL of enhydrin or uvedalin, parasites were not able to recover their replication rate. Compounds 1 and 2 showed IC50 values of 33.4 μM and 25.0 μM against T. cruzi trypomastigotes, while polymatin B was not active. When the three compounds were tested against the intracellular forms of T. cruzi, they were able to inhibit the amastigote replication with IC50 of 5.17 μM, 3.34 μM, and 9.02 μM for 1, 2, and 3, respectively. The cytotoxicity of the compounds was evaluated in Vero cells obtaining CC50 values of 46.5 μM (1, 46.8 μM (2, and 147.3 μM (3 and the selectivity index calculated. According to these results, enhydrin and uvedalin might have potentials as agents against Chagas disease and could serve as lead molecules to develop new drugs.

  15. Reductive decarboxylation of bicyclic prolinic systems: a new approach to the enantioselective synthesis of the Geissman-Waiss lactone. X-ray structure determination of a key lactone intermediate

    Directory of Open Access Journals (Sweden)

    Ambrósio João Carlos L.

    2003-01-01

    Full Text Available Two concise and enantioselective syntheses of the necine base precursors (1R,5R-N-Cbz and N-Boc-2-oxa-6-azabicyclo[3.3.0]octan-3-ones (Geissman-Waiss lactones were carried out from two enantiomerically pure endocyclic five-membered enecarbamates with overall yields of 23% and 26%, respectively. The synthetic strategy made use of a highly effective and stereoselective [2+2]cycloaddition of enantiomerically pure endocyclic enecarbamates with dichloroketene, as well as an efficient decarboxylation step of a bicyclic alpha-amino acid employing Boger's acyl selenide protocol employing tributyltin hydride. Interesting aspects concerning the regiochemical outcome of Baeyer-Villiger oxidations of bicyclic cyclobutanones are also reported, in which the usual stereoelectronic bias of Baeyer-Villiger oxidation seems to be counterbalanced by steric effects on the putative Criegee intermediate.

  16. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    International Nuclear Information System (INIS)

    Jakubczyk, Dorota; Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute; Kubas, Adam; Fink, Karin; Brenner-Weiss, Gerald; Braese, Stefan

    2012-01-01

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  17. Fragrance material review on hexadecanolide.

    Science.gov (United States)

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of hexadecanolide when used as a fragrance ingredient is presented. Hexadecanolide is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for hexadecanolide were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; and genotoxicity data. A safety assessment of the macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A Toxicologic and Dermatologic Assessment of Macrocylic Lactones and Lactide Derivatives When Used as Fragrance Ingredients. Copyright © 2011. Published by Elsevier Ltd.

  18. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments.

    Science.gov (United States)

    Almeida, Macia C S DE; Souza, Luciana G S; Ferreira, Daniele A; Pinto, Francisco C L; Oliveira, Débora R DE; Santiago, Gilvandete M P; Monte, Francisco J Q; Braz-Filho, Raimundo; Lemos, Telma L G DE

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the 1H and 13C NMR spectra.

  19. Complete assignments of NMR data and assessment of trypanocidal activity of new eremantholide C derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Saude-Guimaraes, Denia Antunes, E-mail: saude@ef.ufop.br, E-mail: saudeguima@gmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Raslan, Delio S.; Chiari, Egler; Oliveira, Alaide B. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2014-12-15

    Chemical transformations of eremantholide C (1), a sesquiterpene lactone that was isolated from Lychnophora trichocarpha Spreng. led to five new derivatives: 1’,2’- epoxyeremantholide C (2), 5-n-propylamine-4,5-dihydro-1’,2’-epoxyeremantholide C (3), 5-n-propylammonium-4,5-dihydro-1’,2’-epoxyeremantholide C chloride (4), 5-n-propylammonium-4,5-dihydroeremantolide C chloride (5) and 16-O-ethyleremantholide C (6). The structures of all these derivatives were assigned on the basis of IR, MS, {sup 1}H and {sup 13}C NMR data by 1D and 2D techniques. Eremantholide C and the derivatives 2, 4 and 5 were evaluated against trypomastigotes Y and CL strains of Trypanosoma cruzi. Eremantholide C completely inhibited the growth of both the parasites strains while all derivatives were partially active against the CL strain and inactive against the Y strain. (author)

  20. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.

    Science.gov (United States)

    Pan, Xue; Siloto, Rodrigo M P; Wickramarathna, Aruna D; Mietkiewska, Elzbieta; Weselake, Randall J

    2013-08-16

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3(cis)(Δ9,12,15)) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications.

  2. Identification of a Pair of Phospholipid:Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) Seed Catalyzing the Selective Production of Trilinolenin*

    Science.gov (United States)

    Pan, Xue; Siloto, Rodrigo M. P.; Wickramarathna, Aruna D.; Mietkiewska, Elzbieta; Weselake, Randall J.

    2013-01-01

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications. PMID:23824186

  3. Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells

    International Nuclear Information System (INIS)

    Shetty, Dinesh; Jeong, Jae Min; Ju, Chang Hwan; Lee, Yun-Sang; Jeong, Seo Young; Choi, Jae Yeon; Yang, Bo Yeun

    2010-01-01

    Objectives: We developed amino acid derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A) that can be labeled with 68 Ga, and we investigated their basic biological properties. Materials and methods: Alanine derivatives of DO2A and DO3A were synthesized by regiospecific nucleophilic attack of DO2tBu and DO3tBu on the β-position of Boc-L-serine-β-lactone, followed by acid hydrolysis. Also, homoalanine derivatives were synthesized by reacting with the protected bromo derivative of homoalanine, which was synthesized from N-Cbz-L-homoserine lactone. Further catalytic reduction and acid cleavage of protected groups resulted in the required products. All derivatives were labeled with 68 Ga. Cell uptake assays were carried out in Hep3B (human hepatoma) and U87MG (human glioma) cell lines at 37 o C. Positron emission tomography (PET) imaging studies were performed using balb/c mice xenografted with CT-26 (mouse colon cancer). Results: All compounds were labeled with >97% efficiency. According to in vitro studies, the labeled amino acid derivatives showed significantly greater uptakes than the control ( 68 Ga 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in cancer cells. Small animal PET images for labeled compounds showed high tumor uptake, as well as kidney and bladder uptakes, at 30 min postinjection. 68 Ga-DO3A-homoalanine showed the highest standardized uptake value ratio (3.9±0.3), followed by 68 Ga-DO2A-alanine (3.1±0.2), 68 Ga-DO3A-alanine (2.8±0.2) and 68 Ga-DO2A-homoalanine (2.3±0.2). Conclusion: These derivatives were found to have high labeling efficiencies, high stabilities, high tumor cell uptakes, high tumor/nontumor xenograft uptakes and low nonspecific uptake in normal organs, except for the kidneys. However, the uptake mechanism of these derivatives remains unclear, and uptake via specific amino acid transporters needs to be demonstrated.

  4. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    Science.gov (United States)

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  5. Sesquiterpene lactone containing extracts from two cultivars of forage chicory (Cichorium intybus) show distinctive chemical profiles and in vitro activity against Ostertagia ostertagi

    DEFF Research Database (Denmark)

    Pena-Espinoza, Miguel Angel; Boas, Ulrik; Williams, Andrew

    2015-01-01

    The study investigated direct anthelmintic effects of sesquiterpene lactones (SL)-containing extracts from forage chicory against free-living and parasitic stages of Ostertagia ostertagi. Freeze-dried leaves from chicory cultivars ‘Spadona’ and ‘Puna II’ were extracted using methanol/water. Total...

  6. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells.

    Science.gov (United States)

    Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D

    2003-08-01

    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.

  7. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete "1H and "1"3C chemical shift assignments

    International Nuclear Information System (INIS)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G.; Oliveira, Debora R. de; Braz-Filho, Raimundo

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the "1H and "1"3C NMR spectra. (author)

  8. Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone

    Directory of Open Access Journals (Sweden)

    Senthil R. Kumar

    2018-01-01

    Full Text Available The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl-homoserine lactone (C12-HSL on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA cells (DU145 and LNCaP and prostate small cell neuroendocrine carcinoma (SCNC PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1 were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.

  9. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Bastian Barker Rasmussen

    2014-11-01

    Full Text Available Bacterial quorum sensing (QS and the corresponding signals, acyl homoserine lactones (AHLs, were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl (OH-C6 and N-(3-hydroxy-decanoyl (OH-C10 homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7 HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.

  10. Synthesis of novel {sup 68}Ga-labeled amino acid derivatives for positron emission tomography of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Dinesh [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Ju, Chang Hwan [Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul (Korea, Republic of); Lee, Yun-Sang [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Jeong, Seo Young [Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul (Korea, Republic of); Choi, Jae Yeon; Yang, Bo Yeun [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2010-11-15

    Objectives: We developed amino acid derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A) that can be labeled with {sup 68}Ga, and we investigated their basic biological properties. Materials and methods: Alanine derivatives of DO2A and DO3A were synthesized by regiospecific nucleophilic attack of DO2tBu and DO3tBu on the {beta}-position of Boc-L-serine-{beta}-lactone, followed by acid hydrolysis. Also, homoalanine derivatives were synthesized by reacting with the protected bromo derivative of homoalanine, which was synthesized from N-Cbz-L-homoserine lactone. Further catalytic reduction and acid cleavage of protected groups resulted in the required products. All derivatives were labeled with {sup 68}Ga. Cell uptake assays were carried out in Hep3B (human hepatoma) and U87MG (human glioma) cell lines at 37{sup o}C. Positron emission tomography (PET) imaging studies were performed using balb/c mice xenografted with CT-26 (mouse colon cancer). Results: All compounds were labeled with >97% efficiency. According to in vitro studies, the labeled amino acid derivatives showed significantly greater uptakes than the control ({sup 68}Ga 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in cancer cells. Small animal PET images for labeled compounds showed high tumor uptake, as well as kidney and bladder uptakes, at 30 min postinjection. {sup 68}Ga-DO3A-homoalanine showed the highest standardized uptake value ratio (3.9{+-}0.3), followed by {sup 68}Ga-DO2A-alanine (3.1{+-}0.2), {sup 68}Ga-DO3A-alanine (2.8{+-}0.2) and {sup 68}Ga-DO2A-homoalanine (2.3{+-}0.2). Conclusion: These derivatives were found to have high labeling efficiencies, high stabilities, high tumor cell uptakes, high tumor/nontumor xenograft uptakes and low nonspecific uptake in normal organs, except for the kidneys. However, the uptake mechanism of these derivatives remains unclear, and uptake via specific amino acid

  11. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jakubczyk, Dorota [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Kubas, Adam; Fink, Karin [Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Brenner-Weiss, Gerald [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Braese, Stefan [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-04-15

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  12. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q'eqchi' Maya traditional medicine.

    Science.gov (United States)

    Walshe-Roussel, Brendan; Choueiri, Christine; Saleem, Ammar; Asim, Muhammd; Caal, Federico; Cal, Victor; Rojas, Marco Otarola; Pesek, Todd; Durst, Tony; Arnason, John Thor

    2013-08-01

    The widespread use of Neurolaena lobata (L.) R. Br. ex Cass. by Q'eqchi' Maya and indigenous healers throughout the Caribbean for inflammatory conditions prompted the study of the anti-inflammatory activity of this traditional medicine. The objectives of this study were to conduct a detailed ethnobotanical investigation of the uses of N. lobata by the Q'eqchi' Maya of Belize for a variety of inflammatory symptoms and to evaluate the in vitro anti-inflammatory activity of leaf extract and isolated sesquiterpene lactones. The crude 80% EtOH extract of N. lobata leaves administered at 100 μg/mL reduced LPS-stimulated TNF-α production in THP-1 monocytes by 72% relative to the stimulated vehicle control. Isolated sesquiterpene lactones, neurolenins B, C+D, lobatin B and 9α-hydroxy-8β-isovalerianyloxy-calyculatolide were more active (IC50=0.17-2.32 μM) than the positive control parthenolide (IC50=4.79 μM). The results provide a pharmacological and phytochemical basis for the traditional use of this leaf for inflammatory conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway.

    Science.gov (United States)

    Bagnato, Carolina; Prados, María B; Franchini, Gisela R; Scaglia, Natalia; Miranda, Silvia E; Beligni, María V

    2017-03-09

    Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.

  14. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  15. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete {sup 1}H and {sup 13}C chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G., E-mail: fmonte@dqoi.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Oliveira, Debora R. de; Braz-Filho, Raimundo [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Departamento de Quimica

    2017-09-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the {sup 1}H and {sup 13}C NMR spectra. (author)

  16. Biomimetic syntheses of phenols from polyketones.

    Science.gov (United States)

    Evans, G E; Garson, M J; Griffin, D A; Leeper, F J; Stauton, J

    1978-01-01

    As a result of speculation that many enzymes control polyketone cyclization in vivo by converting a key carbonyl group to a cis-enol ether derivative, we describe two novel biomimetic cyclizations. The first involves condensation of two C6 units derived from triacetic lactone to form an arylpyrone related to aloenin. In the second a naphthapyrone of the rubrofusarin type is formed by condensation of an orsellinic acid derivative with the ether of triacetic lactone.

  17. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum NAKAI, induces the differentiation of human acute promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae

    2002-11-01

    The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.

  18. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  19. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  20. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-06-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.

  1. Diacylglycerol kinase α mediates 17-β-estradiol-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line through the G protein-coupled estrogen receptor GPR30.

    Science.gov (United States)

    Filigheddu, Nicoletta; Sampietro, Sara; Chianale, Federica; Porporato, Paolo E; Gaggianesi, Miriam; Gregnanin, Ilaria; Rainero, Elena; Ferrara, Michele; Perego, Beatrice; Riboni, Francesca; Baldanzi, Gianluca; Graziani, Andrea; Surico, Nicola

    2011-12-01

    Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Terpenoid Composition and Base Sequences of Ligularia virgaurea (Asteraceae) Grown in the Hengduan Mountain Area in China and a Comment on Drawing Structures.

    Science.gov (United States)

    Tori, Motoo

    2016-01-01

    A chemical analysis of 30 samples of Ligularia virgaurea (Asteraceae) collected in Sichuan province and its adjacent territories in China was reviewed. These samples afforded 146 compounds, 73 of which were novel, and the chemical constituents were classified into 8 categories: (1) simple eremophilanes (without ring C) and eudesmanes including nor-derivatives, (2) furanoeremophilanes and lactones with a 1(10)-saturated bond, (3) furanoeremophilanes and lactones with a 1(10)-unsaturated bond, 1,10-epoxide, or 10-ol, (4) furanoeremophilanes and lactones with 1(10)-en-2-one, 1(10)-en-2-ol, or 1-en-3-one, (5) furanoeremophilanes and lactones with 1(10)-en-9-one, 1(10)-en-9-ol, or 1,10-epoxy-9-one, (6) cacalol and their derivatives, (7) bakkanes and their derivatives, and (8) others, as shown in Tables 1-7. In these studies, five chemotypes were identified in addition to three clades from the DNA sequences of L. virgaurea. The structural determination of some compounds was also discussed and a comment on how to express the real structure was proposed, particularly for spiro compounds.

  3. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Directory of Open Access Journals (Sweden)

    Klasson K Thomas

    2011-07-01

    Full Text Available Abstract Background Diacylglycerol acyltransferases (DGATs catalyze the final and rate-limiting step of triacylglycerol (TAG biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. Results An expression plasmid containing the open reading frame for tung tree (Vernicia fordii DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3. Immunoblotting showed that the recombinant DGAT1 (rDGAT1 was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. Conclusions This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.

  4. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to diacylglycerol (DAG) oil and reduction of body weight pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claim related to diacylglycerol oil and reduction of body weight. The food constituent, diacylglycerol (DAG) oil, and the food constituents, vegetable oils of similar fatty acid composition containing mostly (>90%) triacylglycerol (TAG), which DAG oil should replace in order to obtain the claimed effect...... conclusions to be drawn for the scientific substantiation of the claim. The results from six RCTs with respect to the effect of DAG oil (as a replacement of TAG oils) on body weight are inconsistent and apparently unrelated to the DAG dose, study size or study duration, and the evidence provided in support...... of mechanisms by which DAG oil could exert the claimed effect in humans under the proposed conditions of use is not convincing. One unpublished meta-analysis on the effects of DAG oil (as compared to TAG oils) on body weight in humans which included data from all these RCTs was also provided. The meta...

  5. Haemolytic glycoglycerolipids from Gymnodinium species.

    Science.gov (United States)

    Parrish, C C; Bodennec, G; Gentien, P

    1998-03-01

    Glycoglycerolipids derived from microalgae can be a source of biologically active substances including toxins. Such glycolipids were analysed in two isolates of toxic marine dinoflagellates from European waters. The lipids of Gymnodinium mikimotoi contained 17% of monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), while in Gymnodinium sp. the proportion was 35%. MGDG and DGDG from both species were haemolytic. The major unsaturated fatty acid in both algal glycolipids was 18:5 omega 3.

  6. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  7. Characterization of a New Trioxilin and a Sulfoquinovosyl Diacylglycerol with Anti-Inflammatory Properties from the Dinoflagellate Oxyrrhis marina

    Directory of Open Access Journals (Sweden)

    Eun Young Yoon

    2017-02-01

    Full Text Available Two new compounds—a trioxilin and a sulfoquinovosyl diacylglycerol (SQDG—were isolated from the methanolic extract of the heterotrophic dinoflagellate Oxyrrhis marina cultivated by feeding on dried yeasts. The trioxilin was identified as (4Z,8E,13Z,16Z,19Z -7(S,10(S,11(S-trihydroxydocosapentaenoic acid (1, and the SQDG was identified as (2S-1-O-hexadecanosy-2-O-docosahexaenoyl-3-O-(6-sulfo-α-d-quinovopyranosyl-glycerol (2 by a combination of nuclear magnetic resonance (NMR spectra, mass analyses, and chemical reactions. The two compounds were associated with docosahexaenoic acid, which is a major component of O. marina. The two isolated compounds showed significant nitric oxide inhibitory activity on lipopolysaccharide-induced RAW264.7 cells. Compound 2 showed no cytotoxicity against hepatocarcinoma (HepG2, neuroblastoma (Neuro-2a, and colon cancer (HCT-116 cells, while weak cytotoxicity was observed for compound 1 against Neuro-2a cells.

  8. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  9. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    International Nuclear Information System (INIS)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C.

    2011-01-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20–120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: ► Oxidative stress is suggested as a key event in the pathogenesis of diabetes. ► D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. ► DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. ► DSL inhibits pancreatic β-cells apoptosis

  10. Discovery of germacrene A synthases in Barnadesia spinosa: The first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae

    International Nuclear Information System (INIS)

    Nguyen, Trinh-Don; Faraldos, Juan A.; Vardakou, Maria; Salmon, Melissa; O'Maille, Paul E.; Ro, Dae-Kyun

    2016-01-01

    The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies. - Highlights: • Sesquiterpene lactones are characteristic metabolites in Asteraceae family. • Barnadesioideae is the basal lineage of all Asteraceae plants

  11. Quantitative Structure ‒ Antiprotozoal Activity Relationships of Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Reto Brun

    2009-06-01

    Full Text Available Prompted by results of our previous studies where we found high activity of some sesquiterpene lactones (STLs against Trypanosoma brucei rhodesiense (which causes East African sleeping sickness, we have now conducted a structure-(in-vitro-activity study on a set of 40 STLs against T. brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. Furthermore, cytotoxic activity against L6 rat skeletal myoblast cells was assessed. Some of the compounds possess high activity, especially against T. brucei (e.g. helenalin and some of its esters with IC50-values of 0.05-0.1 µM, which is about 10 times lower than their cytotoxic activity. It was found that all investigated antiprotozoal activities are significantly correlated with cytotoxicity and the major determinants for activity are a,b-unsaturated structural elements, also known to be essential for other biological activities of STLs. It was observed, however, that certain compounds are considerably more toxic against protozoa than against mammalian cells while others are more cytotoxic than active against the protozoa. A comparative QSAR analysis was therefore undertaken, in order to discern the antiparasitic activity of STLs against T. brucei and cytotoxicity. Both activities were found to depend to a large extent on the same structural elements and molecular properties. The observed variance in the biological data can be explained in terms of subtle variations in the relative influences of various molecular descriptors.

  12. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt.

    Science.gov (United States)

    Weljie, Aalim M; Meerlo, Peter; Goel, Namni; Sengupta, Arjun; Kayser, Matthew S; Abel, Ted; Birnbaum, Morris J; Dinges, David F; Sehgal, Amita

    2015-02-24

    Sleep is an essential biological process that is thought to have a critical role in metabolic regulation. In humans, reduced sleep duration has been associated with risk for metabolic disorders, including weight gain, diabetes, obesity, and cardiovascular disease. However, our understanding of the molecular mechanisms underlying effects of sleep loss is only in its nascent stages. In this study we used rat and human models to simulate modern-day conditions of restricted sleep and addressed cross-species consequences via comprehensive metabolite profiling. Serum from sleep-restricted rats was analyzed using polar and nonpolar methods in two independent datasets (n = 10 per study, 3,380 measured features, 407 identified). A total of 38 features were changed across independent experiments, with the majority classified as lipids (18 from 28 identified). In a parallel human study, 92 metabolites were identified as potentially significant, with the majority also classified as lipids (32 of 37 identified). Intriguingly, two metabolites, oxalic acid and diacylglycerol 36:3, were robustly and quantitatively reduced in both species following sleep restriction, and recovered to near baseline levels after sleep restriction (P discovery rate neurotransmitters, vitamin B3, and gut metabolism were elevated in sleep-restricted humans. These results are consistent with induction of peroxisome proliferator-activated receptors and disruptions of the circadian clock. The findings provide a potential link between known pathologies of reduced sleep duration and metabolic dysfunction, and potential biomarkers for sleep loss.

  13. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1 by Diacylglycerol (DAG

    Directory of Open Access Journals (Sweden)

    Oh Seog

    2008-10-01

    Full Text Available Abstract The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1, is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC. However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG, a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C.

  14. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone Andrographolide, the active component of Andrographis paniculata

    Science.gov (United States)

    Yang, Shuo; Evens, Andrew M.; Prachand, Sheila; Singh, Amareshwar T.K; Bhalla, Savita; David, Kevin; Gordon, Leo I.

    2010-01-01

    Purpose Andrographolide is a diterpenoid lactone isolated from Andrographis paniculata (King of Bitters), an herbal medicine used in Asia. It has been reported to have anti-inflammatory, antihypertensive, anti-viral and immune-stimulant properties. Furthermore, it has been shown to inhibit cancer cell proliferation and induce apoptosis in leukemia and solid tumor cell lines. Experimental Design We studied the Burkitt p53 mutated Ramos cell line, the mantle-cell lymphoma (MCL) line Granta, the follicular lymphoma (FL) cell line HF-1 and the diffuse large B-cell lymphoma (DLBCL) cell line SUDHL4, as well as primary cells from patients with FL, DLBCL, and MCL. Results We found that andrographolide resulted in dose- and time-dependent cell death as measured by MTT. Andrographolide significantly increased reactive oxygen species (ROS) production in all cell lines. To determine mechanism of cell death, we measured apoptosis by Annexin-V/propidium iodide (PI) in the presence and absence of the antioxidant N-acetyl-L-cysteine (NAC), the glutathione-depleting agent buthionine sulfoxamine (BSO), or caspase inhibitors. We found that apoptosis was greatly enhanced by BSO, blocked by NAC, and accompanied by PARP cleavage and activation of caspases 3, 8 and 9. We measured BAX conformational change, and mitochondrial membrane potential, and using mouse embryonic fibroblast (MEF) Bax/Bak double knockouts (MEFBax−/−/Bak−/−), we found that apoptosis was mediated through mitochondrial pathways, but dependent on caspases in both cell lines and in patient samples. Conclusions Andrographolide caused ROS-dependent apoptosis in lymphoma cell lines and in primary tumor samples, which was enhanced by depletion of GSH and inhibited by NAC or the pan-caspase inhibitor Z-VAD-FMK. Further studies of diterpenoid lactones in lymphoma are warranted. PMID:20798229

  15. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available Quorum sensing (QS signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C(12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C(12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C(12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C(12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C(12-HSL with a sensor bioassay. Moreover, 3O-C(12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P. aeruginosa 3O-C(12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C(12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial--human cell communication.

  16. A Novel Lactone-Forming Carboxylesterase: Molecular Identification of a Tuliposide A-Converting Enzyme in Tulip1[W

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-01-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185

  17. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors.

    Science.gov (United States)

    Cernak, Tim; Gesmundo, Nathan J; Dykstra, Kevin; Yu, Yang; Wu, Zhicai; Shi, Zhi-Cai; Vachal, Petr; Sperbeck, Donald; He, Shuwen; Murphy, Beth Ann; Sonatore, Lisa; Williams, Steven; Madeira, Maria; Verras, Andreas; Reiter, Maud; Lee, Claire Heechoon; Cuff, James; Sherer, Edward C; Kuethe, Jeffrey; Goble, Stephen; Perrotto, Nicholas; Pinto, Shirly; Shen, Dong-Ming; Nargund, Ravi; Balkovec, James; DeVita, Robert J; Dreher, Spencer D

    2017-05-11

    Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging S N Ar reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.

  18. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2014-03-01

    Full Text Available During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA, which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi.

  19. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    International Nuclear Information System (INIS)

    Miao, Chunjuan; Liu, Fang; Zhao, Qian; Jia, Zhenhua; Song, Shuishan

    2012-01-01

    Highlights: ► 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. ► 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. ► Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  20. Therapeutic Application of Diacylglycerol Oil for Obesity: Serotonin Hypothesis

    Directory of Open Access Journals (Sweden)

    Yuji Hirowatari

    2012-01-01

    Full Text Available ABSTRACT: Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG, and decreased high-density lipoprotein-cholesterol (HDL-C. Diacylglycerol (DAG oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG. Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL, and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2(1:1-10 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with â-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2, was significantly higher in 1-MOG

  1. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    Science.gov (United States)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  2. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ζ (DGKζ), an enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases Rac1 and RhoA. DGKζ mRNA is highly expressed in several different colon cancer cell lines, as well as in colon cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process. To investigate potential roles of DGKζ in cancer metastasis, a cellular, isogenic model of human colorectal cancer metastatic transition was used. DGKζ protein levels, Rac1 and RhoA activity, and PAK phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic variant, the SW620 line. The effect of DGKζ silencing on Rho GTPase activity and invasion through Matrigel-coated Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-231 breast cancer cells depleted of DGKζ. DGKζ protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There was a concomitant increase in active Rac1 in SW620 cells, as well as substantial increases in the expression and phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells. Knockdown of DGKζ expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA activity and attenuated the invasiveness of SW620 cells in vitro. DGKζ silencing in highly metastatic MDA-MB-231 breast cancer cells and PC-3 prostate cancer cells also significantly attenuated

  3. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics

    Directory of Open Access Journals (Sweden)

    Kirsten Tschapalda

    2016-06-01

    Full Text Available Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened >320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1, a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.

  4. Phorbol ester and hydrogen peroxide synergistically induce the interaction of diacylglycerol kinase gamma with the Src homology 2 and C1 domains of beta2-chimaerin.

    Science.gov (United States)

    Yasuda, Satoshi; Kai, Masahiro; Imai, Shin-ichi; Kanoh, Hideo; Sakane, Fumio

    2008-01-01

    DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.

  5. Kinetic and thermodynamic analysis of 10-hydroxy-camptothecin hydrolysis at physiological pH

    Energy Technology Data Exchange (ETDEWEB)

    Kunadharaju, Sasank [Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201 (United States); Savva, Michalakis [Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201 (United States)], E-mail: msavva@liu.edu

    2008-09-15

    To derive accurately the thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of the 10-hydroxy-camptothecin (10-HC). Validation of the analytical method was done with respect to reproducibility, percent recovery, and level of detection. Hydrolysis of the lactone ring of 10-HC followed a 1st order decay with a rate constant equal to (0.0281 {+-} 0.001) min{sup -1} in PBS at pH 7.4 and at a temperature of 310 K. The activation energy for the hydrolysis reaction as calculated from the Arrhenius equation was (79.41 {+-} 0.92) kJ . mol{sup -1}, whereas the enthalpy and entropy of hydrolysis of 10-hydroxy-camptothecin were on average 12.45 kJ . mol{sup -1} and 52.37 J . K{sup -1} . mol{sup -1}, respectively. The positive enthalpy and entropy values of the 10-HC-lactone hydrolysis indicate that the reaction is endothermic and entropically driven.

  6. Comparative Characterization of Total Flavonol Glycosides and Terpene Lactones at Different Ages, from Different Cultivation Sources and Genders of Ginkgo biloba Leaves

    Directory of Open Access Journals (Sweden)

    Yong Qin

    2012-08-01

    Full Text Available The extract from Ginkgo biloba leaves has become a very popular plant medicine and herbal supplement for its potential benefit in alleviating symptoms associated with peripheral vascular disease, dementia, asthma and tinnitus. Most research on G. biloba leaves focus on the leaves collected in July and August from four to seven year-old trees, however a large number of leaves from fruit cultivars (trees older than 10 years are ignored and become obsolete after fruit harvest season (November. In this paper, we expand the tree age range (from one to 300 years and first comparatively analyze the total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of G. biloba leaves collected in November by using the validated HPLC-ELSD and HPLC-PDA methods. The results show that the contents of total terpene lactones and flavonol glycosides in the leaves of young ginkgo trees are higher than those in old trees, and they are higher in male trees than in female trees. Geographical factors appear to have a significant influence on the contents as well. These results will provide a good basis for the comprehensive utilization of G. biloba leaves, especially the leaves from fruit cultivars.

  7. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chunjuan, E-mail: chunjuanjay@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Liu, Fang, E-mail: liufang830818@126.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Zhao, Qian, E-mail: zhqbluesea@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Jia, Zhenhua, E-mail: zhenhuaj@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Song, Shuishan, E-mail: shuishans@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. Black-Right-Pointing-Pointer 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. Black-Right-Pointing-Pointer Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  8. A 90-day repeated-dose toxicity study of dietary alpha linolenic acid-enriched diacylglycerol oil in rats.

    Science.gov (United States)

    Bushita, Hiroto; Ito, Yuichi; Saito, Tetsuji; Nukada, Yuko; Ikeda, Naohiro; Nakagiri, Hideaki; Saito, Kazutoshi; Morita, Osamu

    2018-05-31

    Diets supplemented with alpha-linolenic acid (ALA)-enriched diacylglycerol (DAG) oil-which mainly consists of oleic and linolenic, linoleic acids-have potential health benefits in terms of preventing or managing obesity. Although safety of DAG oil has been extensively investigated, toxicity of ALA-DAG oil has not been well understood. Hence, the present study was conducted to clarify the potential adverse effects, if any, of ALA-DAG oil in rats (10/sex/group) fed diets containing 1.375%, 2.75%, or 5.5% ALA-DAG oil for 90 days. Compared to control rats fed rapeseed oil or ALA-triacylglycerol oil (flaxseed oil), rats receiving ALA-DAG oil did not reveal any toxicologically significant treatment-related changes as evaluated by clinical signs, functional observational battery, body weight, food consumption, ophthalmology, urinalysis, hematology, clinical chemistry, organ weight, necropsy and histopathology. The no observed adverse effect levels for dietary exposure to ALA-DAG oil for male and female rats were 2916 and 3326 mg/kg body weight/day, respectively, the highest dose tested. The findings from this study suggest that consumption of ALA-DAG oil is unlikely to cause adverse effects. Copyright © 2018. Published by Elsevier Inc.

  9. Further sesquiterpenoids and phenolics from Taraxacum officinale.

    Science.gov (United States)

    Kisiel, W; Barszcz, B

    2000-06-01

    Five germacrane- and guaiane-type sesquiterpene lactones, including two previously described taraxinic acid derivatives, were isolated from the roots of Taraxacum officinale, together with benzyl glucoside, dihydroconiferin, syringin and dihydrosyringin. The other three lactones were identified as 11beta, 13-dihydrolactucin, ixerin D and ainslioside. Moreover, the stereochemistry at C-11 in dihydrotaraxinic acid was assigned.

  10. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: a molecular docking approach.

    Science.gov (United States)

    Pessôa, Marco T C; Alves, Silmara L G; Taranto, Alex G; Villar, José A F P; Blanco, Gustavo; Barbosa, Leandro A

    2018-12-01

    Digoxin and other cardiotonic steroids (CTS) exert their effect by inhibiting Na,K-ATPase (NKA) activity. CTS bind to the various NKA isoforms that are expressed in different cell types, which gives CTS their narrow therapeutic index. We have synthesised a series of digoxin derivatives (γ-Benzylidene digoxin derivatives) with substitutions in the lactone ring (including non-oxygen and ether groups), to obtain CTS with better NKA isoform specificity. Some of these derivatives show some NKA isoform selective effects, with BD-3, BD-8, and BD-13 increasing NKA α2 activity, BD-5 inhibiting NKA α1 and NKA α3, BD-10 reducing NKA α1, but stimulating NKA α2 and α3; and BD-14, BD-15, and BD-16 enhancing NKA α3 activity. A molecular-docking approach favoured NKA isoform specific interactions for the compounds that supported their observed activity. These results show that BD compounds are a new type of CTS with the capacity to target NKA activity in an isoform-specific manner.

  11. OPTIMASI PRODUKSI ENZIMATIS DIASILGLISEROL MELALUI GLISEROLISIS KONTINU [Optimization of Enzymatic Diacylglycerol Production through Continuous Glycerolysis

    Directory of Open Access Journals (Sweden)

    Tri-Panji*

    2014-06-01

    Full Text Available Diacylglycerol (DAG produced from crude palm oil (CPO is one of the healthy oils that can be consumed for daily human diet. DAG production in Indonesia is constrained by the high cost of the mostly imported lipase. To overcome this problem, research of DAG production has been carried out using crude extracts of lipase produced by local species of fungi Rhizopus oryzae. This study aims to develop a continuous process of enzymatic glycerolysis of CPO for DAG production; to establish optimum conditions of DAG production which includes flow rate of CPO and glycerolysis time; and to test the performance of lipase from the local mold R. oryzae in catalyzing continuous process of glycerolysis for the production of DAG. Lipase isolation was carried out by acetone precipitation and lipase was used as a catalyst in the continuous glycerolysis process. The glycerolysis was conducted by reacting CPO with glycerol continuously at various time periods. The optimum condition of automatic continuous glycerolysis process was achieved at a CPO flow rate of 3 mL/min with a glycerolysis time at the 18 cycles (9 hours. The conversion of DAG was 29%. The performance of lipase was proven to remain stable up to 3 times changes of CPO substrate for 9 hours of glycerolysis process with the best condition at the 3 cycles and can improved conversion of DAG until 37%.

  12. Cloning and Characterization of Novel Testis-Specific Diacylglycerol Kinase η Splice Variants 3 and 4.

    Directory of Open Access Journals (Sweden)

    Eri Murakami

    Full Text Available Diacylglycerol kinase (DGK phosphorylates DG to generate phosphatidic acid. Recently, we found that a new alternative splicing product of the DGKη gene, DGKη3, which lacks exon 26 encoding 31 amino acid residues, was expressed only in the secondary spermatocytes and round spermatids of the testis. In this study, we cloned the full length DGKη3 gene and confirmed the endogenous expression of its protein product. During the cloning procedure, we found a new testis-specific alternative splicing product of the DGKη gene, DGKη4, which lacks half of the catalytic domain. We examined the DGK activity and subcellular localization of DGKη3 and η4. DGKη3 had almost the same activity as DGKη1, whereas the activity of DGKη4 was not detectable. In resting NEC8 cells (human testicular germ cell tumor cell line, DGKη1, η3 and η4 were broadly distributed in the cytoplasm. When osmotically shocked, DGKη1 and η4 were distributed in punctate vesicles in the cytoplasm. In contrast, DGKη3 was partly translocated to the plasma membrane and co-localized with the actin cytoskeleton. These results suggest that DGKη3 and η4 have properties different from those of DGKη1 and that they play roles in the testis in a different manner.

  13. CoMFA, CoMSIA and Eigenvalue Analysis on Dibenzodioxepinone and Dibenzodioxocinone Derivatives as Cholesteryl Ester Transfer Protein Inhibitors

    Directory of Open Access Journals (Sweden)

    Mao-sheng Cheng

    2008-08-01

    Full Text Available Abstract: CoMFA, CoMSIA and eigenvalue analysis (EVA were performed to study the structural features of 61 diverse dibenzodioxepinone and dibenzodioxocinone analogues to probe cholesteryl ester transfer protein (CETP inhibitory activity. Three methods yielded statistically significant models upon assessment of cross-validation, bootstrapping, and progressive scrambling. This was further validated by an external set of 13 derivatives. Our results demonstrate that three models have a good interpolation as well as extrapolation. The hydrophobic features were confirmed to contribute significantly to inhibitor potencies, while a pre-oriented hydrogen bond provided by the hydroxyl group at the 3-position indicated a good correlation with previous SAR, and a hydrogen bond acceptor may play a crucial role in CETP inhibition. These derived models may help us to gain a deeper understanding of the binding interaction of these lactone-based compounds and aid in the design of new potent compounds against CETP.

  14. In silico characterization of 1,2-diacylglycerol cholinephosphotransferase and lysophospha-tidylcholine acyltransferase genes in Glycine max L. Merrill.

    Science.gov (United States)

    Sousa, C S; Barros, B A; Barh, D; Ghosh, P; Azevedo, V; Barros, E G; Moreira, M A

    2016-08-26

    The enzymes 1,2-diacylglycerol cholinephosphotrans-ferase (CPT) and lysophosphatidylcholine acyltransferase (LPCAT) are important in lipid metabolism in soybean seeds. Thus, understand-ing the genes that encode these enzymes may enable their modification and aid the improvement of soybean oil quality. In soybean, the genes encoding these enzymes have not been completely described; there-fore, this study aimed to identify, characterize, and analyze the in silico expression of these genes in soybean. We identified two gene models encoding CPT and two gene models encoding LPCAT, one of which presented an alternative transcript. The sequences were positioned on the physical map of soybean and the promoter regions were analyzed. Cis-elements responsible for seed-specific expression and responses to biotic and abiotic stresses were identified. Virtual expression analysis of the gene models for CPT and LPCAT indicated that these genes are expressed under different stress conditions, in somatic embryos during differentiation, in immature seeds, root tissues, and calli. Putative ami-no acid sequences revealed the presence of transmembrane domains, and analysis of the cellular localization of these enzymes revealed they are located in the endoplasmic reticulum.

  15. Isolation and structural elucidation of secondary metabolites from plants of the family Flacourtiaceae and Asclepiadaceae, and evaluation of biological activity of the sesquiterpene lactones and the diterpenes of Casearia sp

    International Nuclear Information System (INIS)

    Binns Quiros, Franklin

    2012-01-01

    A phytochemical study was realized of the plants Casearia aculeata, Casearia nitida and Asclepias verticillata, using experiments of nuclear magnetic resonance (NMR) of one and two dimensions. Ten secondary metabolites are isolated from C. aculeata and C. nitida. Three of the secondary metabolites have presented a structure known: a diterpene type kaurane: ent-kaurenic acid, a diterpene type pimarane: oxide of 3β-hydroximanoil and a steroid: 4-stigmastene-3-ona. Seven remaining compounds have corresponded to diterpene type clerodane of novel structure. Eight glycosides of poly oxidized pregnanes of novel structure are isolated from A. verticillata. In vitro tests of cytotoxicity and induction of caspase-3 are performed on leukemia cells type Jurkat T. These tests were performed at fifteen sesquiterpene lactones and at four diterpenes. The tests developed have had the purpose to describe structure-activity relationships that can be linked with the capacity to inhibit the factor NF-κB (sesquiterpene lactones) described in the literature and with the known mechanism of action induction of apoptosis in diterpenes type clerodane. A clear relationship between the capacity (high, intermediate or low) to inhibit the factor NF-κB and the capacity to induce to the caspase-3 has remained without observation in the sesquiterpene lactones. Some structural comparisons related with the cytotoxic capacity and the induction of the caspase-3 have been described for the series of LSs with carbon structure of pseudoguianolides. Diterpenes with carbon structure of diterpenes type clerodane have had greater cytotoxic activity with respect to without carbon structure. Diterpenes type clerodane isolated from the family Flacourtiaceae have been cytotoxics, their capacity to induce to the caspase-3 has remained without be nearby to induction realized by the actinomycin D (pure inducer of the caspase-3). (author) [es

  16. Regioselective intramolecular ring closure of 2-amino-6-bromo-2,6-dideoxyhexono-1,4-lactones to 5- or 6-membered iminuronic acid analogues:synthesis of 1-deoxymannojirimycin and 2,5-dideoxy-2,5-imino-D-glucitol

    DEFF Research Database (Denmark)

    Malle, Birgitte Mølholm; Lundt, Inge; Wrodnigg, Tanja M.

    2008-01-01

    closure took place by 5-exo attack on the 5,6-epoxide leading to 2,5-dideoxy-2,5-imino-L-gulonic acid (9b), which was reduced to 2,5-dideoxy-2,5-imino-D-glucitol (9c). The method was further applied to 2-amino-6-bromo-2,6-dideoxy-D-galacto- as well as D-talo-1,4-lactones (14 and 15). However, only......-galacto- as well as L-talo-2-amino-6-bromo-2,6-dideoxy-1,4-lactones ent-14 and ent-15, reacted accordingly to give the D-galacto- and L-altro-1,5-iminuronic acid mimetics, (2S,3S,4R,5S)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-L-galactonic acid, ent-16) and (2R,3S,4R,5S)-3,4,5-trihydroxypipecolic...

  17. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase.

    Science.gov (United States)

    Kim, Young Sup; Kim, Jeoung Seob; Park, Sung-Hee; Choi, Sang-Un; Lee, Chong Ock; Kim, Seong-Kie; Kim, Young-Kyoon; Kim, Sung Hoon; Ryu, Shi Yong

    2003-04-01

    Two xanthanolide sesquiterpene lactones, 8- epi-xanthatin (1) and 8- epi-xanthatin epoxide (2), isolated from the leaves of Xanthium strumarium (Compositae), demonstrated a significant inhibition on the proliferation of cultured human tumor cells, i. e., A549 (non-small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nervous system) and HCT-15 (colon) in vitro. They were also found to inhibit the farnesylation process of human lamin-B by farnesyltransferase (FTase), in a dose-dependent manner in vitro (IC 50 value was calculated as 64 and 58 microM, respectively). Due to the relatively high concentrations of 1 and 2 required to obtain an FTase inhibition as compared with those necessary for a cytotoxic effect on tumor cells, it remains unclear whether a relationship between these two activities exists.

  18. Role of diacylglycerol in adrenergic-stimulated sup 86 Rb uptake by proximal tubules

    Energy Technology Data Exchange (ETDEWEB)

    Baines, A.D.; Drangova, R.; Ho, P. (Univ. of Toronto, Ontario (Canada))

    1990-05-01

    We used rat proximal tubule fragments purified by Percoll centrifugation to examine the role of diacylglycerol (DAG) in noradrenergic-stimulated Na+ reabsorption. Tubular DAG concentration and ouabain-inhibitable 86Rb uptake increased within 30 s after adding norepinephrine (NE) and remained elevated for at least 5 min. NE (1 microM) increased DAG content 17% and ouabain-inhibitable 86Rb uptake 23%. Cirazoline-stimulated 86Rb uptake was not inhibited by BaCl, quinidine, or bumetanide (1-10 microM) or by the omission of HCO3- or Cl- from the medium, but it was completely inhibited by ouabain and furosemide. Oleoyl-acetyl glycerol, L-alpha-1,2-dioctanoylglycerol, and L-alpha-1,2-dioleoylglycerol (DOG) increased total 86Rb uptake 8-11%. 12-O-tetradecanoylphorbol-13-acetate (TPA) (5 nM) increased uptake by only 4%. Staurosporine at 5 nM inhibited DOG stimulation completely, whereas 50 nM staurosporine was required to inhibit NE stimulation completely. Sphingosine inhibited DOG stimulation by 66% but did not inhibit NE stimulation. Amiloride (1 mM) completely blocked DOG stimulation. Monensin increased 86Rb uptake 31% and completely blocked the DOG effect but reduced the NE effect by only 26% (P = 0.08). In tubules from salt-loaded rats, NE did not increase DAG concentration, but NE-stimulated 86Rb uptake was reduced by only 23% (P = 0.15). Thus DAG released by NE may stimulate Na+ entry through Na(+)-H+ exchange. NE predominantly stimulates Na(+)-K(+)-adenosinetriphosphatase (ATPase) by activating a protein kinase that is insensitive to DAG and TPA and is inhibited by staurosporine but not by sphingosine. NE may also stimulate K+ efflux through a BaCl-insensitive K+ channel that is inhibited by millimolar furosemide.

  19. A novel conversion of C(19)-diterpenoid alkaloids into aconane-type diterpenes with eight-membered ring system via skeletal rearrangement of corresponding diazonium derivatives.

    Science.gov (United States)

    Ji, Hong; Chen, Qiao-Hong; Wang, Feng-Peng

    2009-03-01

    A new and efficient approach toward the conversion of C(19)-diterpenoid alkaloids into diterpenes with [6+8+5+6] ring system is reported. Treatment of imines 5, 14, and 24 derived from the C(19)-diterpenoid alkaloids with NaNO(2)-NaOAc-HOAc afforded a series of novel rearrangement diterpenes 6-8, 15-19, and 25-27, respectively. The lactone 11 was obtained in 41% yield by treating 5 with NaNO(2)-HBr-Br(2). The formation of diazonium intermediate is postulated, which was subsequently subjected to skeletal rearrangement, leading to the enlargement of B ring. All the new compounds were isolated and fully characterized.

  20. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    International Nuclear Information System (INIS)

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-01-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with [ 3 H]arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms

  1. Involvement of sulfoquinovosyl diacylglycerol in DNA synthesis in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Aoki Motohide

    2012-02-01

    Full Text Available Abstract Background Sulfoquinovosyl diacylglycerol (SQDG is present in the membranes of cyanobacteria and their postulated progeny, plastids, in plants. A cyanobacterium, Synechocystis sp. PCC 6803, requires SQDG for growth: its mutant (SD1 with the sqdB gene for SQDG synthesis disrupted can grow with external supplementation of SQDG. However, upon removal of SQDG from the medium, its growth is retarded, with a decrease in the cellular content of SQDG throughout cell division, and finally ceases. Concomitantly with the decrease in SQDG, the maximal activity of photosynthesis at high-light intensity is repressed by 40%. Findings We investigated effects of SQDG-defect on physiological aspects in Synechocystis with the use of SD1. SD1 cells defective in SQDG exhibited normal photosynthesis at low-light intensity as on culturing. Meanwhile, SD1 cells defective in SQDG were impaired in light-activated heterotrophic growth as well as in photoautotrophic growth. Flow cytometric analysis of the photoautotrophically growing cells gave similar cell size histograms for the wild type and SD1 supplemented with SQDG. However, the profile of SD1 defective in SQDG changed such that large part of the cell population was increased in size. Of particular interest was the microscopic observation that the mitotic index, i.e., population of dumbbell-like cells with a septum, increased from 14 to 29% in the SD1 culture without SQDG. Flow cytometric analysis also showed that the enlarged cells of SD1 defective in SQDG contained high levels of Chl, however, the DNA content was low. Conclusions Our experiments strongly support the idea that photosynthesis is not the limiting factor for the growth of SD1 defective in SQDG, and that SQDG is responsible for some physiologically fundamental process common to both photoautotrophic and light-activated heterotrophic growth. Our findings suggest that the SQDG-defect allows construction of the photosynthetic machinery at an

  2. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes.

    Science.gov (United States)

    Vermeer, Joop E M; van Wijk, Ringo; Goedhart, Joachim; Geldner, Niko; Chory, Joanne; Gadella, Theodorus W J; Munnik, Teun

    2017-07-01

    Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    Science.gov (United States)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  4. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish.

    Science.gov (United States)

    Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming

    2018-04-15

    A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  6. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    International Nuclear Information System (INIS)

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase α activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of 3 H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF 1 mice. Approximately 50% of 3 H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces

  7. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35

    Directory of Open Access Journals (Sweden)

    Shengcai Han

    2016-12-01

    Full Text Available Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after two months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction.

  8. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions.

    Science.gov (United States)

    Nieto Penalver, Carlos G; Morin, Danièle; Cantet, Franck; Saurel, Olivier; Milon, Alain; Vorholt, Julia A

    2006-01-23

    Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.

  9. Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae family.

    Science.gov (United States)

    Scotti, Marcus T; Emerenciano, Vicente; Ferreira, Marcelo J P; Scotti, Luciana; Stefani, Ricardo; da Silva, Marcelo S; Mendonça Junior, Francisco Jaime B

    2012-04-20

    The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.

  10. AOPPs Induce MCP-1 Expression by Increasing ROS-Mediated Activation of the NF-κB Pathway in Rat Mesangial Cells: Inhibition by Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Jian-Cheng Wang

    2013-12-01

    Full Text Available Background: Monocyte chemoattractant protein-1 (MCP-1 plays an important role in extracellular matrix accumulation through macrophage recruitment and activation in the development and progression of diabetic nephropathy. Therefore, this study examined whether advanced oxidation protein products (AOPPs are involved in nuclear factor-κB (NF-κB activation and MCP-1 mRNA and protein expression in mesangial cells (MCs and evaluated the effects of derivatives of sesquiterpene lactones (SLs on AOPP-induced renal damage. Methods: MCP-1 mRNA and protein expression in MCs were determined by quantitative real-time PCR and ELISA, respectively. The level of intracellular reactive oxygen species (ROS was determined by flow cytometry. The protein expression of tubulin, P47, NF-κB p65, phospho-NF-κB p65, IκB, phospho-IκB, IKKß and phospho-IKKß was evaluated by Western blot. Results: AOPPs caused oxidative stress in MCs and activated the NF-κB pathway by inducing IκBa phosphorylation and degradation. Inhibition of ROS by SOD (ROS inhibitor blocked the AOPP-mediated NF-κB pathway. Moreover, the inhibition of AOPP-induced overproduction of MCP-1 mRNA and protein was associated with inhibition of IκBa degradation by SLs. Conclusion: AOPPs induce MCP-1 expression by activating the ROS/NF-κB pathway and can be inhibited by SLs. These findings may provide a novel approach to treat inflammatory and immune renal diseases, including diabetic nephropathy.

  11. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  12. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  13. Preparation of (+)- and (-)- β-phenyl- and β-(4-chlorophenyl)-γ- butyro lactones: Key intermediates in the synthesis of β-phenyl-Gaba and baclofene

    Energy Technology Data Exchange (ETDEWEB)

    Gomez G, J.; Melendez R, M.; Suarez C, O. R.; Castelan D, L. E.; Fragoso V, M. J.; Lopez V, E.; Sanchez Z, M., E-mail: melendez@uaeh.edu.mx [Universidad Autonoma del Estado de Hidalgo, Area Academica de Quimica, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo (Mexico)

    2014-07-01

    the preparation of β-phenyl- and β-(4-chlorophenyl)-γ-butyro lactones (±)-4 and their resolution to the corresponding (+)-(S)-3, (-)-(R)-3 and (+)-(S)-4, (-)-(R)-4 through formation, flash column chromatography separation and subsequent hydrolysis of dia stereoisomeric 4-hydroxybutyramide s (2'R,3S)-5, (2'R,3R)-5, (2'R,3S)-6 and (2'R,3R)-6 is described. The absolute configuration assignment of enantiopure 3 and 4 was supported by X-ray crystallographic structures of (2'R,3R)-5, (2'R,3S)-6 and (2'R,3R)-6. (Author)

  14. Preparation of (+)- and (-)- β-phenyl- and β-(4-chlorophenyl)-γ- butyro lactones: Key intermediates in the synthesis of β-phenyl-Gaba and baclofene

    International Nuclear Information System (INIS)

    Gomez G, J.; Melendez R, M.; Suarez C, O. R.; Castelan D, L. E.; Fragoso V, M. J.; Lopez V, E.; Sanchez Z, M.

    2014-01-01

    the preparation of β-phenyl- and β-(4-chlorophenyl)-γ-butyro lactones (±)-4 and their resolution to the corresponding (+)-(S)-3, (-)-(R)-3 and (+)-(S)-4, (-)-(R)-4 through formation, flash column chromatography separation and subsequent hydrolysis of dia stereoisomeric 4-hydroxybutyramide s (2'R,3S)-5, (2'R,3R)-5, (2'R,3S)-6 and (2'R,3R)-6 is described. The absolute configuration assignment of enantiopure 3 and 4 was supported by X-ray crystallographic structures of (2'R,3R)-5, (2'R,3S)-6 and (2'R,3R)-6. (Author)

  15. Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica

    Directory of Open Access Journals (Sweden)

    Wanda Kisiel

    2011-01-01

    Full Text Available Nine known sesquiterpene lactones, including four lactucin-type guaianolides, four costuslactone-type guaianolides and one germacranolide, were isolated from roots of Lactuca sibirica (Asteraceae, six of which were glycoside derivatives. The chemosystematic significance of the compounds is discussed in the context of sesquiterpenoids present in roots of the closely related species Lactuca tatarica. A comparison of sesquiterpene lactone profiles indicate that the species can be differentiated on the basis of their germacranolide glycoside compositions.

  16. Ten-Membered Substituted Cyclic 2-Oxecanone (Decalactone) Derivatives from Latrunculia corticata, a Red Sea Sponge

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dembitsky, V. M.

    - (2003), s. 2144-2152 ISSN 1434-193X Institutional research plan: CEZ:AV0Z5020903 Keywords : glycosides * lactones * natural products Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2003

  17. Quantitative analysis of sesquiterpene lactone cnicin in seven Centaurea species wild-growing in Serbia and Montenegro using 1H-NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    IRIS DJORDJEVIC

    2007-12-01

    Full Text Available 1H-NMR spectroscopy was applied for the quantitative analysis of cnicin, a bioactive germacranolide type sesquiterpene lactone, in the aerial parts of seven wild-growing Centaurea species collected in Serbia and Montenegro. The analysis was performed by comparison of the integral of the one-proton signal of cnicin (H-13, δ 5.75 with that of the two-proton singlet (δ 6.98 of 2,6-bis(1,1-dimethylethyl-4-methylphenol (BHT, used as the internal standard. Cnicin, within concentration the range 1.06–6.12 mg/g, calculated per weight of the fresh plant material was detected in six species, the exception being C. salonitana. This method allows the rapid and simple quantification of cnicin without any pre-purification step.

  18. Diverse profiles of N-acyl-homoserine lactone molecules found in cnidarians.

    Science.gov (United States)

    Ransome, Emma; Munn, Colin B; Halliday, Nigel; Cámara, Miguel; Tait, Karen

    2014-02-01

    Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Quantitative HPLC analysis of sesquiterpene lactones and determination of chemotypes in Eremanthus seidelii MacLeish and Schumacher (Asteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Humberto T. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Quimica; Gobbo-Neto, Leonardo; Lopes, Norberto P.; Lopes, Joao L.C. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: joaoluis@usp.br; npelopes@fcfrp.usp.br; Cavalheiro, Alberto J. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2005-11-15

    anthus seidelii MacLeish and Schumacher has a restricted occurrence to the Brazilian 'cerrado' surrounding the Furnas (MG) reservoir, in environments that have been seriously damaged by human activity. The present phytochemical investigation reveals that the sesquiterpene lactones (SL) 4{beta},5-dihydro-2',3'-dihydroxy-15-desoxy-goyazensolide (1) and 4{beta},5-dihydro-1',2'-epoxy-eremantholide-C (2) are the major secondary metabolites in E. seidelii leaves, and an HPLC method was developed for their quantitative analysis. HPLC analysis showed no significant seasonal variation in the concentrations of both SL. No qualitative differences were found in the SL patterns of all individuals sampled. However, there is a different SL quantitative pattern among the plants analyzed, pointing to the existence of three quantitative chemotypes of this species, with differences possibly originating from the activity of the enzymes that cyclize the goyazensolide type SL (1) to a eremantholide type SL (2). (author)

  20. Quantitative HPLC analysis of sesquiterpene lactones and determination of chemotypes in Eremanthus seidelii MacLeish and Schumacher (Asteraceae)

    International Nuclear Information System (INIS)

    Sakamoto, Humberto T.; Gobbo-Neto, Leonardo; Lopes, Norberto P.; Lopes, Joao L.C.; Cavalheiro, Alberto J.

    2005-01-01

    Eremanthus seidelii MacLeish and Schumacher has a restricted occurrence to the Brazilian 'cerrado' surrounding the Furnas (MG) reservoir, in environments that have been seriously damaged by human activity. The present phytochemical investigation reveals that the sesquiterpene lactones (SL) 4β,5-dihydro-2',3'-dihydroxy-15-desoxy-goyazensolide (1) and 4β,5-dihydro-1',2'-epoxy-eremantholide-C (2) are the major secondary metabolites in E. seidelii leaves, and an HPLC method was developed for their quantitative analysis. HPLC analysis showed no significant seasonal variation in the concentrations of both SL. No qualitative differences were found in the SL patterns of all individuals sampled. However, there is a different SL quantitative pattern among the plants analyzed, pointing to the existence of three quantitative chemotypes of this species, with differences possibly originating from the activity of the enzymes that cyclize the goyazensolide type SL (1) to a eremantholide type SL (2). (author)

  1. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165.

    Science.gov (United States)

    Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth

    2017-03-17

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.

  2. Synthesis and biological evaluation of novel conjugates of camptothecin and 5-Flurouracil as cytotoxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: yqliu@lzu.edu.c [Lanzhou Jiaotong University (China). Environmental and Municipal Engineering School; Chun-Yan Zhaob; Ying-Qian Liu [Lanzhou University (China). School of Pharmacy

    2011-07-01

    A series of novel conjugates of camptothecin and 5-fluorouracil were first synthesized and their cytotoxic activities against two human tumor cell lines (SGC-7901 and A-549) as well as in vitro pharmacokinetic determination of lactone stability were studied. Among these compounds, most tested conjugates showed comparable or superior cytotoxic activities to 2, but less potent compared with 1. Particularly, conjugates 10b and 10d were highly active against A-549 with IC{sub 50} values of 0.45 and 0.38 {mu}mol L{sup -1}, respectively. Also, the in vitro pharmacokinetic determination of lactone levels of representative compound 10b showed that the biological life span of their lactone forms in human and mouse plasma significantly increased compared with their mother compound 1. Quantitative structure-activity relationship (QSAR) method was then applied for developing linear models to predict the cytotoxic activities of these derivatives that have not yet been synthesized or experimentally tested. In addition, molecular docking was used to clarify the binding mode of these derivatives to human DNA topoisomerase I. The important hydrogen-bonding interactions were observed between these derivatives and their receptor. The results from molecular modeling and QSAR study can guide the design of novel conjugates with higher antitumor activity. (author)

  3. Semisynthesis, an Anti-Inflammatory Effect of Derivatives of 1β-Hydroxy Alantolactone from Inula britannica

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2017-10-01

    Full Text Available 1β-hydroxy alantolactone, a sesquiterpene lactone mainly isolated from Inula genus plants, exhibits potent anti-inflammatory and anticancer activities. In this work, 1β-hydroxy alantolactone was isolated and five derivatives were prepared through different reactions at the C1-OH and C13-methylene motifs. The structure–activity relationships (SAR of anti-inflammatory effects against NO production in RAW264.7 cells showed that the α-methylene-γ-butyrolactone motif was essential for NO production suppression and that retaining the C1-OH group can remarkably improve this effect. The NF-κB signaling pathway plays a pivotal role in the regulation of NO expression. Moreover, the levels of p65 and p50 phosphorylation were investigated and active compound 1 inhibited phosphorylation of p65 and p50 in TNF-α-induced NF-κB signaling. Further molecular docking suggested that 1 may target the p65 of NF-κB.

  4. Differential alterations of phospholipid metabolism in cultured cells of neural origin by phorbol esters, fatty acids, diacylglycerols and related compounds

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1986-01-01

    The uptake and metabolism of [ 3 H]methylcholine, [1,2- 14 C]-ethanolamine, [1- 14 C]fatty acids and [ 32 P] were studied in glioma (C6), neuroblastoma (N1E-115) and neuroblastoma-glioma hybrid (NG108-15) cells in culture in the presence of tetradecanoylphorbolacetate (TPA) and related analogues, fatty acids and diacylglycerol (DAG) to assess mechanisms of stimulation of phospholipid synthesis. Choline incorporation into phosphatidylcholine (PC) was stimulated 1.5-3 fold by phorbol esters and 3-10 fold by 18:1(n-9) in C6 cultures; these agents were without effect on N1E-115 and had intermediate effects on NG108-15 cells. Stimulation of [ 32 P] incorporation was predominantly into PC, ethanolamine incorporation into phosphatidylethanolamine (PE) was less stimulated ( 3 H]choline and its incorporation via intracellular phosphocholine into PC whereas exogenous 18:1(n-9) stimulated only utilization of intracellular P-choline in C6 cells. Choline incorporation into PC and relative stimulation by TPA or 18:1 was influenced by medium glucose and choline. Thus, metabolism of phospholipids and their precursors in neural cells can be markedly influenced by phorbol esters and fatty acids but this stimulation is dependent on cell type, growth medium, phospholipid class and nature of the stimulator

  5. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger rhizosphere: Co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia

    Directory of Open Access Journals (Sweden)

    Chhabra Siri

    2011-03-01

    Full Text Available Abstract Background Cell-to-cell communication (quorum sensing (QS co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ activities. Here we sought to discover novel N-acylhomoserine lactone (AHL-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoylhomoserine lactone (3-oxo-C6-HSL as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2, Burkholderia (GG4 and Klebsiella (Se14 were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.

  6. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    Science.gov (United States)

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. N-hexanoyl-L-homoserine lactone-degrading Pseudomonas aeruginosa PsDAHP1 protects zebrafish against Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Vinoj, Gopalakrishnan; Jayakumar, Rengarajan; Chen, Jiann-Chu; Withyachumnarnkul, Boonsirm; Shanthi, Sathappan; Vaseeharan, Baskaralingam

    2015-01-01

    Four strains of N-hexanoyl-L-homoserine lactone (AHL)-degrading Pseudomonas spp., named PsDAHP1, PsDAHP2, PsDAHP3, and PsDAHP4 were isolated and identified from the intestine of Fenneropenaeus indicus. PsDAHP1 showed the highest AHL-degrading activity among the four isolates. PsDAHP1 inhibited biofilm-forming exopolysaccharide and altered cell surface hydrophobicity of virulent green fluorescent protein (GFP)-tagged Vibrio parahaemolyticus DAHV2 (GFP-VpDAHV2). Oral administration of PsDAHP1 significantly reduced zebrafish mortality caused by GFP-VpDAHV2 challenge, and inhibited colonisation of GFP-VpDAHV2 in the gills and intestine of zebrafish as evidence by confocal laser scanning microscope and selective plating. Furthermore, zebrafish receiving PsDAHP1-containing feed had increased phagocytic cells of its leucocytes, increased serum activities of superoxide dismutase and lysozyme. The results suggest that Pseudomonas aeruginosa PsDAHP1 could protect zebrafish from V. parahaemolyticus infection by inhibiting biofilm formation and enhancing defence mechanisms of the fish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer.

    Science.gov (United States)

    Islam, Muhammad Torequl; Ali, Eunüs S; Uddin, Shaikh Jamal; Islam, Md Amirul; Shaw, Subrata; Khan, Ishaq N; Saravi, Seyed Soheil Saeedi; Ahmad, Saheem; Rehman, Shahnawaz; Gupta, Vijai Kumar; Găman, Mihnea-Alexandru; Găman, Amelia Maria; Yele, Santosh; Das, Asish Kumar; de Castro E Sousa, João Marcelo; de Moura Dantas, Sandra Maria Mendes; Rolim, Hercília Maria Lins; de Carvalho Melo-Cavalcante, Ana Amélia; Mubarak, Mohammad S; Yarla, Nagendra Sastry; Shilpi, Jamil A; Mishra, Siddhartha Kumar; Atanasov, Atanas G; Kamal, Mohammad Amjad

    2018-04-28

    The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    Science.gov (United States)

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-10-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk.

  10. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    Science.gov (United States)

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  11. Essential role of neuron-enriched diacylglycerol kinase (DGK, DGKbeta in neurite spine formation, contributing to cognitive function.

    Directory of Open Access Journals (Sweden)

    Yasuhito Shirai

    Full Text Available BACKGROUND: Diacylglycerol (DG kinase (DGK phosphorylates DG to produce phosphatidic acid (PA. Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory.

  12. Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.

    Science.gov (United States)

    Farese, R V; Cooper, D R; Konda, T S; Nair, G; Standaert, M L; Davis, J S; Pollet, R J

    1988-01-01

    We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC

  13. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  14. Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives

    Science.gov (United States)

    Dumesic, James A.; Martin Alonso, David; Luterbacher, Jeremy Scott

    2016-06-07

    Described is a method of processing biomass to separate it into a liquid fraction enriched in solubilized C5-sugar-containing oligomers and C-5 sugar monomers and a solid fraction enriched in substantially insoluble cellulose and C6-sugar-containing oligomers. The method includes the steps of reacting biomass with a solvent system comprising water, at least one lactone, or at least one furan, or at least one cyclic ether, and at least one acid, for a time and at a temperature to yield the liquid and solid fractions. The liquid and solid fractions may then be separated. Gamma-valeroloactone is a preferred lactone for use in the solvent system. Tetrahydrofuran is a preferred furan species for use in the solvent system.

  15. Glucono-delta-lactone and citric acid as acidulants for lowering the heat resistance of Clostridium sporogenes PA 3679 in HTST working conditions.

    Science.gov (United States)

    Silla Santos, M H; Torres Zarzo, J

    1995-04-01

    The heat resistance of Clostridium sporogenes PA 3679 spores has been studied to establish the influence of acidification with glucono-delta-lactone (GDL) and citric acid on the thermal resistance parameters (DT and z) of this microorganism and to compare their effect with phosphate buffer and natural asparagus as reference substrates. A reduction in DT values was observed in asparagus purée as the acidification level increased with both acidulants although this effect was more evident at the lower treatment temperatures studied (121-127 degrees C). Citric acid was more effective for reducing the heat resistance of spores than GDL at all of the temperatures. The reduction in pH diminished the value of the z parameter, although it was necessary to lower the pH to 4.5 to obtain a significant reduction.

  16. Carbon-11 labeled diacylglycerol for signal transduction imaging by positron CT. Evaluation of the quality and safety for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ryou [Nishijin Hospital, Kyoto (Japan); Imahori, Yoshio; Ido, Tatsuo [and others

    1995-02-01

    To elucidate the synaptic transmission in the neural system, we have been developing fundamental studies for intracellular signaling. For clinical application of carbon-11 labeled diacylglycerol (1-[1-{sup 11}C]butyryl-2-palmitoyl-rac-glycerol: {sup 11}C-DAG) using positron emission computed tomography (PET), we evaluated the quality and the safety of {sup 11}C-DAG as the solution for injection. As a result, {sup 11}C-DAG was synthesized within 50 minutes, including the preparation step for injection. The half life time and energy spectrum of {sup 11}C-DAG were the same as the physical character of carbon-11, and other radioisotopes were not detected. In the quality control, {sup 11}C-DAG solution was negative in the examination of bacterial contamination and the pyrogen test in three successive synthesis procedures. In the acute toxicity test by administration of {sup 11}C-DAG and 100 {mu}mol/kg of non-radioactive DAG to the rat intravenously, the systemic condition of the rat was not changed and no abnormalities were found in any organ 24 hours after administration. These findings indicated the safety of {sup 11}C-DAG solution. Clinical application of {sup 11}C-DAG using positron emission tomography may be useful to elucidate the dysfunction of intracellular signaling in disorders of higher cortical function such as Alzheimer disease. (author).

  17. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    Science.gov (United States)

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells.

    Science.gov (United States)

    Tao, Shiyu; Niu, Liqiong; Cai, Liuping; Geng, Yali; Hua, Canfeng; Ni, Yingdong; Zhao, Ruqian

    2018-05-15

    The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P cells after C12-HSL treatment, with elevated intracellular ATP generation (P cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of oxidoreduction potential and of gas bubbling on rheological properties and microstructure of acid skim milk gels acidified with glucono-delta-lactone.

    Science.gov (United States)

    Martin, F; Cayot, N; Marin, A; Journaux, L; Cayot, P; Gervais, P; Cachon, R

    2009-12-01

    Milk oxidoreduction potential was modified using gases during the production of a model dairy product and its effect on gel setting was studied. Acidification by glucono-delta-lactone was used to examine the physicochemistry of gelation and to avoid variations due to microorganisms sensitive to oxidoreduction potential. Four conditions of oxidoreduction potential were applied to milk: milk was gassed with air, nongassed, gassed with N(2), or gassed with N(2)H(2). The rheological properties and microstructure of these gels were determined using viscoelasticimetry, measurement of whey separation, and confocal laser scanning microscopy. It appeared that a reducing environment led to less-aggregated proteins within the matrix and consequently decreased whey separation significantly. The use of gas to modify oxidoreduction potential is a possible way to improve the quality of dairy products.

  1. Chemoselective construction of novel steroid derivatives.

    Science.gov (United States)

    Troisi, Luigino; Florio, Saverio; Granito, Catia

    2002-07-01

    Alpha-halo-alpha-heteroarylalkyllithiums, generated by deprotonation of the corresponding halides, when added promptly to steroids with C=O or C=NR groups, lead to epoxides and aziridines. The reactions are regio- and stereoselective; in fact, in the presence of more than one C=O group, the oxido or aziridino functions are formed uniquely at the C=O of C-17 (or C-20 depending on its position in the starting molecule), and the C-20(R) stereoisomer is often the only product isolated. Protection of the hydroxyl group present on several considered steroids was required, and it was accomplished through derivatization in acetyl, ether, or lactone.

  2. Tasting Pseudomonas aeruginosa biofilms.Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone

    Directory of Open Access Journals (Sweden)

    Susanne eMaurer

    2015-07-01

    Full Text Available Bacteria communicate with each other via specialized signalling molecules, known as quorum sensing molecules or autoinducers. The Pseudomonas aeruginosa-derived quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (AHL-12, however, also activates mammalian cells. As shown previously, AHL-12 induced chemotaxis, up-regulated CD11b expression, and enhanced phagocytosis of polymorphonuclear neutrophils (PMN. Circumstantial evidence concurred with a receptor for AHL-12, which so far has been elusive. We investigated the bitter receptor T2R38 as a potential candidate. Although identified as a taste receptor, cells outside the gustatory system express T2R38, for example epithelial cells in the lung. We now detected T2R38 in peripheral blood neutrophils, monocytes and lymphocytes on the cell membrane, but also intracellular. In neutrophils, T2R38 was located in vesicles with characteristics of lipid droplets, and super-resolution microscopy showed a co-localisation with the lipid droplet membrane. Neutrophils take up AHL-12, and it co-localized with T2R38 as seen by laser scan microscopy. Binding of AHL-12 to T2R28 was confirmed by pull-down assays using biotin-coupled AHL-12 as bait. A commercially available antibody to T2R38 inhibited binding of AHL-12 to neutrophils, and this antibody by itself stimulated neutrophils, similarly to AHL-12. In conclusion, our data provide evidence for expression of functional T2R38 on neutrophils, and are compatible with the notion that T2R38 is the receptor for AHL-12 on neutrophils.

  3. Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs.

    Directory of Open Access Journals (Sweden)

    Radhey S Gupta

    Full Text Available Diacylglycerol kinase (DGK family of proteins, which phosphorylates diacylglycerol into phosphatidic acid, play important role in controlling diverse cellular processes in eukaryotic organisms. Most vertebrate species contain 10 different DGK isozymes, which are grouped into 5 different classes based on the presence or absence of specific functional domains. However, the relationships among different DGK isozymes or how they have evolved from a common ancestor is unclear. The catalytic domain constitutes the single largest sequence element within the DGK proteins that is commonly and uniquely shared by all family members, but there is limited understanding of the overall function of this domain. In this work, we have used the catalytic domain sequences to construct a phylogenetic tree for the DGK family members from representatives of the main vertebrate classes and have also examined the distributions of various DGK isozymes in eukaryotic phyla. In a tree based on catalytic domain sequences, the DGK homologs belonging to different classes formed strongly supported clusters which were separated by long branches, and the different isozymes within each class also generally formed monophyletic groupings. Further, our analysis of the sequence alignments of catalytic domains has identified >10 novel sequence signatures consisting of conserved signature indels (inserts or deletions, CSIs that are distinctive characteristics of either particular classes of DGK isozymes, or are commonly shared by members of two or more classes of DGK isozymes. The conserved indels in protein sequences are known to play important functional roles in the proteins/organisms where they are found. Thus, our identification of multiple highly specific CSIs that are distinguishing characteristics of different classes of DGK homologs points to the existence of important differences in the catalytic domain function among the DGK isozymes. The identified CSIs in conjunction with

  4. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Marta Rodríguez-Ruiz

    2017-08-01

    Full Text Available Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56 kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs.We also report that an NO (nitric oxide-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor and S-nitrosoglutahione (NO donor. Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological

  5. Synthesis, Antiproliferative and Antifungal Activities of 1,2,3-Triazole-Substituted Carnosic Acid and Carnosol Derivatives

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2015-05-01

    Full Text Available Abietane diterpenes exhibit an array of interesting biological activities, which have generated significant interest among the pharmacological community. Starting from the abietane diterpenes carnosic acid and carnosol, twenty four new triazole derivatives were synthesized using click chemistry. The compounds differ in the length of the linker and the substituent on the triazole moiety. The compounds were assessed as antiproliferative and antifungal agents. The antiproliferative activity was determined on normal lung fibroblasts (MRC-5, gastric epithelial adenocarcinoma (AGS, lung cancer (SK-MES-1 and bladder carcinoma (J82 cells while the antifungal activity was assessed against Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32264. The carnosic acid γ-lactone derivatives 1–3 were the most active antiproliferative compounds of the series, with IC50 values in the range of 43.4–46.9 μM and 39.2–48.9 μM for MRC-5 and AGS cells, respectively. Regarding antifungal activity, C. neoformans was the most sensitive fungus, with nine compounds inhibiting more than 50% of its fungal growth at concentrations ≤250 µg∙mL−1. Compound 22, possessing a p-Br-benzyl substituent on the triazole ring, showed the best activity (91% growth inhibition at 250 µg∙mL−1 In turn, six compounds inhibited 50% C. albicans growth at concentrations lower than 250 µg∙mL−1.

  6. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia.

    Science.gov (United States)

    Sun, Yuan-Xin; Li, Hui; Feng, Qi; Li, Xin; Yu, Ying-Yi; Zhou, Li-Wei; Gao, Yan; Li, Guo-Sheng; Ren, Juan; Ma, Chun-Hong; Gao, Cheng-Jiang; Peng, Jun

    2017-01-24

    Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls. Overexpression of miR34a and underexpression of its target gene diacylglycerol kinase (DGK) ζ in bone marrow mononuclear cells were validated in 41 patients and associated with the severity of aplastic anemia. Further, the level of miR34a was higher in naïve T cells from patients than from controls. The role of miR34a and DGKζ in aplastic anemia was investigated in a murine model of immune-mediated bone marrow failure using miR34a-/- mice. After T-cell receptor stimulation in vitro, lymph node T cells from miR34a-/- mice demonstrated reduced activation and proliferation accompanied with a less profound down-regulation of DGKζ expression and decreased ERK phosphorylation compared to those from wild-type C57BL6 control mice. Infusion of 5 × 106 miR34a-/- lymph node T cells into sublethally irradiated CB6F1 recipients led to increased Lin-Sca1+CD117+ cells and less vigorous expansion of CD8+ T cells than injection of same number of wild-type lymph node cells. Our study demonstrates that the miR34a/DGKζ dysregulation enhances T-cell activation in aplastic anemia and targeting miR34a may represent a novel molecular therapeutic approach for patients with aplastic anemia.

  7. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  9. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior

    KAUST Repository

    Ladelta, Viko

    2018-03-16

    Poly(macrolactones) (PMLs) can be considered as biodegradable alternatives of polyethylene; however, controlling the ring-opening polymerization (ROP) of macrolactone (ML) monomers remains a challenge due to their low ring strain. To overcome this problem, phosphazene (t-BuP4), a strong superbase, has to be used as catalyst. Unfortunately, the one-pot sequential block copolymerization of MLs with small lactones (SLs) is impossible since the high basicity of t-BuP4 promotes both intra- and intermolecular transesterification reactions, thus leading to random copolymers. By using ROP and the “catalyst-switch” strategy [benzyl alcohol, t-BuP4/neutralization with diphenyl phosphate/(t-BuP2)], we were able to synthesize different well-defined PML-b-PSL block copolymers (MLs: dodecalactone, ω-pentadecalactone, and ω-hexadecalactone; SLs: δ-valerolactone and ε-caprolactone). The thermal properties and the phase behavior of these block copolymers were studied by differential scanning calorimetry and X-ray diffraction spectroscopy. This study shows that the thermal properties and phase behavior of PMLs-b-PSLs are largely influenced by the PMLs block if PMLs components constitute the majority of the block copolymers.

  10. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    Science.gov (United States)

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  11. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior

    KAUST Repository

    Ladelta, Viko; Kim, Joey D.; Bilalis, Panagiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2018-01-01

    Poly(macrolactones) (PMLs) can be considered as biodegradable alternatives of polyethylene; however, controlling the ring-opening polymerization (ROP) of macrolactone (ML) monomers remains a challenge due to their low ring strain. To overcome this problem, phosphazene (t-BuP4), a strong superbase, has to be used as catalyst. Unfortunately, the one-pot sequential block copolymerization of MLs with small lactones (SLs) is impossible since the high basicity of t-BuP4 promotes both intra- and intermolecular transesterification reactions, thus leading to random copolymers. By using ROP and the “catalyst-switch” strategy [benzyl alcohol, t-BuP4/neutralization with diphenyl phosphate/(t-BuP2)], we were able to synthesize different well-defined PML-b-PSL block copolymers (MLs: dodecalactone, ω-pentadecalactone, and ω-hexadecalactone; SLs: δ-valerolactone and ε-caprolactone). The thermal properties and the phase behavior of these block copolymers were studied by differential scanning calorimetry and X-ray diffraction spectroscopy. This study shows that the thermal properties and phase behavior of PMLs-b-PSLs are largely influenced by the PMLs block if PMLs components constitute the majority of the block copolymers.

  12. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice.

    Science.gov (United States)

    Baumeier, Christian; Kaiser, Daniel; Heeren, Jörg; Scheja, Ludger; John, Clara; Weise, Christoph; Eravci, Murat; Lagerpusch, Merit; Schulze, Gunnar; Joost, Hans-Georg; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-01

    Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species. Copyright © 2015. Published by Elsevier B.V.

  13. Survey of pyrethroid, macrocyclic lactone and antibacterial residues in bulk milk tank from Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Lidia C.A. Picinin

    Full Text Available ABSTRACT: A survey of veterinary drug residues in bulk milk tank from Minas Gerais State, Brazil, was carried out through a broad scope analysis. Here, 132 raw milk samples were collected at 45 dairy farms in Minas Gerais from August 2009 to February 2010, and analyzed for 42 analytes, comprising pyrethroids, macrocyclic lactones and antibacterials, using liquid chromatography coupled with mass spectrometry in tandem mode and gas chromatography with electron capture detection. Within all milk samples, at least one veterinary drug residue was identified in 40 milk samples (30.30% by confirmatory tests, whereas 16 samples (12.12% showed the presence of at least two residues. With regard to the Brazilian maximum residue levels, 11 milk samples (8.33% were non-compliant according to Brazilian Legislation. The veterinary drugs detected in the non-compliant milk samples include penicillin V (one sample, abamectin (one sample and cypermethrin (nine samples. Furthermore, the antibacterial screening methods failed to identify most of the positive samples that were detected by confirmatory tests, leading to a large discrepancy between the screening and confirmatory antimicrobial tests. Thus, the present study indicated that the veterinary drugs residues still represents a great concern for the milk production chain.

  14. Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis.

    Science.gov (United States)

    Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh

    2018-02-01

    Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    Science.gov (United States)

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  17. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue.

    Science.gov (United States)

    Gardères, Johan; Henry, Joël; Bernay, Benoit; Ritter, Andrès; Zatylny-Gaudin, Céline; Wiens, Matthias; Müller, Werner E G; Le Pennec, Gaël

    2014-01-01

    Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on

  18. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792: insights into an intimate inter-kingdom dialogue.

    Directory of Open Access Journals (Sweden)

    Johan Gardères

    Full Text Available Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted

  19. Radioiodinated diacylglycerol analogue: a potential imaging agent for single-photon emission tomographic investigations of cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Y. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Imahori, Y. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ueda, S. [Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto (Japan); Fujii, R. [Nishijin Hospital, Kyoto (Japan); Wakita, K. [Nishijin Hospital, Kyoto (Japan); Inoue, M. [Daiichi Radioisotope Laboratories, Chiba (Japan); Tazawa, S. [Daiichi Radioisotope Laboratories, Chiba (Japan)

    1996-03-01

    Phospholipid metabolism is closely related to membrane perturbation in cerebral ischaemia. We investigated in vivo topographical lipid metabolism using an iodine-123-labelled diacylglycerol analogue, (1-(15-(4-iodine-123-iodophenyl)-pentadecanoyl)-2-stearoyl-rac-glycerol) ({sup 123}I-labelled DAG), in a middle cerebral artery (MCA) occlusion model with the aim of positive imaging of ischaemic insult. Sprague-Dawley rats underwent coagulation of the MCA to induce permanent occlusion. MCA occlusion times prior to injection of {sup 123}I-labelled DAG ranged from 15 min to 14 days. Each rat was injected with 11-37 MBq of {sup 123}I-labelled DAG. After 30 min, in vivo autoradiographs were reconstructed. Scanning of the living rat brain in this MCA occlusion model was performed. Cerebral infarctions were recognized in the frontal cortex, the parietal cortex and the lateral portion of the caudate-putamen by 2, 3, 5-triphenyltetrazolium hydrochloride staining. In infarcted regions (region 1), {sup 123}I-labelled DAG incorporation showed a decrease up to 12 h; it then increased up to 6 days and decreased thereafter. In peri-infarcted regions (region 2), the incorporation showed almost no change up to 12 h, then increased up to 5-6 days and decreased thereafter. In other regions (region 3), the incorporation showed no change. Lipid analysis showed that {sup 123}I-labelled DAG was metabolized to 15-(4-iodine-123-iodophenyl)-pentadecanoic acid by DAG lipase and to {sup 123}I-labelled phosphatidylcholine. Scanning of the ischaemic region showed higher accumulation than on the non-lesioned side. We established a method to visualize ischaemic foci as positive images. The early changes in {sup 123}I-labelled DAG incorporation were related to DAG lipase, which degraded the accumulated intrinsic DAG, and increased {sup 123}I-labelled DAG incorporation in the chronic stage involves several aspects of neural destruction in the process of autolysis.

  20. Radioiodinated diacylglycerol analogue: a potential imaging agent for single-photon emission tomographic investigations of cerebral ischaemia

    International Nuclear Information System (INIS)

    Ohmori, Y.; Imahori, Y.; Ueda, S.; Fujii, R.; Wakita, K.; Inoue, M.; Tazawa, S.

    1996-01-01

    Phospholipid metabolism is closely related to membrane perturbation in cerebral ischaemia. We investigated in vivo topographical lipid metabolism using an iodine-123-labelled diacylglycerol analogue, (1-(15-(4-iodine-123-iodophenyl)-pentadecanoyl)-2-stearoyl-rac-glycerol) ( 123 I-labelled DAG), in a middle cerebral artery (MCA) occlusion model with the aim of positive imaging of ischaemic insult. Sprague-Dawley rats underwent coagulation of the MCA to induce permanent occlusion. MCA occlusion times prior to injection of 123 I-labelled DAG ranged from 15 min to 14 days. Each rat was injected with 11-37 MBq of 123 I-labelled DAG via a tail vein. After 30 min, in vivo autoradiographs were reconstructed. Scanning of the living rat brain in this MCA occlusion model was performed using a gamma camera with a pinhole collimator. Cerebral infarctions were recognized in the frontal cortex, the parietal cortex and the lateral portion of the caudate-putamen by 2, 3, 5-triphenyltetrazolium hydrochloride staining. In infarcted regions (region 1), 123 I-labelled DAG incorporation showed a slight decrease up to 12 h; it then increased up to 6 days and decreased thereafter. In peri-infarcted regions (region 2), the incorporation showed almost no change up to 12 h, then increased up to 5-6 days and decreased thereafter. In other regions (region 3), the incorporation showed no change. Lipid analysis showed that 123 I-labelled DAG was metabolized to 15-(4-iodine-123-iodophenyl)-pentadecanoic acid by DAG lipase and to 123 I-labelled phosphatidylcholine. Scanning of the ischaemic region showed higher accumulation than on the non-lesioned side. We established a method to visualize ischaemic foci as positive images. The early changes in 123 I-labelled DAG incorporation were closely related to DAG lipase, which degraded the accumulated intrinsic DAG, and increased 123 I-labelled DAG incorporation in the chronic stage involves several aspects of neural destruction in the process of

  1. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System.

    Directory of Open Access Journals (Sweden)

    Shingo Iwasa

    Full Text Available Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1, is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins.

  2. Synthesis of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl-2H-chromen-2-one derivatives and evaluation of their anticancer activity

    Directory of Open Access Journals (Sweden)

    Nitin Kumar

    2017-05-01

    Full Text Available A novel series of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl-2H-chromen-2-one derivatives were synthesized. In the first step salicylaldehyde was reacted with ethylacetoacetate at room temperature by stirring which gives compound (I. Compound (I when refluxed with substituted benzaldehyde and diethylamine in the presence of n-butanol for 4–5 h gives substituted derivatives (IIa–d. Compounds synthesized in step 2 when refluxed with phenyl hydrazine in the presence of pyridine for 6–7 h gives the title compounds (IIIa–d. All the synthesized compounds were sent to NCI for anticancer activity. Synthesized compounds were tested for anticancer activity against 60 different cell lines. From the data thus obtained it was observed that simple coumarin ring derivatives were more effective in inhibiting the growth of cancerous cell lines, than coumarin-pyrazoline derivatives. Among all the synthesized compounds, irrespective of compounds having simple coumarin ring and coumarin-pyrazoline combination, compounds IIa–c, IIIb and IIId were potent anticancer agents. Compounds were active for the single dose therapeutic program at the dose of 1.00E-5 molar concentration. The main anti cancer activity is assumed to be due to the presence of the lactone structure in coumarin moiety.

  3. Synthesis of carbasugars from aldonolactones, part III - A study on the allylic substitution of (1R,5R,8R)- and (1R,5R,8S)-8-hydroxy-2-oxabicyclo[3.3.0]oct-6-en-3-one derivatives - Preparation of (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H-adenine

    DEFF Research Database (Denmark)

    Johansen, Steen Karsk; Lundt, Inge

    2001-01-01

    The palladium-catalyzed substitution of acylated (1R,5R,8R)- and (1R,SR,8S)-8-hydroxy-2-oxabicyclo[3.3.0] ones has been studied using a number of C- and N-nucleophiles, In all cases, the exo derivatives (8R) were found to be more reactive than the corresponding endo derivatives (8S). The reaction...... with these nucleophiles. Additionally, Mitsunobu substitution of (1R,5R,8R)-8-hydroxy-2-oxabicyclo[3.3.0]oct-B-en-3-one (3) with 6-chloropurine, followed by reduction of the lactone moiety and treatment with Liquid ammonia, gave the carbocyclic nucleoside (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H...

  4. Synthesis and evaluation of antimicrobial activity of halogenated furans and analogue compounds to nostoclides; Sintese e avaliacao da atividade antimicrobiana de furanonas halogenadas e de compostos analogos aos nostoclideos

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luiz C.A.; Maltha, Celia R.A.; Demuner, Antonio J.; Pinheiro, Patricia F.; Varejao, Jodieh O.S.; Montanari, Ricardo M., E-mail: lcab@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Quimica; Andrade, Nelio J. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia e Tecnologia de Alimentos

    2010-07-01

    Considering the broad spectrum of biological activity of gamma-butyrolactone derivatives, we presented the synthesis of 3,4-dihalo-5-arylidenefuran-2(5H)-ones (17-21) and analogues (24-28) of the natural product nostoclide (7,8). Furanones 17-21 were synthesized from the condensation of aromatic aldehydes with lactones 14 and 15, that were obtained from mucobromic and mucochloric acids. Lactone 15 was converted into the intermediate 23 in 36% overall yield. Compound 23 was then transformed into the nostoclide analogues 24-28. Some of the compounds prepared showed antimicrobial activities against Escherichia coli, Staphylococcus aureus and Bacillus cereus comparable to commercial antibiotics. (author)

  5. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia.

    Science.gov (United States)

    King, Andrew J; Segreti, Jason A; Larson, Kelly J; Souers, Andrew J; Kym, Philip R; Reilly, Regina M; Collins, Christine A; Voorbach, Martin J; Zhao, Gang; Mittelstadt, Scott W; Cox, Bryan F

    2010-07-10

    Postprandial serum triglyceride concentrations have recently been identified as a major, independent risk factor for future cardiovascular events. As a result, postprandial hyperlipidemia has emerged as a potential therapeutic target. The purpose of this study was two-fold. Firstly, to describe and characterize a standardized model of postprandial hyperlipidemia in multiple rodent species; and secondly, apply these rodent models to the evaluation of a novel class of pharmacologic agent; acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitors. Serum triglycerides were measured before and for 4h after oral administration of a standardized volume of corn oil, to fasted C57BL/6, ob/ob, apoE(-/-) and CD-1 mice; Sprague-Dawley and JCR/LA-cp rats; and normolipidemic and hyperlipidemic hamsters. Intragastric administration of corn oil increased serum triglycerides in all animals evaluated, however the magnitude and time-course of the postprandial triglyceride excursion varied. The potent and selective DGAT-1 inhibitor A-922500 (0.03, 0.3 and 3 mg/kg, p.o.), dose-dependently attenuated the maximal postprandial rise in serum triglyceride concentrations in all species tested. At the highest dose of DGAT-1 inhibitor, the postprandial triglyceride response was abolished. This study provides a comprehensive characterization of the time-course of postprandial hyperlipidemia in rodents. In addition, the ability of DGAT-1 inhibitors to attenuate postprandial hyperlipidemia in multiple rodent models, including those that feature insulin resistance, is documented. Exaggerated postprandial hyperlipidemia is inherent to insulin-resistant states in humans and contributes to the substantially elevated cardiovascular risk observed in these patients. Therefore, by attenuating postprandial hyperlipidemia, DGAT-1 inhibition may represent a novel therapeutic approach to reduce cardiovascular risk. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Diacylglycerol Enrichment of Endoplasmic Reticulum or Lipid Droplets Recruits Perilipin 3/TIP47 during Lipid Storage and Mobilization*

    Science.gov (United States)

    Skinner, James R.; Shew, Trevor M.; Schwartz, Danielle M.; Tzekov, Anatoly; Lepus, Christin M.; Abumrad, Nada A.; Wolins, Nathan E.

    2009-01-01

    Fatty acid-induced triacylglycerol synthesis produces triacylglycerol droplets with a protein coat that includes perilipin 3/TIP47 and perilipin 4/S3-12. This study addresses the following two questions. Where do lipid droplets emerge, and how are their coat proteins recruited? We show that perilipin 3- and perilipin 4-coated lipid droplets emerge along the endoplasmic reticulum (ER). Blocking membrane trafficking with AlF4− during fatty acid-induced triacylglycerol synthesis drove perilipin 3 to the tubular ER. Forskolin, which like AlF4− activates adenylate cyclase, did not redistribute perilipin 3, but when added together with AlF4− perilipin 3 was recruited to lipid droplets rather than the ER. Thus inhibiting trafficking with AlF4− redistributed perilipin 3 differently under conditions of triacylglycerol synthesis (fatty acid addition) versus hydrolysis (forskolin) suggesting a shared acylglycerol-mediated mechanism. We tested whether diacylglycerol (DG), the immediate precursor of triacylglycerol and its first hydrolytic product, affects the distribution of perilipin 3. Stabilizing DG with the DG lipase inhibitor RHC80267 enhanced the perilipin 3 recruited to lipid droplets and raised DG levels in this fraction. Treating cells with a membrane-permeable DG recruited perilipin 3 to the ER. Stabilizing DG, by blocking its hydrolysis with RHC80267 or its acylation with triacsin C, enhanced recruitment of perilipin 3 to the ER. Expressing the ER enzyme DGAT1, which removes DG by converting it to triacylglycerol, attenuated perilipin 3 DG-induced ER recruitment. Membrane-permeable DG also drove perilipin 4 and 5 onto the ER. Together the data suggest that these lipid droplet proteins are recruited to DG-enriched membranes thereby linking lipid coat proteins to the metabolic state of the cell. PMID:19748893

  7. Synthesis of dexamethasone-4-14C

    International Nuclear Information System (INIS)

    Rao, P.N.; Cessac, J.W.; Hill, K.A.

    1982-01-01

    The bismethylenedioxy (BMD) derivative of dexamethasone 2 was silylated with trimethylchlorosilane and imidazole in dimethylformamide to give the 11β-trimethylsilyloxy BMD derivative 3. The Δ 1 -double bond in 3 was hydrogenated over 5% palladium on carbon to give the Δ 4 -3-oxo steroid 4. Oxidation of 4 with potassium permanganate-sodium metaperiodate gave the seco-acid 5 which on subsequent treatment with acetic anhydride; sodium acetate and triethylamine gave the enol-lactone 6. The enol-lactone 6 was reacted with 14 C-methylmagnesium iodide to give an adduct 7a which on heating at reflux with lithium 2,6-di-t-butylphenoxide in dioxane gave the Δ 4 -3-oxo derivative 8. Compound 8 was heated at reflux with m-iodylbenzoic acid and diphenyl diselenide in toluene to give the Δsup(1,4)-3-oxo steroid 9. The protecting BMD and silyl groups were removed in a single step by reaction with aqueous trifluoroacetic acid containing 2N hydrochloric acid at room temperature to give dexamethasone-4- 14 C 10. (author)

  8. Influence of cnicin, a sesquiterpene lactone ofCentaurea maculosa (Asteraceae), on specialist and generalist insect herbivores.

    Science.gov (United States)

    Landau, I; Müller-Schärer, H; Ward, P I

    1994-04-01

    The sesquiterpene lactone cnicin was extracted fromCentaurea maculosa andCentaurea vallesiaca. We examined its effects on the ovipositional response and larval development of generalist and specialist insect herbivores associated withC. maculosa. For the oviposition trials, three plant species (C. maculosa, Achillea millefolium, andCichorium intybus), half of which were sprayed with 3% of cnicin, were exposed to the specialist mothsStenodes straminea, Agapeta zoegana, andPterolonche inspersa in field cages. All three species significantly preferredC. maculosa to other plants andP. inspersa significantly preferred cnicin-sprayed plants to untreated plants for oviposition. Tested over all species, cnicin significantly increased the number of eggs laid on a given plant. A larval diet test examined the toxicity of cnicin for larvae of the generalist noctuid mothSpodoptera littoralis. Cnicin concentrations of 3% and 6% were lethal and 1% and 0.5% seriously inhibited growth and development. The larvae of theC. maculosa specialistStenodes straminea survived at 6% cnicin, but none of the pupae hatched.Agapeta zoegana was able to survive at 1% and 3% cnicin. Both specialists had difficulties with the artificial diet, but weight increase and survival was not further reduced when cnicin was present compared with on the control diet. In conclusion, cnicin influenced host recognition by the specialist species, and larvae of the generalist did not survive on natural levels of cnicin. Growth and survival of the specialist were not influenced by cnicin but were considerably hampered on artificial diet.

  9. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer.

    Science.gov (United States)

    Siddiqui, Muhammad Faisal; Sakinah, Mimi; Singh, Lakhveer; Zularisam, A W

    2012-10-31

    Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Determination of D-saccharic acid-1,4-lactone from brewed kombucha broth by high-performance capillary electrophoresis.

    Science.gov (United States)

    Wang, Kan; Gan, Xuhua; Tang, Xinyun; Wang, Shuo; Tan, Huarong

    2010-02-01

    Kombucha is a health tonic. D-saccharic acid-1,4-lactone (DSL), a component of kombucha, inhibits the activity of glucuronidase, an enzyme indirectly related with cancers. To date, there is no efficient method to determine the content of DSL in kombucha samples. In this paper, we report a rapid and simple method for the separation and determination of DSL in kombucha samples, using the high-performance capillary electrophoresis (HPCE) method with diode array detection (DAD). With optimized conditions, DSL can be separated in a 50 cm length capillary at a separation voltage of 20 kV in 40 mmol/L borax buffer (pH 6.5) containing 30 mmol/L SDS and 15% methanol (v/v). Quantitative evaluation of DSL was determined by ultraviolet absorption at lambda=190 nm. The relationship between the peak areas and the DSL concentrations, in a specified working range with linear response, was determined by first-order polynomial regression over the range 50-1500 microg/mL with a detection limit of 17.5 microg/mL. Our method demonstrated excellent reproducibility and accuracy with relative standard deviations (RSD) of less than 5% DSL content (n=5). This is the first report to determine DSL by HPCE. We have successfully applied this method to determine DSL in kombucha samples in various fermented conditions. 2009 Elsevier B.V. All rights reserved.

  11. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    Science.gov (United States)

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  12. Evidencias espectroscópicas de RMN de ¹H y 13C en la formación inusual de un "carbonilo inorgánico", derivado de la lactona costunólida

    OpenAIRE

    Díaz, Eduardo; Barrios, Héctor; Fuentes, Aydeé; Corona, David; Guzmán, Ángel

    2002-01-01

    El uso de la RMN de ¹H y 13C permitió determinar la estructura inusual de un "carbonilo inorgánico" derivado de la lactona dehidrocostus. 1H and 13C NMR of an unusual "inorganic carbonyl" derived from costunolide lactone are described.

  13. The path from beta-Carotene to Carlactone, a Strigolactone-Like Plant Hormone

    NARCIS (Netherlands)

    Alder, J.; Jamil, M.; Marzorati, M.; Bruno, F.; Bigler, J.; Bouwmeester, H.J.; Beyer, P.; Al-Babili, S.

    2012-01-01

    Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding

  14. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  15. Insulin, concanavalin A, EGF, IFG-I and vanadate activate de novo phosphatidic acid and diacylglycerol synthesis, C-kinase, and glucose transport in BC3H-1 myocytes

    International Nuclear Information System (INIS)

    Cooper, D.R.; Hernandez, H.; Konda, T.S.; Standaert, M.S.; Pollet, R.J.; Farese, R.V.

    1987-01-01

    The authors have reported that insulin stimulates de novo synthesis of phosphatidic acid (PA) which is metabolized directly to diacylglycerol (DG) in BS3H-1 myocytes; this is accompanied by increases in C-kinase activity in membrane and cytosolic extracts. This pathway may be involved in stimulating glucose transport and other metabolic processes. In this study, the authors have compared the effects of concanavalin A, EGF, IGF-I and sodium orthovanadate to insulin on PA/DG synthesis, C-kinase activity and glucose transport. All were found to be effective in stimulating glucose transport. Additionally, all activators rapidly increased the incorporation of [ 3 H]glycerol into DG and total glycerolipids, although none were as effective as insulin, which increased [ 3 H]DG 400% in 1 minute. Increased incorporation into phospholipids and triacylglycerols and to a lesser extent monoacylglycerol was also noted. They examined effects of concanavalin A and EGF on C-kinase activity and found that both agonists, like insulin, increase C-kinase activity in cytosolic and/or membrane fractions. Their findings raise the possibility that activation of receptors having associated tyrosine kinase activity may provoke some cellular responses through de novo PA/GD synthesis and C-kinase activation

  16. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  17. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    Science.gov (United States)

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Automation of C-terminal sequence analysis of 2D-PAGE separated proteins

    Directory of Open Access Journals (Sweden)

    P.P. Moerman

    2014-06-01

    Full Text Available Experimental assignment of the protein termini remains essential to define the functional protein structure. Here, we report on the improvement of a proteomic C-terminal sequence analysis method. The approach aims to discriminate the C-terminal peptide in a CNBr-digest where Met-Xxx peptide bonds are cleaved in internal peptides ending at a homoserine lactone (hsl-derivative. pH-dependent partial opening of the lactone ring results in the formation of doublets for all internal peptides. C-terminal peptides are distinguished as singlet peaks by MALDI-TOF MS and MS/MS is then used for their identification. We present a fully automated protocol established on a robotic liquid-handling station.

  19. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Christensen, Allan Beck; Molin, Søren

    2003-01-01

    by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence......H is approximately 6 and therefore only a low degree of pH-induced turnover is expected to occur in this product. Overall, our study demonstrates that food-derived Enterobacteriaceae produce AHLs of the same type and in the same magnitude when grown under food-relevant conditions as when grown in laboratory media...

  20. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT, a key enzyme in neutral lipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Margis-Pinheiro Marcia

    2011-09-01

    Full Text Available Abstract Background Triacylglycerides (TAGs are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20 is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2

  1. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis.

    Science.gov (United States)

    Turchetto-Zolet, Andreia C; Maraschin, Felipe S; de Morais, Guilherme L; Cagliari, Alexandro; Andrade, Cláudia M B; Margis-Pinheiro, Marcia; Margis, Rogerio

    2011-09-20

    Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that

  2. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S-3-(Oxiran-2-ylpropanoates from Renewable Levoglucosenone: An Access to Enantiopure (S-Dairy Lactone

    Directory of Open Access Journals (Sweden)

    Aurélien A. M. Peru

    2016-07-01

    Full Text Available Chiral epoxides—such as ethyl and methyl (S-3-(oxiran-2-ylpropanoates ((S-1a/1b—are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation in low to moderate overall yield (20%–50%. Moreover, this procedure requires some harmful reagents such as sodium nitrite ((ecotoxic and borane (carcinogen. Herein, starting from levoglucosenone (LGO, a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S-3-(oxiran-2-ylpropanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  3. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    Science.gov (United States)

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Structural transformations on N-acetylneuraminic acid

    International Nuclear Information System (INIS)

    Schmid, W.

    1986-01-01

    Structural transformations on N-Acetylneuraminic acid are of special interest because of the biological importance of this compound. Although many stereo- and regioselective variations (especially for pyranoid derivatives) have been reported, no detailed studies of the furanoid derivatives from N-Acetylneuramino-1, 4-lactone diethyl dithioacetal have been described hitherto. Therefore a series of derivatives of the Neu5Ac-lactone diethyl dithioacetal has been investigated by n.m.r. spectroscopic techniques. The complete assignment of the 1 H and 13 C resonances was achieved by relaxation time measurements, decoupling experiments and 2-D - shiftcorrelation spectroscopy. The influence of different substituents on the conformational behavior is also discussed. For the Tetra-O-Acetyl-N-acetylneuraminic acid-γ-lactone diethyl dithioacetal the conformation in solution could be determined. The observed data were explained by a zigzag conformation of the backbone as described for the acetylated mannose diethyl dithioacetal. The synthesis of the tetrazole-analogue of N-Acetylneuraminic acid is also described. This compound is of special biological interest because there is a similarity in acidity between the carboxyl-group and the tetrazole-function and the metabolic stability of the tetrazole function is enhanced in comparison with the carboxyl-group. Many of the biological functions of N-Acetylneuraminic acid are connected with the presence of the carboxyl-group. It was therefore interesting to transform this group to the bioisostere tetrazole-function to investigate the influence of the tetrazole-group of this compound on biological activity in the future. During the application of protective groups in the field of Neuraminic acid chemistry a new compound, an ortholactone-derivative of Neu5Ac, was discovered. It's structure is similar to an adamantanecage and the chemistry of such an orthoester function opens new possibilities for structural transformations on N

  5. SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles.

    Directory of Open Access Journals (Sweden)

    Jenee N Smith

    2008-07-01

    Full Text Available LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs. However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species.In this report, we tested the hypothesis that SdiA detects the AHL-production of other bacterial species within the animal host. SdiA did not detect AHLs during the transit of Salmonella through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during the transit of Salmonella through turtles. All turtles examined were colonized by the AHL-producing species Aeromonas hydrophila.We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals.

  6. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  7. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    Science.gov (United States)

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  8. Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT).

    Science.gov (United States)

    Holmes, Roger S

    2010-03-01

    BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron-exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture

    Directory of Open Access Journals (Sweden)

    Marta eTorres

    2016-05-01

    Full Text Available The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing (QS, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signalling molecules, known as quorum quenching (QQ. In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain, and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs. The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of V. mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25±14.63 % in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53±13.22 %. Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.

  10. Comparative Chemical Analysis of the Essential Oil Constituents in the Bark, Heartwood and Fruits of Cryptocarya massoy (Oken Kosterm. (Lauraceae from Papua New Guinea

    Directory of Open Access Journals (Sweden)

    David N. Leach

    2007-02-01

    Full Text Available Exhaustive hydro-distillation of the bark, heartwood and fruits of Cryptocarya massoy (Lauraceae afforded pale yellow-coloured oils in 0.7, 1.2 and 1.0 % yields, respectively. Detailed chemical evaluation of these distillates using GC/MS revealed the major components in the bark and the heartwood oils to be the C-10 (5,6-dihydro-6-pentyl-2H-pyran-2-one and C-12 (5,6-dihydro-6-heptyl-2H-pyran-2-one massoia lactones, while the major fruit oil constituent was benzyl benzoate (68.3 %. The heartwood also contained trace amounts of the C-14 (5,6-dihydro-6-nonyl-2H-pyran-2-one massoia lactone (1.4 % and the saturated C-10 derivative d-decalactone (2.5 %.

  11. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.

    Science.gov (United States)

    Xu, Jingyu; Francis, Tammy; Mietkiewska, Elzbieta; Giblin, E Michael; Barton, Dennis L; Zhang, Yan; Zhang, Meng; Taylor, David C

    2008-10-01

    A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Tropaeolum majus (garden nasturtium). The 1557-bp open reading frame of this cDNA, designated TmDGAT1, encodes a protein of 518 amino acids showing high homology to other plant DGAT1s. The TmDGAT1 gene was expressed exclusively in developing seeds. Expression of recombinant TmDGAT1 in the yeast H1246MATalpha quadruple mutant (DGA1, LRO1, ARE1, ARE2) restored the capability of the mutant host to produce triacylglycerols (TAGs). The recombinant TmDGAT1 protein was capable of utilizing a range of (14)C-labelled fatty acyl-CoA donors and diacylglycerol acceptors, and could synthesize (14)C-trierucin. Collectively, these findings confirm that the TmDGAT1 gene encodes an acyl-CoA-dependent DGAT1. In plant transformation studies, seed-specific expression of TmDGAT1 was able to complement the low TAG/unusual fatty acid phenotype of the Arabidopsis AS11 (DGAT1) mutant. Over-expression of TmDGAT1 in wild-type Arabidopsis and high-erucic-acid rapeseed (HEAR) and canola Brassica napus resulted in an increase in oil content (3.5%-10% on a dry weight basis, or a net increase of 11%-30%). Site-directed mutagenesis was conducted on six putative functional regions/motifs of the TmDGAT1 enzyme. Mutagenesis of a serine residue in a putative SnRK1 target site resulted in a 38%-80% increase in DGAT1 activity, and over-expression of the mutated TmDGAT1 in Arabidopsis resulted in a 20%-50% increase in oil content on a per seed basis. Thus, alteration of this putative serine/threonine protein kinase site can be exploited to enhance DGAT1 activity, and expression of mutated DGAT1 can be used to enhance oil content.

  12. Effects of a meal rich in 1,3-diacylglycerol on postprandial cardiovascular risk factors and the glucose-dependent insulinotropic polypeptide in subjects with high fasting triacylglycerol concentrations.

    Science.gov (United States)

    Shoji, Kentaro; Mizuno, Tomohito; Shiiba, Daisuke; Kawagoe, Tadanobu; Mitsui, Yuuki

    2012-03-14

    It was previously reported that compared to triacylglycerol (TAG) oil, diacylglycerol (DAG) oil improves postprandial lipid response. However, the effects of DAG oil on postprandial hyperglycemia and incretin response have not yet been determined. In this study, the effects of DAG oil on both postprandial hyperlipidemia and hyperglycemia and the response to the glucose-dependent insulinotropic polypeptide (GIP) were studied. This randomized, double-blind, crossover study analyzed data for 41 individuals with high fasting triacylglycerol concentrations. The subjects ingested test meals (30.3 g of protein, 18.6 g of fat, and 50.1 g of carbohydrate) containing 10 g of DAG oil (DAG meal) or TAG oil (TAG meal) after fasting for at least 12 h. Blood samples were collected prior to and 0.5, 2, 3, 4, and 6 h after ingestion of the test meal. Postprandial TAG concentrations were significantly lower after the DAG meal compared with the TAG meal. Postprandial TAG, insulin, and GIP concentrations were significantly lower after the DAG meal compared with the TAG meal in 26 subjects with fasting serum TAG levels between 1.36 and 2.83 mmol/L. DAG-oil-based meals, as a replacement for TAG oil, may provide cardiovascular benefits in high-risk individuals by limiting lipid and insulin excursions.

  13. Development of an in vitro bioassay for measuring susceptibility to macrocyclic lactone anthelmintics in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Wolstenholme, Adrian J; Kaplan, Ray M

    2013-12-01

    For more than 20 years, anthelmintics of the macrocyclic lactone (ML) drug class have been widely and effectively used as preventives against the canine heartworm, Dirofilaria immitis. However, in recent years an increased number of lack of efficacy (LOE) cases are being reported, in which dogs develop mature heartworm infections despite receiving monthly prophylactic doses of ML drugs. While this situation is raising concerns that heartworms may be developing resistance to MLs, compelling evidence for this is still lacking. Resolution of this dilemma requires validated biological or molecular diagnostic assays, but, unfortunately, no such tests currently exist. To address this need, we developed and optimized a larval migration inhibition assay (LMIA) for use with D. immitis third-stage larvae. The LMIA was used to measure the in vitro dose-response of two ML drugs (ivermectin and eprinomectin) on a known ML-susceptible laboratory strain of D. immitis. A nonlinear regression model was fit to the dose-response data, from which IC50 values were calculated; the mean IC50 and 95% confidence interval for IVM was 4.56 μM (1.26-16.4 μM), greater than that for EPR at 2.02 μM (1.68-2.42 μM), and this difference was significant (p = 0.0428). The R (2) value for EPR assays (0.90) was also greater than that for IVM treatment (0.71). The consistency and reproducibility of the dose-response data obtained with this assay suggests that it may be a useful technique for investigating the relative susceptibilities to ML drugs in other D. immitis populations.

  14. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.)

    International Nuclear Information System (INIS)

    Yang, Cuiyun; Fang, Shengtao; Chen, Dehui; Wang, Jianhua; Liu, Fanghua; Xia, Chuanhai

    2016-01-01

    Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca 2+ efflux in Cylindrotheca sp., which implied that Ca 2+ might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling. - Highlights: •AHLs effectively increase Chl.a and EPS contents in diatom-biofilm. •SEM and CLSM further demonstrate that AHLs promote the formation of diatom-biofilm. •AHLs trigger algal cellular Ca 2+ efflux. •AHLs-inhibitors might be promising active agents in marine antifouling.

  15. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  16. N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures.

    Science.gov (United States)

    Tinh, Nguyen Thi Ngoc; Asanka Gunasekara, R A Y S; Boon, Nico; Dierckens, Kristof; Sorgeloos, Patrick; Bossier, Peter

    2007-10-01

    Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1- and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.

  17. Selectivity and Efficiency of Conductive Molecularly Imprinted Polymer (c-MIP Based on 5-Phenyl-Dipyrromethane and 5-Phenol-Dipyrromethane for Quorum Sensing Precursors Detection

    Directory of Open Access Journals (Sweden)

    Sabina Susmel

    2017-02-01

    Full Text Available Functional polymers that selectively recognize target compounds are developed by imprinting polymerization. In the present paper, two different dipyrromethanes, 5-phenol-dipyrromethane (5-pOH-DP and 5-phenyl-dipyrromethane (5-ph-DP, are synthetized and investigated to develop conductive molecularly imprinted polymer (cMIP sensors. As target molecules, two homoserine lactone derivatives were templated by an electrochemically driven polymerization process. Acyl-homoserine lactones (AHLs, also called homoserine lactones (HS, are a class of signaling molecules involved in bacterial quorum sensing (QS, which is a strategy of coordination among bacteria mediated by population density. The preparation of cMIP from 5-pOH-DP and 5-ph-DP in the presence of acetyl-homoserine lactone (Acetyl-HS or carboxybenzyl-homoserine lactone (Cbz-HS was performed by cyclic voltammetry (CV. The cMIP selectivity and sensitivity were assessed by microgravimetry (QCM. Both series of measurements were performed with the aid of an Electrochemical Quartz Crystal Microbalance (EQCM/QCM. The experimental evidences are discussed with respect to NMR measurements that were conducted to gain insight into the interactions established between monomers and templates. The NMR data interpretation offers preliminary information about the most probable positions involved in interaction development for both molecules and highlights the role of the hydration shell. The QCM-cMIP sensor was able to detect the analyte in the linear range from 10−8 mol·L−1 to 10−6 mol·L−1 and a limit of detection (LOD of 22.3 ng (3σ of the blank signal were evaluated. QCM rebinding tests demonstrated that cMIP selectivity was driven by the pendant group of dipyrromethane, which was also confirmed by the NMR data.

  18. Reaction of N-acetylneuraminic acid derivatives with perfluorinated anhydrides: a short access to N-perfluoracylated glycals with antiviral properties.

    Science.gov (United States)

    Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario

    2010-08-21

    An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.

  19. Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes.

    Science.gov (United States)

    Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V

    1996-07-01

    Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.

  20. Murine Diacylglycerol Acyltransferase-2 (DGAT2) Can Catalyze Triacylglycerol Synthesis and Promote Lipid Droplet Formation Independent of Its Localization to the Endoplasmic Reticulum*

    Science.gov (United States)

    McFie, Pamela J.; Banman, Shanna L.; Kary, Steven; Stone, Scot J.

    2011-01-01

    Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER. PMID:21680734

  1. (S-6-Methyl-∊-caprolactone

    Directory of Open Access Journals (Sweden)

    Anthony L. Spek

    2008-03-01

    Full Text Available The chiral title compound, C7H12O2, a lactone derivative, features a seven-membered ring that adopts a chair conformation. The crystal structure is stabilized by weak C—H...O interactions occurring in the (100 plane. The absolute configuration was assigned on the basis of the enantioselective synthesis.

  2. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    Science.gov (United States)

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

  3. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos F.

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in th...

  4. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Luis eVazquez

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in th...

  5. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitor, improves glucose metabolism in diet-induced obesity and genetic T2DM mice.

    Science.gov (United States)

    Tomimoto, Daisuke; Okuma, Chihiro; Ishii, Yukihito; Kobayashi, Akio; Ohta, Takeshi; Kakutani, Makoto; Imanaka, Tsuneo; Ogawa, Nobuya

    2015-09-01

    Type 2 diabetes mellitus (T2DM) arises primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important in the development of T2DM, including obesity. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase 1 inhibitor, reduced body weight depending on dietary fat in diet-induced obesity (DIO) rats in our previous study. Here, the effect of JTT-553 on glucose metabolism was evaluated using body weight reduction in T2DM mice. JTT-553 was repeatedly administered to DIO and KK-A(y) mice. JTT-553 reduced body weight gain and fat weight in both mouse models. In DIO mice, JTT-553 decreased insulin, non-esterified fatty acid (NEFA), total cholesterol (TC), and liver triglyceride (TG) plasma concentrations in non-fasting conditions. JTT-553 also improved insulin-dependent glucose uptake in adipose tissues and glucose intolerance in DIO mice. In KK-A(y) mice, JTT-553 decreased glucose, NEFA, TC and liver TG plasma concentrations in non-fasting conditions. JTT-553 also decreased glucose, insulin, and TC plasma concentrations in fasting conditions. In addition, JTT-553 decreased TNF-α mRNA levels and increased GLUT4 mRNA levels in adipose tissues in KK-A(y) mice. These results suggest that JTT-553 improves insulin resistance in adipose tissues and systemic glucose metabolism through reductions in body weight. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. MEDICAL IMPORTANCE OF HELIANTHUS TUBEROSUS- A REVIEW

    OpenAIRE

    Ali Esmail Al-Snafi

    2018-01-01

    Phytochemical analysis of Helianthus tuberosus showed that it contained coumarins, unsaturated fatty acids, polyacetylenic derivatives, phenols, flavonoids, sesquiterpenes, protein, amino acid, reducing sugars, organic acids, lactones and cardiac glycoside. The pharmacological investigations revealed that Helianthus tuberosus exerted antioxidant, anticancer, antidiabetic, antifungal and α-Glucosidase inhibitory activity, as well as it produced inulin which used as functional food and possesse...

  7. NCBI nr-aa BLAST: CBRC-XTRO-01-0717 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available enicoxydans] emb|CAL61417.1| CDP-diacylglycerol-serine O-phosphatidyltransferase [Herminiimonas arsenicoxydans] YP_001099544.1 1e-88 64% ... ...CBRC-XTRO-01-0717 ref|YP_001099544.1| CDP-diacylglycerol-serine O-phosphatidyltransferase [Herminiimonas ars

  8. The specific cleavage of lactone linkage to open-loop in cyclic lipopeptide during negative ESI tandem mass spectrometry: the hydrogen bond interaction effect of 4-ethyl guaiacol.

    Directory of Open Access Journals (Sweden)

    Mengzhe Guo

    Full Text Available Mass spectrometry is a valuable tool for the analysis and identification of chemical compounds, particularly proteins and peptides. Lichenysins G, the major cyclic lipopeptide of lichenysin, and the non-covalent complex of lichenysins G and 4-ethylguaiacol were investigated with negative ion ESI tandem mass spectrometry. The different fragmentation mechanisms for these compounds were investigated. Our study shows the 4-ethylguaiacol hydrogen bond with the carbonyl oxygen of the ester group in the loop of lichenysins G. With the help of this hydrogen bond interaction, the ring structure preferentially opens in lactone linkage rather than O-C bond of the ester-group to produce alcohol and ketene. Isothermal titration 1H-NMR analysis verified the hydrogen bond and determined the proportion of subject and ligand in the non-covalent complex to be 1∶1. Theoretical calculations also suggest that the addition of the ligand can affect the energy of the transition structures (TS during loop opening.

  9. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  11. Evaluation of the larval migration inhibition assay for detecting macrocyclic lactone resistance in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Blagburn, Byron L; Wolstenholme, Adrian J; Kaplan, Ray M

    2017-11-15

    Anthelmintics of the macrocyclic lactone (ML) drug class are widely used as preventives against the canine heartworm (Dirofilaria immitis). Over the past several years, however, reports of ML lack of efficacy (LOE) have emerged, in which dogs develop mature heartworm infection despite the administration of monthly prophylactics. More recently, isolates from LOE cases have been used to infect laboratory dogs and the resistant phenotype has been confirmed by the establishment of adult worms in the face of ML treatment at normally preventive dosages. Testing for and monitoring resistance in D. immitis requires a validated biological or molecular diagnostic assay. In this study, we assessed a larval migration inhibition assay (LMIA) that we previously optimized for use with D. immitis third-stage larvae (L 3 ). We used this assay to measure the in vitro ML susceptibilities of a known-susceptible laboratory strain of D. immitis and three highly suspected ML-resistant isolates originating from three separate LOE cases; progeny from two of these isolates have been confirmed ML-resistant by treatment of an infected dog in a controlled setting. A nonlinear regression model was fit to the dose-response data, from which IC 50 values were calculated. The D. immitis LMIA yielded consistent and reproducible dose-response data; however, no statistically significant differences in drug susceptibility were observed between control and LOE parasites. Additionally, the drug concentrations needed to paralyze the L 3 were much higher than those third- and fourth-stage larvae would experience in vivo. IC 50 values ranged from 1.57 to 5.56μM (p≥0.19). These data could suggest that ML resistance in this parasite is not mediated through a reduced susceptibility of L 3 to the paralytic effects of ML drugs, and therefore motility-based assays are likely not appropriate for measuring the effects of MLs against D. immitis in this target stage. Published by Elsevier B.V.

  12. Genetic profiles of ten Dirofilaria immitis isolates susceptible or resistant to macrocyclic lactone heartworm preventives

    Directory of Open Access Journals (Sweden)

    Catherine Bourguinat

    2017-11-01

    Full Text Available Abstract Background For dogs and cats, chemoprophylaxis with macrocyclic lactone (ML preventives for heartworm disease is widely used in the United States and other countries. Since 2005, cases of loss of efficacy (LOE of heartworm preventives have been reported in the U.S. More recently, ML-resistant D. immitis isolates were confirmed. Previous work identified 42 genetic markers that could predict ML response in individual samples. For field surveillance, it would be more appropriate to work on microfilarial pools from individual dogs with a smaller subset of genetic markers. Methods MiSeq technology was used to identify allele frequencies with the 42 genetic markers previously reported. Microfilaria from ten well-characterized new isolates called ZoeKY, ZoeMI, ZoeGCFL, ZoeAL, ZoeMP3, ZoeMO, ZoeAMAL, ZoeLA, ZoeJYD-34, and Metairie were extracted from fresh blood from dogs. DNA were extracted and sequenced with MiSeq technology. Allele frequencies were calculated and compared with the previously reported susceptible, LOE, and resistant D. immitis populations. Results The allele frequencies identified in the current resistant and susceptible isolates were in accordance with the allele frequencies previously reported in related phenotypes. The ZoeMO population, a subset of the ZoeJYD-34 population, showed a genetic profile that was consistent with some reversion towards susceptibility compared with the parental ZoeJYD-34 population. The Random Forest algorithm was used to create a predictive model using different SNPs. The model with a combination of three SNPs (NODE_42411_RC, NODE_21554_RC, and NODE_45689 appears to be suitable for future monitoring. Conclusions MiSeq technology provided a suitable methodology to work with the microfilarial samples. The list of SNPs that showed good predictability for ML resistance was narrowed. Additional phenotypically well characterized D. immitis isolates are required to finalize the best set of SNPs to be

  13. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway.

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W A; Franssen, Maurice C R; Beale, Michael H; Bouwmeester, Harro J

    2005-10-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.

  14. Activation of protein kinase C by elevation of glucose concentration: Proposal for a mechanism in the development of diabetic vascular complications

    International Nuclear Information System (INIS)

    Lee, Tianshing; Saltsman, K.A.; Ohashi, Hiromi; King, G.L.

    1989-01-01

    Hyperglycemia is believed to be the major cause of diabetic vascular complications involving both microvessels and arteries as in the retina, renal glomeruli, and aorta. It is unclear by which mechanism hyperglycemia is altering the metabolism and functions of vascular cells, although changes in nonenzymatic protein glycosylation and increases in cellular sorbitol levels have been postulated to be involved. Previously, the authors have reported that the elevation of extracellular glucose levels with cultured bovine retinal capillary endothelial cells causes an increase in protein kinase C (PKC) activity of the membranous pool with a parallel decrease in the cytosol without alteration of its total activity. Now they demonstrate that the mechanism for the activation of PKC is due to an enhanced de novo synthesis of diacylglycerol as indicated by a 2-fold increase of [ 14 C]diacylglycerol labeling from [ 14 C]glucose. The elevated diacylglycerol de novo synthesis is secondarily due to increased formation of precursors derived from glucose metabolism; this formation is enhanced by hyperglycemia as substantiated by elevated [ 3 H]glucose conversion into water. This effect of hyperglycemia on PKC is also observed in cultured aortic smooth muscle and endothelial cells and the retina and kidney of diabetic rats, but not in the brain. Since PKC in vascular cells has been shown to modulate hormone receptor turnover, neovascularization in vitro, and cell growth, they propose that this mechanism of enhancing the membranous PKC activities by hyperglycemia plays an important role in the development of diabetic vascular complications

  15. An intramolecular inverse electron demand Diels–Alder approach to annulated α-carbolines

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2012-06-01

    Full Text Available Intramolecular inverse electron demand cycloadditions of isatin-derived 1,2,4-triazines with acetylenic dienophiles tethered by amidations or transesterifications proceed in excellent yields to produce lactam- or lactone-fused α-carbolines. Beginning with various isatins and alkynyl dienophiles, a pilot-scale library of eighty-eight α-carbolines was prepared by using this robust methodology for biological evaluation.

  16. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W.A.; Franssen, Maurice C.R.; Beale, Michael H.; Bouwmeester, Harro J.

    2005-01-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation. PMID:16183851

  17. Does evaluation of in vitro microfilarial motility reflect the resistance status of Dirofilaria immitis isolates to macrocyclic lactones?

    Directory of Open Access Journals (Sweden)

    Mary J. Maclean

    2017-11-01

    Full Text Available Abstract Background Several reports have confirmed that macrocyclic lactone-resistant isolates of Dirofilaria immitis are circulating in the United States; however, the prevalence and potential impact of drug resistance is unknown. We wished to assess computer-aided measurements of motility as a method for rapidly assessing the resistance status of parasite isolates. Methods Blood containing microfilariae (MF from two clinical cases with a high suspicion of resistance was fed to mosquitoes and the resultant L3 injected into dogs that were then treated with six doses of Heartgard® Plus (ivermectin + pyrantel; Merial Limited at 30-day intervals. In both cases patent heartworm infections resulted despite the preventive treatment. Microfilariae isolated from these dogs and other isolates of known resistance status were exposed to varying concentrations of ivermectin in vitro and their motility assessed 24 h later using computer-processed high-definition video imaging. Results We produced two isolates, Yazoo-2013 and Metairie-2014, which established patent infections despite Heartgard® Plus treatments. Measurements of the motility of MF of these and other isolates (Missouri, MP3 and JYD-27 following exposure to varying concentrations of ivermectin did not distinguish between susceptible and resistant heartworm populations. There was some evidence that the method of MF isolation had an influence on the motility and drug susceptibility of the MF. Conclusions We confirmed that drug-resistant heartworms are circulating in the southern United States, but that motility measurements in the presence of ivermectin are not a reliable method for their detection. This implies that the drug does not kill the microfilariae via paralysis.

  18. Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system.

    Science.gov (United States)

    Grabarczyk, Małgorzata

    2012-08-14

    Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria). Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (-)-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  19. Induction of G2/M arrest and apoptosis through mitochondria pathway by a dimer sesquiterpene lactone from Smallanthus sonchifolius in HeLa cells.

    Science.gov (United States)

    Kitai, Yurika; Zhang, Xia; Hayashida, Yushi; Kakehi, Yoshiyuki; Tamura, Hirotoshi

    2017-07-01

    Dimer sesquiterpene lactones (SLs), uvedafolin and enhydrofolin, against four monomer SLs isolated from yacon, Smallanthus sonchifolius, leaf were the most cytotoxic substances on HeLa cells (IC 50 values 2.96-3.17 μM at 24 hours). However, the cytotoxic mechanism of dimer SL has not been elucidated yet. Therefore, in this study, we clarified the in vitro cytotoxic mechanism of uvedafolin on the HeLa cells, and evaluated the cytotoxicity against NIH/3T3 cells which were used as normal cells. In consequence, the dimer SLs had low toxicity for the NIH/3T3 cells (IC 50 4.81-4.98 μM at 24 hours) and then the uvedafolin mediated cell cycle arrest at the G 2 /M phase and induced apoptosis on the HeLa cells evidenced by appearance of a subG1 peak. Uvedafolin induced apoptosis was attributed to caspase-9 and caspase-3/7 activities. An effectively induced apoptosis pathway was demonstrated from mitochondria membrane potential change and cytochrome c release to cytosol. These results reveal that uvedafolin induced apoptosis via the mitochondria pathway. The present results indicate the potential of uvedafolin as a leading compound of new anticancer agents. Copyright © 2016. Published by Elsevier B.V.

  20. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  1. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  2. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin.

    Science.gov (United States)

    Meegalla, Rupalie L; Billheimer, Jeffrey T; Cheng, Dong

    2002-11-01

    Glucose and insulin are anabolic signals which upregulate the transcriptions of a series of lipogenic enzymes to convert excess carbohydrate into triglycerides for efficient energy storage. These enzymes include ATP-citrate lyase (ACL), acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (G3PA). Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) is important to synthesize fatty acids into triglycerides. Two DGATs from different gene families have recently been identified. In the current study, we report that glucose preferentially enhances DGAT1 mRNA expression, whereas insulin specifically increases the level of DGAT2 mRNA. Treatment of adipocytes with glucose and insulin together results in higher DGAT activity in the membrane than cells treated with either of the agents alone, indicating that glucose and insulin have additive effect on DGAT activation. In mice treated with fast/refeeding protocol, DGAT2 mRNA decreased upon fasting and was replenished upon refeeding in adipose tissue and liver. This pattern of change was not observed for DGAT1. Inasmuch as DGAT1 mRNA is less abundant in liver, we suggest that DGAT1 is more involved in fat absorption in the intestine and in basal level triglyceride synthesis in adipose tissue where it is more highly expressed. In contrast, DGAT2 is more likely to play important roles in assembly of de novo synthesized fatty acids into VLDL particles in the liver.

  3. Biogenesis of ER subdomains containing DGAT2, an enzyme involved in industrial oil biosynthesis

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the committed step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl group from the acyl-CoA pool to the sn-3 position of diacylglycerol. The substrate specificity and overall activity of these enzymes play a key role...

  4. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    Energy Technology Data Exchange (ETDEWEB)

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  5. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A.; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G.; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2016-04-26

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  6. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  7. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex.

    Science.gov (United States)

    Laursen, Mette; Gregersen, Jonas Lindholt; Yatime, Laure; Nissen, Poul; Fedosova, Natalya U

    2015-02-10

    Cardiotonic steroids (CTSs) are specific and potent inhibitors of the Na(+),K(+)-ATPase, with highest affinity to the phosphoenzyme (E2P) forms. CTSs are comprised of a steroid core, which can be glycosylated, and a varying number of substituents, including a five- or six-membered lactone. These functionalities have specific influence on the binding properties. We report crystal structures of the Na(+),K(+)-ATPase in the E2P form in complex with bufalin (a nonglycosylated CTS with a six-membered lactone) and digoxin (a trisaccharide-conjugated CTS with a five-membered lactone) and compare their characteristics and binding kinetics with the previously described E2P-ouabain complex to derive specific details and the general mechanism of CTS binding and inhibition. CTSs block the extracellular cation exchange pathway, and cation-binding sites I and II are differently occupied: A single Mg(2+) is bound in site II of the digoxin and ouabain complexes, whereas both sites are occupied by K(+) in the E2P-bufalin complex. In all complexes, αM4 adopts a wound form, characteristic for the E2P state and favorable for high-affinity CTS binding. We conclude that the occupants of the cation-binding site and the type of the lactone substituent determine the arrangement of αM4 and hypothesize that winding/unwinding of αM4 represents a trigger for high-affinity CTS binding. We find that the level of glycosylation affects the depth of CTS binding and that the steroid core substituents fine tune the configuration of transmembrane helices αM1-2.

  8. Inhibitory activity of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) by the flavonoid, taxifolin, in HepG2 cells: potential role in the regulation of apolipoprotein B secretion.

    Science.gov (United States)

    Casaschi, Adele; Rubio, Brent K; Maiyoh, Geoffrey K; Theriault, Andre G

    2004-10-01

    The purpose of the present study was to examine the role of taxifolin, a plant flavonoid, on several aspects involving apolipoprotein B (apoB) secretion and triglyceride (TG) availability in HepG2 cells. Taxifolin was shown by ELISA to markedly reduce apoB secretion under basal and lipid-rich conditions up to 63% at 200 micromol/L. As to the mechanism underlying this effect, we examined whether taxifolin exerted its effect by limiting TG availability in the microsomal lumen essential for lipoprotein assembly. Taxifolin was shown to inhibit microsomal TG synthesis by 37% and its subsequent transfer into the lumen (-26%). The reduction in synthesis was due to a decrease in diacylglycerol acyltransferase (DGAT) activity (-35%). The effect on DGAT activity was found to be non-competitive and non-transcriptional in nature. Both DGAT-1 and DGAT-2 mRNA expression remained essentially unchanged suggesting the point of regulation may be at the post-transcriptional level. Evidence is accumulating that microsomal triglyceride transfer protein (MTP) is also involved in determining the amount of lumenal TG available for lipoprotein assembly and secretion. Taxifolin was shown to inhibit this enzyme by 41%. Whether the reduction in TG accumulation in the microsomal lumen is predominantly due to DGAT and/or MTP activity remains to be addressed. In summary, taxifolin reduced apoB secretion by limiting TG availability via DGAT and MTP activity.

  9. Alpha-linolenic acid-enriched diacylglycerol oil does not promote tumor development in tongue and gastrointestinal tract tissues in a medium-term multi-organ carcinogenesis bioassay using male F344 rat.

    Science.gov (United States)

    Honda, Hiroshi; Kawamoto, Taisuke; Doi, Yuko; Matsumura, Shoji; Ito, Yuichi; Imai, Norio; Ikeda, Naohiro; Mera, Yukinori; Morita, Osamu

    2017-08-01

    Alpha-linolenic acid (ALA)-enriched diacylglycerol (DAG) oil is an edible oil enriched with DAG (>80%) and ALA (>50%). The present study investigated whether ALA-DAG oil promotes tumorigenesis in the tongue and gastrointestinal tract, using a rat medium-term multi-organ carcinogenesis bioassay model. Rats were treated with five genotoxic carcinogens to induce multi-organ tumorigenesis until week 4, and from 1 week after withdrawal, fed a semi-synthetic diet (AIN-93G) containing ALA-DAG oil at concentrations of 0, 13,750, 27,500, and 55,000 ppm. Rats fed AIN-93G containing 55,000 ppm ALA-triacylglycerol or a standard basal diet served as reference and negative control groups, respectively. Animals were euthanized at week 30. ALA-DAG oil was shown to have no effects on survival, general condition, body weight, food consumption, or organ weight. More discolored spots were observed in the stomachs of the 13,750- and 55,000-ppm ALA-DAG groups than in those of the control groups; however, there were no differences in the frequency of histopathological findings across groups. There were no meaningful increases in the incidence of pre-neoplastic and neoplastic lesions in the tongue and gastrointestinal tract among the groups. We therefore conclude that ALA-DAG oil does not promote tumor development in the digestive system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fungal Strains as Catalysts for the Biotransformation of Halolactones by Hydrolytic Dehalogenation with the Dimethylcyclohexane System

    Directory of Open Access Journals (Sweden)

    Małgorzata Grabarczyk

    2012-08-01

    Full Text Available Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria. Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (−-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  11. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nabila eDjafi

    2013-08-01

    Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.

  12. Radioimmunoassay of plasma 18-hydroxy-11-deoxycorticosterone and its response to ACTH

    International Nuclear Information System (INIS)

    May, C.N.; Lewis, P.S.; Horth, C.E.

    1979-01-01

    A radioimmunoassay for 18-OH-DOC in plasma was developed using an antiserum raised against the γ-lactone derivative. The steroids with the greatest degree of cross reaction were 18-OH-corticosterone-γ-lactone and aldosterone-γ-lactone which showed cross-reactivities of 1.96% and 0.47% respectively. These and other interfering steroids were eliminated by chromatography of the extracts on columns of Sephadex LH-20. The lowest limit of detection of 18-OH-DOC in 1 ml of plasma corresponded to 33 pmol -1 . The intra-assay precision was 9.7, 4.8 and 2.6% at 102.0, 316.1 and 1144.0 pmol l -1 respectively and the interassay precision was 15.3 and 5.4% at 71.3 and 404.7 pmol l -1 respectively. The concentration of 18-OH-DOC in ten normal subjects was 172.1 +- 39.1 pmol l -1 at 09.00 h, 100.9 +- 16.9 pmol l -1 at 12.00 h and 95.8 +-33.3 pmol l -1 at 16.30 h. Plasma 18-OH-DOC and cortisol levels were measured after various intravenous doses of ACTH in three patients with essential hypertension. Lower doses of ACTH caused considerably greater increases in 18-OH-DOC. These results confirm the ACTH dependency of 18-OH-DOC secretion. (author)

  13. Conversion of 2-deoxy-D-ribose into 2-amino-5-(2-deoxy-beta-D-ribofuranosyl)pyridine, 2'-deoxypseudouridine, and other C-(2'-deoxyribonucleosides).

    Science.gov (United States)

    Reese, Colin B; Wu, Qinpei

    2003-09-21

    The synthesis of 2-amino-5-(2-deoxy-beta-D-ribofuranosyl)pyridine 2a, 2-amino-5-(2-deoxy-alpha-D-ribofuranosyl)-pyridine 23, 2-amino-5-(2-deoxy-beta-D-ribofuranosyl)-3-methylpyridine 2b, 2-amino-5-(2-deoxy-alpha-D-ribofuranosyl)-3-methylpyridine 29 and 5-(2-deoxy-beta-D-ribofuranosyl)-2,4-dioxopyrimidine [2'-deoxypseudouridine] 30a is described. These C-nucleosides are prepared either from 2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)-D-ribofuranose 15 or from 2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)-D-ribono-1,4-lactone 16, which are themselves prepared from 2-deoxy-D-ribose 13. The sugar derivatives are first allowed to react with the appropriate 5-lithio-pyridine or 5-lithio-pyrimidine derivatives, which are prepared from 5-bromo-2-(dibenzylamino)pyridine 12a, 5-bromo-2-[bis(4-methoxybenzyl)amino]pyridine 12b, 5-bromo-2-dibenzylamino-3-methylpyridine 25 and 5-bromo-2,4-bis(4-methoxybenzyloxy)pyrimidine 33. The products from the reactions between the lithio-derivatives and the lactol 15 are cyclized under Mitsunobu conditions; the products from the reactions between the lithio-derivatives and the lactone 16 are first reduced with L-Selectride before cyclization, also under Mitsunobu conditions. In all cases, the beta-anomers of the protected C-nucleosides are the predominant products. Finally, the separation of the alpha- and beta-anomers and the removal of all of the protecting groups are described.

  14. Structure of product-bound SMG1 lipase: active site gating implications.

    Science.gov (United States)

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). © 2015 FEBS.

  15. The Effect of Conformational Variability of Phosphotriesterase upon N-acyl-L-homoserine Lactone and Paraoxon Binding: Insights from Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2013-12-01

    Full Text Available The organophosphorous hydrolase (PTE from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R led to the emergence of a homoserine lactonase (HSL activity that is undetectable in PTE (kcat/km values of up to 2 × 104, with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT enzyme. pKa calculations for the enzyme (the WT and the variant showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units for the His254residue (in the Arg254 variant. Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions.

  16. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas

    2017-12-01

    N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. [Figure not available: see fulltext.

  17. A New Method for the Synthesis of 2,3-Aziridino-2,3-dideoxyhexonamides and Their Conversion into 3-Amoni-2,3-dideoxyhexonic Acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea; Pedersen, Christian; Søtofte, Inger

    1998-01-01

    The new 2,3-Aziridino-2,3-dideoxyhexonamides 3 and 11 were prepared by a three-step procedure from commercially available D-glucono-1,5-lactone and D-gulono-1,4-lactone, respectively. The lactones were converted into methyl 3,4;5,6-di-O-isopropylidene-2-Omesyl esters 2 and 10, which upon treatmen...... with ammonia formed the title aziridino compounds. These were reductively cleaved by hydrazine to give 3-amino-2,3-dideoxyhexonic hydrazides 13 and 15, which were easily converted into corresponding lactone 14 and acid 16, respectively....

  18. Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of cis,cis-Muconate Lactonizing Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, A.; Fedorov, A; Fedorov, E; Schnoes, A; Glasner, M; Burley, S; Babbitt, P; Almo, S; Gerlt, J

    2009-01-01

    The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature's strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the a-proton of a carboxylate substrate that is coordinated to an essential Mg2+. The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the e-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily. A second, divergent family of homologous MLEs that catalyzes anti-cycloisomerization has been identified. Structures of members of both families liganded with the common (4S)-muconolactone product (syn, Pseudomonas fluorescens, gi 70731221; anti, Mycobacterium smegmatis, gi 118470554) document that the conserved Lys at the end of the second e-strand in the (e/a)7e-barrel domain serves as the acid catalyst in both reactions. The different stereochemical courses (syn and anti) result from different structural strategies for determining substrate specificity: although the distal carboxylate group of the cis,cis-muconate substrate attacks the same face of the proximal double bond, opposite faces of the resulting enolate anion intermediate are presented to the conserved Lys acid catalyst. The discovery of two families of homologous, but stereochemically distinct, MLEs likely provides an example of 'pseudoconvergent' evolution of the same function from different homologous progenitors within the enolase superfamily, in which different spatial arrangements of active site functional groups and substrate specificity determinants support catalysis of the same reaction.

  19. Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of cis,cis-Muconate Lactonizing Enzymes†

    Science.gov (United States)

    Sakai, Ayano; Fedorov, Alexander A.; Fedorov, Elena V.; Schnoes, Alexandra M.; Glasner, Margaret E.; Brown, Shoshana; Rutter, Marc E.; Bain, Kevin; Chang, Shawn; Gheyi, Tarun; Sauder, J. Michael; Burley, Stephen K.; Babbitt, Patricia C.; Almo, Steven C.; Gerlt, John A.

    2009-01-01

    The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature’s strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the α-proton of a carboxylate substrate that is coordinated to an essential Mg2+. The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the β-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily. A second, divergent family of homologues MLEs that catalyzes anti-cycloisomerization has been identified. Structures of members of both families liganded with the common (4S)-muconolactone product (syn, Pseudomonas fluorescens, GI:70731221; anti, Mycobacterium smegmatis, GI:118470554) document that the conserved Lys at the end of the second β-strand in the (β/α)7β-barrel domain serves as the acid catalyst in both reactions. The different stereochemical courses (syn and anti) result from different structural strategies for determining substrate specificity: although the distal carboxylate group of the cis,cis-muconate substrate attacks the same face of the proximal double bond, opposite faces of the resulting enolate anion intermediate are presented to the conserved Lys acid catalyst. The discovery of two families of homologous, but stereochemically distinct, MLEs likely provides an example of “pseudoconvergent” evolution of the same function from different homologous progenitors within the enolase superfamily, in which different spatial arrangements of active site functional groups and substrate specificity determinants support catalysis of the same reaction. PMID:19220063

  20. Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents.

    Science.gov (United States)

    Kishore, V; Yarla, Nagendra Sastry; Bishayee, Anupam; Putta, Swathi; Malla, Ramarao; Neelapu, Nageswara Rao Reddy; Challa, Surekha; Das, Subhasish; Shiralgi, Yallappa; Hegde, Gurumurthy; Dhananjaya, Bhadrapura Lakkappa

    2017-01-01

    Andrographis paniculata (A. paniculata) is a medicinal plant used in the Indian and Chinese traditional medicinal systems for its various beneficial properties of therapeutics. This is due to the presence of a diterpene lactone called 'andrographolide'. Several biological activities like antiinflammatory, antitumour, anti-hyperglycaemic, anti-fertility, antiviral, cardio protective and hepatoprotective properties are attributed to andrographolide and its natural analogs. The studies have shown that not only this diterpene lactone (andrographolide), but also other related terpenoid analogs from A. paniculata could be exploited for disease prevention due to their structural similarity with diverse pharmacological activities. Several scientific groups are trying to unveil the underlying mechanisms involved in these biological actions brough aout by andrographolide and its analogs. This review aims at giving an overview on the therapeutical and/or pharmacological activities of andrographolide and its derivatives and also exemplify the underlying mechanisms involved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.