WorldWideScience

Sample records for dhr96 nuclear receptor

  1. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  2. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    International Nuclear Information System (INIS)

    Karimullina, Elina; Li Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2012-01-01

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  3. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  4. Nuclear receptors HR96 and ultraspiracle from the fall armyworm (Spodoptera frugiperda), developmental expression and induction by xenobiotics.

    Science.gov (United States)

    Giraudo, Maeva; Audant, Pascaline; Feyereisen, René; Le Goff, Gaëlle

    2013-05-01

    The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). We also cloned ultraspiracle (USP), the ortholog of retinoid X receptor (RXR) that serves as partner of dimerization of PXR and CAR. Cloning of SfUSP revealed the presence of two isoforms, SfUSP-1 and SfUSP-2 in this species, that differ in their N-terminal region. The expression of these receptors as well as the ecdysone receptor was studied during specific steps of development in different tissues. SfHR96 was constitutively expressed in larval midgut, fat body and Malpighian tubules throughout the last two instars and pupal stage, as well as in Sf9 cells. EcR and SfUSP-2 showed peaks of expression before larval moults and during metamorphosis, whereas SfUSP-1 was mainly expressed in the pre-pupal stage. Receptor induction was followed after exposure of larvae or cells to 11 chemical compounds. SfHR96 was not inducible by the tested compounds. EcR was significantly induced by the 20-hydroxyecdysone agonist, methoxyfenozide, and SfUSP showed an increase expression when exposed to the juvenile hormone analog, methoprene. The cloning of these nuclear receptors is a first step in understanding the important capacities of adaptation of this insect pest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    Science.gov (United States)

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.

  6. Analysis of long-term DHR System Performance for a LMR

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2012-01-01

    Conclusions: • The demonstration of the «Non credibility» of the situation related to the long - term loss of DHR function is organized through: – Probabilistic assessment approach; – Demonstration of negligible risk; – Probabilistic goals. • Results show the inadequacy of design measures to meet the safety requirement of 10 -7 /reactor year: – System redundancies and configuration. • Results subject to the assumptions taken in the analysis: – Lack of statistically reliable data for LMRs; – Level of definition of the systems, which are not yet established; – Conservative value of the frequency of the initiator, corresponding to the normal shutdown. • Results show the relevance of CCFs; • Other provisions that could justify the “practical elimination”: – Diversification of components to cope with CCFs; – DHR function through vault cooling

  7. Analysis and testing of W-DHR system for decay heat removal in the lead-cooled ELSY reactor

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Meloni, Paride; Polidori, Massimiliano; Gaggini, Piero; Labanti, Valerio; Tarantino, Mariano; Cinotti, Luciano; Presciuttini, Leonardo

    2009-01-01

    An innovative LFR system that complies with GEN IV goals is under design in the frame of ELSY European project. ELSY is a lead-cooled pool-type reactor of about 1500 MW thermal power which normally relies on the secondary system for decay heat removal. Since the secondary system is not safety-grade and must be fully depressurized in case of detection of a steam generator tube rupture, an independent and much reliable decay heat removal (DHR) system is foreseen on the primary side. Owing to the limited capability of the Reactor Vessel Air Cooling System (RVACS) in this large power reactor, additional safety-grade loops equipped with coolers immersed in the primary coolant are necessary for an efficient removal of decay heat. Some of these loops (W-DHR) are of innovative design and may operate with water at atmospheric pressure. In the frame of the ICE program to be performed on the integral facility CIRCE at ENEA/Brasimone research centre within the EUROTRANS European project, integral circulation experiments with core heat transport and heat removal by steam generator will be conducted in a reactor pool-type configuration. Taking advantage from this experimental program, a mock-up of W-DHR heat exchanger will be tested in order to investigate its functional behavior for decay heat removal. Some pre-test calculations of W-DHR heat exchanger operation in CIRCE have been performed with the RELAP5 thermal-hydraulic code in order to support the heat exchanger design and test conduct. In this paper the experimental activity to be conducted in CIRCE and main results from W-DHR pre-test calculations are presented, along with a preliminary investigation of the W-DHR system efficiency in ELSY configuration. (author)

  8. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    Science.gov (United States)

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  9. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    Science.gov (United States)

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  10. New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo

    Science.gov (United States)

    Finch, Sean; Tornow, Werner

    2015-10-01

    The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.

  11. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  12. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade.

    Science.gov (United States)

    Jiang, Xue; Yang, Jingwen; Shen, Zhangfei; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-08-01

    Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  14. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mapeamento do fenômeno de pulsações não-radiais no DHR

    Science.gov (United States)

    Waelkens, A. H.; Janot Pacheco, E.

    2003-08-01

    Neste trabalho de IC, pretende-se estabelecer um mapa das características do fenômeno das pulsações não-radiais (PNR) no diagrama HR (DHR). Trata-se de oscilações que não mantém a homotecia radial. O fenômeno foi inicialmente descoberto no Sol nos anos 60 e hoje é detectado num grande número de objetos. Sua grande importância reside em que as pulsações descrevem a física da cavidade em que se propagam. As PNR são classificadas basicamente por suas frequências, amplitudes e certos números quânticos associados. Com o objetivo de descrever a variação desses parâmetros no DHR, procedeu-se a um extenso levantamento bibliográfico (artigos de revistas e outras fontes) cobrindo o tema. Compôs-se assim uma tabela, que será apresentada nesta comunicação, contendo os parâmetros físicos das estrelas (T, L, logg, M) e suas características de PNR, deduzidas a partir de observações fotométricas e/ou espectroscópicas. No momento, completamos os dados sobre as Anãs Brancas e Beta Cep. Apresentaremos no trabalho diagramas L-T com os últimos resultados obtidos, eventualmente com uma terceira dimensão que descreva características pulsacionais.

  16. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  17. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  18. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  19. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  20. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  1. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  2. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Directory of Open Access Journals (Sweden)

    Mark D. Long

    2015-12-01

    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  3. Direct analysis of radionuclides-96 samples simultaneously

    International Nuclear Information System (INIS)

    Kessler, M.J.

    1991-01-01

    Recently, there has been a tremendous interest in two areas of concern in nuclear counting and radioactivity waste disposal. The first is the reduction of radioactive waste, in particular the reduction in the amount of or the development of environmentally safe scintillation cocktails. The second is the development of a simple method of quantitating large numbers of samples (thousands/day) in a short period of time (minutes). These two areas of concern have been addressed with the development of the Matrix 96 direct beta counter. This new instrumental technique is capable of quantitating 96 samples simultaneously in the microplate format (8 x 12, 96 sample) on a solid support WITHOUT the use of any cocktails, vials, and is non-destructive to the sample. The use of this technique for the following biomedical applications, DNA dot blots, cell proliferation (3H thymidine), receptor binding, chromium cytotoxicity assays, and protein assays will be discussed in detail. The data from both the conventional beta and gamma counter will be correlated and compared to the new Matrix 96 direct beta counter. This new technique provides a convenient method of addressing the concerns of reducing radioactive waste and provides a method of quantitating a large number of samples, accurately in a short period of time (96 at a time)

  4. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  5. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'

    NARCIS (Netherlands)

    Kurakula, Kondababu; Hamers, Anouk A. J.; de Waard, Vivian; de Vries, Carlie J. M.

    2013-01-01

    Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in

  6. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  7. Topnux'96 international conference French nuclear energy society

    International Nuclear Information System (INIS)

    Park, S.K.

    1996-01-01

    Here is the opening address of Mr S. Park, vice-president of the Korea Electric Power Corporation, at the opening session of the Topnux'96 conference. The main ideas of his speech are the following: 1)energy is indispensable for maintaining affluent living standards 2)it is the most important requirement for rapid economic growth 3)overall energy consumption of the world is expected to rise continuously in the next century 4)demand for electricity is greater than growth of overall energy consumption 5)burning of large amount of fossil fuels to meet the energy, including electricity, will bring about serious environmental impact such as air pollution and global warming due to emission of toxic chemical and greenhouse gases 6)nuclear power is one of the most effective and practical alternatives available now for solving this global problem 7)energy should be convenient to use, inexpensive, safe, secured and environment friendly; in this respect, electricity is the most desirable type of energy indispensable for modern civilization and nuclear power is surely one of the viable option for producing electricity. (O.M.)

  8. Regulation of Toll-like receptor 2 interaction with Ecgp96 controls Escherichia coli K1 invasion of brain endothelial cells

    OpenAIRE

    Krishnan, Subramanian; Chen, Shuang; Turcatel, Gianluca; Arditi, Moshe; Prasadarao, Nemani V.

    2012-01-01

    The interaction of outer membrane protein A (OmpA) with its receptor, Ecgp96 (a homologue of Hsp90β) is critical for the pathogenesis of E. coli K1 meningitis. Since Hsp90 chaperones Toll-like receptors (TLRs), we examined the role of TLRs in E. coli K1 infection. Herein, we show that newborn TLR2−/− mice are resistant to E. coli K1 meningitis, while TLR4−/− mice succumb to infection sooner. In vitro, OmpA+ E. coli infection selectively upregulates Ecgp96 and TLR2 in human brain microvascular...

  9. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  10. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  11. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight.

    Science.gov (United States)

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-03-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. © 2015 The authors.

  12. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  13. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  14. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  15. NR4A nuclear receptors are orphans but not lonesome.

    Science.gov (United States)

    Kurakula, Kondababu; Koenis, Duco S; van Tiel, Claudia M; de Vries, Carlie J M

    2014-11-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Emily Powell

    2007-01-01

    Full Text Available Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators.

  17. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer.

    LENUS (Irish Health Repository)

    Mohan, Helen M

    2012-06-15

    Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A\\/CREB, NF-κB, phosphoinositide 3-kinase\\/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and\\/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.

  18. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  19. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...... the world covering a wide spectrum from fundamental mechanistic studies to metabolism, clinical studies, and drug development. In this report, we summarize the recent and exciting findings presented by the speakers at the meeting....

  20. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Directory of Open Access Journals (Sweden)

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  1. BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level.

    Science.gov (United States)

    Dong, Xiao-Long; Liu, Tai-Hang; Wang, Wei; Pan, Cai-Xia; Du, Guo-Yu; Wu, Yun-Fei; Pan, Min-Hui; Lu, Cheng

    2017-01-22

    B.mori nucleopolyhedrovirus (BmNPV), which produces BV and ODV two virion phenotypes in its life cycle, caused the amount of economic loss in sericulture. But the mechanism of its infection was still unclear. In this study we characterized B.mori nuclear hormone receptor 96 (BmNHR96) as a NHR96 family member, which was localized in the nucleus. We also found BmNHR96 over-expression could enhance the entry of BV as well as cellular cholesterol level. Furthermore, we validated that BmNHR96 increased membrane fusion mediated by GP64, which could probably promote BV-infection. In summary, our study suggested that BmNHR96 plays an important role in BV infection and this function probably actualized by affecting cellular cholesterol level, and our results provided insights to the mechanisms of BV-infection of B.mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  3. Exclusive nuclear location of estrogen receptors in Squalus testis.

    Science.gov (United States)

    Callard, G V; Mak, P

    1985-01-01

    An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265

  4. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    Science.gov (United States)

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  5. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  6. The FOCON96 1.0 computer code

    International Nuclear Information System (INIS)

    Merle-Szeremeta, A.; Thomassin, A.

    1999-01-01

    The Institute of Protection and Nuclear Safety (I.P.S.N.) has developed a computer code, FOCON96 1.0 to calculate the dosimetric consequences of atmospheric radioactive releases from nuclear installations after several years of usual operation. This communication describes the principal characteristics of FOCON96 1.0 and its functionalities. The principal elements of a comparison between FOCON96 1.0 and PC-CREAM ( European computer code developed by the N.R.P.B. and answering the same criteria) are given here. (N.C.)

  7. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  8. Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction

    NARCIS (Netherlands)

    Fuchs, S.; Nguyen, H.D.; Phan, T.T.T.; Burton, M.F.; Nieto, L.; Vries-van Leeuwen, I.J. de; Schmidt, A.; Goodarzifard, M.; Agten, S.M.; Rose, R.; Ottmann, C.; Milroy, L.G.; Brunsveld, L.

    2013-01-01

    Nuclear receptor binding to coactivator proteins is an obligate first step in the regulation of gene transcription. Nuclear receptors preferentially bind to an LXXLL peptide motif which is highly conserved throughout the 300 or so natural coactivator proteins. This knowledge has shaped current

  9. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  10. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors

    Directory of Open Access Journals (Sweden)

    Piau Siong Tan

    2018-03-01

    Full Text Available Summary: Phenylalanine-glycine-rich nucleoporins (FG-Nups are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC. Previous studies showed that nuclear transport receptors (NTRs were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked β-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell. : Archetypal-fuzzy complexes found in most FG-Nucleoporin⋅nuclear transport receptor complexes allow fast yet specific nuclear transport. Tan et al. show that FG-Nup214, located at the periphery of the nuclear pore complex, binds to CRM1⋅RanGTP via a coupled reconfiguration-binding mechanism, which can enable different functionalities e.g., cargo release. Keywords: intrinsically disordered protein, glycosylation, FG-Nup, nuclear transport receptors, binding mechanism, single-molecule FRET, molecular dynamics simulations

  11. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  12. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Science.gov (United States)

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Analysis of operating experience data in nuclear power plants

    International Nuclear Information System (INIS)

    Watanabe, Norio; Hirano, Masashi; Oikawa, Tetsukuni

    1991-09-01

    This report analyzes pressurized water reactor (PWR) and boiling water reactor (BWR) experience involving loss of decay heat removal (DHR) during reactor shutdown. Referring to USNRC's Licensee Event Reports (LERs), OECD/NEA-IRS reports, etc., we selected 206 loss of DHR events which have occurred in PWRs between 1976 and 1990 and 48 events in BWRs between 1985 and 1990. Analysis of 197 events which have occurred in U.S. PWRs indicates that the following direct causes are major contributions resulting in loss of DHR during reactor shutdown: 1) Inadvertent automatic closure of the suction/isolation valves in residual heat removal (RHR) system, 2) RHR pump cavitation due to air entrainment in reduced coolant inventory condition, and 3) Loss of power to RHR pumps. Human factors deficiencies involving procedural inadequacies and personnel errors were identified as the most significant underlying or root causes of the loss of DHR events. Most of the errors were committed during maintenance, testing and repair works. As for 48 events in U.S. BWRs, the leading category of loss DHR events was the inadvertent automatic closure of the suction/isolation valves in RHR system, most of which were caused by human errors. This report describes the above analysis results and presents the events description for the selected significant events. As well, the brief descriptions of the 206 events in PWRs and 48 events in BWRs are provided in Appendix. (author)

  14. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    International Nuclear Information System (INIS)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  16. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  17. NR4A nuclear receptors are orphans but not lonesome

    NARCIS (Netherlands)

    Kurakula, Kondababu; Koenis, Duco S.; van Tiel, Claudia M.; de Vries, Carlie J. M.

    2014-01-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that

  18. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  19. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.

  20. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  1. Nuclear hormone receptors in parasitic helminths

    OpenAIRE

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in p...

  2. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.

  4. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome ... Gene structure analysis shows strong conservation of exon structures among orthologoues. ..... earlier subfamily classification of NRs (Nuclear Receptors.

  5. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Science.gov (United States)

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  6. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  7. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    NARCIS (Netherlands)

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  8. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  9. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    Science.gov (United States)

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  10. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  11. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  12. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  13. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects.

    Science.gov (United States)

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L; Busby, Scott A; Griffin, Patrick R; Pathak, Manish C; Ortlund, Eric A; Moore, David D

    2011-05-25

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.

  14. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  15. Maturing of the nuclear receptor family.

    Science.gov (United States)

    Lazar, Mitchell A

    2017-04-03

    Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

  16. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  17. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii.

    Science.gov (United States)

    Choi, Man-Yeon; Ahn, Seung-Joon; Kim, A Young; Koh, Youngho

    2017-05-15

    The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced

  18. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  19. Nuclear androgen receptors in human prostatic tissue. Extraction with heparin and estimation of the number of binding sites with different methods

    International Nuclear Information System (INIS)

    Foekens, J.A.; Bolt-de Vries, J.; Mulder, E.; Blankenstein, M.A.; Schroeder, F.H.; Molen, H.J. van der

    1981-01-01

    A procedure for the estimation of nuclear androgen receptors in benign prostatic hyperplastic tissue is described, which employs extraction of receptors from nuclei with buffers containing heparin. Extraction of a nuclear pellet with a heparin-containing (1 g/l) buffer appeared to have definite advantages over 0.4 mol/l KCl extraction. Heparin appeared to be twice as efficient in extracting androgen receptors. In addition aggregated receptor proteins, formed after storage at -80 0 C, were partly deaggregated by heparin. Specific isolation of the androgen receptor was performed using either agar gel electrophoresis, protamine sulphate precipitation or LH-20 gel filtration. A comparison was made between the amounts of estimated receptors with these different techniques. Protamine sulphate precipitation resulted in the highest estimates of receptor-bound 5α-[ 3 H]dihydrotestosterone ( 3 H-DHT). Treatment of the labelled nuclear extracts with a charcoal suspension prior to the receptor assay resulted in lower amounts of estimated androgen receptors. A method for routine evaluation of nuclear androgen receptors in prostatic tissue has been evaluated, which involves extraction of nuclear pellets with a heparin-containing (1 g/l) buffer, exchange labelling of the nuclear extracts for 20 h at 10 0 C and quantification of the receptors with protamine sulphate precipitation. (Auth.)

  20. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Science.gov (United States)

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  1. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  2. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  3. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  4. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  5. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Directory of Open Access Journals (Sweden)

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  6. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  7. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor

    Czech Academy of Sciences Publication Activity Database

    Carazo, A.; Hyršová, L.; Dušek, J.; Chodounská, Hana; Horvátová, A.; Berka, K.; Bazgier, V.; Gan-Schreier, H.; Chamulitrat, W.; Kudová, Eva; Pávek, P.

    2017-01-01

    Roč. 265, Jan 4 (2017), s. 86-96 ISSN 0378-4274 R&D Projects: GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : PXR * metabolism * bile acids * nuclear receptors * FXR Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.858, year: 2016

  8. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation

    DEFF Research Database (Denmark)

    Lafont, Anne Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna

    2016-01-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleo...

  9. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum; Hwang, Un-Ki; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong

    2016-08-01

    2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P<0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P<0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5-6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P<0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. This information will be helpful in understanding the molting and metamorphosis delay mechanism in response to BDE-47 exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ligands specify estrogen receptor alpha nuclear localization and degradation

    Directory of Open Access Journals (Sweden)

    Caze-Subra Stéphanie

    2010-12-01

    Full Text Available Abstract Background The estrogen receptor alpha (ERα is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2, and pure antagonists (selective estrogen regulator disruptor; SERD, ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM, 4-hydroxytamoxifen (OHT or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on

  11. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  12. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  13. Spatial profiling of nuclear receptor transcription patterns over the course of Drosophila development.

    Science.gov (United States)

    Wilk, Ronit; Hu, Jack; Krause, Henry M

    2013-07-08

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands.

  14. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  15. Nuclear triiodothyronine receptors in rabbit heart

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1986-01-01

    Nuclear triiodothyronine receptors from rat liver have been characterized in detail by several investigators. However, little work has been done in this area using heart tissue. In this study they examined and characterized the triiodothyronine binding in rabbit hearts. Nuclei have been prepared from ventricular muscle cells of normal and thyrotoxic rabbits as well as from atrial muscle cells of normal rabbit. Hearts were perfused with a minimum essential medium containing collagenase and bovine serum albumin. Myocardial cells were isolated and then disrupted by sonication and washing with a Triton X-100 buffer solution. A discontinuous sucrose density gradient was then used to isolate the mycoardial nuclei. Radiolabelled triiodothyronine (T 3 ) binding to nuclei was examined using conditions described by established procedures. Scatchard analysis of the binding data yields maximum binding capacity (B/sub max/) of 0.17 +/- 0.2 pmol/mg DNA and apparent dissociation constant (K/sub d/) of 400 +/- 50 pM for normal heart T 3 -receptors. The apparent capacity for T 3 binding is approximately 40% greater in myocardial nuclei prepared from hearts of hyperthyroid rabbits. The binding capacity of atrial muscle nuclei is about fourfold lower than ventricular cell nuclei. The results suggest that binding capacity for T 3 -receptor in the atrium is considerably lower than that found in the ventricle

  16. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Jernberg-Wiklund, Helena [Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala (Sweden); Sehat, Bita [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Larsson, Olle, E-mail: olle.larsson@ki.se [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden)

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over

  17. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    International Nuclear Information System (INIS)

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas; Jernberg-Wiklund, Helena; Sehat, Bita; Larsson, Olle

    2011-01-01

    Research highlights: → SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. → Here we show that nuclear IGF-1R over-accumulates in tumor cells. → This requires overexpression of the receptor that is a common feature in tumor cells. → An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the β-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R

  18. RECEPTORES NUCLEARES: DEL NÚCLEO AL CITOPLASMA

    Directory of Open Access Journals (Sweden)

    Bibiana Ortega-Domínguez

    2015-01-01

    Full Text Available Los receptores nucleares (RNs constituyen una familia de factores transcripcionales activados por ligando que regulan la expresión de un gran número de genes de forma dependiente del tipo y contexto celular. La localización subcelular de los RNs es altamente dinámica y repercute sobre sus funciones como factores transcripcionales. En presencia de su ligando específico, los RNs se acumulan en el núcleo para modular la expresión de sus genes blanco. Por ende, la salida desde el núcleo a citoplasma de los RNs disminuye su acumulación nuclear y abate su actividad transcripcional. Por lo tanto, la exportación nuclear constituye un importante mecanismo de regulación de la actividad de los RNs. A pesar de su importancia, el proceso de exportación nuclear de los RNs no ha sido completamente explorado, sin embargo, los estudios que se tienen hasta ahora sugieren la participación de las proteínas CRM–1 y la Calreticulina (CRT como mediadoras de este proceso. En esta revisión se destaca la exportación nuclear como un mecanismo regulador de las funciones de los RNs y se discuten las características estructurales y funcionales de las exportinas CRM–1 y CRT.

  19. Annual report 1995-96

    International Nuclear Information System (INIS)

    1996-01-01

    Research and development and other activities of the various constituent units of the Department of Atomic Energy (DAE) and also of the institutions financially aided by DAE during the year 1995-96 are reported. The various constituent units of DAE consist of nuclear research centres, nuclear power, fuel reprocessing and heavy water plants, nuclear fuel fabrication facilities, electronic and instrumentation production organisations, atomic mineral processing units and other nuclear installations. The activities of DAE cover the whole gamut of nuclear fuel cycle, research and development in nuclear science and reactor technology, applications of radiation and radioisotopes, radiation protection, environmental aspects, research and development in front line areas such as robotics, lasers, parallel processing etc.. These activities are described under the headings: introduction, the year at a glance, nuclear power and fuel cycle programmes, research and development programmes, public sector undertakings, support to research, services etc.. Other activities of DAE include international relations, emergency planning, training, technology transfer etc. Service activities include materials management, construction, publicity and information etc..The report also give details about the organisational and administrative aspects of the DAE. (M.K.V.). figs., ills

  20. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  1. Nuclear thyroid hormone receptors in rabbit heart: reduced triiodothyronine binding in atrium compared with ventricle

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1988-01-01

    Radiolabeled triiodothyronine (T3) binding to isolated nuclei was measured to compare the binding characteristics of the nuclear receptors in rabbit ventricular and atrial muscle cells. Scatchard analysis of the binding data yielded a maximum binding capacity of 170 +/- 20 fmol per mg DNA and apparent dissociation constant of 525 +/- 100 pM for ventricular nuclei. The binding capacity and the dissociation constant for the atrial muscle cell nuclei were 55 +/- 10 fmol per mg DNA and 500 +/- 75 pM, respectively. The results suggest that the binding capacity for T3 receptor in the atrium is considerably lower than that found in the ventricle. The reduced binding capacity of the T3 receptor in the atrium might reflect differences in the nuclear T3 receptors between ventricle and atrium

  2. Nuclear budget up 9.6% for fiscal 1981

    International Nuclear Information System (INIS)

    1981-01-01

    After reviewing the overall governmental budgets for fiscal 1981 including energy budget, the nuclear budget for the Science and Technology Agency and the Ministry of International Trade and Industry is described. The 1981 nuclear budget amounts to 178,013 million yen in general account, 4.2% increase over the previous year; and 93,237 million yen, increase of 17.3%, in the special account for power source development. The total is 271,250 million yen. For the STA, budgetary allocations were made for researches on nuclear power safety, a multi-purpose high temperature gas-cooled reactor and nuclear fusion in Japan Atomic Energy Research Institute, developments of FBR and ATR and nuclear fuel cycle in Power Reactor and Nuclear Fuel Development Corporation, and so on. For the MITI, allocations were made for nuclear plant safety, nuclear fuel cycle, and others. (Mori, K.)

  3. Electrical generation of nuclear origins in Spain 95/96; Generacion electrica de origen nuclear en Espana 95/96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The paper presents nuclear programme of Spain and reviews the following issues: LWR plants in Spain; nuclear fuel cycle; fuel assemblies manufacturing; reload core engineering experience; fuel assemblies significant features; fuel rod failures causes; fuel related R and D projects and irradiation programs; high burnup fuel behaviour.

  4. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors

    International Nuclear Information System (INIS)

    Bianco, A.C.; Silva, J.E.

    1988-01-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3'-triiodothyronine (T 3 ), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T 4 ) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T 3 levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5'-deiodinase resulted in high levels of nuclear T 3 receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T 3 or T 4 in rats exposed to 4 degree C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear [ 125 I]T 3 derived from the tracer [ 125 I]T 4 injections (T 3 [T 4 ]) and a significant reduction in the nuclear [ 125 I]T 3 derived from [ 125 I]T 3 injections (T 3 [T 3 ]). The number of BAT nuclear T 3 receptors did not increase for up to 3 wk of observation at 4 degree C. The mass of nuclear-bound T 3 was calculated from the nuclear tracer [ 125 I]T 3 [T 3 ] and [ 125 I]T 3 [T 4 ] at equilibrium and the specific activity of serum T 3 and T 4 , respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T 3 receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism

  5. The role of nuclear hormone receptors in cutaneous wound repair.

    Science.gov (United States)

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  7. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  8. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  9. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors

    International Nuclear Information System (INIS)

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia

    2007-01-01

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors

  10. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  11. Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells.

    NARCIS (Netherlands)

    Gawlas, K.; Stunnenberg, H.G.

    2001-01-01

    An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no

  12. Antidiabetic actions of a phosphatidylcholine ligand for nuclear receptor LRH-1

    Science.gov (United States)

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L.; Busby, Scott A.; Griffin, Patrick R.; Pathak, Manish C.; Ortlund, Eric A.; Moore, David D.

    2011-01-01

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis. PMID:21614002

  13. Nuclear Law Bulletin No. 96. Volume 2015/2

    International Nuclear Information System (INIS)

    Reynolds, M.; Thiele, L.; Touitou-Durand, F.; Pelzer, N.; Tafili, V.; Manually, Y.; Adomaityte, U.; Adamczyk, K.; Nowacki, T.; Chiripus, V.; Pistekova, Z.; Skraban, A.; Knopp Pisi, S.; Hoang, V.; Rothschild, T.; Durand, A.; Rivera, S.R.; Salter, I.

    2015-01-01

    The Nuclear Law Bulletin is a unique international publication for both professionals and academics in the field of nuclear law. It provides readers with authoritative and comprehensive information on nuclear law developments. Published free online twice a year in both English and French, it features topical articles written by renowned legal experts, covers legislative developments worldwide and reports on relevant case law, bilateral and international agreements as well as regulatory activities of international organisations. Feature articles in this issue include 'Treaty implementation applied to conventions on nuclear safety' and 'Crisis, criticism, change: Regulatory reform in the wake of nuclear accidents'. (authors)

  14. Tritiation of nonpeptide substance P antagonist CP-96,345 and its azido analogue. Synthetic and characterization details

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A..; Filer, C.N. E-mail: crist.filer@perkinelmer.com

    2003-12-01

    CP-96,345 (1) was the first nonpeptide antagonist discovered for the SP receptor and [{sup 3}H] CP-96,345 was required to study the mechanism of receptor action. The radioligand was prepared at high specific activity by catalytic dehalogenation of a dibrominated precursor and this same approach was also used to prepare a photoaffinity analogue.

  15. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hwang, Un-Ki [Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083 (Korea, Republic of); Zhou, Bingsheng [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Choe, Joonho [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2016-08-15

    Highlights: • The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47. • Expression profiles of nearly all NR genes were the highest at naupliar stages 5–6. • USP, HR96, and FTZ-F1 genes showed significant sex differences (P < 0.05) over different developmental stages. • NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47. • BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. - Abstract: 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P < 0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5–6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P < 0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P < 0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47

  16. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum; Hwang, Un-Ki; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong

    2016-01-01

    Highlights: • The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47. • Expression profiles of nearly all NR genes were the highest at naupliar stages 5–6. • USP, HR96, and FTZ-F1 genes showed significant sex differences (P < 0.05) over different developmental stages. • NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47. • BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. - Abstract: 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P < 0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5–6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P < 0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P < 0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47

  17. In vitro nuclear receptor inhibition and cytotoxicity of hydraulic fracturing chemicals and their binary mixtures.

    Science.gov (United States)

    Bain, Peter A; Kumar, Anu

    2018-05-01

    The widespread use of hydraulic fracturing (HF) in oil and gas extraction operations has led to concern over environmental risks posed by chemicals used in HF fluids. Here we employed a suite of stable luciferase reporter gene assays to investigate the potential for selected HF chemicals or geogenics to activate or antagonise nuclear receptor signalling. We screened three biocides (bronopol [BP], glutaraldehyde [GA], and tetrakis(hydroxymethyl)phosphonium sulfate [THPS]), a surfactant (2-butoxyethanol), a friction reducer (polyacrylamide), and a coal seam geogenic (o-cresol) for their potential to act as agonists or antagonists of the estrogen receptor, androgen receptor, progesterone receptor (PR), glucocorticoid receptor or peroxisome proliferator-activated receptor gamma (PPARγ). None of the chemicals induced luciferase activity in any of assays used in the study. In antagonistic mode, BP, GA and THPS caused reductions in luciferase activity in the reporter assays at higher concentrations (50-100 μM), while at low concentrations (2-10 μM) GA and THPS enhanced luciferase activity in some assays relative to controls. None of the other tested chemicals exhibited antagonism in the selected assays. In most cases, altered receptor signalling only occurred at concentrations exhibiting cytotoxicity. However, PPARγ activity, and to a lesser extent PR activity, were inhibited by THPS at sub-cytotoxic concentrations. The majority of binary combinations tested exhibited significantly less-than-additive cytotoxicity, and none of the combinations exhibited synergistic cytotoxicity. In summary, the results of the present study indicate that the selected chemicals are not likely to function as direct agonists of the nuclear receptors tested, and only one chemical, THPS was an apparent partial antagonist of two nuclear receptors. Copyright © 2017. Published by Elsevier Ltd.

  18. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals.

    Directory of Open Access Journals (Sweden)

    Susanne Vogeler

    Full Text Available Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT. Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l, all-trans retinoic acid (ATRA (0.06 mg/L and perfluorooctanoic acid (20 mg/L showed high effects on development (>74% abnormal developed D-shelled larvae, while rosiglitazone (40 mg/L showed no effect. The results are discussed in relation to a putative direct (TBT disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests

  19. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    Science.gov (United States)

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  20. ECN contributions to ADTT `96

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J.

    1996-07-01

    An outline is presented of the status of nuclear data evaluation for accelerator-driven systems. The international effort consists mainly of measuring, compiling and calculating nuclear data for elements and isotopes relevant for transmutation of radioactive waste (ATW), energy amplification and other accelerator-related nuclear applications. We argue that input for global, macroscopic calculation schemes for hybrid nuclear systems basically should consist of three types of nuclear data: (a) High-energy transport codes for energies above about 150 MeV, (b) neutron and proton transport data files for energies below about 150 MeV and (c) neutron and proton transmutation/activation libraries below about 150 MeV. Our specific contribution to the field concerns (b) and (c). The progress of the evaluation of high-energy nuclear data files for the most important materials and the related compilation of nuclear reaction information is reported. The evaluated data are calculated with the computer codes ECIS95, MINGUS and GNASH and are stored in ENDF6-format. We illustrate the library production with a short outline of the employed physical methods. Finally, we briefly discuss the application of the activation/transmutation library ECNAF96. (orig.).

  1. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  2. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  3. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism

    Directory of Open Access Journals (Sweden)

    Fernando Lizcano

    2013-01-01

    Full Text Available The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluated the differential effects of various ligands on the binding of certain cofactors associated with PPARγ. The ligands used were rosiglitazone for treating type 2 diabetes and telmisartan for treating arterial hypertension. Functional, phenotypic, and molecular studies were conducted on pre-adipocyte 3T3-L1 and functional studies in U2OS cells. The moderating influence of various cofactor families was evaluated using transient transfection assays. Our findings confirm that telmisartan has a partial modulating effect on PPARγ activity compared to rosiglitazone. The cofactors SRC1 and GRIP1 mediate the activity of telmisartan and rosiglitazone and partially determine the difference in their effects. Studying the modulating activity of these cofactors can provide interesting insights for developing new therapeutic approaches for certain metabolic diseases.

  4. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Science.gov (United States)

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  5. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    NARCIS (Netherlands)

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  6. Identification of FAM96B as a novel prelamin A binding partner

    International Nuclear Information System (INIS)

    Xiong, Xing-Dong; Wang, Junwen; Zheng, Huiling; Jing, Xia; Liu, Zhenjie; Zhou, Zhongjun; Liu, Xinguang

    2013-01-01

    Highlights: •We screen the binding protein of prelamin A by yeast two-hybrid screen. •FAM96B colocalizes with prelamin A in HEK-293 cells. •FAM96B physically interacts with prelamin A. -- Abstract: Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging

  7. Identification of FAM96B as a novel prelamin A binding partner

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xing-Dong; Wang, Junwen; Zheng, Huiling; Jing, Xia; Liu, Zhenjie [Institute of Aging Research, Guangdong Medical College, Dongguan 523808 (China); Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808 (China); Zhou, Zhongjun [Institute of Aging Research, Guangdong Medical College, Dongguan 523808 (China); Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Liu, Xinguang, E-mail: xgliu64@126.com [Institute of Aging Research, Guangdong Medical College, Dongguan 523808 (China); Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808 (China)

    2013-10-11

    Highlights: •We screen the binding protein of prelamin A by yeast two-hybrid screen. •FAM96B colocalizes with prelamin A in HEK-293 cells. •FAM96B physically interacts with prelamin A. -- Abstract: Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging.

  8. [Expression, crystallization and crystallographic study of the 1st IgV domain of human CD96].

    Science.gov (United States)

    Jiang, Wenjing; Zhang, Shuijun; Yan, Jinghua; Guo, Ning

    2013-05-01

    CD96 (Tactile) is an adhesion receptor expressed mainly on activated T cells, NK cells. As a family member of the immunoglobulin-like cell receptor, CD96 consists of three immunoglobulin-like domains (V1, V2/C and C) in the extracellular region. Recent studies have shown that the 1st IgV domain of CD96 (CD96V1) plays an essential role in cell adhesion and NK cell-mediated killing. In this study, the 1st IgV domain of human CD96 (hCD96V1) was cloned and expressed in Escherichia coli (BL21). The soluble protein was obtained by refolding of the hCD96V1 inclusion bodies. From analytical ultracentrifugation, we could predict that CD96 V1 maily exists as dimer with approximate molecular weight of 26.9 kDa. The protein was then successfully crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.9 angstrom resolution and belonged to space group P21, with unit-cell parameters a = 35.1, b = 69.5, c = 49.6A, alpha=gamma=90 degrees, beta=105.4 degrees.

  9. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  10. Search for two-neutrino double-β decay of 96Zr to excited states of 96Mo

    Science.gov (United States)

    Finch, S. W.; Tornow, W.

    2015-10-01

    Background: Double-β decay is a rare second-order nuclear decay. The importance of this decay stems from the possibility of neutrinoless double-β decay and its applications to neutrino physics. Purpose: A search was conducted for the 2 ν β β decay of 96Zr to excited final states of the daughter nucleus, 96Mo. Measurements of this decay are important to test nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-β decay half-life. Method: Two coaxial high-purity germanium detectors were used in coincidence to detect γ rays produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 d of data with a 17.91 g enriched sample. Results: No counts were seen above background. For the decay to the first excited 0+ state, a limit of T1 /2>3.1 ×1020 yr was produced. Limits to higher excited states are also reported. Conclusion: The new limits on double-β decay are an improvement over previous experiments by a factor of 2 to 5 for the various excited states. The nuclear matrix element for the double-β decay to the first excited 0+ state is found to be <0.13 .

  11. Relationship between circulating serum osteoprotegerin and total receptor activator of nuclear κ-B ligand levels, triglycerides, and coronary calcification in postmenopausal women.

    Science.gov (United States)

    Poornima, Indu G; Mackey, Rachel H; Buhari, Alhaji M; Cauley, Jane A; Matthews, Karen A; Kuller, Lewis H

    2014-07-01

    This study evaluates the relationship of blood osteoprotegerin (OPG) and receptor activator of nuclear κ-B ligand (RANKL) levels with coronary artery calcium (CAC) and cardiovascular risk factors in two studies of postmenopausal women. OPG, a marker of bone turnover, and its ligand, RANKL, may contribute to cardiovascular disease risk. We tested the hypothesis that serum OPG and RANKL levels were associated with CAC and cardiovascular disease risk factors among postmenopausal women in the Women On the Move through Activity and Nutrition Study (WOMAN Study; n = 86; mean [SD], age 58 [2.9] y) and replicated our findings in the Healthy Women Study (HWS; n = 205; mean [SD] age, 61 [2.3] y). Serum OPG, total RANKL, and CAC were measured at baseline and 48 months in the WOMAN Study and on the eighth postmenopausal visit in the HWS. In the WOMAN Study, higher OPG was associated with higher CAC, and higher total RANKL was associated with lower CAC and triglycerides. In the HWS, higher total RANKL was also associated with lower CAC and triglycerides. In logistic regression models adjusted for body mass index and triglycerides, the odds ratios (95% CIs) for CAC per unit increase in OPG were 1.78 (1.17-2.73) for the WOMAN Study and 1.02 (0.84-1.24) for the HWS, and the odds ratios (95% CIs) for CAC per unit increase in log total RANKL were 0.86 (0.64-1.17) for the WOMAN Study and 0.83 (0.72-0.96) for the HWS. The inverse association of total RANKL with CAC and triglycerides is a new finding and may have important implications given the increasing use of drugs that modify total RANKL and its receptor, receptor activator of nuclear κ-B.

  12. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    Science.gov (United States)

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    International Nuclear Information System (INIS)

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J.

    2006-01-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner

  14. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  15. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    Science.gov (United States)

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  16. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    Science.gov (United States)

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  17. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  18. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  19. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    International Nuclear Information System (INIS)

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-01-01

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7 39-98 localized mostly to the nucleus. The GST-11E7 and GST-11cE7 39-98 were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  20. Backbending in the N = 96 isotones

    International Nuclear Information System (INIS)

    Michel, C.; Vervier, J.

    1981-01-01

    The backbending in the even-even, N = 96 isotones can be quantitatively accounted for by the rotation-alignment of the spins of neutrons in i 13/2 orbits, as shown by comparing the aligned angular momentum and relative Routhian for the s-bands in these isotones and for the i 13/2 bands in the corresponding isotopes with N = 97. The influence of protons on this backbending situation is shown to be indirect, acting through a change of the nuclear deformation, which yields a change of the moment of inertia of the g.s. band and of the non-rigid character of the rotation. The experimental data on the N = 96 and 97 isotones are in reasonable agreement with cranking model calculations. Possible reasons for the inhibition of backbending in the h 9/2 proton bands in the odd-Z, N = 96 isotones, all related to a change of deformation, are presented. (orig.)

  1. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  2. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    International Nuclear Information System (INIS)

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  3. A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network

    Directory of Open Access Journals (Sweden)

    De Graaf David

    2007-07-01

    Full Text Available Abstract Background The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. Results Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. Conclusion We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.

  4. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  5. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Science.gov (United States)

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  6. Nuclear receptor 4A (NR4A) family - orphans no more.

    Science.gov (United States)

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  8. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Science.gov (United States)

    Van Gilst, Marc R; Hadjivassiliou, Haralambos; Jolly, Amber; Yamamoto, Keith R

    2005-02-01

    Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  9. Heat shock protein-peptide complex-96 (Vitespen for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Robert J. Amato

    2011-12-01

    Full Text Available Heat shock proteins (HSPs are the most abundant and ubiquitous soluble intracellular proteins. Members of the HSP family bind peptides, they include antigenic peptides generated within cells. HSPs also interact with antigen-presenting cells (APCs through CD91 and other receptors, eliciting a cascade of events that includes re-presentation of HSP-chaperoned peptides by major histocompatability complex (MHC, translocation of nuclear factorkappaB (NFkB into the nuclei, and maturation of dendritic cells (DCs. These consequences point to a key role of heat shock proteins in fundamental immunological phenomena such as activation of APCs, indirect presentation (or crosspriming of antigenic peptides, and chaperoning of peptides during antigen presentation. The properties of HSPs also allow them to be used for immunotherapy of cancers and infections in novel ways. This paper reviews the development and clinical trial progress of vitespen, an HSP peptide complex vaccine based on tumor-derived glycoprotein 96.

  10. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  11. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  12. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus

    Directory of Open Access Journals (Sweden)

    William S. Baldwin

    2017-06-01

    Full Text Available The nuclear receptors (NRs are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B, Rev-erb (NR1D, ROR (NR1F, COUPTF (NR2F, ERR (NR3B, RXR (NR2B, and to a lesser extent the NGF (NR4A, and NR3C steroid receptors (GR/AR. Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.

  13. Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.

    Science.gov (United States)

    Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav

    2017-11-09

    PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.

  14. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors.

    Science.gov (United States)

    Wang, Luqiao; Nanayakkara, Gayani; Yang, Qian; Tan, Hongmei; Drummer, Charles; Sun, Yu; Shao, Ying; Fu, Hangfei; Cueto, Ramon; Shan, Huimin; Bottiglieri, Teodoro; Li, Ya-Feng; Johnson, Candice; Yang, William Y; Yang, Fan; Xu, Yanjie; Xi, Hang; Liu, Weiqing; Yu, Jun; Choi, Eric T; Cheng, Xiaoshu; Wang, Hong; Yang, Xiaofeng

    2017-10-24

    Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.

  15. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  16. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    Science.gov (United States)

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  17. Nuclear Receptor TLX in Development and Diseases.

    Science.gov (United States)

    Sun, Guoqiang; Cui, Qi; Shi, Yanhong

    2017-01-01

    The nuclear receptor TLX (NR2E1) is a transcription factor that is critical for neural development and adult neurogenesis through its actions in regulating neural stem cell proliferation, self-renewal, and fate determination. These roles are primarily executed by regulating TLX downstream target genes involved in myriad pathways such as cell cycle progression, RNA processing, angiogenesis, and senescence. Recent studies suggest that dysregulation of TLX pathways plays an important role in the pathogenesis of human neurological disorders and brain tumors. Here, we will highlight recent progress in the roles of TLX in brain development and adult neurogenesis, and the relevance of TLX to neurological diseases and brain tumors. We will also discuss the potential of TLX as a therapeutic target for these disorders. © 2017 Elsevier Inc. All rights reserved.

  18. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    Science.gov (United States)

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  20. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  1. MTA family of coregulators in nuclear receptor biology and pathology

    Science.gov (United States)

    Manavathi, Bramanandam; Singh, Kamini; Kumar, Rakesh

    2007-01-01

    Nuclear receptors (NRs) rely on coregulators (coactivators and corepressors) to modulate the transcription of target genes. By interacting with nucleosome remodeling complexes, NR coactivators potentiate transcription, whereas corepressors inhibit transcription of the target genes. Metastasis-associated proteins (MTA) represent an emerging family of novel NR coregulators. In general, MTA family members form independent nucleosome remodeling and deacetylation (NuRD) complexes and repress the transcription of different genes by recruiting histone deacetylases onto their target genes. However, MTA1 also acts as a coactivator in a promoter-context dependent manner. Recent findings that repression of estrogen receptor transactivation functions by MTA1, MTA1s, and MTA2 and regulation of MTA3 by estrogen signaling have indicated the significance of these proteins in NR signaling. Here, we highlight the action of MTA proteins on NR signaling and their roles in pathophysiological conditions. PMID:18174918

  2. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Catarina, E-mail: catarinarcruzeiro@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Lopes-Marques, Mónica, E-mail: monicaslm@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Ruivo, Raquel, E-mail: ruivo.raquel@gmail.com [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rodrigues-Oliveira, Nádia, E-mail: nadia.oliveira@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Santos, Miguel M., E-mail: santos@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal); Rocha, Maria João, E-mail: mjsrocha@netcabo.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rocha, Eduardo, E-mail: erocha@icbas.up.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Castro, L. Filipe C., E-mail: filipe.castro@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal)

    2016-05-15

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  3. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    International Nuclear Information System (INIS)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M.; Rocha, Maria João; Rocha, Eduardo; Castro, L. Filipe C.

    2016-01-01

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  4. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.

    Science.gov (United States)

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2006-05-15

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.

  5. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  6. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  7. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  8. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    Science.gov (United States)

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.

  9. Shutdown decay heat removal analysis: Plant case studies and special issues: Summary report

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Cramond, W.R.; Sanders, G.A.; Hatch, S.W.

    1989-04-01

    Shutdown Decay Heat Removal Requirements has been designated as Unresolved Safety Issue (USI) A-45. The overall objectives of the USI A-45 program were to evaluate the safety adequacy of decay heat removal (DHR) systems in existing light water reactor nuclear power plants and to assess the value and impact (benefit-cost) of alternative measures for improving the overall reliability of the DHR function. To provide the technical data required to meet these objectives a program was developed that examined the state of DHR system reliability in a sample of existing plants. This program identified potential vulnerabilities and identified and established the feasibility of potential measures to improve the reliability of the DHR function. A value/impact (V/I) analysis of the more promising of such measures was conducted and documented. This report summarizes those studies. In addition, because of the evolving nature of V/I analyses in support of regulation, a number of supporting studies related to appropriate procedures and measures for the V/I analyses were also conducted. These studies are also summarized herein. This report only summarizes findings of technical studies performed by Sandia National Laboratories as part of the program to resolve this issue. 46 refs., 7 figs., 124 tabs

  10. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism

    International Nuclear Information System (INIS)

    Mansure, Jose Joao; Furtado, Daniel Rodrigues; Bastos de Oliveira, Francisco Meirelles; Rumjanek, Franklin David; Franco, Gloria Regina; Fantappie, Marcelo Rosado

    2005-01-01

    The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions

  11. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    Science.gov (United States)

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  12. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    Science.gov (United States)

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  13. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    OpenAIRE

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations...

  14. Nuclear receptors and metabolism: from feast to famine.

    Science.gov (United States)

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.

  15. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  16. The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1

    International Nuclear Information System (INIS)

    Bertin, Benjamin; Caby, Stephanie; Oger, Frederik; Sasorith, Souphatta; Wurtz, Jean-Marie; Pierce, Raymond J.

    2005-01-01

    In an attempt to understand development and differentiation processes of the parasitic blood fluke Schistosoma mansoni, several members of the nuclear receptor superfamily were cloned, including SmFtz-F1 (S. mansoni Fushi Tarazu-factor 1). The Ftz-F1 nuclear receptor subfamily only contains orphan receptors that bind to their response element as monomers. Whereas SmFtz-F1 displays these basic functional properties, we have identified an original and specific interaction between SmFtz-F1 and the schistosome RXR homologue, SmRXR1. The mammalian two-hybrid assay showed that the D, E, and F domains of SmFtz-F1 were capable of interacting specifically with the E domain of SmRXR1 but not with that of mouse RXRα. Using three-dimensional LBD homology modelling and structure-guided mutagenesis, we were able to demonstrate the essential role of exposed residues located in the dimerization interfaces of both receptors in the maintenance of the interaction. Cotransfection experiments with constructions encoding full-length nuclear receptors show that SmRXR1 potentiates the transcriptional activity of SmFtz-F1 from various promoters. Nevertheless, the lack of identification of a dimeric response element for this SmFtz-F1/SmRXR1 heterodimer seems to indicate a 'tethering' mechanism. Thus, our results suggest for the first time that a member of the Ftz-F1 family could heterodimerize functionally with a homologue of the universal heterodimerization partner of nuclear receptors. This unique property confirms that SmFtz-F1 may be involved in the development and differentiation of schistosome-specific structures

  17. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  18. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  19. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  20. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    Science.gov (United States)

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  2. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  3. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    International Nuclear Information System (INIS)

    Song, Kwang-Hoon

    2010-01-01

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  4. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  5. The Nuclear Receptor, Nor-1, Markedly Increases Type II Oxidative Muscle Fibers and Resistance to Fatigue

    OpenAIRE

    Pearen, Michael A.; Eriksson, Natalie A.; Fitzsimmons, Rebecca L.; Goode, Joel M.; Martel, Nick; Andrikopoulos, Sofianos; Muscat, George E. O.

    2012-01-01

    Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal...

  6. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism.

    Science.gov (United States)

    Rollins, David A; Coppo, Maddalena; Rogatsky, Inez

    2015-04-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.

  7. Induction of the nuclear IκB protein IκB-ζ upon stimulation of B cell antigen receptor

    International Nuclear Information System (INIS)

    Hijioka, Kuniaki; Matsuo, Susumu; Eto-Kimura, Akiko; Takeshige, Koichiro; Muta, Tatsushi

    2007-01-01

    The nuclear IκB protein IκB-ζ is barely detectable in resting cells and is induced in macrophages and fibroblasts following stimulation of innate immunity via Toll-like receptors. The induced IκB-ζ associates with nuclear factor (NF)-κB in the nucleus and plays crucial roles in its transcriptional regulation. Here, we examined the induction of IκB-ζ in B lymphocytes, one of the major players in adaptive immunity. Upon crosslinking of the surface immunoglobulin complex, IκB-ζ mRNA was robustly induced in murine B-lymphoma cell line A20 cells. While the crosslinking activated NF-κB and induced its target gene, IκB-α, co-crosslinking of Fcγ receptor IIB to the surface immunoglobulin complex inhibited NF-κB activation and the induction of IκB-ζ and IκB-α, suggesting critical roles for NF-κB in the induction. These results indicate that IκB-ζ is also induced by stimulation of B cell antigen receptor, suggesting that IκB-ζ is involved in the regulation of adaptive immune responses

  8. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  9. ARCON96, Radioactive Plume Concentration in Reactor Control Rooms

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Simonen, C.A.

    2003-01-01

    1 - Description of program or function: ARCON96 was developed to calculate relative concentrations in plumes from nuclear power plants at control room air intakes in the vicinity of the release point. 2 - Methods: ARCON96 implements a straight-line Gaussian dispersion model with dispersion coefficients that are modified to account for low wind meander and building wake effects. Hourly, normalized concentrations (X/Q) are calculated from hourly meteorological data. The hourly values are averaged to form X/Qs for periods ranging from 2 to 720 hours in duration. The calculated values for each period are used to form cumulative frequency distributions. 3 - Restriction on the complexity of the problem: ARCON96 is a single user program. If expanded output is selected by the user, the file includes the hourly input and X/Qs and the intermediate computational results. The output file may exceed a megabyte size

  10. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2015-08-01

    Full Text Available Fungal keratitis (FK is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α, retinoic acid receptor γ (RAR γ, and retinoid X receptor α (RXR α are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  11. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    Science.gov (United States)

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  12. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  13. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  14. Report of generation of the nuclear bank Presto-Warm (T=373 K) for the SVEA-96 fuel with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.

    1992-03-01

    In this work it is described in a general way the form in that was generated the Presto Warm database (TF=TM=373K) of the one SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico D.F. The formed bank is denominated L1PG9109. All this was carried out following the 6F3/I/CN029/90/P1 procedure. The generated database contains information of the 10 nuclear parameters required in Presto without and with the effect of the control bar for the different arrangements of fuel bars present in the one assemble. All this included in what is known as Super option of the bank for Presto. (Author)

  15. Report of generation of the nuclear bank Presto-Warm (T=560 K) for the SVEA-96 fuel with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.

    1992-03-01

    In this work it is described in a general way the form in that was generated the Presto Warm database (TF=TM=560K) of the one SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico D.F. The formed bank is denominated L1PG9109. All this was carried out following the 6F3/I/CN029/90/P1 procedure. The generated database contains information of the 10 nuclear parameters required in PRESTO without and with the effect of the control bar for the different arrangements of fuel bars present in the one assemble. All this included in what is known as SUPER option of the bank for PRESTO. (Author)

  16. Report of generation of the nuclear bank Presto-Cold (T=293 K) for the SVEA-96 fuel with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.

    1992-03-01

    In this work it is described in a general way the form in that was generated the Presto Cold database (TF=TM=293 K) of the one SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico D.F. The formed bank is denominated L1PG9109. All this was carried out following the 6F3/I/CN029/90/P1 procedure. The generated database contains information of the 10 nuclear parameters required in PRESTO without and with the effect of the control bar for the different arrangements of fuel bars present in the one assemble. All this included in what is known as SUPER option of the bank for PRESTO. (Author)

  17. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Science.gov (United States)

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  18. Expression and Functional Pathway Analysis of Nuclear Receptor NR2F2 in Ovarian Cancer

    Science.gov (United States)

    Hawkins, Shannon M.; Loomans, Holli A.; Wan, Ying-Wooi; Ghosh-Choudhury, Triparna; Coffey, Donna; Xiao, Weimin; Liu, Zhandong; Sangi-Haghpeykar, Haleh

    2013-01-01

    Context: Recent evidence implicates the orphan nuclear receptor, nuclear receptor subfamily 2, group F, member 2 (NR2F2; chicken ovalbumin upstream promoter-transcription factor II) as both a master regulator of angiogenesis and an oncogene in prostate and other human cancers. Objective: The objective of the study was to determine whether NR2F2 plays a role in ovarian cancer and dissect its potential mechanisms of action. Design, Setting, and Patients: We examined NR2F2 expression in healthy ovary and ovarian cancers using quantitative PCR and immunohistochemistry. NR2F2 expression was targeted in established ovarian cancer cell lines to assess the impact of dysregulated NR2F2 expression in the epithelial compartment of ovarian cancers. Results: Our results indicate that NR2F2 is robustly expressed in the stroma of healthy ovary with little or no expression in epithelia lining the ovarian surface, clefts, or crypts. This pattern of NR2F2 expression was markedly disrupted in ovarian cancers, in which decreased levels of stromal expression and ectopic epithelial expression were frequently observed. Ovarian cancers with the most disrupted patterns of NR2F2 were associated with significantly shorter disease-free interval by Kaplan-Meier analysis. Targeting NR2F2 expression in established ovarian cancer cell lines enhanced apoptosis and increased proliferation. In addition, we found that NR2F2 regulates the expression of NEK2, RAI14, and multiple other genes involved in the cell cycle, suggesting potential pathways by which dysregulated expression of NR2F2 impacts ovarian cancer. Conclusions: These results uncover novel roles for NR2F2 in ovarian cancer and point to a unique scenario in which a single nuclear receptor plays potentially distinct roles in the stromal and epithelial compartments of the same tissue. PMID:23690307

  19. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  20. Equivalent molecular mass of cytosolic and nuclear forms of Ah receptor from Hepa-1 cells determined by photoaffinity labeling with 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Prokipcak, R.D.; Okey, A.B.

    1990-01-01

    The structure of the Ah receptor previously has been extensively characterized by reversible binding of the high affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report the use of [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin as a photoaffinity ligand for Ah receptor from the mouse hepatoma cell line Hepa-1c1c9. Both cytosolic and nuclear forms of Ah receptor could be specifically photoaffinity-labeled, which allowed determination of molecular mass for the two forms under denaturing conditions. After analysis by fluorography of polyacrylamide gels run in the presence of sodium dodecyl sulfate, molecular mass for the cytosolic form of Ah receptor was estimated at 92,000 +/- 4,300 and that for the nuclear form was estimated at 93,500 +/- 3,400. Receptor in mixture of cytosol and nuclear extract (each labeled separately with [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin) migrated as a single band. These results are consistent with the presence of a common ligand-binding subunit of identical molecular mass in both cytosolic and nuclear complexes

  1. A unique nuclear receptor direct repeat 17 (DR17) is present within the upstream region of Schistosoma mansoni female-specific p14 gene

    International Nuclear Information System (INIS)

    Fantappie, Marcelo Rosado; Furtado, Daniel Rodrigues; Rumjanek, Franklin David; LoVerde, Philip T.

    2008-01-01

    The eggs produced by sexually mature female Schistosma mansoni are responsible for the pathogenesis of the disease. The eggshell precursor gene p14 is expressed only in the vitelline cells of sexually mature female worms in response to a yet unidentified male stimulus. Herein, we report the identification of a novel nuclear receptor response element in the upstream region of the p14 gene. This element contains the canonical hexameric DNA core motif, 5'-PuGGTCA, composed of an atypically spaced direct repeat (DR17). Schistosome nuclear receptors SmRXR1 and SmNR1 specifically bound to the p14-DR17 element as a heterodimer. SmRXR1, but not SmNR1, bound to the motif as a monomer. Introduction of mutations in the TCA core sequence completely abolished the binding by SmRXR1/SmNR1 heterodimer. This finding supports our hypothesis that the expression of Schistosoma mansonip14 gene is regulated through the nuclear receptor signaling pathway

  2. Analysis of loss of decay heat removal sequences at Browns Ferry Unit One: Chapter 17

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report ''Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis'' (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA), using Unit One of the Browns Ferry Nuclear Plant as the model design. Each unit of this three-unit plant has a maximum authorized power of 3293 MW(t) or 1067 net MW(e). The primary containments are of the Mark I pressure suppression pool type and the three units share a secondary containment of the controlled leakage, elevated release design. Each unit occupies a separate reactor building located in one structure underneath the common refueling floor

  3. Nuclear exportin receptor CAS regulates the NPI-1-mediated nuclear import of HIV-1 Vpr.

    Directory of Open Access Journals (Sweden)

    Eri Takeda

    Full Text Available Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74 contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74 to the nuclear envelope and then imported into the nucleus by importin α (Impα alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM region (which is also essential for the binding of CAS, the export receptor for Impα in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.

  4. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75

    OpenAIRE

    Cáceres, Lucía; Necakov, Aleksandar S.; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J.H.; Krause, Henry M.

    2011-01-01

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer part...

  5. Action mechanisms of Liver X Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Gabbi, Chiara; Warner, Margaret [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Department of Biosciences and Nutrition, Karolinska Institutet, Novum S-141 86 (Sweden)

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  6. Action mechanisms of Liver X Receptors

    International Nuclear Information System (INIS)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-01-01

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors

  7. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  9. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Science.gov (United States)

    Tiefenbach, Jens; Moll, Pamela R; Nelson, Meryl R; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M

    2010-03-22

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  10. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Directory of Open Access Journals (Sweden)

    Jens Tiefenbach

    2010-03-01

    Full Text Available Nuclear receptors (NRs belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio. The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1 respond as expected to endogenous zebrafish hormones and cofactors, 2 facilitate efficient receptor and cofactor purification, 3 respond robustly to NR hormones and drugs and 4 yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  11. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  12. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  13. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    Science.gov (United States)

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-05

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  15. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Directory of Open Access Journals (Sweden)

    Brown M Scott

    2010-12-01

    Full Text Available Abstract Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1 mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1, another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield

  16. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Science.gov (United States)

    2010-01-01

    Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield additional insight into the

  17. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Šilhánková, Marie; Jindra, Marek; Asahina, Masako

    2005-01-01

    Roč. 118, č. 1 (2005), s. 223-232 ISSN 0021-9533 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : Caenorhabditis elegans * nuclear receptor * epidermal stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.543, year: 2005

  18. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  19. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  1. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases

    OpenAIRE

    Wang, Tao; Xiong, Jian-Qiong

    2016-01-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated...

  2. Lessons learned from public debates about nuclear energy in Slovenia during 1995/96

    International Nuclear Information System (INIS)

    Stritar, A.

    1996-01-01

    Between October 1995 and may 1996 we experienced a very strong anti-nuclear campaign in Slovenia. A brief history of events is described in this paper. It is showed once again that the future of nuclear energy is strongly dependent on its public acceptance. On the other hand, public is very much influenced by the media, which have been especially effectively used by nuclear opponents in the past. Nuclear professionals, who believe that nuclear energy is beneficial for our society, have to get more organized in approaching the public and creating the positive image about the nuclear industry. The proper public information strategy must be prepared and implemented. (author)

  3. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  4. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Science.gov (United States)

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  5. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    Science.gov (United States)

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  6. Dansk Hjerteregister--en klinisk database

    DEFF Research Database (Denmark)

    Abildstrøm, Steen Zabell; Kruse, Marie; Rasmussen, Søren

    2008-01-01

    INTRODUCTION: The Danish Heart Registry (DHR) keeps track of all coronary angiographies (CATH), percutaneous coronary interventions (PCI), coronary artery bypass grafting (CABG), and adult heart valve surgery performed in Denmark. DHR is a clinical database established in order to follow the acti......INTRODUCTION: The Danish Heart Registry (DHR) keeps track of all coronary angiographies (CATH), percutaneous coronary interventions (PCI), coronary artery bypass grafting (CABG), and adult heart valve surgery performed in Denmark. DHR is a clinical database established in order to follow...

  7. The Collection of Event Data and its Relevance to the Optimisation of Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Roughley, R.; Jones, N.

    1975-01-01

    The precision with which the reliability of DHR (Decay Heat Rejection) systems for nuclear reactors can be predicted depends not only upon model representation but also on the accuracy of the data used. In the preliminary design stages when models are being used to arrive at major engineering decisions in relation to plant configuration, the best the designer can do is use the data available at the time. With the present state of the art it is acknowledged that some degree of judgement will have to be exercised particularly for plant involving sodium technology where a large amount of operational experience has not yet been generated. This paper reviews the current efforts being deployed in the acquisition of field data relevant to DHR systems so that improvements in reliability predictions may be realised

  8. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth.

    Science.gov (United States)

    Xue, Kai; Liu, Jia-yin; Murphy, Bruce D; Tsang, Benjamin K

    2012-12-01

    Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.

  9. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells.

    Science.gov (United States)

    Matulis, Christina K; Mayo, Kelly E

    2012-08-01

    Nuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators. The LIM domain protein four and a half LIM domain 2 (FHL2) was identified as interacting with the NR5A receptors in a yeast two-hybrid screen of a human ovary cDNA library. FHL2, and the closely related FHL1, are both expressed in the rodent ovary and in granulosa cells. Small interfering RNA-mediated knockdown of FHL1 and FHL2 in primary mouse granulosa cells reduced expression of the NR5A target genes encoding inhibin-α and P450scc. In vitro assays confirmed the interaction between the FHL and NR5A proteins and revealed that a single LIM domain of FHL2 is sufficient for this interaction, whereas determinants in both the ligand binding domain and DNA binding domain of NR5A proteins are important. FHL2 enhances the ability of both liver receptor homolog 1 and steroidogenic factor 1 to activate the inhibin-α subunit gene promoter in granulosa cells and thus functions as a transcriptional coactivator. FHL2 also interacts with cAMP response element-binding protein and substantially augments activation of inhibin gene expression by the combination of NR5A receptors and forskolin, suggesting that FHL2 may facilitate integration of these two signals. Collectively these results identify FHL2 as a novel coactivator of NR5A nuclear receptors in ovarian granulosa cells and suggest its involvement in regulating target genes important for mammalian reproduction.

  10. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    Science.gov (United States)

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  11. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  12. The Danish heart register

    DEFF Research Database (Denmark)

    Abildstrøm, Steen Z; Madsen, Mette

    2011-01-01

    Introduction: The Danish Heart Register (DHR) is a clinical database of invasive procedures within cardiology. Content: All providers of these procedures have been obliged to report to DHR since 2000. DHR is used to monitor the activity and quality of the procedures and serves as a data source...

  13. Annual meeting on nuclear technology '96. Technical session: Energy costs

    International Nuclear Information System (INIS)

    1996-08-01

    The two papers of this session deal with the costs of two different energy generation systems, one is based on photovoltaic energy conversion, and the other is the nuclear fuel cycle and nuclear energy generation. The author shows that the costs of these two energy systems in Germany are much more governed by decisions taken in the political domain than is the case in other countries. Although German science and technology in these two engineering fields hold a top rank worldwide, the high costs that seem inevitable in Germany are expected to be a major reason why the photovoltaic industry will have to leave the country and go abroad to exploit the better chances there. (DG) [de

  14. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  15. The effects of a multi-ingredient supplement on markers of muscle damage and inflammation following downhill running in females.

    Science.gov (United States)

    Köhne, Jessica L; Ormsbee, Michael J; McKune, Andrew J

    2016-01-01

    The effects of a multi-ingredient performance supplement (MIPS) on markers of inflammation and muscle damage, perceived soreness and lower limb performance are unknown in endurance-trained female athletes. The purpose of this study was to determine the impact of MIPS (NO-Shotgun®) pre-loaded 4 weeks prior to a single-bout of downhill running (DHR) on hsC-Reactive Protein (hsCRP), interleukin (IL)-6, creatine kinase (CK), muscle soreness, lower limb circumferences and performance. Trained female runners ( n  = 8; 29 ± 5.9 years) (VO 2max : ≥ 50 ml -1 .kg -1 .min -1 , midfollicular phase (7-11 days post-menses) were randomly assigned in a double-blind manner into two groups: MIPS ( n  = 4) ingested one serving of NO Shotgun daily for 28 days prior to DHR and 30 min prior to all post-testing visits; Control (CON) ( n  = 4) consumed an isocaloric maltodextrin placebo in an identical manner to MIPS. hsCRP, IL-6, CK, perceived soreness, limb circumferences, and performance measures (flexibility, squat jump peak power) were tested on 5 occasions; immediately before (PRE), immediately post-DHR, 24, 48 and 72 h post-DHR. There were main effects of time for CK ( p  = 0.05), pain pressure threshold (right tibialis anterior ( p  = 0.010), right biceps femoris ( p  = 0.01), and left iliotibial band (ITB) ( p  = 0.05) across all time points), and maximum squat jump power ( p  = 0.04). Compared with 24 h post-DHR, maximum squat jump power was significantly lower at 48 h post-DHR ( p  = 0.05). Lower body perceived soreness was significantly increased at 24 h ( p  = 0.02) and baseline to 48 h ( p  = 0.02) post DHR. IL-6 peaked immediately post-DHR ( p  = 0.03) and hsCRP peaked at 24 h post-DHR ( p  = 0.06). Calculation of effect sizes indicated a moderate attenuation of hsCRP in MIPS at 72 h post-DHR. Consumption of MIPS for 4 weeks prior to a single bout of DHR attenuated inflammation three days post, but did

  16. A Review About Lycopene-Induced Nuclear Hormone Receptor Signalling in Inflammation and Lipid Metabolism via still Unknown Endogenous Apo-10´-Lycopenoids.

    Science.gov (United States)

    Caris-Veyrat, Catherine; Garcia, Ada L; Reynaud, Eric; Lucas, Renata; Aydemir, Gamze; Rühl, Ralph

    2017-10-20

    Lycopene is the red pigment in tomatoes and tomato products and is an important dietary carotenoid found in the human organism. Lycopene-isomers, oxidative lycopene metabolites and apo-lycopenoids are found in the food matrix. Lycopene intake derived from tomato consumption is associated with alteration of lipid metabolism and a lower incidence of cardiovascular diseases (CVD). Lycopene is mainly described as a potent antioxidant but novel studies are shifting towards its metabolites and their capacity to mediate nuclear receptor signalling. Di-/tetra-hydro-derivatives of apo-10´-lycopenoic acid and apo-15´-lycopenoic acids are potential novel endogenous mammalian lycopene metabolites which may act as ligands for nuclear hormone mediated activation and signalling. In this review, we postulate that complex lycopene metabolism results in various lycopene metabolites which have the ability to mediate transactivation of various nuclear hormone receptors like RARs, RXRs and PPARs. A new mechanistic explanation of how tomato consumption could positively modulate inflammation and lipid metabolism is discussed.

  17. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  18. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?

    Science.gov (United States)

    Hinds, Terry D; Adeosun, Samuel O; Alamodi, Abdulhadi A; Stec, David E

    2016-10-01

    Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Resolution 62/96 Regulation for the accounting and control of the nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    The present Regulation is a complementary disposition of the ordinance number 208 of May 24 National System of Accounting and Control of Nuclear Materials and it has as objective to establish the relative norms to this System. As for the responsibilities it establish that the National Center of Nuclear Security (CNSN) it is the responsible for the execution from the relative tasks to the National System of Accounting and Control of Nuclear Materials. It establishes the regulations for the following aspects: licenses and authorizations for the transportation of the nuclear material and important components, Of the ceasing of the Accounting and Control, Of the Accounting and Control of the Nuclear Materials, Control of the Important Components, The Inspections, International Organism of the Atomic Energy Safeguards

  20. CREME96: A revision of the Cosmic Ray Effects on Micro-Electronics code

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.

    1997-01-01

    CREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle (flare) components of the near-Earth environment; (2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved single-event upset (SEU) calculation techniques, for both proton-induced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper the authors document some of these improvements

  1. Regulation of behaviour by the nuclear receptor TLX.

    Science.gov (United States)

    O'Leary, J D; O'Leary, O F; Cryan, J F; Nolan, Y M

    2018-03-01

    The orphan nuclear receptor Tlx (Nr2e1) is a key regulator of both embryonic and adult hippocampal neurogenesis. Several different mouse models have been developed which target Tlx in vivo including spontaneous deletion models (from birth) and targeted and conditional knockouts. Although some conflicting findings have been reported, for the most part studies have demonstrated that Tlx is important in regulating processes that underlie neurogenesis, spatial learning, anxiety-like behaviour and interestingly, aggression. More recent data have demonstrated that disrupting Tlx during early life induces hyperactivity and that Tlx plays a role in emotional regulation. Moreover, there are sex- and age-related differences in some behaviours in Tlx knockout mice during adolescence and adulthood. Here, we discuss the role of Tlx in motor-, cognitive-, aggressive- and anxiety-related behaviours during adolescence and adulthood. We examine current evidence which provides insight into Tlx during neurodevelopment, and offer our thoughts on the function of Tlx in brain and behaviour. We further hypothesize that Tlx is a key target in understanding the emergence of neurobiological disorders during adolescence and early adulthood. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  3. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action.

    Directory of Open Access Journals (Sweden)

    Alison M Anderson

    Full Text Available BACKGROUND: Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS: The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE: This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.

  4. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-01

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92 LxxLL 96 motif is essential and necessary for these activities of BTG2, while the 20 LxxLL 24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ( 20 LxxLL 24 and 92 LxxLL 96 ), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20 LxxLL 24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92 LxxLL 96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92 LxxLL 96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  5. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xu-Dong [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Meng, Qing-Hui [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Xu, Jia-Ying; Jiao, Yang [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Ge, Chun-Min [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Jacob, Asha; Wang, Ping [North Shore University Hospital-Long Island Jewish Medical Center and The Feinstein Institute for Medical Research, Manhasset, NY 11030 (United States); Rosen, Eliot M [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Fan, Saijun, E-mail: sjfan@suda.edu.cn [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China)

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  6. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Compagnucci, Claudia; Barresi, Sabina [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Petrini, Stefania [Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Zanni, Ginevra, E-mail: ginevra.zanni@opbg.net [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy)

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  7. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    Science.gov (United States)

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  8. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  9. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  10. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Insulin-like growth factor-1 receptor (IGF-1R comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD. When activated by IGF-1 or GD-derived IgG (GD-IgG, these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125I IGF-1, (125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.

  11. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    Science.gov (United States)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  12. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  13. Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy

    DEFF Research Database (Denmark)

    Rudolf, Gabrielle; Lesca, Gaetan; Mehrjouy, Mana M

    2016-01-01

    nuclear receptor (RORβ), in four affected family members. In addition, two de novo variants (c.218T>C/p.(Leu73Pro); c.1249_1251delACG/p.(Thr417del)) were identified in sporadic patients by trio-based exome sequencing. We also found two de novo deletions in patients with behavioral and cognitive impairment...... in various types of epilepsies in the past few years. In the present study, we performed whole-exome sequencing in a family with GGE consistent with the diagnosis of eyelid myoclonia with absences. We found a nonsense variant (c.196C>T/p.(Arg66*)) in RORB, which encodes the beta retinoid-related orphan...

  14. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Claudia A. Nold-Petry

    2017-12-01

    Full Text Available BackgroundThe expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation.MethodsWe employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid. We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture.ResultsIn the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40% and gp96-II peptide (35%. Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%, lipopolysaccharide-induced TNF (48%, IL-6 (81% and in Staphylococcus epidermidis-induced TNF (67% and IL-6 (81%, as well as IL-12/IL-18-induced IFNγ (75%. gp

  15. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  16. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Directory of Open Access Journals (Sweden)

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  17. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Science.gov (United States)

    Boulanger, Ana; Farge, Morgane; Ramanoudjame, Christophe; Wharton, Kristi; Dura, Jean-Maurice

    2012-01-01

    Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  18. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  19. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  20. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  1. Nuclear receptors of the NR4a family are not required for the development and function of follicular T helper cells.

    Science.gov (United States)

    Ma, Weiwei; Zhao, Ruozhu; Yang, Runqing; Liu, Bo; Chen, Xin; Wu, Longyan; Qi, Hai

    2015-10-01

    Follicular T helper (Tfh) cells promote germinal center (GC) reaction and high-affinity antibody production. The molecular mechanisms that regulate development and function of Tfh cells are not fully understood. Here we report that ligand-independent nuclear receptors of the Nr4a family are highly expressed in Tfh cells. In a well-established adoptive transfer model, enforced expression of Nr4a receptors reduces helper T cell expansion but apparently increased the T cell capacity to promote the GC response. On the other hand, deletion of all Nr4a receptors in T cells did not significantly affect expansion or differentiation of Tfh cells or the development of GC reaction. These findings suggest that Nr4a receptors may promote but are not necessary for Tfh development or function in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis.

    Science.gov (United States)

    Guillaume, Maeva; Montagner, Alexandra; Fontaine, Coralie; Lenfant, Françoise; Arnal, Jean-François; Gourdy, Pierre

    2017-01-01

    Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.

  3. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    Science.gov (United States)

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in the bone loss developed in this disease. PMID:23559954

  4. Computer program for Scatchard analysis of protein: Ligand interaction - use for determination of soluble and nuclear steroid receptor concentrations

    International Nuclear Information System (INIS)

    Leake, R.; Cowan, S.; Eason, R.

    1998-01-01

    Steroid receptor concentration may be determined routinely in biopsy samples of breast and endometrial cancer by the competition method. This method yields data for both the soluble and nuclear fractions of the tissue. The data are usually subject to Scatchard analysis. This Appendix describes a computer program written initially for a PDP-11. It has been modified for use with IBM, Apple Macintosh and BBC microcomputers. The nature of the correction for competition is described and examples of the printout are given. The program is flexible and its use for different receptors is explained. The program can be readily adapted to other assays in which Scatchard analysis is appropriate

  5. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  6. A 'Swinging Cradle' model for in vitro classification of different types of response elements of a nuclear receptor

    International Nuclear Information System (INIS)

    Malo, Madhu S.; Pushpakaran, Premraj; Hodin, Richard A.

    2005-01-01

    Nuclear receptors are hormone-activated transcription factors that bind to specific target sequences termed hormone-response element (HRE). A HRE usually consists of two half-sites (5'-AGGTCA-3' consensus sequence) arranged as a direct, everted or inverted repeat with variable spacer region. Assignment of a HRE as a direct, everted or inverted repeat is based on its homology to the consensus half-site, but minor variations can make such an assignment confusing. We hypothesize a 'Swinging Cradle' model for HRE classification, whereby the core HRE functions as the 'sitting platform' for the NR, and the extra nucleotides at either end act as the 'sling' of the Cradle. We show that in vitro binding of the thyroid hormone receptor and 9-cis retinoic acid receptor heterodimer to an everted repeat TRE follows the 'Swinging Cradle' model, whereas the other TREs do not. We also show that among these TREs, the everted repeat mediates the highest biological activity

  7. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    Martinovic-Weigelt, Dalma; Wang Ronglin; Villeneuve, Daniel L.; Bencic, David C.; Lazorchak, Jim; Ankley, Gerald T.

    2011-01-01

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  8. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  9. Immunohistochemical Expression of Vitamin-D Receptor in Oral and ...

    African Journals Online (AJOL)

    user

    Receptor in Oral and Skin Squamous Cell Carcinoma of a Black African Subpopulation. *Corresponding Author ... Objective:The nuclear vitamin D receptor (VDR) is involved in multiple pathways that have a role to .... Figure1: Sections A (++) and B (+++) of OSCC showing nuclear positivity (red arrows) for malignant nests of ...

  10. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  11. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  12. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  13. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    International Nuclear Information System (INIS)

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-01-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed

  14. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Amaya, Esperanza [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Grimaldi, Marina [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Sáenz, José-María; Real, Macarena; Fernández, Mariana F. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Balaguer, Patrick [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Olea, Nicolás [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain)

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  15. LEITTEC '96. Digitization of instrumentation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Bauer, K.G.

    1997-01-01

    The nuclear power plants in operation in Germany have been commissioned in the years from 1968 until 1988. Their control and safety systems likewise correspond to the electronic technology available then, as e.g. discrete semi-conductor technology. The high reliability of those systems contributed a major share to the excellent operating results achieved by German nuclear power plants. However, aging of existing systems as well as spare part availability and integration of older and more recent hardware generations now are posing specific problems. Intensive work has been devoted to the retrofitting of existing systems and integration of computer-assisted control systems as well as conversion to programmable systems in order to achieve a basis permitting economically justifiable operation, acceptable also from the angle of hardware and software inspection requirements, so that the German Atomforum thought that these activities and the underlying problems would make a suitable topic for a conference. There were about 150 experts attending the one-day meeting for intensive discussion and exchange of information. The proceedings volume contains 11 of the conference papers and provides an overview of the current status and expected developments in the field of digitization of instrumentation and control in nuclear power plants.(orig./CB) [de

  16. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    Science.gov (United States)

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-04-08

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  17. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Directory of Open Access Journals (Sweden)

    Shimura Takaya

    2012-05-01

    Full Text Available Abstract Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C, translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF and mutated HB-EGF (HB-EGF-mC, which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 % and in the cytoplasm only in 25 cases (26.0 %. The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P  Conclusions Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation might be crucial in gastric cancer invasion. HB-EGF-C nuclear translocation may offer a prognostic marker and a new molecular target for gastric cancer therapy.

  18. 40 CFR 96.73 - Notifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Notifications. 96.73 Section 96.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET... Reporting § 96.73 Notifications. The NOX authorized account representative for a NOX Budget unit shall...

  19. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis

    Science.gov (United States)

    Han, Sang Jun; O'Malley, Bert W.

    2014-01-01

    BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR

  20. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  1. 45 CFR 96.65 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 96.65 Section 96.65 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS Hearing Procedure § 96.65 Discovery. The use of interrogatories, depositions, and other forms of discovery shall not be allowed. ...

  2. 50 CFR 27.96 - Advertising.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Advertising. 27.96 Section 27.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.96 Advertising. Except as...

  3. 40 CFR 96.355 - Banking.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 96.355 Section 96.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET... Allowance Tracking System § 96.355 Banking. (a) CAIR NOX Ozone Season allowances may be banked for future...

  4. 40 CFR 96.55 - Banking.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 96.55 Section 96.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET... Tracking System § 96.55 Banking. (a) NOX allowances may be banked for future use or transfer in a...

  5. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  6. 40 CFR 96.255 - Banking.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 96.255 Section 96.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET... Tracking System § 96.255 Banking. (a) CAIR SO2 allowances may be banked for future use or transfer in a...

  7. 40 CFR 96.155 - Banking.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 96.155 Section 96.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET... Tracking System § 96.155 Banking. (a) CAIR NOX allowances may be banked for future use or transfer in a...

  8. Regulation of porcine skeletal muscle nuclear 3,5,3'-tri-iodothyronine receptor binding capacity by thyroid hormones: modification by energy balance.

    Science.gov (United States)

    Morovat, A; Dauncey, M J

    1995-02-01

    Thyroid hormones have been implicated in the regulation of nuclear 3,5,3'-tri-iodothyronine (T3) receptor binding capacity (Bmax) but, despite numerous in vivo and in vitro studies, there is considerable controversy regarding their exact role. Since changes in thyroid status alter energy balance and hence may influence T3 receptor numbers, the effects of chronic hypothyroidism and T4 treatment have been studied in young pigs under conditions of controlled energy intake. Four groups of animals comprising a hypothyroid, a euthyroid and a hyperthyroid group, all on the same level of food intake, and a hyperthyroid group on twice the amount of food were used. After 3 weeks on the treatment regimes, both the hypothyroid animals on the same level of food intake and the hyperthyroid animals on twice the amount of food had significantly increased Bmax values (97% and 137% higher respectively) compared with euthyroid controls. However, there was no difference between controls and the hyperthyroid animals on the same level of food intake. In a second study, the effects of short-term treatment of euthyroid animals with T3 was investigated. Results showed that in two groups of controls that received intravenous saline, those on a higher food intake had higher Bmax values (76% increase). Intravenous T3 administration to animals on a low food intake did not change the receptor numbers. In none of the studies was there any change in the dissociation constant of the receptors as a result of different treatments. It is suggested that, at least in postnatal life, thyroid hormones per se have no significant effect on nuclear T3 receptor numbers in skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  10. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide bel...

  11. 32 CFR 96.4 - Policy.

    Science.gov (United States)

    2010-07-01

    ... OF CRIMINAL HISTORY RECORD INFORMATION BY THE MILITARY SERVICES § 96.4 Policy. Section 503 of title... 32 National Defense 1 2010-07-01 2010-07-01 false Policy. 96.4 Section 96.4 National Defense... campaigns to obtain enlistments. It is the policy of the Department of Defense that the Military Services...

  12. TLX: An elusive receptor.

    Science.gov (United States)

    Benod, Cindy; Villagomez, Rosa; Webb, Paul

    2016-03-01

    TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  14. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  15. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Directory of Open Access Journals (Sweden)

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  16. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Science.gov (United States)

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  17. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  18. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  20. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  1. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  2. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  3. Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad

    Czech Academy of Sciences Publication Activity Database

    Asahina, Masako; Valenta, Tomáš; Šilhánková, M.; Kořínek, Vladimír; Jindra, Marek

    2006-01-01

    Roč. 11, č. 2 (2006), s. 203-211 ISSN 1534-5807 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508; CEZ:AV0Z50520514 Keywords : nuclear receptor * beta-catenin signaling * Caenorhabditis elegans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.523, year: 2006

  4. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells

    OpenAIRE

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively r...

  5. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  6. Plan 96 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents a calculation of the costs for implementing all measures needed to manage and dispose of spent nuclear fuel and radioactive wastes from the Swedish nuclear power reactors. The cost calculations include costs for R,D and D as well as for decommissioning and dismantling the reactor plants etc. The following facilities and systems are already in operation: Transportation system for radioactive waste products, Central interim storage facility for spent nuclear fuel, Final repository for radioactive operational wastes. Plans exist for: Encapsulation plant for spent nuclear fuel, Deep repository for spent fuel and other long-lived waste, Final repository for decommissioning waste. The total future costs, in Jan 1996 prices, for the Swedish waste system from 1997 have been calculated to be 42.2 billion SEK (about 6.4 billion USD). The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. It is estimated that 10.6 billion SEK in current money has been spent through 1996. Costs based on waste quantities from operation of the reactors for 40 years are also reported. 6 refs

  7. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  8. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  9. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  10. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads.

    Science.gov (United States)

    Martinović-Weigelt, Dalma; Wang, Rong-Lin; Villeneuve, Daniel L; Bencic, David C; Lazorchak, Jim; Ankley, Gerald T

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals. 2010 Elsevier B.V. All rights reserved.

  11. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  12. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    OpenAIRE

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2010-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with c...

  13. Report of the generation of the nuclear bank 'L1PG9121' of the SVEA-96 'collapsed' assemble for the FCS-II program with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.

    1992-01-01

    In this work it is described in a general way the form in that was generated the collapsed bank of the SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B codes of the FMS package installed in the VAX system of the office of the National Commission of Nuclear Safety and Safeguards in Mexico D.F. The formed bank is denominated 'LlPG9121'. All this one carries out following the procedure '6F3/I/CN029/90/P1'. To generate the bank, both RECORD 'cells' that compose the assemble its were 'collapsed' in an alone one, representing this, the complete assemble in what refers to the distribution of fuel bar and enrichment. The collapsed of the assemble was made averaging the content of UO 2 and Gd 2 O 3 in each fuel bar of the one assemble. By this way the x-y array of fuel bars is conserved but a representative fuel cell of all the one assemble is obtained, being this the studied RECORD cell. In accordance with the requirements of nuclear information of FCS-II, the nuclear information generated with RECORD only was of the defined type as series 1 in the generation procedure of nuclear banks '6F3/I/CN029/90/P1'. This only means that only was generated nuclear information as function of the fuel burnt and of the vacuum in the fuel cell. Although the nuclear bank (L1PG9121) it was generated in these circumstances, it was also generates information of the defined type as series 2 with the present control bar for possible reactor analysis under these conditions. (Author)

  14. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T. [Samsung Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2{alpha} of 5.2 min and late T1/2{beta} of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8{+-}0.5 ml/min, T1/2 of 4.1{+-}0.4 hr, and volume of distribution of 69.7{+-}4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors.

  15. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    International Nuclear Information System (INIS)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T.

    2005-01-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2α of 5.2 min and late T1/2β of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8±0.5 ml/min, T1/2 of 4.1±0.4 hr, and volume of distribution of 69.7±4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors

  16. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    Science.gov (United States)

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  17. Short-circuit tests of 1650 and 96 MVA transformers for 1300 MW french nuclear power plants

    International Nuclear Information System (INIS)

    Mailhot, M.

    1989-01-01

    Power evacuation and feeding of the auxiliaries directly from the 400 kV grid are sensitive points governing the security of 1300 MW PWR Nuclear Power Plants of the French Program. These two different functions are provided by two specific types of transformers. - Banks of 3 single-phase 550 MVA - 400 kV/20 kV transformers. - Three-phase 96 MVA - 400 kV / 3 x 6.8 kV transformers. These passive elements must have a never failing reliability and assure a continuous service in spite of electric, thermal and mechanical stresses that may occur during the lifetime of the power plant. Dielectric and thermal tests carried out in the manufacturers test floors insure these stresses withstand capabilities of transformers. In France, high short-circuit power for the 400 kV network added to often low impedance voltages for transformers impose on them very high stresses during short-circuits. Calculation and experimentation on scale or partial models are not sufficient to insure short-circuit currents withstand capabilities of transformers. The margin of uncertainty dependent on obligatory extrapolations for this kind of complex systems [steel, magnetic sheets, copper, oil, paper and transformerboard] can be reduced in a significant way only by real scale tests on prototypes. These tests that need both high power and voltage cannot be performed in manufacturers test floors. So, in France they are carried out at the EDF Les Renardieres Laboratory. Following paper deals with SHELL TYPE TRANSFORMERS which, particularly thanks to their interleaved rectangular windings display a great resistance to short-circuit stresses

  18. 21 CFR 1250.96 - Rodent control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  19. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  20. Orphan Nuclear Receptor Nur77 Is a Novel Negative Regulator of Endothelin-1 Expression In Vascular Endothelial Cells

    OpenAIRE

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-01-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activati...

  1. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus.

    Science.gov (United States)

    Kozareva, Danka A; Hueston, Cara M; Ó'Léime, Ciarán S; Crotty, Suzanne; Dockery, Peter; Cryan, John F; Nolan, Yvonne M

    2017-08-20

    The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases.

    Science.gov (United States)

    Wang, Tao; Xiong, Jian-Qiong

    2016-02-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.

  3. Theoretical physics department, june 96-may 98 status report

    International Nuclear Information System (INIS)

    1998-01-01

    This status report presents the work done at SPhT (service de physique theorique, CEA) from june 96 to may 98. The topics have been classified into 3 themes: - statistical physics, - mathematical physics and field theory, - astrophysics, nuclear and particle physics. In the first theme relevant contributions have been made to phase transitions, correlated electronic systems, polymers, membranes, proteins, disordered systems and out of equilibrium processes. The second theme collects various works, some works dedicated to aleatory matrices and quantum chaos aim at developing investigation methods, other works like cord theories use these methods. As for the third theme, the recent discovery of the fluctuations of background cosmological radiation has fomented a great activity at SPhT. Mean field approximation and effective strength have been the starting point of research in the field of nuclear structure. High energy quantum chromodynamics has been applied to deep inelastic scattering where the proton structure is studied through electron-proton collisions. A list of all the publications made by SPhT is given. (A.C.)

  4. COMRAD96, Nuclear Fuel Burnup and Depletion Calculation System

    International Nuclear Information System (INIS)

    Suyama, K.; Masukawa, F.; Ido, M.; Enomoto, M.; Takyu, S.; Hara, T.

    2002-01-01

    1 - Description of program or function: Burn-up calculation of nuclear fuel. 2 - Methods: Matrix exponential method, Bateman Equation. 3 - Restrictions on the complexity of the problem: a) One-grouped cross section library should be prepared for the fuel system to be analyzed using UNITBURN. However, UNITBURN is not available now for UNIX systems. b) Gamma ray spectrometry calculation will fail using the attached piflib routine. This problem has already been rectified in the internal version. 4 - Typical running time: Two minutes for standard burn-up calculation on Sun ULTRA 30. 5 - Unusual features - a) Selection of Matrix exponential method, or Bateman Equation. b) JDDL, a detailed decay chain data based on ENSDF. 6 - Related or auxiliary programs: UNITBURN: Burnup calculation code unit cell system

  5. 22 CFR 9.6 - Derivative classification.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Derivative classification. 9.6 Section 9.6 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS § 9.6 Derivative classification. (a) Definition. Derivative classification is the incorporating, paraphrasing, restating or...

  6. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  8. Peroxisome Proliferator-activated Receptor gamma Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

    NARCIS (Netherlands)

    Jeninga, E.H.; Bugge, A.; Nielsen, R.; Kersten, A.H.; Hamers, N.; Dani, C.; Wabitsch, M.; Berger, R.; Stunnenberg, H.G.; Mandrup, S.; Kalkhoven, E.

    2009-01-01

    The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma

  9. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    International Nuclear Information System (INIS)

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K.

    2006-01-01

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function

  10. 45 CFR 96.41 - General determination.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false General determination. 96.41 Section 96.41 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS Direct Funding of Indian Tribes and Tribal Organizations § 96.41 General determination. (a) The Department has determined...

  11. 22 CFR 96.31 - Corporate structure.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Corporate structure. 96.31 Section 96.31 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES ACCREDITATION OF AGENCIES AND APPROVAL OF... Approval Licensing and Corporate Governance § 96.31 Corporate structure. (a) The agency qualifies for...

  12. Membrane estrogen receptors - is it an alternative way of estrogen action?

    Science.gov (United States)

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  13. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  15. 12 CFR 545.96 - Agency office.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Agency office. 545.96 Section 545.96 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.96 Agency office. (a) General. A Federal savings association may establish or maintain an agency...

  16. 7 CFR 1948.96 - Audit requirements.

    Science.gov (United States)

    2010-01-01

    ... Program § 1948.96 Audit requirements. (a) Audit requirements for Site Development and Acquisition Grants will be made in accordance with FmHA Instruction 1942-G. (b) Audits for planning grants made in... 7 Agriculture 13 2010-01-01 2009-01-01 true Audit requirements. 1948.96 Section 1948.96...

  17. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  18. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily......The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  19. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion.

    Science.gov (United States)

    Shimura, Takaya; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2012-05-30

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for HB-EGF-C nuclear translocation induce gastric cancer growth, whereas HB-EGF-C nuclear translocation independently plays a critical role in gastric cancer invasion. The present study demonstrated that HB-EGF-C nuclear translocation

  20. 45 CFR 96.47 - Primary care.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Primary care. 96.47 Section 96.47 Public Welfare... and Tribal Organizations § 96.47 Primary care. Applications for direct funding of Indian tribes and tribal organizations under the primary care block grant must comply with 42 CFR Part 51c (Grants for...

  1. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Laser-spectroscopy measurements of 72-96Kr spins, moments and charge radii

    International Nuclear Information System (INIS)

    Keim, M.

    1995-01-01

    The spins, moments and radii of krypton isotopes have been investigated by collinear fast-beam laser spectroscopy in combination with ultra-sensitive collisional ionization detection. The sequence of isotopes under study ranges from the neutron-deficient N=Z=36 isotope 72 Kr to the neutron-rich 96 Kr (N=60). The mean-square charge radii in the neighbourhood of the N=50 neutron-shell closure exhibit a pronounced shell effect which has recently been explained in the framework of relativistic mean-field theory. The results for the neutron-deficient nuclei are related to the shape coexistence of strongly prolate and near-spherical states which is known from nuclear spectroscopy. Here, an inversion of the odd-even staggering is observed below the neutron number N=45. The neutron-rich transitional nuclei are influenced by the N=56 subshell closure. In contrast to the N=60 isotones 97 Rb, 98 Sr and 100 Zr, the new isotope 96 Kr is not strongly deformed. ((orig.))

  3. Enterocin 96, a Novel Class II Bacteriocin Produced by Enterococcus faecalis WHE 96, Isolated from Munster Cheese▿

    Science.gov (United States)

    Izquierdo, Esther; Wagner, Camille; Marchioni, Eric; Aoude-Werner, Dalal; Ennahar, Saïd

    2009-01-01

    Enterococcus faecalis WHE 96, a strain isolated from soft cheese based on its anti-Listeria activity, produced a 5,494-Da bacteriocin that was purified to homogeneity by ultrafiltration and cation-exchange and reversed-phase chromatographies. The amino acid sequence of this bacteriocin, named enterocin 96, was determined by Edman degradation, and its structural gene was sequenced, revealing a double-glycine leader peptide. After a comparison with other bacteriocins, it was shown that enterocin 96 was a new class II bacteriocin that showed very little similarity with known structures. Enterocin 96 was indeed a new bacteriocin belonging to class II bacteriocins. The activity spectrum of enterocin 96 covered a wide range of bacteria, with strong activity against most gram-positive strains but very little or no activity against gram-negative strains. PMID:19411428

  4. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese.

    Science.gov (United States)

    Izquierdo, Esther; Wagner, Camille; Marchioni, Eric; Aoude-Werner, Dalal; Ennahar, Saïd

    2009-07-01

    Enterococcus faecalis WHE 96, a strain isolated from soft cheese based on its anti-Listeria activity, produced a 5,494-Da bacteriocin that was purified to homogeneity by ultrafiltration and cation-exchange and reversed-phase chromatographies. The amino acid sequence of this bacteriocin, named enterocin 96, was determined by Edman degradation, and its structural gene was sequenced, revealing a double-glycine leader peptide. After a comparison with other bacteriocins, it was shown that enterocin 96 was a new class II bacteriocin that showed very little similarity with known structures. Enterocin 96 was indeed a new bacteriocin belonging to class II bacteriocins. The activity spectrum of enterocin 96 covered a wide range of bacteria, with strong activity against most gram-positive strains but very little or no activity against gram-negative strains.

  5. Inhibition of Estrogen Receptor Action by the Orphan Receptors, SHP and DAX-1

    National Research Council Canada - National Science Library

    DiRenzo, James

    2003-01-01

    .... In support of DoD grant # DAMD17-99-1-9163, we present our findings regarding the mechanisms by which two orphan nuclear receptors, SHP and DAX-1 inhibit the actions of ER-alpha and ER-beta action...

  6. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Johnson, James K; Skoda, Erin M; Zhou, Jianhua; Parrinello, Erica; Wang, Dan; O'Malley, Katherine; Eyer, Benjamin R; Kazancioglu, Mustafa; Eisermann, Kurtis; Johnston, Paul A; Nelson, Joel B; Wang, Zhou; Wipf, Peter

    2016-08-11

    After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.

  7. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading.

    Science.gov (United States)

    Tarallo, Roberta; Giurato, Giorgio; Bruno, Giuseppina; Ravo, Maria; Rizzo, Francesca; Salvati, Annamaria; Ricciardi, Luca; Marchese, Giovanna; Cordella, Angela; Rocco, Teresa; Gigantino, Valerio; Pierri, Biancamaria; Cimmino, Giovanni; Milanesi, Luciano; Ambrosino, Concetta; Nyman, Tuula A; Nassa, Giovanni; Weisz, Alessandro

    2017-10-06

    The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.

  8. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    Science.gov (United States)

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  9. Reliability analysis of 2400 MWth gas-cooled fast reactor natural circulation decay heat removal system

    International Nuclear Information System (INIS)

    Marques, M.; Bassi, C.; Bentivoglio, F.

    2012-01-01

    In support to a PSA (Probability Safety Assessment) performed at the design level on the 2400 MWth Gas-cooled Fast Reactor, the functional reliability of the decay heat removal system (DHR) working in natural circulation has been estimated in two transient situations corresponding to an 'aggravated' Loss of Flow Accident (LOFA) and a Loss of Coolant Accident (LOCA). The reliability analysis was based on the RMPS methodology. Reliability and global sensitivity analyses use uncertainty propagation by Monte Carlo techniques. The DHR system consists of 1) 3 dedicated DHR loops: the choice of 3 loops (3*100% redundancy) is made in assuming that one could be lost due to the accident initiating event (break for example) and that another one must be supposed unavailable (single failure criterion); 2) a metallic guard containment enclosing the primary system (referred as close containment), not pressurized in normal operation, having a free volume such as the fast primary helium expansion gives an equilibrium pressure of 1.0 MPa, in the first part of the transient (few hours). Each dedicated DHR loop designed to work in forced circulation with blowers or in natural circulation, is composed of 1) a primary loop (cross-duct connected to the core vessel), with a driving height of 10 meters between core and DHX mid-plan; 2) a secondary circuit filled with pressurized water at 1.0 MPa (driving height of 5 meters for natural circulation DHR); 3) a ternary pool, initially at 50 C. degrees, whose volume is determined to handle one day heat extraction (after this time delay, additional measures are foreseen to fill up the pool). The results obtained on the reliability of the DHR system and on the most important input parameters are very different from one scenario to the other showing the necessity for the PSA to perform specific reliability analysis of the passive system for each considered scenario. The analysis shows that the DHR system working in natural circulation is

  10. Inhibition of Estrogen Receptor Action by the Orphan Receptors, SHP and DAX-1

    National Research Council Canada - National Science Library

    DiRenzo, James

    2002-01-01

    In support of DoD grant # DAMD17-99-1-9163, we present our progress towards understanding the function of mechanisms of action of two orphan nuclear receptors, SHP and DAX-I as inhibitors of ER alpha and ER beta action...

  11. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    International Nuclear Information System (INIS)

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-01

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells

  12. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mistafa, Oras; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden); Stenius, Ulla [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden)

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  13. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor regulating C. elegans development and lifespan

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C.; Wollam, Joshua; Dumas, Kathleen J.; Zimmerman, Anna M.; Campbell, Sydney L.; Hu, Patrick J.; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    SUMMARY Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin-D and liver-X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase, HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs. PMID:24411940

  14. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  15. 45 CFR 96.123 - Assurances.

    Science.gov (United States)

    2010-10-01

    ... submit an annual report as required under § 96.122(d) and § 96.130(e); (6) Pregnant women are provided... Federal laws and regulations, including those relating to lobbying (45 CFR Part 93), drug-free workplace (45 CFR 76.600), discrimination (PHS Act Sec. 1947), false statements or failure to disclose certain...

  16. iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Nuclear receptors (NRs form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1--thyroid hormone like, NR2--HNF4-like, NR3--estrogen like, NR4--nerve growth factor IB-like, NR5--fushi tarazu-F1 like, NR6--germ cell nuclear factor like, and NR0--knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has ≥60% pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may

  17. 49 CFR 176.96 - Materials of construction.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Materials of construction. 176.96 Section 176.96 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Barges § 176.96 Materials of construction. Barges used to transport hazardous materials must...

  18. JPRS Report, Nuclear Developments.

    Science.gov (United States)

    1989-09-18

    the 33rd Regular Session of the MAGATE General Conference. HUNGARY Results of Leakage Tests at Power Plant 25020265a Budapest ENERGIA ES...Empresas Nucleares Brasileiras S.A. (Nuclebras) to Industrias Nucleares do Brasil S.A. (INB), and trans- ferred the shares of its capital stock...96.622 authorizes the establishment of Uranium of Brasil S.A. as a subsidiary of INB, with headquarters in the city of Caldas, Minas Gerais State

  19. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  20. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  1. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    Science.gov (United States)

    2009-12-01

    Fu , M. , and Pestell , R. ( 2006 ). Epigenetic regulation of nuclear steroid receptors . Biochem. Pharmacol. 72 , 1589 – 1596...2006;38:1289–1297. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72:1589–1596. 22...Nat Genet 2006;38:1289-97. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72

  2. The Danish Hip Arthroplasty Register

    DEFF Research Database (Denmark)

    Gundtoft, Per Hviid; Varnum, Claus; Pedersen, Alma Becic

    2016-01-01

    AIM OF DATABASE: The aim of the Danish Hip Arthroplasty Register (DHR) is to continuously monitor and improve the quality of treatment of primary and revision total hip arthroplasty (THA) in Denmark. STUDY POPULATION: The DHR is a Danish nationwide arthroplasty register established in January 1995...

  3. Nuclear Medicine Imaging of Neuroendocrine Tumors

    NARCIS (Netherlands)

    Brabander, Tessa; Kwekkeboom, Dik J.; Feelders, Richard A.; Brouwers, Adrienne H.; Teunissen, Jaap J. M.; Papotti, M; DeHerder, WW

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with In-111-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy

  4. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital

    International Nuclear Information System (INIS)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P.

    2015-01-01

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR

  5. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits.Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR.These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  6. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin.

    Science.gov (United States)

    Delage, Barbara; Bairras, Céline; Buaud, Benjamin; Pallet, Véronique; Cassand, Pierrette

    2005-10-10

    Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.

  7. Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue

    Directory of Open Access Journals (Sweden)

    Smith Eric L

    2008-01-01

    Full Text Available Abstract Background The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1, and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3. PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members. Results We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo. Conclusion These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1

  8. 33 CFR 96.130 - Incorporation by reference.

    Science.gov (United States)

    2010-07-01

    ... (ISM) Code by Administrations, November 23, 1995—96.320, 96.440 Resolution A.739(18), Guidelines for.../code_of_federal_regulations/ibr_locations.html. (b) The material approved for incorporation by...), International Management Code for the Safe Operation of Ships and for Pollution Prevention, November 4, 1993—96...

  9. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  10. The Indigenous World, 1995-96 = El Mundo Indigena, 1995-96.

    Science.gov (United States)

    Jensen, Marianne, Comp.

    This annual publication examines political, legal, social, and educational issues concerning indigenous peoples around the world during 1995-96. Part I highlights news events and ongoing situations in specific countries, including threats to indigenous territories, human rights violations, political victories, developments at the United Nations,…

  11. 45 CFR 96.136 - Independent peer review.

    Science.gov (United States)

    2010-10-01

    ... influence the quality of the services provided. (d) As part of the independent peer review, the reviewers... 45 Public Welfare 1 2010-10-01 2010-10-01 false Independent peer review. 96.136 Section 96.136... Abuse Prevention and Treatment Block Grant § 96.136 Independent peer review. (a) The State shall for the...

  12. [Teacher enhancement at Supercomputing `96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-13

    The SC`96 Education Program provided a three-day professional development experience for middle and high school science, mathematics, and computer technology teachers. The program theme was Computers at Work in the Classroom, and a majority of the sessions were presented by classroom teachers who have had several years experience in using these technologies with their students. The teachers who attended the program were introduced to classroom applications of computing and networking technologies and were provided to the greatest extent possible with lesson plans, sample problems, and other resources that could immediately be used in their own classrooms. The attached At a Glance Schedule and Session Abstracts describes in detail the three-day SC`96 Education Program. Also included is the SC`96 Education Program evaluation report and the financial report.

  13. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. 31 CFR 9.6 - Confidential information.

    Science.gov (United States)

    2010-07-01

    ... 9.6 Money and Finance: Treasury Office of the Secretary of the Treasury EFFECTS OF IMPORTED ARTICLES ON THE NATIONAL SECURITY § 9.6 Confidential information. Information submitted in confidence which... marked “Business Confidential.” [40 FR 50717, Oct. 31, 1975] ...

  15. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  16. Detection and characterization of Ah receptor in tissue and cells from human tonsils

    International Nuclear Information System (INIS)

    Lorenzen, A.; Okey, A.B.

    1991-01-01

    Ah receptor was identified and characterized in cytosol and nuclear extracts from human tonsils obtained at surgery from children 2 to 6 years of age. Ah receptor was found in cytosol prepared from whole-tonsil homogenates as well as in cytosol and nuclear fractions prepared from tonsil lymphocytes or tonsil fibroblasts grown in primary culture. Cytosolic Ah receptor was detectable in tonsillar tissue with either halogenated (2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD)) or nonhalogenated (3-[3H]methylcholanthrene and [3H]benzo[a]pyrene) aromatic hydrocarbons and sedimented at approximately 9 S after velocity sedimentation on sucrose gradients. The apparent binding affinity (Kd) of [3H]TCDD for Ah receptor ranged from 3 to 12 nM in cytosols from seven different donors. The same analyses indicated a concentration of Ah receptor in human tonsils of approximately 100-300 fmol/mg cytosolic protein. Incubation of either tonsil lymphocytes or tonsil fibroblasts with [3H]TCDD resulted in transformation of cytosolic Ah receptor to a nuclear binding form which could be detected as a specifically labeled peak sedimenting at approximately 6 S on sucrose gradients. These data demonstrate the existence of Ah receptor in human tonsils and suggest that this immune organ may be an appropriate model for further studies on the mechanism and manifestation of aromatic hydrocarbon-induced immunotoxicity in man

  17. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    DEFF Research Database (Denmark)

    Le Douarin, B; You, J; Nielsen, Anders Lade

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  18. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition

    Czech Academy of Sciences Publication Activity Database

    Hada, K.; Asahina, Masako; Hasegawa, H.; Kanaho, Y.; Slack, F. J.; Niwa, R.

    2010-01-01

    Roč. 344, č. 2 (2010), s. 1100-1109 ISSN 0012-1606 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z60220518 Keywords : apl-1 * Caenorhabditis elegans * heterochronic gene * heterochronic gene * let-7 * nuclear receptor * nhr-25 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.094, year: 2010

  19. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    Science.gov (United States)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  20. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  1. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    Science.gov (United States)

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  2. Experiences in certification of packages for transportation of fresh nuclear fuel in the context of new safety requirements established by IAEA regulations (IAEA-96 regulations, ST-1) for air transportation of nuclear materials (requirements to C-type packages)

    Energy Technology Data Exchange (ETDEWEB)

    Dudai, V.I.; Kovtun, A.D.; Matveev, V.Z.; Morenko, A.I.; Nilulin, V.M.; Shapovalov, V.I.; Yakushev, V.A.; Bobrovsky, V.S.; Rozhkov, V.V.; Agapov, A.M.; Kolesnikov, A.S. [Russian Federal Nuclear Centre - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)]|[JSC ' ' MSZ' ' , Electrostal (Russian Federation)]|[JSC ' ' NPCC' ' , Novosibirsk (Russian Federation)]|[Minatom of Russia, Moscow (Russian Federation)]|[Gosatomnadzor of Russia, Moscow (Russian Federation)

    2004-07-01

    Every year in Russia, a large amount of domestic and international transportation of fresh nuclear fuel (FNF) used in Russian and foreign energy and research atomic reactors and referred to fissile materials based on IAEA Regulations is performed. Here, bulk transportation is performed by air, and it concerns international transportation in particular. According to national ''Main Regulations for Safe Transport and physical Protection of Nuclear Materials (OPBZ- 83)'' and ''Regulations for the Safe Transport of Radioactive Materials'' of the International Atomic Energy Agency (IAEA Regulations), nuclear and radiation security under normal (accident free) and accident conditions of transport must be completely provided by the package design. In this context, high requirements to fissile packages exposed to heat and mechanical loads in transport accidents are imposed. A long-standing experience in accident free transportation of FM has shown that such approach to provide nuclear and radiation security pays for itself completely. Nevertheless, once in 10 years the International Atomic Energy Agency on every revision of the ''Regulations for the Safe Transport of Radioactive Materials'' places more stringent requirements upon the FM and transportation thereof, resulting from the objectively increasing risk associated with constant rise in volume and density of transportation, and also strained social and economical situation in a number of regions in the world. In the new edition of the IAEA Regulations (ST-1), published in 1996 and brought into force in 2001 (IAEA-96 Regulations), the requirements to FM packages conveyed by aircraft were radically changed. These requirements are completely presented in new Russian ''Regulations for the Safe Transport of Radioactive Materials'' (PBTRM- 2004) which will be brought into force in the time ahead.

  3. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Gupta, Satish Kumar

    2017-01-01

    Nur-77, a member of the NR4A sub-family of nuclear orphan receptors, is downregulated in the placentae of pre-eclamptic women. Here, we investigate the relevance of Nor-1, Nurr-1 and Nur-77 in trophoblastic cell differentiation. Their transcript levels were found to be significantly upregulated in BeWo cells treated with forskolin. The maximum increase was observed after 2 h, with a second peak in the expression levels after 48 h. The expression of NR4A sub-family members was also found to be upregulated in BeWo cells after treatment with hCG and GnRH. A similar significant increase was observed at the respective protein levels after 2 and 48 h of treatment with forskolin, hCG or GnRH. Silencing Nor-1, Nurr-1 or Nur-77 individually did not show any effect on forskolin-, hCG- and/or GnRH-mediated BeWo cell fusion and/or hCG secretion. After silencing any one member of the NR4A sub-family, an increase in the transcript levels of the other sub-family members was observed, indicating a compensatory effect due to their functional redundancy. Simultaneously silencing all three NR4A sub-family members significantly downregulated forskolin- and hCG-mediated BeWo cell fusion and/or hCG secretion. However, a considerable amount of cell death occurred after forskolin or hCG treatment as compared to the control siRNA-transfected cells. These results suggest that the NR4A sub-family of nuclear orphan receptors has a role in trophoblastic cell differentiation.

  4. 27 CFR 21.96 - Ammonia, aqueous.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  5. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  6. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  7. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  8. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts*

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-01-01

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  9. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  10. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  11. 29 CFR 96.12 - Audit requirements.

    Science.gov (United States)

    2010-07-01

    .... (b) The audit requirements contained in 29 CFR part 99 shall be followed for audits of all fiscal... 29 Labor 1 2010-07-01 2010-07-01 true Audit requirements. 96.12 Section 96.12 Labor Office of the Secretary of Labor AUDIT REQUIREMENTS FOR GRANTS, CONTRACTS, AND OTHER AGREEMENTS Audits of States, Local...

  12. Validation of the diagnosis 'prosthetic joint infection' in the Danish Hip Arthroplasty Register

    DEFF Research Database (Denmark)

    Gundtoft, P H; Pedersen, Alma Becic; Schønheyder, H C

    2016-01-01

    and followed them until first-time revision, death, emigration or until 31 December 2012. Revision for PJI, as registered in the DHR, was validated against a benchmark which included information from microbiology databases, prescription registers, clinical biochemistry registers and clinical records. We......AIMS: The purpose of this study was to validate the diagnosis of periprosthetic joint infection (PJI) in the Danish Hip Arthroplasty Register (DHR). PATIENTS AND METHODS: We identified a cohort of patients from the DHR who had undergone primary total hip arthroplasty (THA) since 1 January 2005...... the validity of the diagnosis of PJI and should enable future register-based studies. Cite this article: Bone Joint J 2016;98-B:320-5....

  13. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    International Nuclear Information System (INIS)

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  14. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision.

    Science.gov (United States)

    Yu, R T; Chiang, M Y; Tanabe, T; Kobayashi, M; Yasuda, K; Evans, R M; Umesono, K

    2000-03-14

    Although the development of the vertebrate eye is well described, the number of transcription factors known to be key to this process is still limited. The localized expression of the orphan nuclear receptor Tlx in the optic cup and discrete parts of the central nervous system suggested the possible role of Tlx in the formation or function of these structures. Analyses of Tlx targeted mice revealed that, in addition to the central nervous system cortical defects, lack of Tlx function results in progressive retinal and optic nerve degeneration with associated blindness. An extensive screen of Tlx-positive and Tlx-negative P19 neural precursors identified Pax2 as a candidate target gene. This identification is significant, because Pax2 is known to be involved in retinal development in both the human and the mouse eye. We find that Pax2 is a direct target and that the Tlx binding site in its promoter is conserved between mouse and human. These studies show that Tlx is a key component of retinal development and vision and an upstream regulator of the Pax2 signaling cascade.

  16. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  17. UK Nuclear Workforce Demand

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: DECOMMISSIONING - 26 Magnox Reactors, 2 Fast Reactors; OPERATIONAL - 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Workforce Demand • Total workforce demand is expected to grow from ~88,000 in 2017 to ~101,000 in 2021 • Average “inflow” is ~7,000 FTEs per annum • 22% of the workforce is female (28% in civil, 12% in defence) • 81% generic skills, 18% nuclear skills, 1% subject matter experts • 3300 trainees total in SLCs and Defence Enterprise (16% graduate trainees) • At peak demand on Civils Construction, over 4,000 workers will be required on each nuclear new build site • Manufacturing workforce is expected to rise from around 4,000 in 2014 to 8,500 at the peak of onsite activity in 2025

  18. Elastic neutron scattering studies at 96 MeV for transmutation.

    Science.gov (United States)

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  19. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  20. The carboxyl-terminus directs TAF(I)48 to the nucleus and nucleolus and associates with multiple nuclear import receptors.

    Science.gov (United States)

    Dynes, Joseph L; Xu, Shuping; Bothner, Sarah; Lahti, Jill M; Hori, Roderick T

    2004-03-01

    The protein complex Selectivity Factor 1, composed of TBP, TAF(I)48, TAF(I)63 and TAF(I)110, is required for rRNA transcription by RNA polymerase I in the nucleolus. The steps involved in targeting Selectivity Factor 1 will be dependent on the transport pathways that are used and the localization signals that direct this trafficking. In order to investigate these issues, we characterized human TAF(I)48, a subunit of Selectivity Factor 1. By domain analysis of TAF(I)48, the carboxyl-terminal 51 residues were found to be required for the localization of TAF(I)48, as well as sufficient to direct Green Fluorescent Protein to the nucleus and nucleolus. The carboxyl-terminus of TAF(I)48 also has the ability to associate with multiple members of the beta-karyopherin family of nuclear import receptors, including importin beta (karyopherin beta1), transportin (karyopherin beta2) and RanBP5 (karyopherin beta3), in a Ran-dependent manner. This property of interacting with multiple beta-karyopherins has been previously reported for the nuclear localization signals of some ribosomal proteins that are likewise directed to the nucleolus. This study identifies the first nuclear import sequence identified within the TBP-Associated Factor subunits of Selectivity Factor 1.

  1. 46 CFR 96.40-1 - Pilot boarding equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding... boat or other vessel. (b) Each vessel must have suitable pilot boarding equipment available for use on...

  2. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis.

    Science.gov (United States)

    Wahlang, Banrida; Prough, Russell A; Falkner, K Cameron; Hardesty, Josiah E; Song, Ming; Clair, Heather B; Clark, Barbara J; States, J Christopher; Arteel, Gavin E; Cave, Matthew C

    2016-02-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants associated with non-alcoholic-steatohepatitis (NASH), diabetes, and obesity. We previously demonstrated that the PCB mixture, Aroclor 1260, induced steatohepatitis and activated nuclear receptors in a diet-induced obesity mouse model. This study aims to evaluate PCB interactions with the pregnane-xenobiotic receptor (Pxr: Nr1i2) and constitutive androstane receptor (Car: Nr1i3) in NASH. Wild type C57Bl/6 (WT), Pxr(-/-) and Car(-/-) mice were fed the high fat diet (42% milk fat) and exposed to a single dose of Aroclor 1260 (20 mg/kg) in this 12-week study. Metabolic phenotyping and analysis of serum, liver, and adipose was performed. Steatohepatitis was pathologically similar in all Aroclor-exposed groups, while Pxr(-/-) mice displayed higher basal pro-inflammatory cytokine levels. Pxr repressed Car expression as evident by increased basal Car/Cyp2b10 expression in Pxr(-/-) mice. Both Pxr(-/-) and Car(-/-) mice showed decreased basal respiratory exchange rate (RER) consistent with preferential lipid metabolism. Aroclor increased RER and carbohydrate metabolism, associated with increased light cycle activity in both knockouts, and decreased food consumption in the Car(-/-) mice. Aroclor exposure improved insulin sensitivity in WT mice but not glucose tolerance. The Aroclor-exposed, Pxr(-/-) mice displayed increased gluconeogenic gene expression. Lipid-oxidative gene expression was higher in WT and Pxr(-/-) mice although RER was not changed, suggesting PCB-mediated mitochondrial dysfunction. Therefore, Pxr and Car regulated inflammation, behavior, and energy metabolism in PCB-mediated NASH. Future studies should address the 'off-target' effects of PCBs in steatohepatitis. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  3. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  4. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  5. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    Science.gov (United States)

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  6. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    NARCIS (Netherlands)

    Prawitt, Janne; Abdelkarim, Mouaadh; Stroeve, Johanna H. M.; Popescu, Iuliana; Duez, Helene; Velagapudi, Vidya R.; Dumont, Julie; Bouchaert, Emmanuel; van Dijk, Theo H.; Lucas, Anthony; Dorchies, Emilie; Daoudi, Mehdi; Lestavel, Sophie; Gonzalez, Frank J.; Oresic, Matej; Cariou, Bertrand; Kuipers, Folkert; Caron, Sandrine; Staels, Bart

    OBJECTIVE-Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role

  7. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    Science.gov (United States)

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β

    International Nuclear Information System (INIS)

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J.

    1989-01-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine → cytosine replacement in the codon for amino acid 340 resulted in a glycine → arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule

  9. A FAIR-Based Approach to Enhancing the Discovery and Re-Use of Transcriptomic Data Assets for Nuclear Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Scott A. Ochsner

    2017-03-01

    Full Text Available Public transcriptomic assets in the nuclear receptor (NR signaling field hold considerable collective potential for exposing underappreciated aspects of NR regulation of gene expression. This potential is undermined however by a series of enduring informatic pain points that retard the routine re-use of these datasets. Here we describe a coordinated biocuration and web development approach to redress this situation that is closely aligned with ideals articulated in the FAIR (findable, accessible, interoperable, re-usable principles on data stewardship. To improve findability, biocurators engage authors of studies in collaborating journals to secure datasets for deposition in public archives. Annotated derivatives of the archived datasets are assigned digital object identifiers and regulatory molecule identifiers that support persistent linkages between datasets and their associated research articles, integration in relevant records in gene and small molecule knowledgebases, and indexing by dataset search engines. To enhance their accessibility and interoperability, datasets are visualizable in responsively designed web pages, retrievable in machine-readable spreadsheets, or through an application programming interface. Re-use of the datasets is supported by their interrogation as a universe of data points through the Transcriptomine search engine, highlighting transcriptional intersections between NR signaling pathways, physiological processes and disease states. We illustrate the value of our approach in connecting disparate research communities using a use case of persistent interoperability between the Nuclear Receptor Signaling Atlas and the Pharmacogenomics Knowledgebase. Our FAIR-aligned model demonstrates the enduring value of discovery-scale datasets that accrues from their systematic compilation, biocuration and distribution across the digital biomedical research enterprise.

  10. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  11. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  12. Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology

    Energy Technology Data Exchange (ETDEWEB)

    Oumeddour, Abdelkader [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Laboratoire de Neuroendocrinologie Appliquée, Université Badji Mokhtar Annaba, BP12, 23000 Annaba (Algeria); Viennois, Emilie; Caira, Françoise; Decourbey, Clélia [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Maqdasy, Salwan [Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6293, GReD, F-63171 Aubiere (France); INSERM, UMR 1103, GReD, F-63171 Aubiere (France); Centre de Recherche en Nutrition Humaine d’Auvergne, F-63000 Clermont-Ferrand (France); Service d’endocrinologie, diabétologie et maladies métaboliques, CHU Clermont-Ferrand, F-63003 Clermont-Ferrand (France); and others

    2014-04-11

    Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogen considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are not only

  13. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  14. International workshop on interfacial effects in quantum engineering systems (IEQES-96). Book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    In the international workshop on 'interfacial effects in quantum engineering systems (IEQES-96)' organized by Nuclear Engineering Research Laboratory, the University of Tokyo and held on August 21-23, 1996, 108 items were discussed in following 3 sessions. In the first session, on interfacial effects in fusion energy systems, 29 items on Plasma-surface interactions in fusion devices and 14 items on blanket breeder-hydrogen isotope interactions were investigated. In the second session, 38 items on interfacial effects in fission energy systems were discussed. Furthermore, in the third session, 27 items of quantum beam-material interactions were investigated. (G.K.)

  15. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    International Nuclear Information System (INIS)

    Shimura, Takaya; Higashiyama, Shigeki; Joh, Takashi; Yoshida, Michihiro; Fukuda, Shinji; Ebi, Masahide; Hirata, Yoshikazu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi

    2012-01-01

    Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P < 0.01). The growth of wt-HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Both the function of HB-EGF as an EGFR ligand and a novel signal for

  16. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Science.gov (United States)

    2012-01-01

    Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR) ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF) after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C), translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF) and mutated HB-EGF (HB-EGF-mC), which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 %) and in the cytoplasm only in 25 cases (26.0 %). The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P HB-EGF- and HB-EGF-mC-expressing cells significantly increased compared with control cells, but the growth of HB-EGF-mC-expressing cells was significantly decreased compared with wt-HB-EGF-expressing cells. Gastric cancer cell invasion obviously increased in wt-HB-EGF-expressing cells, but invasion in HB-EGF-mC-expressing cells showed a slight increase compared with control cells. Moreover, wt-HB-EGF overexpression increased the effectiveness of wound healing, but had no significant effect in HB-EGF-mC-expressing cells. Conclusions Both the function of HB-EGF as an EGFR ligand

  17. 45 CFR 96.127 - Requirements regarding tuberculosis.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Requirements regarding tuberculosis. 96.127... Substance Abuse Prevention and Treatment Block Grant § 96.127 Requirements regarding tuberculosis. (a... Department of Health/Tuberculosis Control Officer, which address how the program— (1) Will, directly or...

  18. Cytologic assessment of estrogen receptor, progesterone receptor, and HER2 status in metastatic breast carcinoma.

    Science.gov (United States)

    Pareja, Fresia; Murray, Melissa P; Jean, Ryan Des; Konno, Fumiko; Friedlander, Maria; Lin, Oscar; Edelweiss, Marcia

    2017-01-01

    Discordance in the receptor status between primary breast carcinomas (PBC) and corresponding metastasis is well documented. Interrogation of the receptor status of metastatic breast carcinoma (MBC) in cytology material is common practice; however, its utility has not been thoroughly validated. We studied patients with MBC, and evaluated the concordance rates of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) between PBC surgical specimens and corresponding MBC cell blocks (CBs). We correlated the findings with clinicopathologic variables and with the fixation methods used. We searched for patients with MBC diagnosed on cytology from 2007 to 2009 and selected those with ER, PR and HER2 tested in both the PBC surgical specimens and the MBC CBs. We included CBs fixed in formalin and methanol based solution (CytoLyt®). All slides were reevaluated by cytopathologists. Clinical information was retrieved from the medical records. We studied 65 patients with PBC and MBC paired specimens. The concordance rates between PBC and MBC were 78.5%, 58.5% and 96.9%, for ER, PR and HER2, respectively. When discordant, PR status switched from positive (PBC) to negative (MBC) in most cases (23/27). The PR concordance rate was 45.2% for CBs fixed in formalin and 70.6% for those fixed with CytoLyt® (p=0.047). The ER, PR and HER2 concordance rates between the PBC and MBC CBs are similar to those reported in paired surgical specimens. PR status was the most prevalent discordance and was not accompanied by a switch in ER.

  19. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 1. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes. AGNIESZKA SADOWSKA LUKASZ PAUKSZTO ANNA NYNCA IZABELA SZCZERBAL KARINA ...

  20. A new unextracted-sample radioimmunoassay method for hepatic endogenous nuclear L-tri-iodothyronine content

    International Nuclear Information System (INIS)

    Yagura, T.; Walfish, P.G.

    1982-01-01

    Endogenous L-tri-iodothyronine content in an hepatic nuclear extract was measured by a new unextracted-sample radioimmunoassay method using 8-anilinonaphthalene-1-sulphonic acid to inhibit the L-[ 125 I]tri-iodothyronine binding to the nuclear L-tri-iodothyronine receptor within the extract. The amount of endogenous L-tri-iodothyronine was 10-40 pg/0.2 ml of hepatic nuclear extract from euthyroid rats, compared with less than 3.125 pg/0.2ml from thyroidectomized rats. The results obtained were compared with a Sephadex G-25 column extracted-sample radioimmunoassay method and showed a good agreement. The values for the endogenous L-tri-iodothyronine content were utilized to correct for the L-tri-iodothyronine concentration within the binding assay mixture in order to accurately determine by Scatchard analysis the binding characteristics of the nuclear L-tri-iodothyronine receptor. The validity of the correction for endogenous L-tri-iodothyronine was demonstrated by using a nuclear extract from a thyroidectomized rat which was preincubated with a small known amount of L-tri-iodothyronine before determining the nuclear L-tri-iodothyronine receptor binding characteristics. It is concluded that the necessity and validity of using endogenous L-tri-iodothyronine corrections in the Scatchard analytical computations of the nuclear L-tri-iodothyronine receptor binding characteristics has been demonstrated, being particularly more important for affinity constant than maximum binding capacity. (author)

  1. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs.

    Science.gov (United States)

    Soheilypour, M; Mofrad, M R K

    2016-11-02

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

  2. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Kazakhstan: there are no nuclear weapons

    International Nuclear Information System (INIS)

    Golev, A.

    2000-01-01

    In the article it is noted, that in 1992 Kazakhstan, Russian Federation and Ukraine signed Strategic Attack Weapon-1 Treaty, and actually refuse from nuclear bases on theirs territories. On the whole Kazakhstan had in technical capability two missile basis and one basis of strategic bombardment aviation. During 1996-1999 in period of nuclear objects liquidation in Kazakhstan 96 S S-18 missiles and 18,000 tones components of missile fuel were taken out to Russia

  4. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced β-cell function in non-diabetic subjects

    Directory of Open Access Journals (Sweden)

    Kuusisto Johanna

    2009-08-01

    Full Text Available Abstract Background Neuron-derived orphan receptor (Nor 1, nuclear receptor (Nur 77, and nuclear receptor-related protein (Nurr 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or β-cell dysfunction. Methods We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies ≥ 0.05 covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 ≥ 0.9 and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT, and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506. SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265 for replication. Results All five SNPs were in Hardy-Weinberg equilibrium (p ≥ 0.7, all. The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT, AUCC-peptide-to-AUCGluc ratio and the AUCIns30-to-AUCGluc30 ratio with rs12686676 reaching the level of significance (p ≤ 0.03, all; additive model. The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p ≤ 0.03, additive model. There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. Conclusion We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3

  5. Konsekvensanalyse af Kulturby 96

    DEFF Research Database (Denmark)

    Fridberg, Torben; Koch-Nielsen, Inger

    1997-01-01

    Rapporten om Kulturby 96 indeholder en beskrivelse af kulturbyårets aktiviteter og responsen herpå fra publikum, turister, presse og samarbejdspartnere i øvrigt. Der redegøres for projektets organisatoriske struktur, herunder Kulturbysekretariatets organisation og rolle. Rapporten indeholder...

  6. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    International Nuclear Information System (INIS)

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed

  7. 16 CFR 1.96 - Compromise of penalty.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Compromise of penalty. 1.96 Section 1.96 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE GENERAL... may compromise any penalty or proposed penalty at any time, with leave of court when necessary, taking...

  8. The nuclear receptor NHR-25 cooperates with the Wnt/ .beta.-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans

    Czech Academy of Sciences Publication Activity Database

    Hajdušková, Martina; Jindra, Marek; Herman, M. A.; Asahina, Masako

    2009-01-01

    Roč. 122, č. 17 (2009), s. 3051-3060 ISSN 0021-9533 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508 Keywords : nuclear receptor * Wnt /.beta.-catenin signaling * Caenorhabditis elegans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.144, year: 2009

  9. The role of receptor topology in the vitamin D3 uptake and Ca"2"+ response systems

    International Nuclear Information System (INIS)

    Morrill, Gene A.; Kostellow, Adele B.; Gupta, Raj K.

    2016-01-01

    The steroid hormone, vitamin D_3, regulates gene transcription via at least two receptors and initiates putative rapid response systems at the plasma membrane. The vitamin D receptor (VDR) binds vitamin D_3 and a second receptor, importin-4, imports the VDR-vitamin D_3 complex into the nucleus via nuclear pores. Here we present evidence that the Homo sapiens VDR homodimer contains two transmembrane (TM) helices ("3"2"7E – D"3"4"2), two TM “half-helix” ("2"6"4K − N"2"7"6), one or more large channels, and 16 cholesterol binding (CRAC/CARC) domains. The importin-4 monomer exhibits 3 pore-lining regions ("2"2"6E – L"2"5"1; "7"6"8V – G"7"8"3; "8"7"6S – A"8"9"1) and 16 CRAC/CARC domains. The MEMSAT algorithm indicates that VDR and importin-4 may not be restricted to cytoplasm and nucleus. VDR homodimer TM helix-topology predicts insertion into the plasma membrane, with two 84 residue C-terminal regions being extracellular. Similarly, MEMSAT predicts importin-4 insertion into the plasma membrane with 226 residue extracellular N-terminal regions and 96 residue C-terminal extracellular loops; with the pore-lining regions contributing gated Ca"2"+ channels. The PoreWalker algorithm indicates that, of the 427 residues in each VDR monomer, 91 line the largest channel, including two vitamin D_3 binding sites and residues from both the TM helix and “half-helix”. Cholesterol-binding domains also extend into the channel within the ligand binding region. Programmed changes in bound cholesterol may regulate both membrane Ca"2"+ response systems and vitamin D_3 uptake as well as receptor internalization by the endomembrane system culminating in uptake of the vitamin D_3-VDR-importin-4 complex into the nucleus.

  10. Preliminary study on the inhibition of nuclear internalization of Tat peptides by conjugation with a receptor-specific peptide and fluorescent dyes

    Science.gov (United States)

    Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel

    2006-02-01

    Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.

  11. Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells.

    Science.gov (United States)

    Valladares, Francisco; Frías, Ignacio; Báez, Delia; García, Candelaria; López, Francisco J; Fraser, James D; Rodríguez, Yurena; Reyes, Ricardo; Díaz-Flores, Lucio; Bello, Aixa R

    2006-12-01

    Cellular and subcellular localization of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in uterine leiomyomas. Retrospective study. University of La Laguna (ULL) and Canary University Hospital (HUC). Premenopausal and postmenopausal women with uterine leiomyomas. Hysterectomy and myomectomy. Estrogen receptor alpha was only present in smooth muscle cells with variation in the subcellular location in different leiomyomas. Estrogen receptor beta was widely distributed in smooth muscle, endothelial, and connective tissue cells with nuclear location in all cases studied; variations were only found in the muscle cells for this receptor. Estrogens operate in leiomyoma smooth muscle cells through different receptors, alpha and beta. However they only act through the ERbeta in endothelial and connective cells.

  12. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    Science.gov (United States)

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  13. The nuclear receptor TLX is required for gliomagenesis within the adult neurogenic niche.

    Science.gov (United States)

    Zou, Yuhua; Niu, Wenze; Qin, Song; Downes, Michael; Burns, Dennis K; Zhang, Chun-Li

    2012-12-01

    Neural stem cells (NSCs) continually generate functional neurons in the adult brain. Due to their ability to proliferate, deregulated NSCs or their progenitors have been proposed as the cells of origin for a number of primary central nervous system neoplasms, including infiltrating gliomas. The orphan nuclear receptor TLX is required for proliferation of adult NSCs, and its upregulation promotes brain tumor formation. However, it is unknown whether TLX is required for gliomagenesis. We examined the genetic interactions between TLX and several tumor suppressors, as well as the role of TLX-dependent NSCs during gliomagenesis, using mouse models. Here, we show that TLX is essential for the proliferation of adult NSCs with a single deletion of p21, p53, or Pten or combined deletion of Pten and p53. While brain tumors still form in Tlx mutant mice, these tumors are less infiltrative and rarely associate with the adult neurogenic niches, suggesting a non-stem-cell origin. Taken together, these results indicate a critical role for TLX in NSC-dependent gliomagenesis and implicate TLX as a therapeutic target to inhibit the development of NSC-derived brain tumors.

  14. Iodine-125-labelled tamoxifen is differentially cytoxic to cells containing oestrogen receptors

    International Nuclear Information System (INIS)

    Bloomer, W.D.; McLaughlin, W.H.; Weichselbaum, R.R.

    1980-01-01

    Tamoxifen, a non-steroidal anti-oestrogen competes with 17 - oestradiol for oestrogen receptor protein and is translocated to the nucleus. Carrier-free 125 I-TAM was tested for cytotoxicity in oestrogen receptor rich (human breast cancer MCF-7) and poor (V-79 Chinese hamster) cells. 125 I-TAM was differentially cytotoxic to MCF-7 cells. The D 37 values for MCF-7 and V-79 cells were 0.5 and 1.5 pCi/cell respectively. No radiotoxicity was observed with Na 125 I at doses equal to 125 I-TAM; iodide was effectively excluded from both cell lines and remained in the extracellular space. Also, nonradioactive 127 I-TAM and TAM were both non-toxic when tested at levels comparable to 125 I-TAM. It is suggested that the marked cytotoxicity in MCF-7 cells results from close approximation of 125 I with the genetic apparatus as a result of direct charging of specific nuclear receptors and/or translocation of 125 I-TAM receptor complexes from the cytoplasm to the nucleus, and that the minimal toxicity in V-79 cells reflects transmitted cytoplasmic radiation effects, limited direct nuclear charging and/or limited nuclear translocation resulting from the relative paucity of oestrogen in the cells. (U.K.)

  15. Role of retinoic receptors in lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    Renyi-Vamos Ferenc

    2008-07-01

    Full Text Available Abstract Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies. In this review we have compiled basic and recent knowledge regarding the role of retinoid receptors in lung carcinogenesis. Sensitive and appropriate biological tools are necessary for screening the risk population and monitoring the efficacy of chemoprevention. Investigation of retinoid receptors is important and may contribute to the establishment of new strategies in chemoprevention for high-risk patients and in the treatment of lung cancer.

  16. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis.

    Science.gov (United States)

    O'Léime, Ciarán S; Cryan, John F; Nolan, Yvonne M

    2017-11-01

    Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 40 CFR 96.340 - State trading budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 96.340 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.340 State trading budgets. (a) Except as provided in...

  18. 40 CFR 96.140 - State trading budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  19. 44 CFR 9.6 - Decision-making process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Decision-making process. 9.6... HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.6 Decision-making process... protection decision-making process to be followed by the Agency in applying the Orders to its actions. While...

  20. Accreditation Council for Graduate Medical Education (ACGME) Surgery Resident Operative Logs: The Last Quarter Century.

    Science.gov (United States)

    Drake, Frederick Thurston; Aarabi, Shahram; Garland, Brandon T; Huntington, Ciara R; McAteer, Jarod P; Richards, Morgan K; Zern, Nicole Kansier; Gow, Kenneth W

    2017-05-01

    To describe secular trends in operative experience for surgical trainees across an extended period using the most comprehensive data available, the Accreditation Council for Graduate Medical Education (ACGME) case logs. Some experts have expressed concern that current trainees are inadequately prepared for independent practice. One frequently mentioned factor is whether duty hours' restrictions (DHR) implemented in 2003 and 2004 contributed by reducing time spent in the operating room. A dataset was generated from annual ACGME reports. Operative volume for total major cases (TMC), defined categories, and four index laparoscopic procedures was evaluated. TMC dropped after implementation of DHR but rebounded after a transition period (949 vs 946 cases, P = nonsignificance). Abdominal cases increased from 22% of overall cases to 31%. Alimentary cases increased from 21% to 26%. Trauma and vascular surgery substantially decreased. For trauma, this drop took place well before DHR. The decrease in vascular surgery also began before DHR but continued afterward as well: 148 cases/resident in the late 1990s to 107 currently. Although total operative volume rebounded after implementation of DHR, diversity of operative experienced narrowed. The combined increase in alimentary and abdominal cases is nearly 13%, over a half-year's worth of operating in 5-year training programs. Bedrock general surgery cases-trauma, vascular, pediatrics, and breast-decreased. Laparoscopic operations have steadily increased. If the competence of current graduates has, in fact, diminished. Our analysis suggests that operative volume is not the problem. Rather, changing disease processes, subspecialization, reductions in resident autonomy, and technical innovation challenge how today's general surgeons are trained.

  1. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  2. Calcium and Nuclear Signaling in Prostate Cancer

    OpenAIRE

    Ivan V. Maly; Wilma A. Hofmann

    2018-01-01

    Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the un...

  3. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  4. Analysis of non simultaneous common mode failures. Application to the reliability assessment of the decay heat removal of the RNR 1500 project

    International Nuclear Information System (INIS)

    Natta, M.; Bloch, M.

    1991-01-01

    The experience with the LMFBR PHENIX has shown many cases of failures on identical and redundant components, which were close in time but not simultaneous and due to the same causes such as a design error, an unappropriate material, corrosion, ... Since the decay heat removal (DHR) must be assured for a long period after shutdown of the reactor, the overall reliability of the DHR system depends much on this type of successive failures by common mode causes, for which the usual β factor methods are not appropriate since they imply that the several failures are simultaneous. In this communication, two methods will be presented. The first one was used to assess the reliability of the DHR system of the RNR 1500 project. In this method, one modelize the occurrence of successive failures on n identical files by a sudden jump of the failure rate from the value λ attributed to the first failure to the value λ' attributed to the (n-1) still available files. This method leads to a quite natural quantification of the interest of diversity for highly redundant systems. For the RNR 1500 project where, in case of the loss of normal DHR path through the steam generators, the decay heat is removed by four separated sodium loops of 26 MW unit capacity in forced convection, the probabilistic assessment shows that it is necessary to diversify the sodium-sodium heat exchanger in order to fullfil the upper limit of 10 -7 /year for the probability of failure of DHR. A separate assessment for the main sequence leading to DHR loss was performed using a different method in which the successive failures are interpreted as a premature end of life, the lifetimes being directly used as random variables. This Monte-Carlo type method, which can be applied to any type of lifetime distribution, leads to results consistent to those obtained with the first one

  5. 45 CFR 96.18 - Participation by faith-based organizations.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Participation by faith-based organizations. 96.18 Section 96.18 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS General Procedures § 96.18 Participation by faith-based organizations. The funds provided under this part...

  6. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation.

    Science.gov (United States)

    Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M

    2016-07-11

    The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic

  7. Search for the β decay of 96Zr

    Science.gov (United States)

    Finch, S. W.; Tornow, W.

    2016-01-01

    96Zr and 48Ca are unique among double-β decay candidate nuclides in that they may also undergo single-β decay. In the case of 96Zr, the single-β decay mode is dominated by the fourth-forbidden β decay with a 119 keV Q value. A search was conducted for the β decay of 96Zr by observing the decay of the daughter 96Nb nucleus. Two coaxial high-purity germanium detectors were used in coincidence to detect the γ-ray cascade produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 days of data with a 17.91 g enriched sample. No counts were seen above background, producing a limit of T1/2 > 2.4 ×1019 year. This is the first experimental search that is able to discern between the β decay and the double-β decay to an excited state of 96Zr.

  8. Interleukin 1β, tumor necrosis factor-α and interleukin 6 decreas nuclear thyroid hormone receptor capacity in a liver cell line

    International Nuclear Information System (INIS)

    Wolf, M.; Hansen, N.; Greten, H.

    1994-01-01

    Many of the acute inflammatory responses in critical illness are mediated by tumor necrosis factor-α (TNTF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Furthermore, these cytokines are involved in mediating the characteristic changes of thyroid function during acute disease known as non-thyroidal illness. In the present studies the authors investigated in vitro whether TNF-α, IL-1β and IL-6 modify nuclear thyroid hormone receptor (TR) capacity and/or affinity. Regulation of TR synthesis was studied in the human hepatoma cell line Hep-G2. Subconfluent cells were incubated with recombinant cytokines in serum-free medium. Nuclear extracts were prepared by high-salt extraction of cell nuclei. Binding assays were performed with [ 125 I]-triiodothyronine; bound and free hormone were separated by filtration. Interleukin 1β decreased TR capacity in a dose-dependent manner. Compared with unstimulated cells, the TR capacity was reduced to 87.9 ± 3.9% after incubation with 0.1, 1.0 and 100 μg/l IL-1β, respectively. Interleukin 6 and TNF-α significantly reduced receptor capacity only at concentrations of 10μg/l or higher and the magnitude of the reduction was lower than with IL-1β. The TR capacity was reduced to 81.2 ± 2.3% and 83.2 ± 6.6% after stimulation with 10μg/l IL-6 or TNF-α, respectively. TR affinity was not altered significantly after stimulation with any of the cytokines. 44 refs., 4 figs

  9. Multi-level interactions between the nuclear receptor TRα1 and the WNT effectors β-catenin/Tcf4 in the intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Maria Sirakov

    Full Text Available Intestinal homeostasis results from complex cross-regulation of signaling pathways; their alteration induces intestinal tumorigenesis. Previously, we found that the thyroid hormone nuclear receptor TRα1 activates and synergizes with the WNT pathway, inducing crypt cell proliferation and promoting tumorigenesis. Here, we investigated the mechanisms and implications of the cross-regulation between these two pathways in gut tumorigenesis in vivo and in vitro. We analyzed TRα1 and WNT target gene expression in healthy mucosae and tumors from mice overexpressing TRα1 in the intestinal epithelium in a WNT-activated genetic background (vil-TRα1/Apc mice. Interestingly, increased levels of β-catenin/Tcf4 complex in tumors from vil-TRα1/Apc mice blocked TRα1 transcriptional activity. This observation was confirmed in Caco2 cells, in which TRα1 functionality on a luciferase reporter-assay was reduced by the overexpression of β-catenin/Tcf4. Moreover, TRα1 physically interacted with β-catenin/Tcf4 in the nuclei of these cells. Using molecular approaches, we demonstrated that the binding of TRα1 to its DNA target sequences within the tumors was impaired, while it was newly recruited to WNT target genes. In conclusion, our observations strongly suggest that increased β-catenin/Tcf4 levels i correlated with reduced TRα1 transcriptional activity on its target genes and, ii were likely responsible for the shift of TRα1 binding on WNT targets. Together, these data suggest a novel mechanism for the tumor-promoting activity of the TRα1 nuclear receptor.

  10. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    Science.gov (United States)

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  11. Revisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.

    KAUST Repository

    Benzaqui, Marvin; S. Pillai, Renjith; Sabetghadam, Anahid; Benoit, Virginie; Normand, Pé rine; Marrot, Jerome; Menguy, Nicolas; Montero, David; Shepard, William; Tissot, Antoine; Martineau-Corcos, Charlotte; Sicard, Clé mence; Mihaylov, Mihail; Carn, Florent; Beurroeis, Isabelle; Llewellyn, Philip L.; De Weireld, Guy; Hadjiivanov, Konstantin; Gascon, Jorge; Kapteijn, Freek; Maurin, Guillaume; Steunou, Nathalie; Serre, Christian

    2017-01-01

    A microporous Al trimesate-based metal-organic framework (MOF), denoted MIL-96-(Al), was selected as a porous hybrid filler for the processing of mixed matrix membranes (MMMs) for CO2/N-2 postcombustion separation. First, the structural model of MIL-96-(Al) initially reported was revisited using a combination of synchrotron-based single-crystal X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory (DFT) calculations. In a second step, pure MIL-96-(Al) crystals differing by their size and aspect ratio, including anisotropic hexagonal platelets and nanoparticles of about 70 nm in diameter, were prepared. Then, a combination of in situ IR spectroscopy, single-gas, and CO2/N-2 coadsorption experiments, calorimetry, and molecular simulations revealed that MIL-96-(Al) nanoparticles show a relatively high CO2 affinity over N-2 owing to strong interactions between CO2 molecules and several adsorption sites such as Al3+ Lewis centers, coordinated water, and hydroxyl groups. Finally, the high compatibility between MIL-96-(Al) nanoparticles and the 6FDA-DAM polymer allowed the processing of homogeneous and defect-free MMMs with a high MOF loading (up to 25 wt %) that outperform pure polymer membranes for CO2/N-2 separation.

  12. Revisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.

    KAUST Repository

    Benzaqui, Marvin

    2017-11-08

    A microporous Al trimesate-based metal-organic framework (MOF), denoted MIL-96-(Al), was selected as a porous hybrid filler for the processing of mixed matrix membranes (MMMs) for CO2/N-2 postcombustion separation. First, the structural model of MIL-96-(Al) initially reported was revisited using a combination of synchrotron-based single-crystal X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory (DFT) calculations. In a second step, pure MIL-96-(Al) crystals differing by their size and aspect ratio, including anisotropic hexagonal platelets and nanoparticles of about 70 nm in diameter, were prepared. Then, a combination of in situ IR spectroscopy, single-gas, and CO2/N-2 coadsorption experiments, calorimetry, and molecular simulations revealed that MIL-96-(Al) nanoparticles show a relatively high CO2 affinity over N-2 owing to strong interactions between CO2 molecules and several adsorption sites such as Al3+ Lewis centers, coordinated water, and hydroxyl groups. Finally, the high compatibility between MIL-96-(Al) nanoparticles and the 6FDA-DAM polymer allowed the processing of homogeneous and defect-free MMMs with a high MOF loading (up to 25 wt %) that outperform pure polymer membranes for CO2/N-2 separation.

  13. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  14. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, TH; Grefhorst, A; Abdelkarim, M; Caron, S; Torpier, G; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the

  15. Thermally activated demagnetization in (La0.97 Ca0.03)0.96Mn0.96 O3-δ

    International Nuclear Information System (INIS)

    Alonso, J.M.; Arroyo, A.; Cortes-Gil, R.; Garcia, M.A.; Gonzalez-Calbet, J.M.; Gonzalez, J.M.; Hernando, A.; Rojo, J.M.; Vallet-Regi, M.

    2005-01-01

    We report on the temperature dependence of the relaxation properties of a Mn perovskite with overall composition (La 0.97 Ca 0.03 ) 0.96 (Mn 4+ 0.07 Mn 3+ 0.93 ) 0.96 O 2.90 .Our data are correlated with the simultaneous occurrence in the sample of metallic double-exchange magnetically coupled, Mn 4+ clusters and of insulating superexchange coupled regions.

  16. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements.

    Science.gov (United States)

    Keller, H; Givel, F; Perroud, M; Wahli, W

    1995-07-01

    Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.

  17. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    Science.gov (United States)

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  18. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    International Nuclear Information System (INIS)

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-01-01

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα

  19. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  20. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  1. Nuclear power plant personnel errors in decision-making as an object of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reer, B.

    1993-09-01

    The integration of human error - also called man-machine system analysis (MMSA) - is an essential part of probabilistic risk assessment (PRA). A new method is presented which allows for a systematic and comprehensive PRA inclusions of decision-based errors due to conflicts or similarities. For the error identification procedure, new question techniques are developed. These errors are shown to be identified by looking at retroactions caused by subordinate goals as components of the overall safety relevant goal. New quantification methods for estimating situation-specific probabilities are developed. The factors conflict and similarity are operationalized in a way that allows their quantification based on informations which are usually available in PRA. The quantification procedure uses extrapolations and interpolations based on a poor set of data related to decision-based errors. Moreover, for passive errors in decision-making a completely new approach is presented where errors are quantified via a delay initiating the required action rather than via error probabilities. The practicability of this dynamic approach is demonstrated by a probabilistic analysis of the actions required during the total loss of feedwater event at the Davis-Besse plant 1985. The extensions of the ''classical'' PRA method developed in this work are applied to a MMSA of the decay heat removal (DHR) of the ''HTR-500''. Errors in decision-making - as potential roots of extraneous acts - are taken into account in a comprehensive and systematic manner. Five additional errors are identified. However, the probabilistic quantification results a nonsignificant increase of the DHR failure probability. (orig.) [de

  2. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  3. The role of receptor topology in the vitamin D3 uptake and Ca{sup 2+} response systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrill, Gene A., E-mail: gene.morrill@einstein.yu.edu; Kostellow, Adele B.; Gupta, Raj K.

    2016-09-02

    The steroid hormone, vitamin D{sub 3}, regulates gene transcription via at least two receptors and initiates putative rapid response systems at the plasma membrane. The vitamin D receptor (VDR) binds vitamin D{sub 3} and a second receptor, importin-4, imports the VDR-vitamin D{sub 3} complex into the nucleus via nuclear pores. Here we present evidence that the Homo sapiens VDR homodimer contains two transmembrane (TM) helices ({sup 327}E – D{sup 342}), two TM “half-helix” ({sup 264}K − N{sup 276}), one or more large channels, and 16 cholesterol binding (CRAC/CARC) domains. The importin-4 monomer exhibits 3 pore-lining regions ({sup 226}E – L{sup 251}; {sup 768}V – G{sup 783}; {sup 876}S – A{sup 891}) and 16 CRAC/CARC domains. The MEMSAT algorithm indicates that VDR and importin-4 may not be restricted to cytoplasm and nucleus. VDR homodimer TM helix-topology predicts insertion into the plasma membrane, with two 84 residue C-terminal regions being extracellular. Similarly, MEMSAT predicts importin-4 insertion into the plasma membrane with 226 residue extracellular N-terminal regions and 96 residue C-terminal extracellular loops; with the pore-lining regions contributing gated Ca{sup 2+} channels. The PoreWalker algorithm indicates that, of the 427 residues in each VDR monomer, 91 line the largest channel, including two vitamin D{sub 3} binding sites and residues from both the TM helix and “half-helix”. Cholesterol-binding domains also extend into the channel within the ligand binding region. Programmed changes in bound cholesterol may regulate both membrane Ca{sup 2+} response systems and vitamin D{sub 3} uptake as well as receptor internalization by the endomembrane system culminating in uptake of the vitamin D{sub 3}-VDR-importin-4 complex into the nucleus.

  4. Changes in amount and intracellular distribution of androgen receptor in human foreskin as a function of age.

    Science.gov (United States)

    Roehrborn, C G; Lange, J L; George, F W; Wilson, J D

    1987-01-01

    To provide insight into the factors that control growth of the penis we measured the amount and intracellular distribution of specific high affinity androgen receptor in foreskins obtained at circumcision from 49 males varying in age from newborn to 59 yr. Total (cytosolic plus nuclear extract) androgen receptor decreased from approximately 40 fmol/g tissue weight in newborn foreskins to approximately 25 fmol/g by 1 yr of age. The amount of receptor rose in childhood to approximately 180 fmol/g in the late teenage years and fell thereafter to approximately 20-40 fmol/g in men older than 40 yr. The amount of receptor in the nuclear fraction increased at the time of puberty and subsequently decreased in parallel with the decline in total receptor level. These changes in androgen-receptor amount are similar when expressed per milligram DNA or per milligram protein. Images PMID:3491838

  5. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    Science.gov (United States)

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  7. What are nuclear molecules?: past and present

    Energy Technology Data Exchange (ETDEWEB)

    Hess, P.O [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-04-01

    A brief history of nuclear molecules, which was discovered for the first time in 1960, is presented. A couple of simple models for their description are discussed, as the Double Resonance Mechanisms and the Two-Center Shell Model. These classical nuclear molecules live only about the order of 10{sup -2}1 seconds, barely sufficient to orbit once around each other. Recently, a new type of nuclear molecules was discovered, with three clusters, which live of the order of 10{sup -1}3 seconds. We discuss shortly the experiment and the conclusions of it. At the end, we present a geometric model and apply it to {sup 9}6Sr + {sup 1}0Be + {sup 1}46Ba observed in the cold fission decay of {sup 2}52 Cf. [Spanish] Se presenta una breve historia de moleculas nucleares, que fueron identificadas por primera vez en 1960. Unos modelos sencillos, para su descripcion, son discutidos, como el Mecanismo de Doble Resonancia y Modelo de Dos Centros. Estas moleculas clasicas solo viven un orden de 10{sup -2}1 segundos, apenas suficiente para dar una vuelta. Recientemente se han descubierto moleculas nucleares de tres cumulos que viven un orden de 10{sup -1}3 segundos. Se discute un poco el experimento y las conclusiones de el. Al final se presenta un modelo geometrico que aplicamos a {sup 9}6Sr + {sup 1}0Be + {sup 1}46Ba, observado en el decaimiento frio de {sup 2}52 Cf.

  8. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    International Nuclear Information System (INIS)

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-01-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of [ 3 H]dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear [ 3 H]dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37 0 C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for [ 3 H]dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator

  9. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jianwei [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Zhang, Yang; Li, Fengbo; Li, Yanjun; Zhao, Zhihu [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China)

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.

  10. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Elastic Neutron Scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J.; Blomgren, J.; Atac, A. [and others

    2003-04-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10-70 deg interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated uncertainty, 3 %, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic nuclear theory.

  12. FEPs and scenarios auditing of TVO-92 and TILA-96 against international FEP database

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T.; Nordman, H. [VTT Energy, Espoo (Finland)

    1997-12-01

    The NEA International Database of Features, Events and Processes (FEPs) relevant to the assessment of post-closure safety of radioactive waste repositories has been compiled by a working group within the Nuclear Energy Agency (NEA) of the OECD. The main parts of the database are a master list of 150 generalized FEPs and the original project-specific databases containing descriptions, comments and references on the FEPs. The first version of the database includes in total 1261 FEPs from seven national or international performance assessment projects. All project FEPs are mapped to one or more of the FEPs in the master list. The aim of the auditing was to discuss how the FEBs in the international database have been treated in the TVO-92 and TILA-96 safety assessments on spent fuel disposal (in Finland), where no formal methods were applied to develop scenarios. The auditing was made against all the 1261 projectspecific FEPs in the international database. The FEPs were discussed one by one and classified into categories according to their treatment in TVO-92 and TILA-96 or in the technical design of the disposal system. 37 refs.

  13. FEPs and scenarios auditing of TVO-92 and TILA-96 against international FEP database

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.

    1997-12-01

    The NEA International Database of Features, Events and Processes (FEPs) relevant to the assessment of post-closure safety of radioactive waste repositories has been compiled by a working group within the Nuclear Energy Agency (NEA) of the OECD. The main parts of the database are a master list of 150 generalized FEPs and the original project-specific databases containing descriptions, comments and references on the FEPs. The first version of the database includes in total 1261 FEPs from seven national or international performance assessment projects. All project FEPs are mapped to one or more of the FEPs in the master list. The aim of the auditing was to discuss how the FEBs in the international database have been treated in the TVO-92 and TILA-96 safety assessments on spent fuel disposal (in Finland), where no formal methods were applied to develop scenarios. The auditing was made against all the 1261 projectspecific FEPs in the international database. The FEPs were discussed one by one and classified into categories according to their treatment in TVO-92 and TILA-96 or in the technical design of the disposal system

  14. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan

    2010-01-01

    receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1......The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2......] and was guided by the views of the Society of Nuclear Medicine Brain Imaging Council [2], and the individual experience of experts in European countries. The guidelines intend to present information specifically adapted to European practice. The information provided should be taken in the context of local...

  15. Two panels of steroid receptor luciferase reporter cell lines for compound profiling

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Paguio, A.; Bartůněk, Petr

    2011-01-01

    Roč. 14, č. 2 (2011), s. 248-266 ISSN 1386-2073 R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear hormone receptor * steroid receptor * cell-based luciferase reporter assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2011

  16. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    International Nuclear Information System (INIS)

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-01-01

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy

  17. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta.

    Directory of Open Access Journals (Sweden)

    Keith I Pardee

    2009-02-01

    Full Text Available Heme is a ligand for the human nuclear receptors (NR REV-ERBalpha and REV-ERBbeta, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO, and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD. A 1.9 A crystal structure of the REV-ERBbeta LBD, in complex with the oxidized Fe(III form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBbeta complex reveal that the Fe(II form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.

  18. The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBβ

    Science.gov (United States)

    Pardee, Keith I; Xu, Xiaohui; Reinking, Jeff; Schuetz, Anja; Dong, Aiping; Liu, Suya; Zhang, Rongguang; Tiefenbach, Jens; Lajoie, Gilles; Plotnikov, Alexander N; Botchkarev, Alexey; Krause, Henry M; Edwards, Aled

    2009-01-01

    Heme is a ligand for the human nuclear receptors (NR) REV-ERBα and REV-ERBβ, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 Å crystal structure of the REV-ERBβ LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBβ complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions. PMID:19243223

  19. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors

    Science.gov (United States)

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2017-01-01

    Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973

  20. Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression

    NARCIS (Netherlands)

    D.L.C. van den Berg (Debbie); W. Zhang (Wensheng); A. Yates (Adam); M.P. Engelen (Erik); K. Takacs (Katalin); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); I. Chambers (Ian); R.A. Poor (Raymond)

    2008-01-01

    textabstractEmbryonic stem (ES) cell self-renewal is regulated by transcription factors, including Oct4, Sox2, and Nanog. A number of additional transcriptional regulators of ES cell self-renewal have recently been identified, including the orphan nuclear receptor estrogen-related receptor beta

  1. 40 CFR 96.3 - Measurements, abbreviations, and acronyms.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Measurements, abbreviations, and acronyms. 96.3 Section 96.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... pounds. CO2—carbon dioxide. NOX—nitrogen oxides. O2—oxygen. ...

  2. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    Science.gov (United States)

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  3. Achievement of the level 1 PSA in support to the CEA 2400 MWth gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Balmain, M.; Bassi, C.; Azria, P.

    2012-01-01

    Within Generation IV International Forum, the CEA has developed since 2006 a Level 1 PSA to support the design of the 2400 MWth GFR (Gas-cooled Fast Reactor). A first period, with insights published in 2008, consisted in a model with few initiators representative of medium and high pressure situations, those used for the deterministic design of the Decay Heat Removal (DHR) dedicated loops. In a second period, an iterative work reached the probabilistic targets used for generation III reactors, with prior use of normal loops, and increase of DHR reliability in high pressure conditions. The PSA team covered all the internal initiators, and supported the design of components with instrumentation and control and electrical supplies, and the shutdown operating modes of secondary, tertiary circuits, with possible re-alignment to dedicated DHR loops. Besides, the completed PSA integrated more realistic success criteria than the preliminary model and than the deterministic approach, thanks to CATHARE2 code. In case of loss of Forced Convection, the probability of success of the Natural Convection DHR was assessed by a reliability method for passive systems. The paper underlines the PSA methodology knowledge from the EDF expertise, the improvements co-developed with CEA, and the iteration design-PSA-design. (authors)

  4. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    Science.gov (United States)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  5. Radioimmunoassay of type D oncovirus from continuous J-96 cells

    International Nuclear Information System (INIS)

    Vlasenkova, N.K.; Altshtejn, A.D.; Zhdanov, V.M.; Kitsak, V.Ya.

    1978-01-01

    The radioimmunoassay of the J-96 virus and an extract of J-96 cells in the homologous and heterologous systems aimed at detecting antigenic determinants of p25 of Mason-Pfizer virus and group-specific and interspecies antigenic determinants p30 of Rauscher leukaemia virus demonstrated that (1) J-96 virus contains a major internal protein immunologically identical with p25 protein of Mason-Pfizer virus based on the antigenic determinants detectable by the radioimmunoassay used; and (2) no interspecies antigenic determinants characteristic of the major internal protein of mammalian type C viruses were detectable in the J-96 virus or the J-96 cell extract. (author)

  6. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  7. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage.

    Science.gov (United States)

    Bonnelye, Edith; Aubin, Jane E

    2013-02-01

    Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process. Copyright © 2013 American Society for Bone and Mineral Research.

  8. Studies for transitional changes of the muscarinic acetylcholine receptor and mRNA distribution by focal ischemia using nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kuji, Ichiei [Kanazawa Univ. (Japan). School of Medicine

    1994-04-01

    Assessing stress-induced brain receptor responses is important in understanding clinical brain receptor images for nuclear medicine. It is known that cholinergic neurons are decreased by Alzheimer`s disease and that there is a close relationship between cholinergic neurons and muscarinic acetylcholine receptors (mAchR). Thus, this study assessed the response of mAchR to focal ischemia using infarction model rats (prepared by middle cerebral artery occlusion) and sham-operated rats. In the same rats, three kinds of images -- ex vivo regional cerebral blood flow (rCBF) images with {sup 99m}Tc-hexametyl-propyleneamine oxime ({sup 99m}Tc-HMPAO), in vitro mAchR binding images with [{sup 3}H] quinuclidinyl benzilate ({sup 3}H-QNB), and mAchR-mRNA images by in situ hybridization method using {sup 35}S-labeled-oligonucleotide probes specific for mAchR gene subtypes of m1 to m5 -- were obtained in acute and chronic phases. Each image datum was digitalized and assessed semi-quantitatively. There were significant changes in global distribution among rCBF, mAchR and mAchR-mRNAs. In the acute phase, there was no significant change in mAchR in the infarcted area, although rCBF markedly decreased. In the chronic phase, there was a significant decrease in mAchR in the infarct-sided thalamus, although there was no change in rCBF; and there was a significant decrease in mAchR of the infarct-sided substantia nigra in spite of increase in rCBF. In the acute phase, mAchR-mRNAs of the infarct-sided caudate-putamen was decreased, suggesting that the ability of cholinergic neuron to synthesize receptor protein had decreased in the acute phase. Because mAchR was not decreased in the acute phase, some viable neurons with no normal function may be preserved in the acute phase. These results were encouraging in understanding mAchR brain images of patients with memory disturbances such as cerebrovascular dementia and Alzheimer`s disease. (N.K.).

  9. Protoparvovirus Knocking at the Nuclear Door.

    Science.gov (United States)

    Mäntylä, Elina; Kann, Michael; Vihinen-Ranta, Maija

    2017-10-02

    Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.

  10. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    International Nuclear Information System (INIS)

    Pasmanik, M.; Callard, G.V.

    1988-01-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of [ 3 H]T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Binding activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish

  11. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  12. GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pavol Mikoláš

    Full Text Available NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

  13. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    W. Todd Penberthy

    2009-01-01

    Full Text Available Acute attacks of multiple sclerosis (MS are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA is now known to involve induction of indoleamine 2,3-dioxygenase (IDO and interleukin-10 (IL-10, where IL-10 requires subsequent heme oxygenase-1 (HMOX-1 induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2 can prevent demyelination in experimental autoimmune encephalomyelitis (EAE animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD, without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPAR-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic

  14. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice

    NARCIS (Netherlands)

    Massafra, Vittoria; Milona, Alexandra; Vos, Harmjan R; Ramos, Rúben J J; Gerrits, Johan; Willemsen, Ellen C L; Ramos Pittol, José M; Ijssennagger, Noortje; Houweling, Martin; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Burgering, Boudewijn M T; van Mil, Saskia W C

    2017-01-01

    BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice

  15. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  16. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  17. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia

    NARCIS (Netherlands)

    Lai, Maggie; Horsburgh, Karen; Bae, Sung-Eun; Carter, Roderick N.; Stenvers, Dirk J.; Fowler, Jill H.; Yau, Joyce L.; Gomez-Sanchez, Celso E.; Holmes, Megan C.; Kenyon, Christopher J.; Seckl, Jonathan R.; Macleod, Malcolm R.

    2007-01-01

    The nuclear mineralocorticoid receptor (MR), a high-affinity receptor for glucocorticoids, is highly expressed in the hippocampus where it underpins cognitive, behavioural and neuroendocrine regulation. Increased neuronal MR expression occurs early in the response to cellular injury in vivo and in

  18. Androgen receptor expression on circulating tumor cells in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Takeo Fujii

    Full Text Available Androgen receptor (AR is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+ breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer.Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK, and biomarkers of interest (AR, estrogen receptor [ER], and HER2 on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms.Of 68 patients, 51 (75% had at least 1 CTC, and 49 of these 51 (96% had hormone-receptor-positive (HR+/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells.CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their heterogeneity.

  19. 45 CFR 96.102 - Carryover of unobligated funds.

    Science.gov (United States)

    2010-10-01

    ... reason or if the State has determined that program objectives would be better served by deferring... 45 Public Welfare 1 2010-10-01 2010-10-01 false Carryover of unobligated funds. 96.102 Section 96.102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS Primary...

  20. Development of radiolabeled probes directed against sigma-1 receptors

    International Nuclear Information System (INIS)

    Ogawa, Kazuma; Masuda, Ryohei; Shiba, Kazuhiro

    2017-01-01

    It has been reported that sigma-1 receptors regulate the release of signaling substances in the central nervous systems and are related to various diseases, such as schizophrenia, stress disorders, dementia, amyotrophic lateral sclerosis (ALS), and cancer. If the quantification of the sigma-1 receptors is possible, the pathophysiology, the stage, and the early detection of the diseases could be understandable. Molecular imaging using Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) and radioactive probes makes noninvasive quantification of the in vivo metabolism and function possible. Currently, only nuclear medicine diagnosis using PET or SPECT can quantify the sigma-1 receptors. Therefore, there is great expectation for the development of molecular probes to image the sigma-1 receptors specifically. In this paper, we introduce our research on the development of radiohalogen-labeled molecular probes directed against the sigma-1 receptors. (author)