WorldWideScience

Sample records for dextran hydralazine isoproterenol

  1. Hemodynamic and regional blood flow distribution responses to dextran, hydralazine, isoproterenol and amrinone during experimental cardiac tamponade

    Energy Technology Data Exchange (ETDEWEB)

    Millard, R.W.; Fowler, N.O.; Gabel, M.

    1983-06-01

    Four different interventions were examined in dogs with cardiac tamponade. Infusion of 216 to 288 ml saline solution into the pericardium reduced cardiac output from 3.5 +/- 0.3 to 1.7 +/- 0.2 liters/min as systemic vascular resistance increased from 4,110 +/- 281 to 6,370 +/- 424 dynes . s . cm-5. Left ventricular epicardial and endocardial blood flows were 178 +/- 13 and 220 +/- 12 ml/min per 100 g, respectively, and decreased to 72 +/- 14 and 78 +/- 11 ml/min per 100 g with tamponade. Reductions of 25 to 65% occurred in visceral and brain blood flows and in a composite brain sample. Cardiac output during tamponade was significantly increased by isoproterenol, 0.5 microgram/kg per min intravenously; hydralazine, 40 mg intravenously; dextran infusion or combined hydralazine and dextran, but not by amrinone. Total systemic vascular resistance was reduced by all interventions. Left ventricular epicardial flow was increased by isoproterenol, hydralazine and the hydralazine-dextran combination. Endocardial flow was increased by amrinone and the combination of hydralazine and dextran. Right ventricular myocardial blood flow increased with all interventions except dextran. Kidney cortical and composite brain blood flows were increased by both dextran alone and by the hydralazine-dextran combinations. Blood flow to small intestine was increased by all interventions as was that to large intestine by all except amrinone and hydralazine. Liver blood flow response was variable. The most pronounced hemodynamic and tissue perfusion improvements during cardiac tamponade were effected by combined vasodilation-blood volume expansion with a hydralazine-dextran combination. Isoproterenol had as dramatic an effect but it was short-lived. Amrinone was the least effective intervention.

  2. Hydralazine-induced constrictive pericarditis

    NARCIS (Netherlands)

    Franssen, CFC; ElGamal, MIH; Gans, ROB; Hoorntje, SJ

    1996-01-01

    A 59-year-old man was diagnosed as having constrictive pericarditis 17 months after a typical hydralazine-induced autoimmune syndrome, This late complication of hydralazine has been reported only once. Ten years later the patient was found to have anti-neutrophil cytoplasmic antibodies directed agai

  3. Ketanserin and hydralazine in hypertension in pregnancy - a ...

    African Journals Online (AJOL)

    treatment of hypertension in late pregnancy. Study design. ... pressure, maternal and fetal heart rate and umbilical and arcuate artery ... role in the pathophysiology of pre-eclampsia. ... hydralazine and ketanserin and to study their effects on.

  4. Interaction with pyridoxal as a possible mechanism of hydralazine hypotension.

    Science.gov (United States)

    Vidrio, H

    1990-01-01

    The mechanism by which the antihypertensive vasodilator hydralazine relaxes vascular smooth muscle is unknown. The drug interacts with pyridoxal and can produce B6 deficiency; it also inhibits a number of enzymes requiring pyridoxal as a cofactor, but there is no apparent relation between its enzymatic and blood pressure effects. To explore the possibility of a hydralazine-pyridoxal interaction at a nonenzymatic site, the acute hypotensive response to hydralazine was determined by tail cuff blood pressure (BP) measurements in conscious normotensive rats pretreated or not pretreated with pyridoxine. Other animals were pretreated with isoniazid, a drug also capable of reacting with pyridoxal. Responses to hydralazine were diminished by pyridoxine and enhanced by isoniazid; those to the vasodilator diazoxide or to the alpha-adrenergic blocker zolertine were unaffected by such pretreatments. The inhibitory effect of pyridoxine was absent when rats were pretreated with the calcium antagonists verapamil or cinnarizine. Hydralazine hypotension in anesthetized rats was also reduced by pyridoxal pretreatment. These results suggest that at least part of hydralazine-induced hypotension may be related to interaction with pyridoxal, possibly through interference with an effect of the vitamer on calcium and/or sodium transport into vascular smooth muscle.

  5. Hydralazine target: From blood vessels to the epigenome

    Directory of Open Access Journals (Sweden)

    Candelaria Myrna

    2006-02-01

    Full Text Available Abstract Hydralazine was one of the first orally active antihypertensive drugs developed. Currently, it is used principally to treat pregnancy-associated hypertension. Hydralazine causes two types of side effects. The first type is an extension of the pharmacologic effect of the drug and includes headache, nausea, flushing, hypotension, palpitation, tachycardia, dizziness, and salt retention. The second type of side effects is caused by immunologic reactions, of which the drug-induced lupus-like syndrome is the most common, and provides clues to underscoring hydralazine's DNA demethylating property in connection with studies demonstrating the participation of DNA methylation disorders in immune diseases. Abnormalities in DNA methylation have long been associated with cancer. Despite the fact that malignant tumors show global DNA hypomethylation, regional hypermethylation as a means to silence tumor suppressor gene expression has attracted the greatest attention. Reversibility of methylation-induced gene silencing by pharmacologic means, which in turns leads to antitumor effects in experimental and clinical scenarios, has directed efforts toward developing clinically useful demethylating agents. Among these, the most widely used comprise the nucleosides 5-azacytidine and 2'deoxy-5-azacytidine; however, these agents, like current cytotoxic chemotherapy, causes myelosuppression among other side effects that could limit exploitation of their demethylating properties. Among non-nucleoside DNA demethylating drugs currently under development, the oral drug hydralazine possess the ability to reactivate tumor suppressor gene expression, which is silenced by promoter hypermethylation in vitro and in vivo. Decades of extensive hydralazine use for hypertensive disorders that demonstrated hydralazine's clinical safety and tolerability supported its testing in a phase I trial in patients with cancer, confirming its DNA demethylating activity. Hydralazine is

  6. Evaluation of chromosomal aberrations induced by hydralazine in ...

    African Journals Online (AJOL)

    Mozhgan Sedigh-Ardekani

    2014-06-21

    Jun 21, 2014 ... The present study was done to assess the cytogenetic effects of HDZ .... ment with previous report of Song and Zhang where they used .... Hydralazine for treatment of severe hypertension in pregnancy. ... phages. Int Immunopharmacol 2004;4:163–77. [9] Williams GM, Mazue G, McQueen CA, Shimada T.

  7. Iron Dextran Injection

    Science.gov (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  8. Hydralazine tachycardia and sympathetic cardiovascular reactivity in normal subjects.

    Science.gov (United States)

    Vidrio, H; Tena, I

    1980-11-01

    The correlation between hydralazine-induced tachycardia and overall cardiovascular reactivity to sympathetic stimulation was explored in 50 normal subjects. Blood pressure and heart rate changes after standing, immersion of a hand in cold water, the Valsalva maneuver, and moderate exercise were compared with pressure and rate responses to 20 mg oral hydralazine. The drug did not modify blood pressure but increased heart rate, mainly in the standing position. Because plotting the magnitude of this response suggested a two-population distribution, subjects were divided into hyporeactor and hyperreactor groups. Reactivity did not appear to be related to acetylator phenotype. The magnitude of the cardiac response correlated with heart rate responses to standing and to the Valsalva maneuver; when analyzed separately from hyporeactors, correlation was greater among hyperreactors. Because the orthostatic and Valsalva responses are reflex in nature, these results suggest that hydralazine tachycardia is also reflexly induced, that its magnitude depends on individual baroreceptor sensitivity, which is distributed nonnormally, and that it can be predicted by suitable tests of sympathetic responsiveness.

  9. Comparison of the efficacy of nifedipine and hydralazine in hypertensive crisis in pregnancy.

    Science.gov (United States)

    Rezaei, Zahra; Sharbaf, Fatemeh Rahimi; Pourmojieb, Mino; Youefzadeh-Fard, Yashar; Motevalian, Manijeh; Khazaeipour, Zahra; Esmaeili, Sara

    2011-01-01

    Intravenous hydralazine is a commonly administered arteriolar vasodilator that is effective for hypertensive emergencies associated with pregnancy. Oral nifedipine is an alternative in management of these patients. In this study the efficacy of nifedipine and hydralazine in pregnancy was compared in a group of Iranian patients. Fifty hypertensive pregnant women were enrolled in the study. A randomized clinical trial was performed, in which patients in two groups received intravenus hydralazine or oral nifedipine to achieve target blood pressure reduction. The primary outcomes measured were the time and doses required for desired blood pressure achievement. Secondary measures included urinary output and maternal and neonatal side effects. The time required for reduction in systolic and diastolic blood pressure was shorter for oral nifedipine group (24.0 ± 10.0 min) than intravenus Hydralazine group (34.8 ± 18.8 min) (P ≤ 0.016). Less frequent doses were required with oral nifedipine (1.2 ± 0.5) compared to intravenus hydralazine (2.1 ± 1.0) (P ≤ 0.0005). There were no episodes of hypotension after hydralazine and one after nifedipine. Nifedipine and hydralazine are safe and effective antihypertensive drugs, showing a controlled and comparable blood pressure reduction in women with hypertensive emergencies in pregnancy. Both drugs reduce episodes of persistent severe hypertension. Considering pharmacokinetic properties of nifedipine such as rapid onset and long duration of action, the good oral bioavailability and less frequent side effects, it looks more preferable in hypertension emergencies of pregnancy than hydralazine.

  10. Reflex bradycardia induced by hydralazine in sino-aortic deafferented conscious rats.

    Science.gov (United States)

    Sánchez-Salvatori, M A; Vidrio, H

    2003-02-01

    1. It is generally recognized that the vasodilator hydralazine produces hypotension accompanied by baroreflex-mediated tachycardia. In some experimental conditions, however, the accompanying heart rate change is bradycardia, a paradoxical response which has not been satisfactorily explained. The present study examined the possibility of hydralazine-induced bradycardia being mediated by vagal or sympathetic afferents activated by changes in left ventricular pressure. 2. Systolic blood pressure and heart rate responses to hydralazine were recorded in conscious normotensive intact rats by a tail cuff method and compared with responses in animals subjected to previous sino-aortic deafferentation (SAD) to remove the influence of the arterial baroreflex. Responses were also obtained after blockade of myocardial afferent vagal C-fibres with urethane, of efferent vagal impulses to the heart with methylatropine, of positive inotropic effects of hydralazine with atenolol, and of prostanoid sensitization of myocardial nerve fibres with indomethacin. 3. Hydralazine produced hypotension and tachycardia in intact rats, and hypotension and bradycardia in SAD animals. In intact rats, this pattern was not affected by any of the pretreatments, while in SAD rats, all pretreatments reversed the bradycardia to hydralazine. 4. The present results indicate that suppression of the arterial baroreflex by SAD propitiates the appearance of a bradycardiac response to hydralazine. This reaction probably results from activation of a vagal cardiodepressant reflex originating in the heart, as suggested by its blockade by drugs acting at various sites along the reflex arch.

  11. Hydralazine Induced Lupus Syndrome Presenting with Recurrent Pericardial Effusion and a Negative Antinuclear Antibody

    Science.gov (United States)

    Iyer, Praneet; Zijoo, Ritika

    2017-01-01

    Drug induced lupus erythematosus (DIL or DILE) is an autoimmune disorder caused by chronic use of certain drugs. We report a unique case of hydralazine induced lupus syndrome (HILS) with a negative antinuclear antibody in a female patient who was on hydralazine for a period of 1.5–2 years and developed recurrent pericardial effusion as a result of it. Initially her condition was managed with a pericardial window. The recurrence of a massive pericardial effusion necessitated a right hemipericardiectomy. After hydralazine was stopped, she never had any further episodes of pericardial effusion or tamponade. PMID:28194293

  12. Hydralazine Induced Lupus Syndrome Presenting with Recurrent Pericardial Effusion and a Negative Antinuclear Antibody

    Directory of Open Access Journals (Sweden)

    Praneet Iyer

    2017-01-01

    Full Text Available Drug induced lupus erythematosus (DIL or DILE is an autoimmune disorder caused by chronic use of certain drugs. We report a unique case of hydralazine induced lupus syndrome (HILS with a negative antinuclear antibody in a female patient who was on hydralazine for a period of 1.5–2 years and developed recurrent pericardial effusion as a result of it. Initially her condition was managed with a pericardial window. The recurrence of a massive pericardial effusion necessitated a right hemipericardiectomy. After hydralazine was stopped, she never had any further episodes of pericardial effusion or tamponade.

  13. Hydralazine Induced Lupus Syndrome Presenting with Recurrent Pericardial Effusion and a Negative Antinuclear Antibody

    OpenAIRE

    Praneet Iyer; Ahmed Dirweesh; Ritika Zijoo

    2017-01-01

    Drug induced lupus erythematosus (DIL or DILE) is an autoimmune disorder caused by chronic use of certain drugs. We report a unique case of hydralazine induced lupus syndrome (HILS) with a negative antinuclear antibody in a female patient who was on hydralazine for a period of 1.5–2 years and developed recurrent pericardial effusion as a result of it. Initially her condition was managed with a pericardial window. The recurrence of a massive pericardial effusion necessitated a right hemiperica...

  14. Comparison of the Efficacy of Nifedipine and Hydralazine in Hypertensive Crisis in Pregnancy

    Directory of Open Access Journals (Sweden)

    Yashar Youefzadeh-Fard

    2011-11-01

    Full Text Available Intravenous hydralazine is a commonly administered arteriolar vasodilator that is effective for hypertensive emergencies associated with pregnancy. Oral nifedipine is an alternative in management of these patients. In this study the efficacy of nifedipine and hydralazine in pregnancy was compared in a group of Iranian patients. Fifty hypertensive pregnant women were enrolled in the study. A randomized clinical trial was performed, in which patients in two groups received intravenus hydralazine or oral nifedipine to achieve target blood pressure reduction. The primary outcomes measured were the time and doses required for desired blood pressure achievement. Secondary measures included urinary output and maternal and neonatal side effects. The time required for reduction in systolic and diastolic blood pressure was shorter for oral nifedipine group (24.0±10.0 min than intravenus Hydralazine group (34.8±18.8 min (P≤0.016. Less frequent doses were required with oral nifedipine (1.2±0.5 compared to intravenus hydralazine (2.1±1.0 (P≤0.0005. There were no episodes of hypotension after hydralazine and one after nifedipine. Nifedipine and hydralazine are safe and effective antihypertensive drugs, showing a controlled and comparable blood pressure reduction in women with hypertensive emergencies in pregnancy. Both drugs reduce episodes of persistent severe hypertension. Considering pharmacokinetic properties of nifedipine such as rapid onset and long duration of action, the good oral bioavailability and less frequent side effects, it looks more preferable in hypertension emergencies of pregnancy than hydralazine.

  15. Potentiation of cardiovascular responses to hydralazine by diverse hydrazine derivatives.

    Science.gov (United States)

    Vidrio, H

    1994-10-01

    After the observation that in anesthetized rats the antitubercular agent isoniazid potentiates the hypotensive effect of the vasodilator hydralazine (H) and transforms the accompanying reflex tachycardia to bradycardia, a number of hydrazine (HYD) derivatives were tested for this interaction in pentobarbital-anesthetized rats. All HYDs studied elicited this response in varying degrees, isoniazid, thiosemicarbazide and thiocarbohydrazide being the most active. Experiments were then carried out to explore the possibility of an influence of the HYDs on reflex reactions to H due to interaction with pyridoxal, inhibition of glutamic acid decarboxylase and decreased levels of brain gamma-aminobutyric acid. Although the H-HYDs interaction was prevented by vagotomy, it was unaffected by exogenous pyridoxal, did not occur with the alpha adrenergic antagonist prazosin and was not mimicked by non-HYD pyridoxal reactors. In other experiments, pharmacokinetic interactions and monoamine oxidase inhibition were ruled out as alternative explanations for this phenomenon. It was concluded that the H-HYDs interaction is not related to a possible influence of these drugs on central gamma-aminobutyric acid cardiovascular regulation and that other presently unknown mechanisms are involved.

  16. Furosemide versus Hydralazine for Managing Post Partum Hypertension in Severe Preeclampsia: A Comparative Study

    Directory of Open Access Journals (Sweden)

    M Behrashi

    2012-10-01

    Full Text Available Introduction: Gestational hypertension and preeclampsia are important maternal and fetal– infant complications and they can be regarded as the second cause of maternal death as well. The present study aimed to assess the effects of hydralazine and furosemide on blood pressure in sever preeclampsia. Methods: One hundred patients with severe preeclampsia were enrolled. After spontaneous onset of postpartum diuresis and discontinuation of intravenous magnesium sulfate, patients were randomly assigned to receive either Hydralazine10mg QID or furosemide10mg BID for 5 days. Patients’ blood pressure was recorded every 6h and the collected data were compared. Results: Postpartum patients with severe preeclampsia who received furosemide had significantly lower systolic blood pressure by postpartum fifth day(66% compared with 42%, P=0.016;OR=2.6 compared to those who had hydralazine. On the other hand, the time duration of response to treatment was lower in patients who received hydralazine compared with furosemide (24.3h compared with 31.4h; P=0.034. Conclusion: Furosemide proved to be more effective on blood pressure mean reduction compared with Hydralazine in women with sever preeclampsia.

  17. Hydralazine decreases sodium nitroprusside-induced rat aortic ring relaxation and increased cGMP production by rat aortic myocytes.

    Science.gov (United States)

    Vidrio, Horacio; González-Romo, Pilar; Alvarez, Ezequiel; Alcaide, Carlos; Orallo, Francisco

    2005-10-28

    Association of hydralazine with nitrova-sodilators has long been known to be beneficial in the vasodilator treatment of heart failure. We previously found that hydralazine appeared to reduce the increase in cGMP induced by sodium nitroprusside in cultured rat aortic myocytes. In order to further explore this seemingly paradoxical interaction, we extended our initial observations in rat aortic myocytes and also determined the influence of hydralazine on sodium nitroprusside-induced relaxation of rat aortic rings. Hydralazine produced a concentration-dependent inhibition of sodium nitroprusside stimulation of cGMP production and caused a rightward shift of concentration-relaxation curves in aortic rings. A possible mechanism of the hydralazine-nitroprusside interaction could be the interference with bioactivation of the nitro-vasodilator to release nitric oxide. Recent evidence indicates that vascular NADH oxidase, an enzyme known to be inhibited by hydralazine, could be involved in this process. Accordingly, hydralazine was found to inhibit NADH oxidase activity in rat aortic myocytes at concentrations similar to those reducing sodium nitroprusside responses. It was concluded that antagonism of sodium nitroprusside action by hydralazine could be a consequence of interference with bioactivation of the former, apparently through inhibition of vascular NADH oxidase.

  18. ANTICORROSION POTENTIAL OF HYDRALAZINE FOR CORROSION OF MILD STEEL IN 1M HYDROCHLORIC ACID SOLUTION

    Directory of Open Access Journals (Sweden)

    B. M. Prasanna

    2015-05-01

    Full Text Available Anticorrosion potential of mild steel by Hydralazine as corrosion inhibitor for mild steel in 1M hydrochloric acid was investigated by chemical and electrochemical measurements at 303-333 K temperature. The maximum inhibition efficiency of inhibitor by Weight loss method is around 90%, Tafel polarization method is around 85%; electrochemical impedance spectroscopy measurement around 90% at 1250 ppm of Hydralazine in. The result shows that the inhibition efficiency increases with I 1M hydrochloric acid. Hydralazine acts as a mixed type inhibitor which inhibits the corrosion of mild steel due to the adsorption on metal surface. This adsorption system obeys the Langmuir adsorption isotherm.Activation parameters explains the effect of temperature with inhibition efficiency of inhibitor molecule.SEM images of inhibited mild steel strips shows a formation of passive protective film over the surface.

  19. Vasodilators and regression of left ventricular hypertrophy. Hydralazine versus prazosin in hypertensive humans.

    Science.gov (United States)

    Leenen, F H; Smith, D L; Farkas, R M; Reeves, R A; Marquez-Julio, A

    1987-05-01

    Long-term treatment of hypertensive rats with arterial vasodilators may further increase left ventricular hypertrophy. Since left ventricular hypertrophy may be an important determinant of outcome in hypertension, the long-term effects of arterial vasodilation with hydralazine on left ventricular mass and function were compared with those of an alternative third-line drug, the alpha1 blocker prazosin, in patients still hypertensive despite combined diuretic and beta blocker therapy. A single-blind, randomized, two-group parallel design was employed. Both treatments induced a sustained antihypertensive effect, with hydralazine showing more effect on supine blood pressure, and prazosin having more effect on standing pressure. Heart rate, cardiac output, and volume status showed only minor changes. Plasma norepinephrine showed a sustained increase when measured in both the supine and standing positions, but the increases were similar for the two treatments. Supine and standing plasma renin activity increased only during long-term treatment with hydralazine. Prazosin induced a progressive decrease in left ventricular mass over time (-34 +/- 15 g/m2 at 12 months), but hydralazine did not (-9 +/- 10 g/m2 after 12 months). Stepwise regression indicated that a decrease in systolic blood pressure was associated with a decrease in left ventricular mass with both treatments, but an increase in plasma norepinephrine was associated with an increase in left ventricular mass only with hydralazine, suggesting that increased sympathetic activity may affect left ventricular mass via cardiac alpha1 receptors. Thus, if regression of left ventricular hypertrophy is a worthwhile therapeutic goal, hydralazine and analogous arterial vasodilators are not drugs of choice.

  20. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Candelaria Myrna

    2006-01-01

    Full Text Available Abstract Background Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in a panel of cancer cell lines. Results Hydralazine showed no growth inhibitory effect on cervical, colon, breast, sarcoma, glioma, and head & neck cancer cell lines when used alone. On the contrary, valproic acid showed a strong growth inhibitory effect that is potentiated by hydralazine in some cell lines. Individually, hydralazine and valproic acid displayed distinctive effects upon global gene over-expression but the number of genes over-expressed increased when cells were treated with the combination. Treatment of HeLa cells with hydralazine and valproic acid lead to an increase in the cytotoxicity of gemcitabine, cisplatin and adriamycin. A higher antitumor effect of adriamycin was observed in mice xenografted with human fibrosarcoma cells when the animals were co-treated with hydralazine and valproic acid. Conclusion Hydralazine and valproic acid, two widely used drugs for cardiovascular and neurological conditions respectively have promising antineoplastic effects when used concurrently and may increase the antitumor efficacy of current cytotoxic agents.

  1. 2-bromoethylamine, a suicide inhibitor of semicarbazide-sensitive amine oxidase, increases hydralazine hypotension in rats.

    Science.gov (United States)

    Vidrio, Horacio; Medina, Martha

    2005-09-01

    Previous work has shown that inhibitors of the predominantly vascular enzyme semicarbazide-sensitive amine oxidase (SSAO) potentiate the hypotensive response to hydralazine, itself a SSAO inhibitor, in anesthetized rats. The present study was carried out to determine whether the recently described suicide SSAO inhibitor 2-bromoethylamine shares this effect. Hypotensive responses to hydralazine, 0.1 mg/kg IV, were obtained in chloralose-urethane-anesthetized rats, either unpretreated or receiving bromoethylamine at different doses and pretreatment intervals. Parallel experiments were run with semicarbazide, the prototypical hydrazine SSAO inhibitor. Both inhibitors potentiated hydralazine hypotension, bromoethylamine having a longer latency and a shorter duration of action than semicarbazide. High doses of bromoethylamine did not produce potentiation, a phenomenon attributed to SSAO inactivation by excess substrate and decreased formation by the enzyme of the inhibitor product. Experiments with combined administration of both inhibitors were also carried out. When semicarbazide was administered before bromoethylamine, potentiaton was prevented, apparently by a mechanism similar to the above; when it was given after the amine, potentiation was increased. This was attributed to enzyme inhibition by interaction with 2 different active sites. The charactertistics of hydralazine potentiation by bromoethylamine were considered compatible with the mechanism of SSAO inhibition by the amine.

  2. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage.

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Vega-Alvarez, Sasha; Wang, He; Ouyang, Zheng; Shi, Riyi

    2014-04-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in spinal cord injury (SCI), mainly based on in vitro and ex vivo evidence. Here, we demonstrate an increase of acrolein up to 300%; the elevation lasted at least 2 weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health.

  3. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Alvarez, Sascha Vega; He, Wang; Ouyang, Zheng; Shi, Riyi

    2014-01-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in SCI, mainly based on in vitro and ex vivo evidence. Here we demonstrate an increase of acrolein up to 300%; the elevation lasted at least two weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health. PMID:24286176

  4. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed...... contractions induced by K+ (20 mM) compared with K+ (80 mM). In addition, concentration-relaxation curves for hydralazine (pD2 = 5.38 +/- 0.06; Emax = 85.9 +/- 3.6%) were shifted 10-fold to the right by the BK(Ca) blockers tetraethylammonium (1 mM) and iberiotoxin (0.1 microM). In contrast, nimodipine (a Ca2......+-entry blocker), relaxed contractions induced by K+ (20 mM) and K+ (80 mM) equally and nimodipine-induced relaxations were neither antagonized by tetraethylammonium nor by iberiotoxin. In isolated perfused rat hearts, hydralazine (1 microM) increased coronary flow by 28.8 +/- 2.7%. Iberiotoxin (0.1 micro...

  5. Acute effect of hydralazine administration on pulmonary artery hemodynamics in dogs with chronic heartworm disease.

    Science.gov (United States)

    Atkins, C E; Keene, B W; McGuirk, S M; Sato, T

    1994-02-01

    In an effort to better understand the role of vasodilators in the management of pulmonary hypertension associated with chronic heartworm disease (HWD), pulmonary hemodynamic measurements were obtained from 7 experimentally infected, anesthetized dogs before and after hydralazine administration (mean dose, 1.96 mg/kg of body weight). Five dogs were maintained on room air, while 2 were maintained on 100% oxygen during the hydralazine study. The hemodynamic effect of hydralazine in dogs with HWD was evaluated, using heart rate, cardiac index, mean pulmonary artery pressure, mean arterial pressure, total pulmonary resistance, total systemic resistance, total systemic resistance/total pulmonary resistance, left ventricular dP/dtmax, left ventricular end diastolic pressure, and left and right ventricular double products ([mean arterial pressure x heart rate] and [mean pulmonary artery pressure x heart rate], respectively). Responders were defined as those in which total pulmonary resistance decreased > or = 20% without an increase in mean pulmonary arterial pressure and in which heart rate increase was < or = 10%. Comparison was also made between maximal hemodynamic effect of hydralazine with that after 100% oxygen administration for 15 minutes to previously normoxemic dogs (n = 5). Significance was determined if P < 0.05, using the paired t-test. Hydralazine induced significant reductions in mean pulmonary and systemic arterial pressures and total pulmonary resistance, with no significant change in heart rate, cardiac index, total systemic resistance, left ventricular dP/dtmax, left ventricular end diastolic pressure, or right and left ventricular double products. Four (57%) of the 7 dogs studied were considered responders. Pretreatment cardiac index, mean pulmonary artery pressure, and total pulmonary resistance did not allow differentiation of responders from nonresponders.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Myrna Candelaria

    Full Text Available BACKGROUND: Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase.

  7. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    Science.gov (United States)

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  8. Effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069: evidence for therapeutic gain

    Energy Technology Data Exchange (ETDEWEB)

    Chaplin, D.J.; Acker, B.

    1987-04-01

    The effect of the vasodilator hydralazine on both the tumor and systemic toxicity of RSU-1069 has been evaluated in C57B1 mice bearing Lewis lung tumors. The results obtained indicate that both hydralazine and RSU-1069 are cytotoxic to the Lewis lung tumor on their own. However, administration of hydralazine (5 mg/kg PO) at times up to either 3 hr before or 3 hr after RSU-1069 (0.1 mg/g IP) results in a level of cell killing greater than expected from additive effects. This potentiation by hydralazine was observed with doses of RSU-1069 from 0.01 to 0.1 mg/g. The results obtained using excision assays were confirmed using in situ growth delay as the endpoint. Growth delay (+/- s.e.m.) values for tumors to double in volume of 1.5 (+/- 1.2), 2.0 (+/- 1.3) and 6.0 (+/- 0.9) were obtained for hydralazine (5 mg/kg PO) alone, RSU-1069 (0.1 mg/g IP) alone and for hydralazine administered at the same time as RSU-1069 respectively. In contrast to the potentiating effect of hydralazine on the tumor cytotoxicity of RSU-1069, it had no significant effect on the systemic toxicity of RSU-1069 as measured by LD50/30d. No detailed studies to examine the mechanism responsible for the potentiation of tumor cytotoxicity have been performed in the present study. However, the results obtained would be consistent with previous reports that vasodilators such as hydralazine can selectively reduce tumor blood flow and thus oxygenation. Such reduced tumor oxygenation would increase the cytotoxic effects of RSU-1069 which is known to be more toxic to cells at reduced oxygen levels.

  9. Treatment with hydralazine in mild to moderate mitral or aortic incompetence.

    Science.gov (United States)

    Jensen, T; Kornerup, H J; Lederballe, O; Videbaek, J; Henningsen, P

    1983-05-01

    Twenty-two patients with mild or moderate mitral or aortic incompetence were randomly assigned to treatment with either hydralazine (mean 127 mg/day, range 37-225) or placebo. Eight patients in the hydralazine group and ten patients in the placebo group completed the study. Two of the patients in the hydralazine group and one patient in the placebo group were withdrawn because of suspected side effects. One patient dropped out because of influenza. Over a period of seven weeks the patients were monitored clinically as well as non-invasively with echocardiography and exercise testing. The systolic blood pressure fell from 152 +/- 10 to 135 +/- 9 mm Hg (mean +/- s.e.m.) (17%, P less than 0.01). The diastolic blood pressure fell from 63 +/- 8 to 58 +/- 8 mm Hg (5%, P = 0.09). The heart rate was unchanged. Left ventricular internal diameter in systole decreased from 49 +/- 3 to 45 +/- 3 mm (9%, P = 0.05) and in diastole from 73 +/- 4 to 70 +/- 3 mm (4%, P = 0.03). Left ventricular systolic wall tension fell from 200 +/- 16 to 152 +/- 18 mm Hg (24%, P less than 0.01). Left ventricular shortening fraction increased from 32 +/- 3 to 36 +/- 3% (12%, P less than 0.01). Maximal exercise capacity improved from 3200 +/- 800 to 3800 +/- 700 kpm (19%, P = 0.02). No significant responses were observed in the placebo group. Oral hydralazine reduces left ventricular internal diameters, improves left ventricular performance, presumably at a lower level of oxygen consumption, and improves exercise capacity in patients with modest mitral or aortic incompetence.

  10. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes

    Directory of Open Access Journals (Sweden)

    Trejo-Becerril Catalina

    2005-04-01

    Full Text Available Abstract Background The antihypertensive compound hydralazine is a known demethylating agent. This phase I study evaluated the tolerability and its effects upon DNA methylation and gene reactivation in patients with untreated cervical cancer. Methods Hydralazine was administered to cohorts of 4 patients at the following dose levels: I 50 mg/day, II 75 mg/day, III 100 mg/day and IV 150 mg/day. Tumor biopsies and peripheral blood samples were taken the day before and after treatment. The genes APC, MGMT; ER, GSTP1, DAPK, RARβ, FHIT and p16 were evaluated pre and post-treatment for DNA promoter methylation and gene expression by MSP (Methylation-Specific PCR and RT-PCR respectively in each of the tumor samples. Methylation of the imprinted H19 gene and the "normally methylated" sequence clone 1.2 was also analyzed. Global DNA methylation was analyzed by capillary electrophoresis and cytosine extension assay. Toxicity was evaluated using the NCI Common Toxicity Criteria. Results Hydralazine was well tolerated. Toxicities were mild being the most common nausea, dizziness, fatigue, headache and palpitations. Overall, 70% of the pretreatment samples and all the patients had at least one methylated gene. Rates of demethylation at the different dose levels were as follows: 50 mg/day, 40%; 75 mg/day, 52%, 100 mg/day, 43%, and 150 mg/day, 32%. Gene expression analysis showed only 12 informative cases, of these 9 (75% re-expressed the gene. There was neither change in the methylation status of H19 and clone 1.2 nor changes in global DNA methylation. Conclusion Hydralazine at doses between 50 and 150 mg/day is well tolerated and effective to demethylate and reactivate the expression of tumor suppressor genes without affecting global DNA methylation

  11. The influence of cyclo-oxygenase inhibitors on the cardiovascular effects of hydralazine in rats.

    Science.gov (United States)

    Vidrio, H; Garcia-Marquez, F

    1985-01-01

    In order to explore the postulated role of prostaglandins in the vasodilator effects of hydralazine, blood pressure and heart rate responses to the drug were determined in anesthetized and conscious rats with and without pretreatment with indomethacin or aspirin. Changes in rectal temperature were also measured. In control animals, hydralazine produced an almost immediate fall in blood pressure and a slowly developing tachycardia which bore no temporal relation with the hypotension. These effects were accompanied by a moderate increase in temperature. Pretreatment with the cyclo-oxygenase inhibitors did not reduce the blood pressure response, but completely blocked and in some cases reversed the tachycardia. The hyperthermic response was also reversed. These results can be taken as evidence for a role of prostaglandins in the tachycardia and hyperthermia, but not in the hypotension elicited by hydralazine in rats. In the absence of direct measurements of prostaglandin synthesis and release, however, no firm support for this possibility is offered by the present findings and alternative explanations are considered.

  12. Baroreflex sensitivity as a determinant of responses to hydralazine in dogs.

    Science.gov (United States)

    Vidrio, H

    1983-01-01

    In order to evaluate the relation between hypotension induced by hydralazine and the resultant reflex tachycardia, as well as the role of baroreflex sensitivity in determining the magnitude of these responses, the drug was administered orally at a dose of 1 mg/kg to a group of trained conscious normotensive and renal hypertensive dogs. Responses were assessed by measuring blood pressure and heart rate for 8 hr after dosing and integrating the changes observed over time in order to obtain a mean value. Baroreflex gain was calculated as the ratio of heart rate to blood pressure responses. Hypotension was greater in hypertensives, whereas tachycardia was not different between groups. Gain was therefore smaller in hypertensives, but not uniformly so, a portion of these animals having values within the normotensive range. This high gain group responded with less hypotension and more tachycardia than did the low gain group. Differences in pressure and rate responses to repeated administration of hydralazine between the two groups were minimal. It is suggested that baroreflex gain, an innate individual characteristic, is an important determinant of acute pressure responses to hydralazine in dogs, hypertensive animals having less gain than normotensives and showing increased hypotensive responses. Gain appears not to be as important in determining the chronic effects of the drug.

  13. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine

    Directory of Open Access Journals (Sweden)

    Benitez-Bribiesca Luis

    2006-08-01

    Full Text Available Abstract Background The development of resistance to cytotoxic chemotherapy continues to be a major obstacle for successful anticancer therapy. It has been shown that cells exposed to toxic concentrations of commonly used cancer chemotherapy agents develop DNA hypermetylation. Hence, demethylating agents could play a role in overcoming drug resistance. Methods MCF-7 cells were rendered adriamycin-resistant by weekly treatment with adriamycin. Wild-type and the resulting MCF-7/Adr cells were analyzed for global DNA methylation. DNA methyltransferase activity and DNA methyltransferase (dnmt gene expression were also determined. MCF-7/Adr cells were then subjected to antisense targeting of dnmt1, -3a, and -b genes and to treatment with the DNA methylation inhibitor hydralazine to investigate whether DNA demethylation restores sensitivity to adriamycin. Results MCF-7/Adr cells exhibited the multi-drug resistant phenotype as demonstrated by adriamycin resistance, mdr1 gene over-expression, decreased intracellular accumulation of adriamycin, and cross-resistance to paclitaxel. The mdr phenotype was accompanied by global DNA hypermetylation, over-expression of dnmt genes, and increased DNA methyltransferase activity as compared with wild-type MCF-7 cells. DNA demethylation through antisense targeting of dnmts or hydralazine restored adriamycin sensitivity of MCF-7/Adr cells to a greater extent than verapamil, a known inhibitor of mdr protein, suggesting that DNA demethylation interferes with the epigenetic reprogramming that participates in the drug-resistant phenotype. Conclusion We provide evidence that DNA hypermethylation is at least partly responsible for development of the multidrug-resistant phenotype in the MCF-7/Adr model and that hydralazine, a known DNA demethylating agent, can revert the resistant phenotype.

  14. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ji(r)í Hradil; Alexander Pisarev; Michal Babi(c); Daniel Horák

    2007-01-01

    Dextran-modified iron oxide nanoparticles were prepared by precipitation of Fe(Ⅱ) and Fe(Ⅲ) salts with ammonium hydroxide by two methods.Iron oxide was precipitated either in the presence of dextran solution, or the dextran solution was added after precipitation. In the second method,the iron oxide particle size and size distribution could be controlled depending on the concentration of dextran in the solution. The nanoparticles were characterized by size-exclusion chromatography, transmission electron microscopy and dynamic light scattering. Optimal conditions for preparation of stable iron oxide colloid particles were determined. The dextran/iron oxide ratio 0-0.16 used in precipitation of iron salts can be recommended for synthesis of nanoparticles suitable for biomedical applications, as the colloid does not contain excess dextran and does not coagulate.

  15. Response to Hydralazine-Valproate in a Patient with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Alfonso Dueñas-Gonzalez

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors have shown significant activity in the treatment of cutaneous T-cell lymphomas (CTCL. The epigenetic alterations of CTCL not only are limited to altered histone acetylation but also include aberrant DNA gene methylation hence, the combination of an HDAC inhibitor with a DNA demethylating agent is a promising therapy to be tested. Here we report a mycosis fungoides patient having a dramatic response to hydralazine and valproate, two repositioned drugs as HDAC and DNA methylation inhibitors, respectively.

  16. Mechanisms of positive inotropic action of flosequinan, hydralazine, and milrinone on mammalian myocardium.

    Science.gov (United States)

    Miao, L; Perreault, C L; Travers, K E; Morgan, J P

    1997-02-26

    Flosequinan is an arterial and venous dilator that also has a positive inotropic effect at relatively higher doses. The purpose of this study was to determine the mechanism of this positive inotropic effect in ferret papillary muscles loaded with the Ca2+ indicator, aequorin. Over the range of doses from 10(-6) to 10(-3) M, flosequinan produced a 61 +/- 9% increase in peak tension that was accompanied by a corresponding increase in [Ca2+]i. This positive inotropic effect was not selectively blocked by addition to the perfusate of procaine 0.6 microM, tetrodotoxin 10(-6) M or by verapamil, 5 x 10(-8) M. In contrast, the positive inotropic effect of flosequinan, but not milrinone or hydralazine, was potentiated by prior addition of ouabain 3 nM to enhance intracellular Ca2+ via reduction of the Na+/Ca2+ exchange. Moreover, antagonists of Na+/Ca2+ exchange, including cadmium 10 microM, amiloride 600 microM and choline substitution for 1/3 Na+ in the perfusate, blocked the response to flosequinan but not hydralazine or milrinone. These results indicate that flosequinan produces a positive inotropic effect by reduction of Na+/Ca2+ exchange in mammalian myocardium. Moreover, flosequinan has the potential to interact synergistically with other positive inotropic agents such as digoxin that affect Na+/Ca2+ exchange by direct or indirect actions.

  17. Isoproterenol infusion increases level of consciousness during catheter ablation of atrial fibrillation.

    Science.gov (United States)

    O'Neill, Daniel K; Aizer, Anthony; Linton, Patrick; Bloom, Marc; Rose, Emily; Chinitz, Larry

    2012-08-01

    The objective of this study was to determine the effects of isoproterenol infusion on level of consciousness during ablation using total intravenous anesthesia. Seven patients undergoing total intravenous anesthesia for atrial fibrillation ablation were monitored for level of consciousness using bispectral EEG levels (BIS). Isoproterenol infusion was performed after the ablation during anesthesia. BIS levels prior to, during, and post-isoproterenol infusion were recorded and correlated to isoproterenol infusion doses. In all patients, BIS levels significantly increased during isoproterenol infusion (median BIS prior to infusion, 46; during infusion, 64 (p levels could again be reduced. Isoproterenol infusion alters consciousness level during total intravenous anesthesia for atrial fibrillation ablation. BIS monitoring is a novel way to modulate anesthesia during ablation to potentially optimize patient comfort and ablation success.

  18. Simultaneous Estimation of Hydrochlorothiazide, Hydralazine Hydrochloride, and Reserpine Using PCA, NAS, and NAS-PCA.

    Science.gov (United States)

    Sharma, Chetan; Badyal, Pragya Nand; Rawal, Ravindra K

    2015-01-01

    In this study, new and feasible UV-visible spectrophotometric and multivariate spectrophotometric methods were described for the simultaneous determination of hydrochlorothiazide (HCTZ), hydralazine hydrochloride (H.HCl), and reserpine (RES) in combined pharmaceutical tablets. Methanol was used as a solvent for analysis and the whole UV region was scanned from 200-400 nm. The resolution was obtained by using multivariate methods such as the net analyte signal method (NAS), principal component analysis (PCA), and net analyte signal-principal component analysis (NAS-PCA) applied to the UV spectra of the mixture. The results obtained from all of the three methods were compared. NAS-PCA showed a lot of resolved data as compared to NAS and PCA. Thus, the NAS-PCA technique is a combination of NAS and PCA methods which is advantageous to obtain the information from overlapping results.

  19. Prolonged pretreatment of mice with cholera toxin, but not isoproterenol, alleviates acute lethal systemic inflammatory response.

    Science.gov (United States)

    Wang, Jingyang; Guo, Xiangrui; Cao, Junxia; Zhang, Xueying; Zhang, Jiyan; Sun, Dejun; Wang, Qingyang

    2014-11-01

    Isoproterenol, a synthetic non-selective β-adrenergic agonist, is often used during the immediate postoperative period after open heart surgery for its chronotropic and vasodilatory effects. It has been demonstrated that isoproterenol pretreatment followed by immediate LPS administration leads to reduced tumor necrosis factor-α (TNF-α) response in vivo. However, sepsis never happens immediately after the surgery, but rather severe immune dysfunction occurs at least 24h later. It remains elusive what effects isoproterenol might exert to innate immunity during the period. In this scenario, we investigated the effects of 24-h isoproterenol pretreatment on septic shock induced by experimental endotoxemia and bacterial peritonitis, with cholera toxin as another cAMP elevator. Unexpectedly, we found that isoproterenol and cholera toxin exhibited distinct effects in acute lethal systemic inflammatory response. Isoproterenol worsened liver injury without enhancing NK/NKT activity. Meanwhile, cholera toxin but not isoproterenol showed dramatically reduced TNF-α response in LPS induced septic shock. Our data provide a caution for the clinical use of isoproterenol and suggest that isoproterenol has cAMP-independent functions.

  20. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    Science.gov (United States)

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.

  1. EFFECTS OF EXERCISE AND ISOPROTERENOL ON HEMODYNAMICS AND MYOCARDIAL VO2 IN LAMBS WITH AORTOPULMONARY SHUNTS

    NARCIS (Netherlands)

    GRATAMA, JWC; MEUZELAAR, JJ; DALINGHAUS, M; KOERS, JH; GERDING, AM; ZIJLSTRA, WG; KUIPERS, JRG

    To compare hemodynamic changes induced by isoproterenol and exercise stress tests in individuals with and without left, ventricular volume load, we studied 10 lambs with an aortopulmonary shunt [58 +/- 4% (SE) of left ventricular output] 2 wk after the shunt was created. Two studies, isoproterenol

  2. Role of the sympatho-adrenal system in the reflex tachycardia produced by hydralazine in the anesthetized rat.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F

    1986-09-01

    The role of the sympatho-adrenal system in the production of tachycardia accompanying the hypotensive response to hydralazine was studied in urethane-anesthetized rats subjected to previous bilateral adrenal demedullation or to pretreatment with 6-hydroxydopamine and compared with intact control animals. The prolonged hypotension induced by the vasodilator was not affected by these maneuvers, but the slowly developing tachycardia was reversed to bradycardia, which in the demedullated group was followed after 60 min by a moderate increase in heart rate. In the chemically sympathectomized rats, the cardiac depressant response was completely blocked by pretreatment with atropine. In additional experiments, previous administration of methylatropine enhanced hydralazine tachycardia, but atropine partially inhibited this response and changed its time course to mirror that of the hypotension. These results indicate that in urethane-anesthetized rats, hydralazine tachycardia is mediated by sympatho-adrenal activation and that it is accompanied by a simultaneous heart rate-lowering parasympathetic discharge normally masked by the predominant tachycardia. They further suggest that the tachycardia is facilitated by a muscarinic mechanism which modulates central sympathetic influences on cardiovascular function.

  3. Effect of hydralazine on duration of soft tissue local anesthesia following dental treatment: a randomized clinical trial.

    Science.gov (United States)

    Fakheran Esfahani, Omid; Pouraboutaleb, Mohammad Fazel; Khorami, Behnam

    2015-01-01

    Prolonged numbness following routine dental treatments can cause difficulties in speaking and swallowing and may result in inadvertent biting of soft tissues. Local injection of vasodilator agents may represent a solution to this problem. The aim of this study was to evaluate the effect of submucosal injection of hydralazine hydrochloride (HCl) on the duration of oral soft tissue anesthesia after routine dental treatment. This randomized, single-blinded, controlled clinical trial included 50 patients who received inferior alveolar nerve block (2% lidocaine with 1:100,000 epinephrine) for simple restorative treatment. Upon completion of the dental treatment, patients randomly received a hydralazine HCl or sham injection in the same site as the local anesthetic injection. The reversal time to normal sensation of soft tissues (lips, tongue, and perioral skin) was evaluated and reported every 5 minutes by the patients, who followed an assessment protocol that they were taught in advance of treatment. Median recovery times in the hydralazine group and the sham group were 81.4 (SD, 3.6) and 221.8 (SD, 6.3) minutes, respectively. Based on Kaplan-Meier survival analysis, the duration of soft tissue anesthesia in the 2 groups was significantly different (P local anesthetic-induced soft tissue numbness and the related functional problems.

  4. Irrigation with isoproterenol during ureterorenoscopy causes no systemic side-effects

    DEFF Research Database (Denmark)

    Jung, Helene U; Jakobsen, Joern S; Frimodt-Moeller, Poul C

    2007-01-01

    /ml), ureterorenoscopy was performed with saline irrigation. Renal pelvic pressure, blood pressure and heart rate were measured before and after isoproterenol irrigation. Venous blood was drawn for isoproterenol measurements. Results. Endoluminal isoproterenol irrigation produced no changes in mean heart rate (HR.......23) were significant. Pelvic pressure was significantly lower during isoproterenol irrigation [19 (+/-3) mmHg] compared to saline irrigation [35 (+/-2.6) mmHg] (p=0.0006). Pelvic pressure reached very high levels (>300 mmHg), especially during injection of contrast medium. Conclusion. Endoluminal......Objective. Ureterorenoscopy causes complications that may be related to high intrarenal pressures generated during irrigation. Endoluminal isoproterenol administration has been shown to reduce pelvic pressure in pigs. The objective of this study was to investigate possible systemic side...

  5. Effects of hydrazine derivatives on vascular smooth muscle contractility, blood pressure and cGMP production in rats: comparison with hydralazine.

    Science.gov (United States)

    Vidrio, Horacio; Fernández, Gabriela; Medina, Martha; Alvarez, Ezequiel; Orallo, Francisco

    2003-01-01

    Hydralazine is a hydrazine derivative used clinically as a vasodilator and antihypertensive agent. Despite numerous studies with the drug, its mechanism of action has remained unknown; guanylate cyclase activation and release of endothelial relaxing factors are thought to be involved in its vasodilator effect. Other hydrazine derivatives are known to stimulate guanylate cyclase and could therefore share the vasodilator activity of hydralazine, although such possibility has not been assessed systematically. In the present study, hydralazine, hydrazine, phenylhydrazine, and isoniazid were evaluated for vascular smooth muscle relaxation in rat aortic rings with and without endothelium, as well as after incubation with the guanylate cyclase inhibitor methylene blue. They were also tested for enhancement of cyclic guanosine monophosphate (cGMP) production by cultured rat aortic smooth muscle cells and for hypotension in the anesthetized rat. All hydrazines relaxed aortic rings, an action unaffected by endothelium removal and, in all cases except hydralazine, antagonized by methylene blue. Only phenylhydrazine increased cGMP production and only hydralazine markedly lowered blood pressure. It was concluded that hydralazine vascular relaxation is independent of endothelium and is not related to guanylate cyclase activation. The other hydrazines studied also elicit endothelium-independent relaxation, but the effect is related to guanylate cyclase. The marked hypotensive effect of hydralazine contrasts with its modest relaxant activity and is not shared by the other hydrazines. The fact that hydrazine and isoniazid produce methylene blue-sensitive relaxation, yet do not enhance cGMP production suggests the need for activating factors present in aortic rings but not in isolated cells.

  6. Semicarbazide-sensitive amine oxidase substrates potentiate hydralazine hypotension: possible role of hydrogen peroxide.

    Science.gov (United States)

    Vidrio, Horacio; Medina, Martha; González-Romo, Pilar; Lorenzana-Jiménez, Marte; Díaz-Arista, Patricia; Baeza, Alejandro

    2003-11-01

    The relation between inhibition of semicarbazide-sensitive amine oxidase (SSAO) and vasodilation by hydralazine (HYD) was evaluated in chloralose/urethane-anesthetized rats pretreated with various substrates of the enzyme and subsequently administered a threshold hypotensive dose of the vasodilator. The SSAO substrates benzylamine, phenethylamine, and methylamine potentiate the hypotensive response to HYD. Methylamine, which was studied in greater detail because of its status as a possible endogenous SSAO substrate, does not influence the response to the reference vasodilator pinacidil; it does enhance HYD relaxation in aortic rings obtained from pretreated rats. Experiments designed to identify the product of SSAO activity responsible for potentiation by methylamine suggest involvement of hydrogen peroxide (H2O2), as evidenced by the findings that such potentiation is abolished by additional pretreatment with the H2O2-metabolizing enzyme catalase, and that the plasma concentration of H2O2 is increased by methylamine and decreased by HYD. These results are interpreted as a substantiation of the relation between the known SSAO inhibitory effect of HYD and its vasodilator activity. Pretreatment with the SSAO substrates would increase production of H2O2 in vascular smooth muscle and thus magnify the influence of this vasoconstrictor agent on vascular tone. In these conditions, the decrease in H2O2 production and hence in vascular tone caused by SSAO inhibition by HYD would also be magnified. It is speculated that inhibition of vascular SSAO could represent a novel mechanism of vasodilation.

  7. Patterns of heart rate responses to hydralazine in normotensive and hypertensive rats.

    Science.gov (United States)

    Vidrio, H

    1996-01-01

    Hydralazine (H) induces hypotension accompanied by cardiac stimulation due to activation of the arterial baroreflex. Both clinical and experimental observations suggest, however, that in certain conditions H hypotension can be accompanied by unchanged or even depressed cardiac performance. The present study determined whether varying patterns of heart rate responses could be detected in large populations of conscious normotensive (n = 61) and renal hypertensive (n = 59) rats receiving a single dose of H. These patterns were compared with those of normotensive pentobarbital-anesthetized rats (n = 43). In the three groups, hypotension was accompanied by either tachycardia, unchanged heart rate or bradycardia. Tachycardia was found in 52% of normotensive conscious rats, in 51% of hypertensives and in only 14% of anesthetized animals. Heart rate did not change in 26, 35 and 23%, while bradycardia was detected in 22, 14 and 63%, respectively. These results were explained by postulating the initiation by H of two reflexes with opposite effects on heart rate: the arterial baroreflex producing tachycardia and a cardiac mechanoreceptor reflex producing bradycardia. These reactions would compete with each other, with results depending on their relative sensitivity in a given animal.

  8. Comparative effect of glucagon and isoproterenol on hepatic glycogenolysis and glycolysis in isolated perfused liver

    OpenAIRE

    Vardanega-Peicher Márcia; Galletto Ricardo; Pagliarini e Silva Sarah; Bazotte Roberto Barbosa

    2003-01-01

    The effect of glucagon and isoproterenol (beta-adrenergic agonist) on hepatic glycogenolysis and glycolysis in isolated perfused liver was compared. The levels of isoproterenol and glucagon which promoted the maximal activation of glycogenolysis were 20 muM and 1nM respectively. However, glucagon (1 nM) not only increased glycogenolysis but also inhibited glycolysis. Because adenosine-3'-5'-cyclic monophosphate (cAMP) is a common second messenger to glucagon and isoproterenol, the level of cA...

  9. Radioprotection of the rat parotid gland by WR-2721 and isoproterenol and its modification by propranolol

    Energy Technology Data Exchange (ETDEWEB)

    Sodicoff, M.; Conger, A.D.

    1983-04-01

    The aminothiol WR-2721 and ..beta..-adrenergic agonist isoproterenol both conferred considerable radioprotection to the rat parotid gland. Isoproterenol acts on the ..beta..-receptor, and its specific antagonist, propranolol, eliminated isoproterenol's protective effect, implicating the ..beta..-receptor and possibly cAMP in the mechanism of the protection. Since other sulfhydryl-containing protectants have been shown to elevate cAMP it was reasoned that WR-2721 might do so as well. However, the radioprotection conferred by WR-2721 was not reduced by propranolol, showing that the ..beta..-receptor played no part in WR-2721's action. The possible role of cAMP in radioprotection by isoproterenol is discussed.

  10. Isoproterenol in comparison to WR-2721 as a chemoradioprotector of the rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Sodicoff, M.; Conger, A.D.; Pratt, N.E.

    1979-03-01

    A comparison was made of the radioprotective abilities of the chemoradioprotector WR-2721, an amino-thiol, and the beta-sympathomimetic secretogogue isoproterenol on the rat parotid gland. Using the dose-response curve of WR-2721 for gland weights as a basis for comparison, isoproterenol was found to offer significant and equal protection during both the acute (DMF, 2.5) and the chronic (DMF, 2.3) periods.

  11. Factors that Interfere in Dextran Production By Sugarcane Contaminating Microorganisms

    Directory of Open Access Journals (Sweden)

    Maria Celia Oliveira Hauly

    2002-01-01

    Full Text Available Dextrans are polysaccharides produced by microorganisms, specially bacterias from the Leuconostoc genus. Dextrans have a high molecular weigh and most of the glycosidic bonds are a(1®6. For the sugar manufacture, dextran is a problem which changes the quality of sugar and the industry efficiency. Dextrans are synthesized when the sugarcane is spoiled before the harvest period, through the sugarcane fissures, which permit the penetration of microorganisms that deteriorate the sugarcane. This work aims at improving the sugar quality and the industry efficiency by isolating dextran producing microorganisms, comparing the time of burning with the infection index and the dextran concentration in the sugarcane juice. Dextran producing microorganisms were isolated from sugarcane juice during the 97/98; 99/00 and 2001 harvests. The isolated strains were maintained in MRS agar at the temperature of 4°C. The fermentation was carried out in MRS broth for 72 hours at 28°C with 180 rpm. Dextran was analyzed by spectrophotometry at 485 nm. Only three isolated strains showed good dextran production. The average of dextran production in MRS broth was 390 mg%. It was observed that a burning period above 72 hours increases the sugarcane contamination and causes high dextran production, and consequently the reduction of the industry efficiency of the sugar factory.

  12. Evidence for selective regulation of the phosphorylation of myocyte proteins by isoproterenol and prostaglandin E1.

    Science.gov (United States)

    Hayes, J S; Bowling, N; King, K L; Boder, G B

    1982-01-12

    Both isoproterenol and prostaglandin E1 increased the activation state of cyclic AMP-dependent protein kinase in cultured myocytes; however, only isoproterenol enhanced phosphorylase activity and contractile state. Following the incubation of intact myocytes with 32PO3-(4), 32 phosphoproteins were resolved from total cellular proteins by electrophoresis in sodium dodecyl sulfate polyacrylamide gels followed by autoradiography. Isoproterenol stimulated 32PO3-(4) incorporation into 16 proteins, including 2 phosphoproteins not observed under control conditions. By contrast, prostaglandin E1 neither caused a measurable change in the protein phosphorylation pattern nor interfered with isoproterenol's capacity to do so. Isoproterenol stimulated myocyte protein phosphorylation in either the presence or absence of extracellular Ca2+. The results suggest that the regulation of protein phosphorylation following adenylate cyclase stimulation is: (1) an agonist-specific process and not due solely to a random accumulation of intracellular cycle AMP and activation of protein kinase; (2) the Ca2+ mobilization component of beta-receptor activation does not account for the paradoxical effects of isoproterenol and prostaglandin E1; (3) activation of cyclic AMP-dependent protein kinase does not always result in an enhancement of protein phosphorylation.

  13. Early genes induction in spontaneously hypertensive rats left ventricle with angiotensin-converting enzyme inhibitors but not hydralazine

    Energy Technology Data Exchange (ETDEWEB)

    Susic, D.; Aristizabal, D.J.; Prakash, O.; Nunez, E.; Frohlich, E.D. [Hypertension Research Laboratories, New Orleans, LA (United States)

    1995-12-01

    Spontaneously hypertensive rats were given an angiotensin-converting enzyme (ACE) inhibitor (benazepril or quinapril) or hydralazine and were left for up to 6 hr. To examine whether administration of antihypertensive agents affects expression of immediate early genes in left ventricular myocardium, groups of rats were sacrificed at 1, 3, and 6 hr after dosing; total RNA was extracted from left ventricular tissue and analyzed by blot hybridization technique using labeled probes for c-myc, c-fos, and GAPDH mRNA. All three antihypertensive agents reduced pressure similarly, and treatment with the two ACE inhibitors increased c-fos and c-myc mRNA expression in left ventriculum. By contrast, hydralazine did not increase steady-state mRNA expression of either proto-oncogene. Thus, in parallel with the pressure fall, acute administration of the ACE inhibitors induced expression of c-fos and c-myc mRNAs in the left ventricle. Since the equidepressor dose of hyralazine did not affect expression of these proto-oncogenes, this effect of ACE inhibitors is independent of their hemodynamic action. 27 refs., 1 fig., 2 tabs.

  14. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  15. Angiotensin-(1-7) Blockade Attenuates Captopril- or Hydralazine-Induced Cardiovascular Protection in Spontaneously Hypertensive Rats-Treated with L-NAME

    Science.gov (United States)

    Benter, Ibrahim F.; Yousif, Mariam H. M.; Al-Saleh, Fatemah M.; Chappell, Raj Raghupathy Mark C.; Diz, Debra I.

    2011-01-01

    We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHR) chronically treated with the nitric oxide synthesis inhibitor L-NAME (SHR-L). L-NAME (80 mg/L) administration for three weeks increased mean arterial pressure (MAP) from 196 ± 6 mmHg to 229 ± 3 mmHg (pcaptopril (300 mg/L in drinking water) or hydralazine (1.5 mg/kg/day ip). In isolated perfused hearts, the recovery of left ventricular function from global ischemia was enhanced by captopril or hydralazine treatment, and was exacerbated with A779. The Ang-(1-7) antagonist attenuated the beneficial effects of captopril and hydralazine on cardiac function. Recovery from global ischemia was also improved in isolated SHR-L hearts acutely perfused with captopril during both the perfusion and reperfusion periods. The acute administration of A779 reduced the beneficial actions of captopril to improve recovery following ischemia. We conclude that during periods of reduced nitric oxide availability, endogenous Ang-(1-7) plays a protective role to effectively buffer the increase in blood pressure and renal injury, as well as the recovery from cardiac ischemia. Moreover, Ang-(1-7) contributes to the blood pressure lowering and tissue protective actions of captopril and hydralazine in a model of severe hypertension and end-organ damage. PMID:21326110

  16. Contractility and protein phosphorylation in cardiomyocytes: effects of isoproterenol and AR-L57.

    Science.gov (United States)

    Hayes, J S; Bowling, N; Boder, G B

    1984-08-01

    The cardiotonic drugs AR-L57 [2-(2,4-dimethoxyphenyl)-1H-imidazo(4,5b)-pyridine] and isoproterenol stimulated contractility in cultured heart cells in concentration-dependent manners; only the effects of isoproterenol were blocked by propranolol. Isoproterenol, but not AR-L57, enhanced the phosphorylation state of seven protein bands [relative molecular weights (MrS) 155,000, 96,000, 27,000, 24,000, 20,000, 16,000, 12,000] and resulted in the dephosphorylation of one protein band (Mr 21,000). Also, only isoproterenol increased the activation states of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase and glycogen phosphorylase. The eight protein bands resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and detected by autoradiography were altered by isoproterenol in time- and concentration-dependent manners. The 24,000-Mr protein substrate phosphorylated in response to isoproterenol was converted to a 12,000-Mr species by heating in the presence of SDS prior to electrophoresis, suggesting that the two substrates were in fact identical proteins. A comparison of the 2-min responses to varying concentrations of isoproterenol resulted in excellent correlations between the phosphorylation states of individual protein bands and contractility. This was true even for the 21,000-Mr species that was dephosphorylated. However, only the 27,000-, 24-12,000-, and 16,000-Mr substrates were phosphorylated rapidly enough to be associated with the onset of the inotropic response. Cultured myocytes are an important feature of these studies as they are 84% pure ventricular cells that remain 100% viable throughout an experiment. Because this system is suitable for biochemical measurements and the effects of agents on heart cell contractility can be determined, it is possible to correlate changes in biochemical parameters with alterations in physiological state.

  17. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Science.gov (United States)

    Miller, Colette N; Yang, Jeong-Yeh; England, Emily; Yin, Amelia; Baile, Clifton A; Rayalam, Srujana

    2015-01-01

    Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  18. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Colette N Miller

    Full Text Available Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1, enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM following standard differentiation supplemented with thyroid hormone (T3; 1 nM. The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1 were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  19. Naloxone potentiates the inotropic effects of isoproterenol in vitro by a nonopiate receptor mechanism.

    Science.gov (United States)

    Lechner, R B

    1992-11-01

    Naloxone potentiates the effects of adrenergic agonists when administered to hypovolemic dogs, and it has been assumed that this effect is due to naloxone's action at opiate receptors. To help determine the site and mechanism of this interaction, we administered naloxone and its "d" stereo-isomer (which does not bind to opiate receptors) to guinea pig papillary muscles in the presence and absence of pharmacologic (isoproterenol) and physiologic (treppe) inotropic stimulation. In control muscles and in rapidly paced muscles, naloxone was without significant inotropic effect. In the presence of isoproterenol, d- and l-naloxone exerted significant positive inotropic effects that were dose dependent. We conclude that, since both d- and l-naloxone potentiated the inotropic effects of isoproterenol and this was seen in the absence of opioids, naloxone may increase contractility by a nonopiate receptor-mediated mechanism.

  20. Hydralazine is involved in tele-methylhistamine metabolism by inhibiting monoamine oxidase B in pregnancy-associated hypertensive mice.

    Science.gov (United States)

    Kawasaki, Shohei; Kako, Koichiro; Nagashima, Yusuke; Kanou, Akihiko; Ishida, Junji; Fukamizu, Akiyoshi

    2017-01-07

    Hypertensive disorders of pregnancy globally affect 6-8% of gestation and remain a major cause of both foetal and maternal morbidity and mortality. However, the antihypertensive medications for the patients of this disease are strictly limited due to the teratogenic potentials. Here, we found that tele-methylhistamine (tMH) increased in response to the administration of hydralazine (Hdz), a vasodilative agent, in the pregnancy-associated hypertensive (PAH) mice. Hdz abrogated the degradation of tMH catalyzed by monoamine oxidase B (MAO-B) in vitro These results suggested that Hdz inhibited the MAO-B activity and consequently tMH increased in the maternal circulation of PAH mice.

  1. High isoproterenol doses are required to activate beta3-adrenoceptor-mediated functions in dogs.

    Science.gov (United States)

    Pelat, Michel; Verwaerde, Patrick; Galitzky, Jean; Lafontan, Max; Berlan, Michel; Senard, Jean-Michel; Montastruc, Jean-Louis

    2003-01-01

    The "in vivo" conditions for beta3-adrenoceptors (beta-AR) activation by isoproterenol were investigated in dog. Experiments were carried out in anesthetized dogs using isoproterenol as a nonselective beta-AR agonist. Intravenous infusion of isoproterenol (0.4 nmol/kg/min) induced arterial hypotension and tachycardia with a slight decrease in cutaneous blood flow. At this dose, isoproterenol increased glucose, glycerol, and nonesterified fatty acid plasma levels. The changes in cardiovascular and endocrine-metabolic parameters, induced by the low dose of isoproterenol, were suppressed by pretreatment with nadolol (1 mg/kg, i.v.). After nadolol administration, however, a 10-fold higher dose (4 nmol/kg/min) of isoproterenol was able to induce a decrease in arterial blood pressure with a slight tachycardia and an increase in cutaneous blood flow. This high dose of isoproterenol increased nonesterified fatty acid and glycerol plasma levels but failed to change glucose plasma levels. All these effects were abolished by a pretreatment with nadolol (1 mg/kg, i.v.) plus SR59230A [a selective beta3-adrenoceptor antagonist; (3-(2-ethylphenoxy)-1(1S)-1,2,3,4-tetrahydronaphth-1-ylaminol-(2S)2-propanol oxalate); 1 mg/kg, i.v.]. Moreover, as observed with the high dose of isoproterenol under nadolol pretreatment, an infusion of SR58611A [a selective beta3-adrenoceptor agonist; ((N2S)-7-carbethoxymethoxy-1,2,3,4-tetrahydronaphth-2-yl-(2R)-2-hydroxy-2-chlorophenyl) ethanamine hydrochloride] induces a decrease in mean arterial blood pressure associated with an increase in heart rate, cutaneous blood flow, and nonesterified fatty acid and glycerol plasma levels. These results demonstrate that the in vivo activation of beta3-adrenoceptors requires higher doses of catecholamine than those necessary for beta1- and/or beta2-adrenoceptor stimulation. These results also argue for the lack of a beta3-AR involvement in the control of heart rate and glycogenolysis in dogs.

  2. Noradrenaline and isoproterenol kinetics in diabetic patients with and without autonomic neuropathy

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Hilsted, J; Christensen, N J

    1986-01-01

    Noradrenaline and isoproterenol kinetics using intravenous infusion of L-3H-NA and of 3H-isoproterenol were investigated in eight Type 1 (insulin-dependent) diabetic patients without neuropathy and in eight Type 1 diabetic patients with autonomic neuropathy matched for age, sex and duration...... of diabetes. Resting plasma noradrenaline and adrenaline concentrations were reduced in patients with autonomic failure (p less than 0.05). The metabolic clearance rate of noradrenaline was similar in both groups of patients, and the appearance rate of noradrenaline in plasma was reduced in patients...

  3. The Inhibitory Effect of Propranolol and Isoproterenol on Human Plasma Cholinesterase

    Directory of Open Access Journals (Sweden)

    Ali Awsat Mellati

    2002-10-01

    Full Text Available The effect of propranolol and isoproterenol on the hydrolysis of 4- nitrophenylbutyrate (PNPB by the purified human plasma cholinesterase was studied. During the hydrolysis of PNPB, enzyme obeyed to Michaelis-Menten model. Propranolol was found to be a competitive inhibitor, and isoproterenol yielded a complex inhibition pattern. It could be explained that the inhibitory effect of propranolol shows noncooperativity between subunits of human plasma cholinesterase upon binding of PNPB. In contrast, isoproternol inhibitory effects indicate more than one type of binding sites on this enzyme.

  4. Modelo experimental de infarto do miocárdio induzido por isoproterenol em ratos Experimental model of myocardial infarction induced by isoproterenol in rats

    Directory of Open Access Journals (Sweden)

    Heraldo Guedis Lobo Filho

    2011-09-01

    Full Text Available OBJETIVO: Avaliar e validar, em nosso meio, o modelo de infarto do miocárdio induzido por isoproterenol em ratos por meio de análises de parâmetros hematológicos, bioquímicos, de marcadores do estresse oxidativo e histopatológicos. MÉTODOS: Trinta ratos jovens, machos, da linhagem Wistar (145 a 230 g, foram alocados aleatoriamente em dois grupos: grupo Simulado, submetido à falsa indução de infarto do miocárdio, e grupo Infarto, submetido à indução do infarto do miocárdio com isoproterenol. As aplicações, para indução do infarto, foram realizadas durante dois dias consecutivos, com intervalo de 24 horas entre elas. Após 24 horas da última aplicação, os ratos de ambos os grupos foram anestesiados e sacrificados para realização de coleta de sangue para hemograma e análise bioquímica (TGO, TGP, troponina I, ureia e creatinina e coleta de fragmento do miocárdio para avaliação de marcadores do estresse oxidativo (atividade da catalase e concentração de glutationa e exame histopatológico. RESULTADOS: Não houve mortalidade no grupo Simulado, enquanto a mortalidade no grupo Infarto foi de 25%. A indução do infarto do miocárdio com isoproterenol causou elevação das contagens de leucócitos e neutrófilos, dos níveis de TGO, troponina I e ureia, reduziu a atividade da catalase e os níveis teciduais de glutationa e causou alterações histopatológicas. Não acarretou alterações nas concentrações de hemoglobina, TGP e creatinina. CONCLUSÕES: O modelo de infarto do miocárdio induzido por isoproterenol em ratos foi adequadamente reproduzido em nosso laboratório, acarretando alterações em parâmetros hematológicos, bioquímicos, de marcadores de estresse oxidativo e histopatológicos.OBJECTIVE: To evaluate and validate, in our laboratory, the essay of myocardial infarction induced by isoproterenol in rats by means of analysis of hematological, biochemical, oxidative stress markers and histopathological

  5. Enalaprilato na prevenção da hipertrofia ventricular esquerda induzida pelo isoproterenol Enalaprilat prevents the left ventricular hypertrophy induced by isoproterenol

    Directory of Open Access Journals (Sweden)

    Eduardo A. S. Costa

    1997-07-01

    Full Text Available OBJETIVO: Avaliar se o enalaprilato, droga inibidora da enzima de conversão da angiotensina I, previne a hipertrofia ventricular esquerda (HVE induzida pelo isoproterenol. MÉTODOS: Foram divididos em 4 grupos, 72 ratos Wistar-EPM: CON controle; ENA, tratados com enalaprilato (1mg/kg via subcutânea (sc por 8 dias; ISO, tratados com isoproterenol (0,3mg/kg via sc/8 dias e ENA+ISO, tratados simultaneamente com ambas as drogas. Em 10 animais de cada grupo foram determinadas a freqüência cardíaca (FC e a pressão arterial (PA e verificado o peso de ventrículo esquerdo (VE. Em 8 animais de cada grupo, fragmento do VE foi corado com hematoxilina-eosina e picro-sírius e preparado para estudo morfométrico e ultra-estrutural, respectivamente, com microscópio de luz e eletrônico. RESULTADOS: Nos grupos estudados (CON, ENA, ISO e ISO+ENA não ocorreram variações na PA. Os grupos ISO e ISO+ENA exibiram aumentos significantes na FC. O grupo ISO apresentou aumento significativo do peso do VE (PU= 0,821g e PS= 0,204g, quando comparado ao grupo CON. O grupo ENA não exibiu modificação de peso do VE quando comparado ao grupo CON (PU= 0,590g e PS= 0,139g. No grupo ENA+ISO (PU= 0,737g e PS= 0,177g constatou-se diferença de peso ao ser comparado aos grupos ISO e CON. A análise morfométrica e ultra-estrutural mostraram que o ISO induziu hipertrofia dos cardiomiócitos e aumento do tecido conjuntivo com depósito de fibras colágenas do tipo I. O enalaprilato associado com isoproterenol atenuou importantemente aquela manifestação. CONCLUSÃO: O enalaprilato inibiu a ação do isoproterenol sobre os cardiomiócitos, evitando parcialmente, na dose utilizada, a HVE e diminuindo também a quantidade de fibras colágenas.PURPOSE: To evaluate whether the enalaprilat, angiotensin I enzyme conversion inhibitor, could prevent the left ventricular hypertrophy (LVH induced by isoproterenol. METHODS: Seventy two adult Wistar-EPM rats were divided into four

  6. Dextran-based microspheres as controlled delivery systems for proteins

    NARCIS (Netherlands)

    Vlugt-Wensink, K.D.F.

    2007-01-01

    Dextran-based microspheres as controlled delivery systems for proteins Dextran based microspheres are investigated as controlled delivery system for proteins. Microspheres were prepared by polymerization of dex-HEMA in an aqueous two-phase system of dex-HEMA and PEG. Protein loaded microspheres are

  7. Cardioprotective effect of fenugreek on isoproterenol-induced myocardial infarction in rats.

    Science.gov (United States)

    Murugesan, Madhesh; Revathi, Ramalingam; Manju, Vaiyapuri

    2011-09-01

    This study is designed to evaluate the cardioprotective effect of fenugreek on isoproterenol- induced myocardial infarction and is investigated by an in vivo method in rats. Male Wistar albino rats were divided into four groups (n=10). Group I received 0.5% CMC treated as normal control group. Group II received isoproterenol (85 mg/kg body weight) intraperitoneal (i.p.) for two consecutive days (14(th) and 15(th) days). Group III received fenugreek (250 mg/kg body weight) intragastric intubation for 15 days. Group IV rats received fenugreek as in Group III and additionally isoproterenol was given for two consecutive days (14(th) and 15(th) days). The results described the cardioprotective effect that observed in Group IV showed significantly (P< 0.05) decreased levels of TBARS and enhanced the activities of both enzymatic and non-enzymatic antioxidants (SOD, CAT, GPx and GSH) in myocardial infarcted rats when compared to Groups II and III. Histopathological studies were also co-relating with the above biochemical parameters. These findings concluded the cardioprotective effect of fenugreek on lipid peroxidation and antioxidant defense system during isoproterenol-induced myocardial infarction in rats.

  8. Interaction of Semecarpus anacardium L. with propranolol against isoproterenol induced myocardial damage in rats.

    Science.gov (United States)

    Chakraborty, Manodeep; Asdaq, Syed Mohammed Basheeruddin

    2011-03-01

    With a view to evaluate the cardioprotective effect of ethanolic extract of S. anacardium nut and the possible interaction with propranolol against isoproterenol induced myocardial damage in rats, female Sprague-Dawley rats were pre-treated with propranolol (10 mg/kg for 7 days), low and high doses of S. anacardium (100 and 500 mg/kg for 21 days) and their combination orally and subsequently subjected to isoproterenol administration (150 mg/kg, sc) for two consecutive days. The influence of prophylactic treatment was analysed by quantification of biomarkers and antioxidants, electocardiographic parameters and histopathological observations. The activities of lactate dehydrogenase and creatinine phosphokinase-MB were reduced in serum and raised in heart tissue with concurrent elevation in superoxide dismutase and catalase activities as well as reduction in thiobarbituric acid reactive species levels significantly in all treated groups compared to isoproterenol group. Similarly, electrocardiographic changes were restored to normalcy in all treated groups. To conclude, combination of high dose of S. anacardium with propranolol was found to be most effective in alleviating the abnormal conditions induced by isoproterenol.

  9. Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sali Arpana

    2011-05-01

    Full Text Available Abstract Background Cardiomyopathy in Duchenne muscular dystrophy (DMD is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. Methods Three month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188 (460 mg/kg/dose i.p. daily. Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD and picrosirius red staining. Results BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p Conclusions This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.

  10. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  11. Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study.

    Science.gov (United States)

    Colzani, Mara; De Maddis, Danilo; Casali, Gaia; Carini, Marina; Vistoli, Giulio; Aldini, Giancarlo

    2016-08-19

    Reactive carbonyl species (RCS) are endogenous or exogenous byproducts involved in the pathogenic mechanisms of different oxidative-based disorders. Detoxification of RCS by carbonyl quenchers is a promising therapeutic strategy. Among the most studied quenchers are aminoguanidine, hydralazine, pyridoxamine, and carnosine; their quenching activity towards four RCS (4-hydroxy-trans-2-nonenal, methylglyoxal, glyoxal, and malondialdehyde) was herein analyzed and compared. Their ability to prevent protein carbonylation was evaluated in vitro by using an innovative method based on high-resolution mass spectrometry (HRMS). The reactivity of the compounds was RCS dependent: carnosine efficiently quenched 4-hydroxy-trans-2-nonenal, pyridoxamine was particularly active towards malondialdehyde, aminoguanidine was active towards methylglyoxal and glyoxal, and hydralazine efficiently quenched all RCS. Reaction products were generated in vitro and were characterized by HRMS. Molecular modeling studies revealed that the reactivity was controlled by specific stereoelectronic parameters that could be used for the rational design of improved carbonyl quenchers.

  12. Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes.

    Science.gov (United States)

    Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M

    2001-02-01

    To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.

  13. PREPARATION AND ADSORBABILITY OF DEXTRAN MICROSPHERES WITH UNIFORM DIAMETER

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng Yao; Wen-xia Gao; Jing Sun; Ya-hua You

    2005-01-01

    The method of preparing uniform dextran microspheres with a narrow diameter distribution was introduced and the adsorbability of these microspheres was evaluated. The microspheres were prepared in W/O microemulsion using 0.5% dextran solution as the aqueous phase and n-hexane as the oil phase. Characteristics of the prepared dextran microspheres were examined with laser light blocking technique, optical microscope and ultraviolet spectrometer. The results show that the prepared dextran microspheres have uniform morphology and narrow diameter distribution, nearly 92% of them having a diameter of 56.6 μm. In vitro evaluation of adsorbability, wet dextran microspheres have good adsorption of 98.32 mg/g of model drug methylene blue in 20.86 mg/L methylene blue solution at 25℃. The adsorption of dried dextran microspheres under the same condition is 132.15 mg/g, which is even higher. And the adsorbability of dextran microspheres has significant relationship with the concentration of methylene blue and temperature. The adsorbability is better at lower temperature and higher concentration of methylene blue.

  14. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems.

    Science.gov (United States)

    Aumelas, A; Serrero, A; Durand, A; Dellacherie, E; Leonard, M

    2007-09-01

    Nanoparticles combining a hydrophobically modified dextran core and a polysaccharide surface coverage were elaborated. Their suitability for applications like drug delivery was evaluated. The selected polysaccharide, dextran, was chemically modified by the covalent attachment of hydrocarbon groups (aliphatic or aromatic) via the formation of ether links. According to the extent of modification, either water-soluble or water-insoluble dextran derivatives were obtained. The latter exhibited solubility in organic solvents like tetrahydrofuran or dichloromethane saturated with water. Water-soluble dextran derivatives were used as polymeric surfactants for the control of nanoparticles surface characteristics. Nanoparticles were prepared either by o/w emulsion or solvent-diffusion methods. The size and surface properties of dextran nanoparticles were correlated to processing conditions. The stability of colloidal suspensions was examined as a function of ionic strength and related to the particle surface characteristics. The redispersability of freeze-dried suspensions without the addition of cryoprotectant was demonstrated. Finally, the degradability of modified dextrans was compared to that of starting dextran, after enzymatic hydrolysis in the presence of dextranase.

  15. Biodegradable nanoparticles made from polylactide-grafted dextran copolymers.

    Science.gov (United States)

    Nouvel, C; Raynaud, J; Marie, E; Dellacherie, E; Six, J-L; Durand, A

    2009-02-15

    Polysaccharide-covered polyester nanoparticles were prepared using the emulsion/solvent evaporation process. The core of the nanoparticles was made either of PLA or of a blend of polylactide and polylactide-grafted dextran copolymer in various proportions. The surface of the nanoparticles was covered by dextran chains via the use of water-soluble polylactide-grafted dextrans as polymeric stabilizers during the emulsification step. The characteristics of the nanoparticles (size, surface coverage, thickness of superficial layer, colloidal stability) were correlated to the structural parameters (length and number of polylactide grafts) of the copolymers as well as to their surface active properties. The complete biodegradability of the nanoparticles was evaluated by considering the rate of hydrolysis of polylactide grafts in phosphate buffer and the rate of enzymatic degradation of dextran backbone by dextranase.

  16. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA)

    OpenAIRE

    Susann Neiser; Koskenkorva, Taija S.; Katrin Schwarz; Maria Wilhelm; Susanna Burckhardt

    2016-01-01

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various int...

  17. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs

    OpenAIRE

    2016-01-01

    Background Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effecti...

  18. Enhancement of hydralazine hypotension by low doses of isoniazid. Possible role of semicarbazide-sensitive amine oxidase inhibition.

    Science.gov (United States)

    Vidrio, H; Medina, M; Fernandez, G; Lorenzana-Jimenez, M; Campos, A E

    2000-10-01

    The influence of pretreatment with 1 through 300 mg/kg ip of isoniazid (ISO) on blood pressure and heart rate responses to 0.1 mg/kg iv of hydralazine (HYD) was assessed in rats anesthetized with chloralose--urethane. HYD hypotension was significantly enhanced by ISO at doses between 3 and 300 mg/kg ip. Heart rate was not influenced by HYD in control or pretreated animals. Depressor responses to 0.2 mg/kg iv of pinacidil (PIN) were also potentiated by ISO at 100 and 300, but not at 30 mg/kg. Similarly, ISO decreased cerebral gamma-aminobutyric acid (GABA) at the two highest doses; 30 mg/kg was without effect. Pretreatment of rats with ISO at 1 through 300 mg/kg failed to influence HYD-induced relaxation of aortic rings. These results were interpreted as indicating that potentiation of HYD hypotension by high doses of ISO is not specific for that vasodilator and is related to decreased cerebral GABA, as postulated previously. Lower doses could specifically potentiate the HYD-induced hypotensive effect by inhibition of semicarbazide-sensitive amine oxidase (SSAO), since both ISO and HYD are potent inhibitors of this enzyme. In support of this hypothesis, the SSAO inhibitors, benserazide (100 mg/kg ip) and mexiletine (50 mg/kg ip), were also found to enhance HYD hypotension.

  19. The Influence of a High Salt Diet on a Rat Model of Isoproterenol-Induced Heart Failure

    Science.gov (United States)

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4 weeks) isoproterenol (ISO) infusion exacerbated cardiomyopathy in Spontaneously Hypertensive Heart Failure (SHHF) rats. Others have shown...

  20. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    Science.gov (United States)

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA2. And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Immobilized carboxymethylated dextran coatings for enhanced ELISA.

    Science.gov (United States)

    Liberelle, Benoît; Merzouki, Abderrazzak; De Crescenzo, Gregory

    2013-03-29

    We here report the development of a new generation of enzyme-linked immunosorbent assay (ELISA) that takes advantage of a low-fouling carboxymethylated dextran (CMD) layer chemically grafted on ELISA wells. In our approach, the overnight capture antibody adsorption step found in classical ELISA was replaced by a covalent attachment step to the CMD layer completed in 15 min. As a model, the potential of our approach was highlighted using commercially available anti-human epidermal growth factor (EGF) antibodies to quantify EGF present in various samples. Of interest, the grafted CMD layer was found to be as efficient as the commonly used bovine serum albumine (BSA) to reduce non-specific adsorption, thus eliminating the need of a time-consuming BSA blocking step normally required in classical ELISA. Our results demonstrated similar specificity, affinity, and intra- and inter-assay variations regardless of the diluent used in the assay (BSA-based diluent or protein-free buffer solution) when compared to standard ELISA. Finally, accuracy and precision of the CMD-based ELISA were verified by a spike and recovery test. Dilutions of recombinant human EGF in serum from healthy human volunteers showed almost-perfect linearity and mean recovery rates ranging between 90 and 110%.

  2. Anti-inflammatory and anti-apoptotic effects of Crataegus oxyacantha on isoproterenol-induced myocardial damage.

    Science.gov (United States)

    Vijayan, Navin Alukkathara; Thiruchenduran, Mohana; Devaraj, Sivasitamparam Niranjali

    2012-08-01

    This study was designed to evaluate the anti-inflammatory and anti-apoptotic effects of the alcoholic extract of the berries of Crataegus oxyacantha (AEC), a medicinal herb, on isoproterenol-induced myocardial infarction (MI) in a rat model. Three groups of Wistar albino rats, each comprising six animals, were selected for this study. Group I rats served as control. Group II rats were given isoproterenol (85 mg/kg body weight) subcutaneously on 59th and 60th days. Group III rats were given AEC (0.5 ml/100 g body weight/day), orally on a daily basis for 60 days, and isoproterenol (85 mg/kg body weight, subcutaneously) was given on 59th and 60th days. On the 61st day, the animals were sacrificed, and marker enzymes like lactate dehydrogenase (LDH) and creatine kinase (CK) were estimated in serum. In the heart tissue sample, antioxidant status, lipid peroxidation and anti-inflammatory properties of AEC were determined. Isoproterenol significantly increased the release of LDH, CK in serum, decreased the antioxidant status in the heart along with an increase in lipid peroxidation. Nitritive stress and apoptosis were seen in isoproterenol-induced rat heart. Pre-treatment with the AEC for 60 days had a significant effect on all the above factors and maintained near normal status. The study confirms the protective effect of AEC against isoproterenol-induced inflammation and apoptosis-associated MI in rats.

  3. Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: a biochemical and electrocardiographic study.

    Science.gov (United States)

    Derbali, Amal; Mnafgui, Kais; Affes, Marwa; Derbali, Fatma; Hajji, Raouf; Gharsallah, Neji; Allouche, Noureddine; El Feki, Abdelfattah

    2015-06-01

    The present study was designed to evaluate the cardioprotective effect of Tunisian flaxseed oil (Linum usitatissimum) against isoproterenol-induced myocardial infarction in rats by studying hypertensive and cardiac damage markers especially electrocardiographic changes and troponin T serum level. In vitro, the extracted oil showed an important inhibition of angiotensin converting enzyme (ACE) with an IC50 = 85.96 μg/ml. According to chemical analysis, this extract is composed essentially of alpha linolenic acid (ALA), an n-3 polyunsaturated fatty acid (58.59 %). Male rats were randomly divided into three groups, namely control (C), isoproterenol (ISO), and isoproterenol-treated group with flaxseed oil (FO + ISO). Isoproterenol injection showed changes in ECG pattern, including ST-segment elevation (diagnostic of myocardial infarction), increase in the serum levels of Troponin T and cardiac injury markers (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (AST), and alanine transaminase (ALT)). However, Linum oil pre-co-treatment prevented almost all the parameters isoproterenol-induced myocardial infarction in rats. Results of the present study proved that flaxseed oil has a significant effect by heart protection against isoproterenol-induced myocardial infarction through beneficial effect of the important fraction of ALA.

  4. Selective separation and determination of isoproterenol on thin layers of bismuth silicate ion-exchanger.

    Science.gov (United States)

    Ghoulipour Vanik; Hassankhani-Majd Zahra

    2015-06-01

    A simple and sensitive method for the separation and determination of isoproterenol from other doping drugs has been developed on thin layers of bismuth silicate, a synthetic inorganic ion exchanger as adsorbent in thin layer chromatography (TLC). A mixture of methanol and 0.1 mol/L formic acid (3:7, v/v) was employed as the mobile phase. The development time was 32 min. The quantitative measurement were performed with a Camag TLC Scanner-3 at wavelength (λ) of 410 nm. The isoproterenol recovery in this procedure was 98.9%. The linear correlation coefficient was greater than 0. 987 1 and the relative standard deviation (RSD) was less than 0.94. The limit of detection (LOD) and limit of quantification ( LOQ) were 7.7 x 10(-7) mol/L and 3.85 x 10(-6) mol/L, respectively. This method has been applied in the determination of isoproterenol in dosage forms and in biological fluids.

  5. Selective separation and determination of isoproterenol on thin layers of bismuth silicate ion-exchanger

    Institute of Scientific and Technical Information of China (English)

    Vanik GHOULIPOUR; Zahra HASSANKHANI-MAJD

    2015-01-01

    A simple and sensitive method for the separation and determination of isoproterenol from other do-ping drugs has been developed on thin layers of bismuth silicate,a synthetic inorganic ion exchanger as adsor-bent in thin layer chromatography(TLC). A mixture of methanol and 0. 1 mol/L formic acid(3:7,v/v)was employed as the mobile phase. The development time was 32 min. The quantitative measurement were per-formed with a Camag TLC Scanner-3 at wavelength(λ)of 410 nm. The isoproterenol recovery in this procedure was 98. 9%. The linear correlation coefficient was greater than 0. 987 1 and the relative standard deviation (RSD)was less than 0.94. The limit of detection(LOD)and limit of quantification(LOQ)were 7.7×10-7 mol/L and 3. 85 ×10-6 mol/L,respectively. This method has been applied in the determination of isoproterenol in dosage forms and in biological fluids.

  6. Cardioprotective effect of hydroalcoholic extract of Tecoma stans flowers against isoproterenol induced myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Shanmukha Ittagi

    2014-02-01

    Full Text Available Objective: To investigate the cardioprotective effect of 70% ethanolic extract of Tecoma stans (T. stans flowers against isoproterenol-induced myocardial infarction in rat myocardium. Methods: Wister rats were pretreated with 70% ethanolic extract of T. stans flowers (250 and 500 mg/kg orally for 14 d and then intoxicated with isoproterenol [200 mg/(kg · day, s.c.] for 2 consecutive d. The biochemical markers for myocardial infarction such as alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, creatinine kinase, total cholesterol, triglycerides, low density lipoproteins and high density lipoproteins were determined. In addition the antioxidant status on heart tissue is also evaluated by testing the activities of antioxidant enzymes such as lipid peroxidation, superoxide dismutase, reduced glutathione and catalase. Results: The results indicated that pretreatment with 70% ethanolic extract of T. stans flowers prevented fall in antioxidants and retarded elevation of cardiac damage markers in isoproterenol treated rats, significantly. In addition, these findings were evidently supported by the remarkable protection revealed in the histopathological studies, even GC-MS analysis data also substantiated out investigation. Conclusions: It was concluded that, in addition to poly phenolics, some of the phyto fragments found during GC-MS analysis might also contributed to the cardiac protection offered by the extract.

  7. Comparative effect of glucagon and isoproterenol on hepatic glycogenolysis and glycolysis in isolated perfused liver

    Directory of Open Access Journals (Sweden)

    Vardanega-Peicher Márcia

    2003-01-01

    Full Text Available The effect of glucagon and isoproterenol (beta-adrenergic agonist on hepatic glycogenolysis and glycolysis in isolated perfused liver was compared. The levels of isoproterenol and glucagon which promoted the maximal activation of glycogenolysis were 20 muM and 1nM respectively. However, glucagon (1 nM not only increased glycogenolysis but also inhibited glycolysis. Because adenosine-3'-5'-cyclic monophosphate (cAMP is a common second messenger to glucagon and isoproterenol, the level of cAMP that simulates the effect of these substances were investigated. The concentration of cAMP that inhibited glycolysis was five times higher (15 muM than that which stimulated glycogenolysis (3 muM. Similar inhibition of glycolysis was obtained with cAMP agonists resistant to phosphodiesterases, i.e., 8-Br-cAMP and N6-monobutyryl-cAMP (6-MB-cAMP at the concentration of 3 muM. Thus, apparently glucagon could produce higher cellular levels of cAMP than that obtained with the activation of beta-adrenergic receptors. The higher amount of cAMP could be enough to overcome the action of phosphodiesterases and penetrate in the cytosol creating a favourable gradient to inhibit the enzymes of glycolysis.

  8. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate

    Science.gov (United States)

    Glišić, S.; Nikolić, G.; Cakić, M.; Trutić, N.

    2015-07-01

    The copper(II) ion complexes with carboxymethyl dextran (CMD) and dextran sulfate (DS) were studied by different methods. Content of copper was determined by atomic absorption spectroscopy. It was found that copper : ligand mole ratio (Cu : CMD) is 1 : 2, and Cu : DS is 1 : 1 by mole ratio method. Spectrophotometric parameters of synthesized compounds are characteristic for Cu(II) ion in octahedral ( O h ) coordination. Analyzing of FTIR spectra in ν(C=O) vibration region has showed that -COOH group acts as bidentate ligand, while the compounds of Cu(II) with DS copper ions are in the region of four oxygen atoms of two adjacent sulfo groups. The presence of crystalline water was determined by isotopic substitution of H2O molecules with D2O molecules. Comparison of spectra recorded at room (RT) and liquid nitrogen temperature (LNT) has enabled detection bands of water molecules libration indicating that they are coordinated complementing coordination sphere of Cu(II) ions to six. The complexes are of Cu(II) · (CMD)2 · (H2O)2 or Cu(II) · DS · (H2O)2 type. The similarities of the γ(C-H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the 4 C 1 glucopyranose (Glc) unit CMD and DS synthesized Cu(II) complexes.

  9. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States); Fisher, Robyn L. [Vitron Inc., Tucson, AZ (United States); Vickers, Alison E.M., E-mail: vickers_alison@allergan.com [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States)

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  10. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Neiser, Susann; Koskenkorva, Taija S; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-07-21

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may

  11. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA

    Directory of Open Access Journals (Sweden)

    Susann Neiser

    2016-07-01

    Full Text Available Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR, the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3 and an enzyme-linked immunosorbent assay (ELISA were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000 does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the

  12. New Collagen-Dextran-Zinc Oxide Composites for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Georgeta Păunica-Panea

    2016-01-01

    Full Text Available The goal of this paper was the design, development, and characterization of some new composites, based on collagen and dextran as natural polymers and zinc oxide as antimicrobial, to be used in wound healing. Collagen hydrogels with various concentrations of dextran and zinc oxide were investigated in terms of rheological analysis. The spongious composites, obtained by freeze-drying of hydrogels, were evaluated by morphology (SEM, water uptake, and biological (enzymatic biodegradation analysis. All the results were strongly influenced by the nature and concentration of composite components. Based on the performances of the hydrogels, stationary rheometry, porous structure, morphology, and biological behavior, the antimicrobial spongious composite based on collagen and dextran with 50% ZnO were the most promising for future applications in wound dressing and a biomaterial with high potential in skin regeneration.

  13. A comparison of analytic procedures for measurement of fractional dextran clearances

    NARCIS (Netherlands)

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    1998-01-01

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  14. Biodistribution of ~(99)Tc~m Labelled Dextran Conjugates for Sentinel Lymph Node Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Mannosylated dextran conjugates showed high receptor affinity to the receptors on the surface of macrophages in the lymph node. 99Tcm labelled mannosylated dextran conjugates could be used for sentinel lymph node (SLN) detection. In this paper,

  15. A comparison of analytic procedures for measurement of fractional dextran clearances

    NARCIS (Netherlands)

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    1998-01-01

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  16. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.

    Science.gov (United States)

    Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun

    2014-09-01

    Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.

  17. Rapamycin Attenuated Cardiac Hypertrophy Induced by Isoproterenol and Maintained Energy Homeostasis via Inhibiting NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-01-01

    Full Text Available Rapamycin, also known as sirolimus, is an immunosuppressant drug used to prevent rejection organ (especially kidney transplantation. However, little is known about the role of Rapa in cardiac hypertrophy induced by isoproterenol and its underlying mechanism. In this study, Rapa was administrated intraperitoneally for one week after the rat model of cardiac hypertrophy induced by isoproterenol established. Rapa was demonstrated to attenuate isoproterenol-induced cardiac hypertrophy, maintain the structure integrity and functional performance of mitochondria, and upregulate genes related to fatty acid metabolism in hypertrophied hearts. To further study the implication of NF-κB in the protective role of Rapa, cardiomyocytes were pretreated with TNF-α or transfected with siRNA against NF-κB/p65 subunit. It was revealed that the upregulation of extracellular circulating proinflammatory cytokines induced by isoproterenol was able to be reversed by Rapa, which was dependent on NF-κB pathway. Furthermore, the regression of cardiac hypertrophy and maintaining energy homeostasis by Rapa in cardiomyocytes may be attributed to the inactivation of NF-κB. Our results shed new light on mechanisms underlying the protective role of Rapa against cardiac hypertrophy induced by isoproterenol, suggesting that blocking proinflammatory response by Rapa might contribute to the maintenance of energy homeostasis during the progression of cardiac hypertrophy.

  18. Dietary palm olein oil augments cardiac antioxidant enzymes and protects against isoproterenol-induced myocardial necrosis in rats.

    Science.gov (United States)

    Narang, D; Sood, S; Thomas, M; Dinda, A K; Maulik, S K

    2005-11-01

    Wistar rats, 150-200 g, of either sex, were fed daily with commercial rat diet supplemented with palm olein oil in two doses (5% v/w (n = 16) and 10% v/w (n = 16) of diet) for 30 days. Control rats (n = 16) were fed with normal diet. On the 29(th) and 30(th) days, 8 rats from each group were administred isoproterenol (85 mg/kg, s.c., 24-h interval). On the 31(st) day, all rats were sacrificed and myocardial tissues were studied for thiobarbituric acid reactive substances (TBARS), antioxidant enzymes and light microscopic changes, along with the ferric-reducing ability of plasma (FRAP). A significant rise in myocardial superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity and FRAP level were observed in rats fed with palm olein oil. Isoproterenol caused an increase in myocardial oxidative stress in control rats, as evidenced by an increase in myocardial TBARS level, reduction in FRAP and myocardial SOD, catalase and GPx activity, along with focal necrosis of cardiac muscle fibres on light microscopy. The rise in myocardial TBARS and depletion of SOD and catalase activity following isoproterenol administration were prevented in palm-olein-oil-supplemented diet-fed rats at both doses. Isoproterenol-induced myocardial light-microscopic changes were also prevented in the treated groups. The results suggest that dietary palm olein oil caused augmentation of myocardial antioxidant enzymes and protected against isoproterenol-induced myocardial necrosis and associated oxidative stress.

  19. Rosuvastatin and ellagic acid protect against isoproterenol-induced myocardial infarction in hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    Mai A. Elhemely

    2014-12-01

    Full Text Available Hyperlipidemia (HL with subsequent coronary atherosclerosis is the major trigger of ischemia and hence, myocardial infarction (MI occurs. The present study aimed to elucidate the effects of pretreatment with rosuvastatin and ellagic acid, as well as their combination on isoproterenol-induced MI in hyperlipidemic rats. Adult rats were fed with a cholesterol-rich diet for seven weeks and received rosuvastatin (10 mg/kg and/or ellagic acid (30 mg/kg by oral gavage daily starting from the fifth week then subcutaneously injected with two doses 24-h apart of 100 mg/kg isoproterenol in the last two days. ECG pattern was monitored and both cardiac biomarkers (cTnI, CK-MB, LDH and AST and lipid profile (TC, TG, HDL-c and LDL-c were measured in serum. MDA and GSH levels were quantified in cardiac homogenates and heart tissue damage was examined by histopathology. Furthermore, the expression levels of iNOS, eNOS, Bax and Bcl-2 in heart samples were assessed by western blotting. Three-week pretreatment with rosuvastatin and/or ellagic acid markedly ameliorated HL- and isoproterenol-induced alterations in ECG, cardiac markers, oxidation markers, lipid profile and heart architecture. Both drugs downregulated iNOS and upregulated eNOS, while only rosuvastatin and the combination downregulated Bax. This study provides evidence that rosuvastatin and ellagic acid possess cardioprotective effect on the hyperlipidemic-myocardial infarction rat model and the combination does not offer extra protection than monotherapy.

  20. Combinational effect of resveratrol and atorvastatin on isoproterenol-induced cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    Songjukta Chakraborty

    2015-01-01

    Full Text Available Introduction: Resveratrol is a natural polyphenol present mainly in grapes. It has been shown to offer strong cardio protection in animal models due to its ability to correct lipid peroxidation and maintain antioxidants level. Atorvastatin, a HMG-CoA reductase inhibitor, lowers cholesterol level and is commonly prescribed to heart patients. Our aim in this study was to see the combination effect of these two drugs against Isoproterenol-induced cardiac hypertrophy in rats. Materials and Methods: Wister Albino rats were treated with resveratrol (20 mg/kg/day, p.o, atorvastatin (20 mg/kg/day, p.o and in combination (resveratrol [10 mg/kg/day, p.o] + atorvastatin [10 mg/kg/day, p.o] for a period of 25 days and from 15 th till 25 th day Isoproterenol (5 mg/kg/day, s.c was co-administered to rats to induce cardiac hypertrophy. Results: A significant increase in creatine kinase, lactate dehydrogenase, aspartate transaminase and lipid peroxidation with the significant decrease in reduced glutathione, superoxide dismutase and catalase were observed in Isoproterenol treated rats. Resveratrol, atorvastatin and their combination significantly reversed the effect. The histopathological studies and myocardial infarct size evaluation also confirmed the protection. Conclusion: Comparing the data we came to this conclusion that atorvastatin although showed the protection along all the parameters, the extent of protection offered by resveratrol alone and in combination were more effective. Hence, it can be concluded that resveratrol, an herbal nutritional supplement, alone and in combination is better against cardiac hypertrophy.

  1. Bioavailability of ketoprofen from orally administered ketoprofen-dextran ester prodrugs in the pig

    DEFF Research Database (Denmark)

    Larsen, C.; Jensen, Bodil Hamborg; Olesen, H. P.

    1991-01-01

    The bioavailability of ketoprofen after oral administration of aqueous solutions of various ketoprofen-dextran ester prodrugs in pigs was assessed. Conjugates derived from dextran fractions in the molecular weight range 10,000-500,000 were employed. Compared to the administration of an oral......-dextran esters. Thus, the present study adds support to a more versatile application of the dextran ester prodrug approach to providing selective colon delivery of drugs possessing a carboxylic acid functional group....

  2. Adult respiratory distress syndrome complicating intravenous infusion of low-molecular weight dextran.

    Science.gov (United States)

    Taylor, M A; DiBlasi, S L; Bender, R M; Santoian, E C; Cha, S D; Dennis, C A

    1994-07-01

    Respiratory failure is one of the most uncommon and serious adverse drug reactions. Low-molecular-weight-dextran (Dextran-40) is a useful adjunctive anti-platelet agent in the setting of coronary angioplasty and intracoronary stent placement. We report the occurrence of the adult respiratory distress syndrome following intravenous infusion of Dextran-40.

  3. More complications in patients with septic shock treated with dextran compared with crystalloids

    DEFF Research Database (Denmark)

    Rasmussen, Anders Mølgaard; Jakobsen, Rasmus; Strøm, Thomas;

    2015-01-01

    of patients admitted to our intensive care unit with septic shock and treated with dextran-70 in the period from 1 January 2009 to 31 December 2009. The controls were included from 1 March 2012 to 28 February 2013 when dextran-70 was replaced with crystalloids. RESULTS: There were 91 patients in the dextran...

  4. Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Kim, Hwanhee

    2015-01-01

    In this work, N-benzyltriazole derivatized dextran was evaluated for its potential as a novel carbohydrate-based adsorbent for the removal of methyl violet dye from water. The modified dextran was synthesized by a click reaction of pentynyl dextran and benzyl azide, and the structure...

  5. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Jií; Hradil

    2007-01-01

    [1]Anger,S.,Caldwell,K.,Mehnert,W.,& Muller,R.(1999).Coating of nanoparticles:Analysis of adsorption using sedimentation field-flow fractionation(SdFFF).Proceedings of International Symposium of Controlled Release of Bioactivated Materials,26,599-600.[2]Bonnemain,B.(1998).Superparamagnetic agents in magnetic resonance imaging:Physicochemical characteristics and clinical applications-A review.Journal of Drug Targeting,6(3),167-174.[3]Bootz,A.,Vogel,V.,Schubert,D.,& Kreuter,J.(2004).Comparison of scanning electron microscopy,dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.European Journal of Pharmaceutics and Biopharmaceutics,57(2),369-375.[4]Browarzik,D.(1997).Continuous kinetics of dextran degradation.Journal of Macromolecular Science Pure and Applied Chemistry,34(3),397-404.[5]Cabasso,I.,& Yuan,Y.(1996).Nanoparticles in polymer and polymer dendrimers.In J.Fendler & I.Dekany (Eds.),NATO ASI Series.Part 18Nanoparticles in Solids and Solutions (pp.131-153).[6]Chastellain,M.,Petri,A.,& Hofmann,H.(2004).Particle size investigation of a multistep synthesis of PVA coated superparamagnetic nanoparticles.Journal of Colloid Interface Science,278(2),353-360.[7]Chmela,E.,Tijssen,R.,Blom,M.T.,Gardeniers,H.J.G.E.,& van den Berg,A.(2002).A chip system for size separation of macromolecules and particles by hydrodynamic chromatography.Analytical Chemistry,74(14),3470-3475.[8]Confer,D.R.,& Logan,B.E.(1997).Molecular weight distribution of hydrolysis product during the biodegradation of model macromolecules in suspended and biofilm cultures.Ⅱ:Dextran and dextrin.Water Research,31(9),2137-2145.[9]Griffiths,C.H.,O'Horo,M.P.,& Smith,T.W.(1979).The structure,magnetic characterization and oxidation of colloidal iron dispersions.Journal of Applied Physics,50(11),7108-7115.[10]Gupta,A.K.,& Gupta,M.(2005).Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,26

  6. Microbial dextran-hydrolyzing enzymes: fundamentals and applications.

    Science.gov (United States)

    Khalikova, Elvira; Susi, Petri; Korpela, Timo

    2005-06-01

    Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.

  7. 21 CFR 520.1182 - Iron dextran suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron dextran suspension. 520.1182 Section 520.1182 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3...

  8. The investigation of Co(II-dextran complexes

    Directory of Open Access Journals (Sweden)

    Mitić Žarko J.

    2007-01-01

    Full Text Available Co(II ion complex compounds were synthesized with reduced dextran (RD in alkali solutions using CoCl2, 6H2O and isolated in the solid state. UV-VIS spectrophotometric investigations of Co(II complexes with reduced dextran showed that the complexation of Co(II ions begins at pH over 7. The formation of Co(II ion complexes with dextran monomer units was observed at pH 7-13. With increase in solution pH the light absorption maximum of complex solutions shifts to longer wavelengths (bat-hochromic shift compared with [Co(H2O6]2+ ion. Dextran complexes with Co(II ion are formed by the displacement of water molecules from the coordination sphere of cobalt by the OH ligand groups. The spectrophotometric parameters of the investigated complexes are characteristic of a Co(II ion in octahedral or distorted octahedral coordination with O ligand atoms.

  9. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  10. Dextran fractional clearance studies in acute dengue infection.

    Directory of Open Access Journals (Sweden)

    Julie Nguyen-Pouplin

    2011-08-01

    Full Text Available BACKGROUND: Although increased capillary permeability is the major clinical feature associated with severe dengue infections the mechanisms underlying this phenomenon remain unclear. Dextran clearance methodology has been used to investigate the molecular sieving properties of the microvasculature in clinical situations associated with altered permeability, including during pregnancy and in various renal disorders. In order to better understand the characteristics of the vascular leak associated with dengue we undertook formal dextran clearance studies in Vietnamese dengue patients and healthy volunteers. METHODOLOGY/PRINCIPAL FINDINGS: We carried out serial clearance studies in 15 young adult males with acute dengue and evidence of vascular leakage a during the phase of maximal leakage and b one and three months later, as well as in 16 healthy control subjects. Interestingly we found no difference in the clearance profiles of neutral dextran solutions among the dengue patients at any time-point or in comparison to the healthy volunteers. CONCLUSIONS/SIGNIFICANCE: The surface glycocalyx layer, a fibre-matrix of proteoglycans, glycosaminoglycans, and plasma proteins, forms a complex with the underlying endothelial cells to regulate plasma volume within circumscribed limits. It is likely that during dengue infections loss of plasma proteins from this layer alters the permeability characteristics of the complex; physical and/or electrostatic interactions between the dextran molecules and the glycocalyx structure may temporarily restore normal function, rendering the technique unsuitable for assessing permeability in these patients. The implications for resuscitation of patients with dengue shock syndrome (DSS are potentially important. It is possible that continuous low-dose infusions of dextran may help to stabilize the permeability barrier in patients with profound or refractory shock, reducing the need for repeated boluses, limiting the total

  11. Cardioprotective Effects of Lagenaria siceraria Fruit Juice on Isoproterenol-induced Myocardial Infarction in Wistar Rats: A Biochemical and Histoarchitecture Study.

    Science.gov (United States)

    Upaganlawar, A; Balaraman, R

    2011-10-01

    The present study was designed to evaluate the cardioprotective effects of Lagenaria siceraria fruit juice in isoproterenol-induced myocardial infarction. Rats injected with isoproterenol (200 mg/kg, s.c.) showed a significant increase in the levels of serum uric acid, tissue Na(++) and Ca(++) ions and membrane-bound Ca(+2)-ATPase activity. A significant decrease in the levels of serum protein, tissue K(+) ion, vitamin E level, and the activities of Na(+)/K(+)-ATPase and mg(+2)-ATPase was observed. Isoproterenol injected rats also showed a significant increase in the intensity of lactate dehydrogenase isoenzyme and histopathologic alterations in the heart. Treatment with L. siceraria fruit juice (400 mg/kg/day, p.o.) for 30 days and administration of isoproterenol on 29(th) and 30(th) days showed a protective effect on altered biochemical and histopathologic changes. These findings indicate the cardioprotective effect of L. siceraria fruit juice in isoproterenol-induced myocardial infarction in rats.

  12. Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats.

    Science.gov (United States)

    Ghoneim, Mona A M; Hassan, Amal I; Mahmoud, Manal G; Asker, Mohsen S

    2016-01-01

    The baobab fruit (Adansonia digitata) was analyzed for proximate composition, amino acids, and minerals. The fruit pulp was found to be a good source of carbohydrates, proteins, phenols, and substantial quantities of K, Ca, and Mg. Amino acid analyses revealed high glutamic and aspartic acid, but the sulfur amino acids were the most limited. The present study was designed to investigate the role of Adansonia digitata (Baobab fruit pulp) against isoproterenol induced myocardial oxidative stress in experimental rats by demonstrating the changes in tissue cardiac markers, some antioxidant enzymes, interleukin-1 β (IL-1 β), monocyte chemoattractant protein-1(MCP-1), myeloperoxidase (MPO), Collagen-1, galectin-3, and serum corticosterone. The activities of enzymatic antioxidant glutathione peroxidase (GPX) and non-enzymatic antioxidant reduced glutathione (GSH) in the heart tissue; additionally, histopathological examination of the heart was estimated. Male albino rats were randomly divided into four groups of ten animals each. Group I served as normal control animal. Group II animals received isoproterenol (ISP) (85 mg/kg body weight intraperitonealy (i.p.) to develop myocardial injury. Group III were myocardial oxidative animals treated with Baobab fruit pulp (200 µg/rats/day) for 4 weeks. Group IV received Baobab fruit pulp only. The data suggested an isoproterenol increase in levels of cardiac marker enzymes [creatine kinase MB (CK- MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)], IL-1ß, MCP-1, MPO, Collagen, and galectin-3, with concomitant decrease in the activities GPX and GSH in heart tissue as well as corticosterone in serum. Baobab fruit pulp brings all the parameters to near normal level in ISP-induced myocardial infarction in rats. Histopathological examination of heart tissue of ISP-administered model rat showed infiltration of inflammatory cells and congestion in the blood vessels. However, treatment with Baobab fruit pulp (200

  13. Isoproterenol Stress Echocardiography in Assessing Mitral Valve Area Reserve before and after Percutaneous Balloon Valvuloplasty

    Institute of Scientific and Technical Information of China (English)

    刘品明; 傅向阳; 吕俊豪; 吴群; 杨福庆

    2001-01-01

    Objective To determine whether successful valvuloplasty causes an increase of mitral valve area reserve in patients with mitral stenosis, isoproterenol stress echocardiography was used to compare mitral valve area and hemodynamic changes between pre- and post- valvuloplasty under conditions of increased cardiac work. Methods Thirtyeight patients with pure rheumatic mitral stenosis who had received successful percutaneous balloon valvulo plasty underwent isoproterenol stress echocardiography pre- and post- valvuloplasty. Mitral valve area (by direct planimetry of two- dimensional echocardiography), mean transmitral pressure gradient (by continuous-wave Doppler echocardiography), and cardiac output (by M -mode echocardiography) were measured at rest and under isoproterenol stress to achieve heart rate of different stages. Results Mitral valve area (0. 91± 0. 28 to 1. 87±0.23cm2, P <0.01), mean transmitral pressure gradient ( 12.5 ± 6. 3 to 3.9 ± 1.9mmHg, P < 0.01 ) and cardiac output (3.93 ± 1.44to 4. 73 ± 1.01 L/min, P < 0.05) at rest between pre - and post -valvuloplasty were significantly different.Pre-valvuloplasty, as heart rate increased under stress, mean transmitral pressure gradient increased significantly ( P < 0.01 ), but there were no significant differences in the measurements of mitral valve area and cardiac output (both P > 0.05). In contrast, as heart rate increased post- valvuloplasty, there was a significant increase in mean transmitral pressure gradient (P < 0.01), but both mitral valve area and cardiac output further increased significantly (both P < 0. 01) . Moreover, valvuloplasty decreased mean transmitral pressure gradient at peak heart rate from 23.0 ± 4. 5 to 7.75 ± 2.30 mmHg ( P < 0.01 ) under submaximal stress. Conclusions Successful percu taneous balloon valvuloplasty soon causes a significant increase of mitral valve area reserve in patients with mitral stenosis, which is markedly manifested under conditions of

  14. Assessment of the dynamics of atrial signals and local atrial period series during atrial fibrillation: effects of isoproterenol administration

    Directory of Open Access Journals (Sweden)

    Mantica Massimo

    2004-10-01

    Full Text Available Abstract Background The autonomic nervous system (ANS plays an important role in the genesis and maintenance of atrial fibrillation (AF, but quantification of its electrophysiologic effects is extremely complex and difficult. Aim of the study was to evaluate the capability of linear and non-linear indexes to capture the fine changing dynamics of atrial signals and local atrial period (LAP series during adrenergic activation induced by isoproterenol (a sympathomimetic drug infusion. Methods Nine patients with paroxysmal or persistent AF (aged 60 ± 6 underwent electrophysiological study in which isoproterenol was administered to patients. Atrial electrograms were acquired during i sinus rhythm (SR; ii sinus rhythm during isoproterenol (SRISO administration; iii atrial fibrillation (AF and iv atrial fibrillation during isoproterenol (AFISO administration. The level of organization between two electrograms was assessed by the synchronization index (S, whereas the degree of recurrence of a pattern in a signal was defined by the regularity index (R. In addition, the level of predictability (LP and regularity of LAP series were computed. Results LAP series analysis shows a reduction of both LP and R index during isoproterenol infusion in SR and AF (RSR = 0.75 ± 0.07 RSRISO = 0.69 ± 0.10, p AF = 0.31 ± 0.08 RAFISO = 0.26 ± 0.09, p SR = 99.99 ± 0.001 LPSRISO = 99.97 ± 0.03, p AF = 69.46 ± 21.55 LPAFISO = 55 ± 24.75; p SR = 0.49 ± 0.08 RSRISO = 0.46 ± 0.09 p AF = 0.29 ± 0.09 RAFISO = 0.28 ± 0.08 n.s.. Conclusions The proposed parameters succeeded in discriminating the subtle changes due to isoproterenol infusion during both the rhythms especially when considering LAP series analysis. The reduced value of analyzed parameters after isoproterenol administration could reflect an important pro-arrhythmic influence of adrenergic activation on favoring maintenance of AF.

  15. Size-controlled nanoassemblies based on cyclodextrin-modified dextrans.

    Science.gov (United States)

    Wintgens, Véronique; Nielsen, Thorbjørn Terndrup; Larsen, Kim Lambertsen; Amiel, Catherine

    2011-09-09

    Nanoassemblies formed by host/guest interactions between two polymers in aqueous media are studied. Two types of polymers with the same dextran backbone are modified with adamantyl or βCD groups. The sizes of the spontaneously formed nanoassemblies depend on the βCD:Ada ratio and on the total concentration and composition of the mixtures. The results can be rationalized by assuming a core/shell structure of the nanoassemblies, the core resulting from associative phase separation of the two polymers and being stabilized by an external shell made of Ada-grafted dextran and containing ions adsorbed from the solution. Hydrophobic compounds such as benzophenone can be incorporated efficiently without inducing changes in properties of the nanoassemblies.

  16. Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats.

    Science.gov (United States)

    Mohamed, Sarah S; Ahmed, Lamiaa A; Attia, Wael A; Khattab, Mahmoud M

    2015-12-01

    Stem cell transplantation has emerged as a promising technique for regenerative medicine in cardiovascular therapeutics. However, the results have been less than optimal. The aim of the present study was to investigate whether nicorandil could offer an additional benefit over bone marrow-derived mesenchymal stem cell therapy in isoproterenol-induced myocardial damage and its progression to heart failure in rats. Isoproterenol was injected subcutaneously for 2 consecutive days at doses of 85 and 170 mg/kg/day, respectively. Nicorandil (3 mg/kg/day) was then given orally with or without a single intravenous bone marrow-derived mesenchymal stem cell administration. Electrocardiography and echocardiography were recorded 2 weeks after the beginning of treatment. Rats were then sacrificed and the ventricle was isolated for estimation of tumor necrosis factor-alpha, vascular endothelial growth factor and transforming growth factor-beta. Moreover, protein expressions of caspase-3, connexin-43 as well as endothelial and inducible nitric oxide synthases were evaluated. Finally, histological studies of myocardial fibrosis and blood vessel density were performed and cryosections were done for estimation cell homing. Combined nicorandil/bone marrow-derived mesenchymal stem cell therapy provided an additional improvement compared to cell therapy alone toward reducing isoproterenol-induced cardiac hypertrophy, fibrosis and inflammation. Notably, combined therapy induced significant increase in angiogenesis and cell homing and prevented isoproterenol-induced changes in contractility and apoptotic markers. In conclusion, combined nicorandil/bone marrow-derived mesenchymal stem cell therapy was superior to cell therapy alone toward preventing isoproterenol-induced heart failure in rats through creation of a supportive environment for mesenchymal stem cells.

  17. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  18. Inhibitory effects of isoproterenol on PAF-induced endothelial cell permeability and morphological changes

    Institute of Scientific and Technical Information of China (English)

    丁自强; 李少华; 吴中立

    1996-01-01

    Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.

  19. Cardioprotective Effect of Saffron Extract and Safranal in Isoproterenol-Induced Myocardial Infarction in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Roya Mehdizadeh

    2013-01-01

    Full Text Available Objective(s:This study was designed to evaluate the cardioprotective effect of Crocus sativus L. (saffronaqueous extract and safranal, the major constituent of the essential oil of saffron, on lipid peroxidation, biochemical parameters and histopathological findings in isoproterenol (ISO-induced myocardial infarction in Wistar rats. Materials and Methods:The saffron extract (20, 40, 80 and 160 mg/kg/day IP or control were administered for 9 days along with ISO (85 mg/kg, SC, at 24 hr interval on 8th and 9th day in rats. Activities of creatine kinase-muscle, brain (CK-MB and lactate dehydrogenase (LDH were measured using standard commercial kits. The level of malondialdehyde in heart tissue was estimated with thiobarbituric acid reactive species test. For histopathological examination, hematoxylin and eosin (H&E staining was used. Results:ISO administration induced a statistically significant increase          (P

  20. Proteinous amino acids in hearts' muscle cytosol of rats pretreated with digoxin, caffeine or isoproterenol.

    Science.gov (United States)

    Gabrys, Janusz; Konecki, Janusz; Głowacka, Maria; Durczok, Katarzyna; Nowak, Przemysław; Bielaczyc, Grzegorz; Brus, Ryszard; Shani, Jashovam

    2004-01-01

    Levels of the 19 proteinous amino acids and total free amino acids were assayed by gas-liquid chromatography in cytosols of rat atrial and ventricular muscle cardiomyocytes. The tissues were assayed after the rats had been exposed to the cardioactive drugs digoxin, caffeine, and isoproterenol, each having different mechanisms of action. We demonstrated that, in the atrial and ventricular cardiac muscle cytosol of control (untreated) rats, arginine, glutamine, and cysteine existed in their highest levels: 35.1% and 17.6%; 14.8% and 51.6%; 9.9% and 0.25% of the total free amino acids, respectively. The levels of the other amino acids in the atrial and ventricular cardiac muscle cytosols ranged between 0.1% and 10.0% of the total free amino acids. Digoxin, caffeine, and isoproterenol significantly reduced the total amount of cytosolic free amino acids in the atrial heart muscle cytosol to 7.6%, 9.0%, and 9.2% of the control value (100%), and in the ventricular heart muscle cytosol to 31.1%, 43.2%, and 28.3% of the control. The three drugs tested changed the cytosols' levels of arginine, cysteine, tryptophane, asparagine, and tyrosine in atrial and ventricular heart muscle cytosol, as compared to the control groups (calculated as a percent of the total free amino acids in the experimental groups). The role of proteinous amino acids in the function of the heart muscle and in the mechanism of action of these drugs on the mammalian heart is discussed.

  1. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    Science.gov (United States)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  2. Assessment of mitral valve reserve capacity before and after percutaneous balloon valvuloplasty with isoproterenol stress echocardiography

    Institute of Scientific and Technical Information of China (English)

    LIU Pin-ming; FU Xiang-yang; L(U) Jun-hao; WU Qun; Yang Fu-qing

    2002-01-01

    Objective: To explore whether successful valvuloplasty increases mitral valve reserve capacity in patients with mitral stenosis. Methods: Thirty-eight patients with pure rheumatic mitral stenosis underwent isoproterenol stress echocardiography before and after successful percutaneous balloon valvuloplasty. The mitral valve area (by direct planimetry of two-dimensional echocardiography), mean transmitral pressure gradient (by continuous-wave Doppler echocardiography), and cardiac output (by M-mode echocardiography)were measured at rest and under isoproterenol infusion to achieve heart rate of different stages. Results :Between the measurements before and after valvuloplasty, significant differences were observed in the mitral valve area (0. 91±0.28 vs 1.87±0.23 cm2, P<0.01), mean transmitral pressure gradient (12.5±6.3 vs 3. 9±1.9 mmHg, P<0. 01) and cardiac output (3.93±1.44 vs 4. 73±1.01 L/min, P<O. 05) at rest. Before valvuloplasty, the mean transmitral pressure gradient increased significantly (P<0. 01) as heart rate increased, but there were no significant differences in the measurements of mitral valve area and cardiac output (both P>0. 05). In contrast, there was a significant increase after valvuloplasty in the mean transmitral pressure gradient (P<0. 01), but both mitral valve area and cardiac output further increased (both P<0. 01) as beart rate increased. Moreover, valvuloplasty decreased the mean transmitral pressure gradient at peak heart rate from 23.0 ±4. 5 to 7.75 ±2. 30 mmHg (P<0.01) under submaximal stress. Conclusion:Successful percutaneous balloon valvuloplasty soon causes a significant increase of mitral valve reserve capacity in patients with mitral stenosis, which is conspicuously manifested under condition of hemodynamic stress.Stress echocardiography provides a safe, feasible and non-invasive means of assessing the reserve capacity.

  3. Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid

    Directory of Open Access Journals (Sweden)

    Lizano-Soberón Marcela

    2006-12-01

    Full Text Available Abstract Background DNA hypermethylation and histone deacetylation are epigenetic events that contribute to the absence or downregulated expression of different components of the tumor recognition complex. These events affect the processing and presentation of antigenic peptides to CTLs by HLA class-I molecules. In this work evaluated the effect of the DNA hypomethylating agent hydralazine and the histone deacetylase inhibitor valproic acid, on the expression of HLA class-I molecules and on the antigen-specific immune recognition of cervical cancer cells. Methods Cell lines C33A (HPV-, CaSki (HPV-16+ and MS751 (HPV-18+ were treated with hydralazine and valproic acid to assess the expression of HLA class-I molecules by flow cytometry and RT-PCR. Promoter methylation of HLA class-I -A, -B and C, was also evaluated by Methylation-Specific PCR. Primary cervical tumors of four HLA-A*0201 allele patients were typed for HPV and their CTL's stimulated in vitro with the T2 cell line previously loaded with 50 μM of the HPV peptides. Cytotoxicity of stimulated CTL's was assayed against Caski and MS751 cells pre-treated with hydralazine and valproic acid. Results Valproic acid and hydralazine/valproic acid up-regulated the constitutive HLA class-I expression as evaluated by flow cytometry and RT-PCR despite constitutive promoter demethylation at these loci. Hydralazine and valproic acid in combination but no IFN-gamma hyperacetylated histone H4 as evaluated by ChiP assay. The antigenic immune recognition of CaSki and MS751 cells by CTLs specific to HPV-16/18 E6 and E7-derived epitopes, was increased by VA and H/VA and the combination of H/VA/IFN-gamma. Conclusion These results support the potential use of hydralazine and valproic acid as an adjuvant for immune intervention in cervical cancer patients whenever clinical protocols based on tumor antigen recognition is desirable, like in those cases where the application of E6 and E7 based therapeutic vaccines

  4. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    Energy Technology Data Exchange (ETDEWEB)

    Mornet, Stephane [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France); Portier, Josik [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France); Duguet, Etienne [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France)]. E-mail: duguet@icmcb.u-bordeaux1.fr

    2005-05-15

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation.

  5. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Pallab [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Giri, Jyotsnendu [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India); Banerjee, Rinti [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bellare, Jayesh [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India)]. E-mail: dhirenb@iitb.ac.in

    2007-04-15

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  6. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    Science.gov (United States)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-04-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  7. Preparation of dextran immunological magnetic nanoparticles and their application to combined targeting carrier

    Institute of Scientific and Technical Information of China (English)

    李民勤; 徐慧显; 左榘; 姬昂; 何炳林; 庞雁; 黄建英; 牛瑞芳

    1996-01-01

    Superparamagnetic dextran nanoparticles were prepared by coprecipitation. Effects of concentration of dextran, amount of ironic salts, stirring speed, concentration of ammonium hydroxide and mole ratio of Fe3+/Fe2+ on the effective diameter of dextran magnetic nanopartides (DMNP) were studied. Dextran immunological magnetic nanoparticles (DIMNP) were formed by the reaction of the monoclonal anti-human mammary cancer antibody with DMNP oxidized by sodium periodate, and the properties of magnetic susceptibility, shape and retention of antibody activity were investigated. The in vitro cancer antigen binding ability of DIMNP was demonstrated by radioimmunoassay, and the in vivo magnetic localization and antibody targeting ability of radiolabeled DIMNP were studied.

  8. Increased expression of myocardial semaphorin 3A in isoproterenol-induced heart failure rats

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-qin; WANG Xin-tao; QU Xiu-fen; LI Yang; YU Yang; SONG Ying; WANG Shao-jun

    2011-01-01

    Background Maintenance of normal cardiac function is controlled by the autonomic nervous system. In congestive heart failure (CHF), sympathetic nerve denervation is increasingly recognized. The sympathetic fiber density depends on the balance between neurotrophins and neural guidance molecules. Semaphorin 3A (sema3a), a secreted neural guidance factor, is a well characterized member of the newly found semaphorin family. It can induce sympathetic growth cone collapse and axon repulsion. We conducted this study to investigate cell sources of sema3a in the heart, the expression level of sema3a in CHF and discuss the possible role of sema3a in CHF.Methods Rats were divided into four groups: 30 days control group rats, 30 days CHF rats, 60 days control group rats,60 days CHF rats. The heart failure model was induced by injection of isoproterenol (ISO) 340 mg/kg continuously two days. All animals underwent echocardiography and haemodynamics measurements. Cardiac expression of sema3a was determined by real time polymerase chain reaction (RT-PCR) and Western blotting analysis. Immunohistochemical analysis was used to determine the cell source of sema3a in the heart.Results Isoproterenol induced 30 days and 60 days CHF rats displayed left ventricular dilation, systolic and diastolic function decrease. Sema3a was secreted by the cardiocytes and increased significantly in 30 days and 60 days CHF rats compared with the controls (RT-PCR: 30 days group: 0.32±0.05 vs. 0.58±0.06, P <0.01; 60 days group: 0.34±0.08 vs.0.71±0.07, P<0.01. Western blotting: 30 days group: 0.25±0.10 vs. 0.46±0.10, P<0.05; 60 days group: 0.29±0.10 vs.0.55±0.16, P<0.01. Immunohistochemical analysis: 30 days group: 2.91±0.20 vs. 5.31±0.30, P<0.01; 60 days group:2.94±0.30 vs. 5.80±0.30, P<0.01).Conclusions Sema3a was expressed in the heart by cardiocytes. Increased expression of sema3a may partly account for sympathetic denervation in CHF; modulation of this pathway may prove

  9. Changes in vascular reactivity following administration of isoproterenol for 1 week: a role for endothelial modulation.

    Science.gov (United States)

    Davel, Ana Paula C; Kawamoto, Elisa Mitiko; Scavone, Cristoforo; Vassallo, Dalton V; Rossoni, Luciana V

    2006-07-01

    1. The aim of this study was to assess the effects of treatment with isoproterenol (ISO, 0.3 mg kg-1 day-1, s.c.) for 7 days on the vascular reactivity of rat-isolated aortic rings. Additionally, potential mechanisms underlying the changes that involved the endothelial modulation of contractility were investigated. 2. Treatment with ISO induced cardiac hypertrophy without changes in haemodynamic parameters. Aortic rings from ISO-treated rats showed an increase in the contraction response to phenylephrine (PHE) and serotonin, but did not change relaxations produced by acetylcholine or isoproterenol. Removal of the endothelium increased the responses to PHE in both groups. However, this procedure was less effective in ISO-treated as compared with control rats. Endothelial cell removal abolished the increase in the response to PHE in ISO-treated rats. The presence of Nomega-nitro-L-arginine methyl ester shifted the concentration-response curve to PHE to the left in both groups of rats. However, this effect was more pronounced in the ISO group. In addition, aminoguanidine (50 microM) potentiated the actions of PHE only in the ISO group. ISO treatment increased nitric oxide synthase (NOS) activity and neuronal NOS and endothelial NOS protein expression in the aorta. 3. Neither losartan (10 microM) nor indomethacin (10 microM) abolished the effects of ISO on the actions of PHE. Superoxide dismutase (SOD, 150 U ml-1) and L-arginine (5 mM), but neither catalase (300 U ml-1) nor apocynin (100 microM), blocked the effect of ISO treatment. In addition, we observed an increase in superoxide anion levels as measured by ethidium bromide fluorescence and of copper and zinc superoxide dismutase protein expression in ISO-treated rats. 4. In conclusion, our data suggest that ISO treatment alters the endothelial cell-mediated modulation of the contraction to PHE in rat aorta. The increased maximal response of PHE seems to be due to an increase in superoxide anion generation, which

  10. Immobilization of Lipase by Covalent Binding on Crosslinked Ally Dextran

    Institute of Scientific and Technical Information of China (English)

    WangChen; SongGuoqiang; 等

    1998-01-01

    Lipase was immobilized by covalent binding on crosslinked allyl dextran using SESA as coupling agent.It is shown that this immobilization approach is an efficient one for lipase.The activity of the immobilized lipase can reach to 300-450U/g(dry weight).It exhibits good temperature stability,can retain 88% activity after being incubated at 70℃ for 2h.Special effects will be expected from our immobilized lipase in its applications in organic media due to the nature of the support.

  11. The Study of Fetal Rat Model of Intra-Amniotic Isoproterenol Injection Induced Heart Dysfunction and Phenotypic Switch of Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Yifei Li

    2014-01-01

    Full Text Available To establish a reliable isoproterenol induced heart dysfunction fetal rat model and understand the switches of contractile proteins, 45 pregnant rats were divided into 15 mg/kg-once, 15 mg/kg-twice, sham-operated once, sham-operated twice, and control groups. And 18 adult rats were divided into isoproterenol-treated and control groups. H&E staining, Masson staining, and transmission electron microscope were performed. Apoptotic rate assessed by TUNEL analysis and expressions of ANP, BNP, MMP-2, and CTGF of hearts were measured. Intra-amniotic injections of isoproterenol were supplied on E14.5 and E15.5 for fetuses and 7-day continuous intraperitoneal injections were performed for adults. Then echocardiography was performed with M-mode view assessment on E18.5 and 6 weeks later, respectively. Isoproterenol twice treated fetuses exhibited significant changes in histological evaluation, and mitochondrial damages were significantly severe with increased apoptotic rate. ANP and BNP increased and that of MMP-2 increased in isoproterenol twice treated group compared to control group, without CTGF. The isoforms transition of troponin I and myosin heavy chain of fetal heart dysfunction were opposite to adult procedure. The administration of intra-amniotic isoproterenol to fetal rats could induce heart dysfunction and the regulation of contractile proteins of fetuses was different from adult procedure.

  12. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat.

    Science.gov (United States)

    Mnafgui, Kais; Hajji, Raouf; Derbali, Fatma; Gammoudi, Anis; Khabbabi, Gaddour; Ellefi, Hedi; Allouche, Noureddine; Kadri, Adel; Gharsallah, Neji

    2016-10-01

    This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.

  13. Cardioprotective effect of methanolic extract of Marrubium vulgare L. on isoproterenol-induced acute myocardial infarction in rats.

    Science.gov (United States)

    Yousefi, Keyvan; Soraya, Hamid; Fathiazad, Fatemeh; Khorrami, Arash; Hamedeyazdan, Sanaz; Maleki-Dizaji, Nasrin; Garjani, Alireza

    2013-08-01

    Isoproterenol injection (100 mg/kg; sc) produced changes in ECG pattern including ST-segment elevation and suppressed R-amplitude. The methanolic extract of M. vulgare at doses of 10, 20, and 40 mg/kg significantly amended the ECG changes. A severe myocardial necrosis and edematous along with a sharp reduction in the arterial blood pressure, left ventricular contractility (LVdP/dt(max or min)), but a marked increase in the left ventricular end-diastolic pressure (LVEDP) were seen in the isoproterenol group. All parameters were significantly improved by the extract treatment. The extract (10 mg/kg) strongly increased LVdP/dt(max). Similarly, treatment with 40 mg/kg of M. vulgare lowered the elevated LVEDP and the heart to body weight ratio. In addition to in vitro antioxidant activity, the extract suppressed markedly the elevation of malondialdehyde levels both in serum and in myocardium. The results demonstrate that M. vulgare protects myocardium against isoproterenol-induced acute myocardial infarction and suggest that the effects could be related to antioxidant activities.

  14. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  15. Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Beitollahi, Hadi, E-mail: h.beitollahi@yahoo.com [Environment Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133 (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A molybdenum (VI) complex-carbon nanotube paste electrode have been fabricated. > This electrode reduced the oxidation potential of isoproterenol by about 175 mV. > It resolved the voltammetric waves of isoproterenol, uric acid and folic acid. - Abstract: This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 {mu}M, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.

  16. Crocus sativus L. (saffron) attenuates isoproterenol-induced myocardial injury via preserving cardiac functions and strengthening antioxidant defense system.

    Science.gov (United States)

    Sachdeva, Jaspreet; Tanwar, Vineeta; Golechha, Mahaveer; Siddiqui, Khalid M; Nag, Tapas C; Ray, Ruma; Kumari, Santosh; Arya, Dharamvir S

    2012-09-01

    Saffron (dried stigmas of Crocus sativus L.), a naturally derived plant product, has long been used as a traditional ancient medicine against various human diseases. The aim of the series of experiments was to systematically determine whether saffron exerts cardioprotection in isoproterenol-induced myocardial damage. Male Wistar rats (150-175 g) were divided into five groups: control, isoproterenol (ISO) and three saffron (200, 400 and 800 mg/kg) treatment groups. Aqueous extract of saffron or vehicle was administered orally to rats for four weeks. On days 28 and 29, the animals in ISO and saffron treatment groups were administered ISO (85 mg/kg, s.c.) at an interval of 24 h. On day 30, after recording hemodynamics and left ventricular functions, animals were sacrificed for biochemical, histopathological and electromicroscopical examinations. Isoproterenol challenged animals showed depressed hemodynamics and left ventricular functions as evident by decreased left ventricular rate of peak positive and negative pressure change and elevated left ventricular end-diastolic pressure. Structural and ultrastructural studies further confirmed the damage which was reconfirmed by increased thiobarbituric acid reactive substances (psaffron at all the doses exerted significant cardioprotective effect by preserving hemodynamics and left ventricular functions, maintaining structural integrity and augmenting antioxidant status. Among the different doses used, saffron at 400mg/kg dose exhibited maximum protective effects which could be due to maintenance of the redox status of the cell reinforcing its role as an antioxidant.

  17. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  18. Cardioprotective effect of Sida rhomboidea. Roxb extract against isoproterenol induced myocardial necrosis in rats.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ansarullah; Karn, Sanjay S; Shah, Jigar D; Patel, Dipak K; Salunke, Sunita P; Padate, Geeta S; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-05-01

    The present study investigates cardioprotective effect of Sida rhomboidea. Roxb (SR) extract on heart weight, plasma lipid profile, plasma marker enzymes, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants and membrane bound ATPases against isoproterenol (IP) induced myocardial necrosis (MN) in rats. Rats treated with IP (85 mg/kg, s.c.) recorded significant (p<0.05) increment in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation (LPO) and activity levels of Ca(+2) ATPase whereas there was significant (p<0.05) decrease in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase. Pre-treatment with SR extract (400 mg/kg per day, p.o.) for 30 consecutive days followed by IP injections on days 29th and 30th, showed significant (p<0.05) decrease in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation, Ca(+2) ATPase and significant increase in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase compared to IP treated group. Hence, this study is the first scientific report on cardioprotective effect of SR against IP induced MN in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    Science.gov (United States)

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  1. Red Ginseng (Panax ginseng) Decreases Isoproterenol-Induced Cardiac Injury via Antioxidant Properties in Porcine

    Science.gov (United States)

    Lim, Kyu Hee; Cho, Jae Youl; Kim, Bumseok; Bae, Bong-Seuk

    2014-01-01

    Abstract Red ginseng (RG, Panax ginseng) has been shown to possess various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The present study was designed to evaluate the cardioprotective potential of RG against isoproterenol (ISO)-induced myocardial infarction (MI), by assessing electrocardiographic, hemodynamic, and biochemical parameters. Male porcines were orally administered with RG (250 and 500 mg/kg) or with vehicle for 9 days, with concurrent intraperitoneal injections of ISO (20 mg/kg) on the 8th and 9th day. RG significantly attenuated ISO-induced cardiac dysfunctions as evidenced by improved ventricular hemodynamic functions and reduced ST segment and QRS complex intervals. Also, RG significantly ameliorated myocardial injury parameters such as antioxidants. Malonaldialdehyde formation was also inhibited by RG. Based on the results, it is concluded that RG possesses significant cardioprotective potential through the inhibition of oxidative stress and may serve as an adjunct in the treatment and prophylaxis of MI. PMID:24456361

  2. Temporal response of ectopic activity in guinea pig ventricular myocardium in response to isoproterenol and acetylcholine

    Science.gov (United States)

    Greer-Short, Amara; Poelzing, Steven

    2015-01-01

    Both β adrenergic and muscarinic receptor stimulation independently potentiate arrhythmogenesis. However, the effect of simultaneous stimulation on arrhythmogenesis is not well known. The purpose of this study was to determine the temporal response of arrhythmia risk to individual and combined autonomic agonists. Guinea pig hearts were excised and Langendorff-perfused. The β adrenergic receptor and muscarinic receptor agonists were isoproterenol (ISO, 0.6 μM) and acetylcholine (ACh, 10 μM), respectively. All measurements with agonists occurred over 21 min. ISO induced ectopic activity for the first 8 min. ISO also transiently shortened and then prolonged R-R interval over a similar time course. ACh added after ISO transiently induced ectopic activity for 12 min, while R-R interval invariantly prolonged. ACh alone produced few ectopic beats, while invariantly prolonging R-R interval. In contrast to ISO alone, ISO following ACh significantly increased ectopic activity and shortened R-R interval for the duration of the experiment. Animals aged 17–19 months exhibited sustained arrhythmogenesis while those aged 11–14 did not. When ACh was removed in older hearts while ISO perfused, a transient increase in ectopic activity and decreased R-R interval was observed, similar to ISO alone. These data suggest that pre-treating with and maintaining ACh perfusion can sustain ISO sensitivity, in contrast to ISO perfusion alone. PMID:26539122

  3. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Khalil

    2015-01-01

    Full Text Available We investigated the protective role of Withania somnifera leaf extract (WSLEt on isoproterenol- (ISO- induced myocardial infarction (MI in rats. Subcutaneous injection of ISO (85 mg/kg body weight (b.w. administered to rats for two consecutive days caused a significant increase in cardiac troponin I (cTnI levels and serum lipid profiles, as well as the activities of some marker enzymes. In addition to these diagnostic markers, there were increased levels of lipid peroxidation (LPO and decreased activities of enzymatic antioxidants (superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GRx, and glutathione-S-transferase (GST in the myocardium. However, oral pretreatment (100 mg/kg b.w. with WSLEt for 4 weeks elicited a significant cardioprotective activity by lowering the levels of cTnI, lipid profiles, and marker enzymes. The levels of LPO products were also significantly decreased. Elevated activities of antioxidant enzymes were also observed in rats pretreated with WSLEt. As further confirmed histopathologically, our findings strongly suggest that the cardioprotective effect of WSLEt on myocardium experiencing ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidant system and an inhibition of LPO in the myocardial membrane. We conclude that WSLEt confers some protection against oxidative damage in ISO-induced MI in rats.

  4. Uptake of /sup 67/Ga in the heart of rats treated with isoproterenol

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kojima, S.; Kubodera, A.

    1982-12-01

    Gallium-67 citrate (/sup 67/Ga) accumulation and various enzyme activities during the repair of rat heart with infarct-like lesions induced by isoproterenol (ISP) treatment were measured for 10 days after treatment. Serum creatine phosphokinase (CPK) and glutamic oxalacetic transaminase (GOT) activities were increased immediately after ISP treatment, reaching maximum levels of activity of 545+-64 U/ml and 542+-94 KU/ml, respectively, within 12 h. Uptake of /sup 67/Ga in the rat heart was elevated 12 h after ISP treatment, reaching a maximum on day 1 (0.267+-0.020% dose/g heart). This pattern was essentially similar to the pattern of uronic acid content in the 1.2 M NaCl fraction, which contained mainly heparan sulfate (HS). The activity of glucose-6-phosphate dehydrogenase (G-6-PDH), a marker enzyme for fibrogenesis of damaged tissues, was also elevated 12 h after the ISP treatment, reaching a maximum of approximately 2.47 times that of the control heart on day 1. On the other hand, there were no significant changes in the /sup 67/Ga uptake and uronic acid content in any of the fractions of the liver and kidneys. These findings suggested that HS might be an acceptor for /sup 67/Ga accumulation during the repair of rat heart with infarct-like lesions, in accord with our previous results on CCl/sub 4/-damaged rat liver.

  5. Beneficial Effects of Isoproterenol and Quinidine in the Treatment of Ventricular Fibrillation in Brugada Syndrome

    Directory of Open Access Journals (Sweden)

    Melissa Dakkak

    2015-01-01

    Full Text Available The use of an implantable cardiac defibrillator has been advocated as the only effective treatment for the management of ventricular fibrillation (VF in patients with Brugada Syndrome (BrS. However, this device is only useful for terminating VF. Intermittent and/or recalcitrant VF for which lifesaving cardioversion occurs is a problematic situation in this patient population. The immediate use of appropriate antiarrhythmics in the acute setting has proven to be lifesaving. Quinidine has been well established as an effective antiarrhythmic in BrS, while isoproterenol (ISP has had some recognition as well. The addition of drug therapy to prevent the induction of these arrhythmias has been shown to reduce the morbidity and mortality associated with BrS. It was proven to be especially effective in the presence of early repolarization, evidenced by the reduction or normalization of the early repolarization pattern on ECG. Thus, for the prophylactic management and long term suppression of VF in BrS, further prospective studies should be performed to determine the effectiveness of quinidine and ISP in this patient population.

  6. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract.

    Science.gov (United States)

    Khalil, Md Ibrahim; Ahmmed, Istiyak; Ahmed, Romana; Tanvir, E M; Afroz, Rizwana; Paul, Sudip; Gan, Siew Hua; Alam, Nadia

    2015-01-01

    We investigated the protective role of Withania somnifera leaf extract (WSLEt) on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. Subcutaneous injection of ISO (85 mg/kg body weight (b.w.)) administered to rats for two consecutive days caused a significant increase in cardiac troponin I (cTnI) levels and serum lipid profiles, as well as the activities of some marker enzymes. In addition to these diagnostic markers, there were increased levels of lipid peroxidation (LPO) and decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx), and glutathione-S-transferase (GST)) in the myocardium. However, oral pretreatment (100 mg/kg b.w.) with WSLEt for 4 weeks elicited a significant cardioprotective activity by lowering the levels of cTnI, lipid profiles, and marker enzymes. The levels of LPO products were also significantly decreased. Elevated activities of antioxidant enzymes were also observed in rats pretreated with WSLEt. As further confirmed histopathologically, our findings strongly suggest that the cardioprotective effect of WSLEt on myocardium experiencing ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidant system and an inhibition of LPO in the myocardial membrane. We conclude that WSLEt confers some protection against oxidative damage in ISO-induced MI in rats.

  7. [Cardiovascular effect of solcoseryl with low molecular dextran in normal late pregnancy].

    Science.gov (United States)

    Schwarz, R; Retzke, U; Wilken, H P

    1977-01-01

    By means of quantitative sphygmometry and the unbloody recording of arterial blood pressure the hemodynamic effect of an infusion of Solcoseryl in combination with low molecular dextrane on the maternal cardiovascular system in 9 normotensive healthy late pregnant women is examined. Solcoseryl causes no improvement of the cardiovascular effects known for low molecular dextrane.

  8. Development of monoclonal antibody-based sandwich ELISA for detection of dextran.

    Science.gov (United States)

    Wang, Sheng-Yu; Li, Zhe; Wang, Xian-Jiang; Lv, Sha; Yang, Yun; Zeng, Lian-Qiang; Luo, Fang-Hong; Yan, Jiang-Hua; Liang, Da-Feng

    2014-10-01

    Dextran as anti-nutritional factor is usually a result of bacteria activity and has associated serial problems during the process stream in the sugar industry and in medical therapy. A sensitive method is expected to detect dextran quantitatively. Here we generated four monoclonal antibodies (MAbs) against dextran using dextran T40 conjugated with bovine serum albumin (BSA) as immunogen in our lab following hybridoma protocol. Through pairwise, an MAb named D24 was determined to be conjugated with horseradish peroxidase (HRP) and was used in the establishment of a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) method for determination of dextran, in which MAb D9 was chosen as a capture antibody. The detection limit and working scope of the developed sandwich ELISA method were 3.9 ng/mL and 7.8-500 ng/mL with a correlation coefficient of 0.9909. In addition, the cross-reaction assay demonstrated that the method possessed high specificity with no significant cross-reaction with dextran-related substances, and the recovery rate ranged from 96.35 to 102.00%, with coefficient of variation ranging from 1.58 to 6.94%. These results indicated that we developed a detection system of MAb-based sandwich ELISA to measure dextran and this system should be a potential tool to determine dextran levels.

  9. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.

    Science.gov (United States)

    Afadzi, Mercy; Strand, Sabina P; Nilssen, Esben A; Måsøy, Svein-Erik; Johansen, Tonni F; Hansen, Rune; Angelsen, Bjørn A; de L Davies, Catharina

    2013-01-01

    The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.

  10. Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide.

    Science.gov (United States)

    Park, Jae Yoon; Kim, Jee Seon; Nam, Yoon Sung

    2013-09-12

    Surface modification of inorganic materials to prevent non-specific protein adsorption is critically important for developing a biocompatible materials' platform for medical implantation, diagnostics, and therapeutics. Here we report mussel-inspired chemical modification of dextran for anti-fouling coatings of metal oxide. Catechols are conjugated to dextran via a carbamate ester linkage, producing catechol-grafted dextran with a grafting density of 7.3 mol.%. Titanium dioxide (TiO₂) is coated with the catechol-grafted dextran, and the anti-fouling effect of dextran coatings is examined by using the adsorption of human serum albumin. The mussel-inspired dextran coatings show excellent resistance to non-specific protein adsorption: the adsorption equilibrium constant (K) is 0.69 Lg(-1) for dextran-coated TiO₂ while that for pristine TiO₂ surface is 3.53 Lg(-1). This study suggests that catechol-grafted dextran is a promising material for effective anti-fouling coatings of implantable inorganic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The effect of hypertonic saline dextran solutions on hypoxic pulmonary vasoconstriction in anaesthetised piglets.

    Science.gov (United States)

    Bellezza, M; Kerbaul, F; Roussel, L; Imbert, M; Guidon, C

    2002-10-01

    Hypoxic pulmonary vasoconstriction (HPV) is a regulatory mechanism by which blood is diverted from poorly ventilated to better ventilated areas of the lung. The aim of the present study was to assess the extent to which hypertonic saline dextran and dextran solutions modify the magnitude of HPV during isovolumic haemodilution in intact acutely instrumented piglets. Eighteen large white piglets were anesthetised and assigned to two groups. Mean pulmonary arterial pressure (PAP) and cardiac output (Q), systemic arterial pressure and left arterial pressure (LAP) were measured. A decrease in Q was obtained by reducing venous return. This enabled measurement of transpulmonary pressures (mean PAP minus LAP) at four levels of Q in hyperoxia (inspiratory oxygen fraction (FiO2)=0.4) then in hypoxia (Fi,O2=0.1) in the two groups before blood soustraction (10 mL x kg(-1)) and after loading with sodium chloride (NaCl) 7.5% and dextran 6% or with dextran 6% alone. Dextran alone led to a decrease in mean PAP-LAP/Q values, and NaCl with dextran was associated with a significant shift of mean PAP-LAP/Q plots to higher pressures in hypoxia. Hypertonic saline dextran solution, as replacement fluid in isovolaemic haemodilution increased the magnitude of hypoxic pulmonary vasoconstriction, whereas dextran solution reduced it.

  12. In situ production and analysis of Weissella confusa dextran in wheat sourdough.

    Science.gov (United States)

    Katina, Kati; Maina, Ndegwa Henry; Juvonen, Riikka; Flander, Laura; Johansson, Liisa; Virkki, Liisa; Tenkanen, Maija; Laitila, Arja

    2009-10-01

    Several lactic acid bacteria belonging to the genera Leuconostoc, Lactobacillus, and Weissella have been introduced to wheat sourdough baking for in situ production of exopolysaccharides. This is considered a novel method for improving the shelf-life, volume and nutritional value of bread without additives. However, in situ production of exopolysaccharides during sourdough fermentation is challenged by simultaneous acidification due to metabolic activities of the bacteria, which may significantly diminish the positive technological impact of exopolysaccharides. In this study, the growth, activity and in situ production of dextran by Weissella confusa VTT E-90392 in wheat sourdoughs were investigated. Furthermore, the influence of dextran-enriched sourdoughs, at the addition level of 43%, on the subsequent bread quality was established. W. confusa efficiently produced dextran from the added sucrose in wheat sourdough without strong acid production. A new specific enzyme-assisted method for in situ analysis of dextran in sourdoughs was developed. With this method, we could for the first time proof significant (11-16 g/kg DW) production of polymeric dextran in sourdoughs. Concomitant formation of shorter isomaltooligosaccharides by W. confusa was also detected. The produced dextran significantly increased the viscosity of the sourdoughs. Application of dextran-enriched sourdoughs in bread baking provided mildly acidic wheat bread with improved volume (up to 10%) and crumb softness (25-40%) during 6 days of storage. Hence, W. confusa is a promising new strain for efficient in situ production of dextrans and isomaltooligosaccharides in sourdoughs without strong acidification.

  13. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.

    Science.gov (United States)

    Pramod, P S; Takamura, Kathryn; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, M

    2012-11-12

    Dextran vesicular nanoscaffolds were developed based on polysaccharide and renewable resource alkyl tail for dual encapsulation of hydrophilic and hydrophobic molecules (or drugs) and delivery into cells. The roles of the hydrophobic segments on the molecular self-organization of dextran backbone into vesicles or nanoparticles were investigated in detail. Dextran vesicles were found to be a unique dual carrier in which water-soluble molecules (like Rhodamine-B, Rh-B) and polyaromatic anticancer drug (camptothecin, CPT) were selectively encapsulated in the hydrophilic core and hydrophobic layer, respectively. The dextran vesicles were capable of protecting the plasma-sensitive CPT lactone pharmacophore against the hydrolysis by 10× better than the CPT alone in PBS. The aliphatic ester linkage connecting the hydrophobic tail with dextran was found to be cleaved by esterase under physiological conditions for fast releasing of CPT or Rh-B. Cytotoxicity of the dextran vesicle and its drug conjugate were tested on mouse embryonic fibroblast cells (MEFs) using MTT assay. The dextran vesicular scaffold was found to be nontoxic to living cells. CPT loaded vesicles were found to be 2.5-fold more effective in killing fibroblasts compared to that of CPT alone in PBS. Confocal microscopic images confirmed that both Rh-B and CPT loaded vesicles to be taken up by fibroblasts compared to CPT alone, showing a distinctly perinuclear localization in cells. The custom designed dextran vesicular provides new research opportunities for dual loading and delivering of hydrophilic and hydrophobic drug molecules.

  14. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N3). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Role of peroxisome proliferator-activated receptor a activation in acute myocardial damage induced by isoproterenol in rats

    Institute of Scientific and Technical Information of China (English)

    YUAN Jie; WU Jian; HANG Zhi-gang; ZHONG Xue-kuan; ZHOU Ling-wang; YU Bo

    2008-01-01

    Background Peroxisome proliferator-activated receptor(PPAR)a is one of the subtypes of PPARs.It regulates metabolism of lipid and lipoprotein,as well as glucose homeostasis.In addition,PPARa influences cellular proliferation, inflammation,differentiation and apoptosis,which plays a vital role in cardiovascular diseases.The purpose of this study was to investigate the role and mechanisms of PPARa activation in relation to acute myocardial damage induced by isoproterenol in rats.Methods Thirty male Wister rats were randomly divided into controI group,isoproterenol (Iso)injured group and fenofibrate(FF)treatment group.Acute myocardiaI damage caused by isoproterenol intraperitoneaI injection induced ischemia was established.We determined the levels of creatine kinase(CK)and lactic dehvdroqenase(LDH)in serum as welI as the concentrations of free fatty acids(FFA)in serum and myocardium.The mRNA expressions of PPARa, muscular type carnitine palmitransferase(M-CPT-1)and medium chain lipid acetyl coenzyme A dehydrogenase(MCAD) were analyzed by reverse transcription-polymerase chain reaction(RT-PCR).Results Compared with the control group.the Ievels of serum CK and LDH were significantly increased after FF and ISO treatments.Moreover.the concentrations of FFA in both serum and myocardium were obviously increased in the ISO group and FF group,while the mRNA expressions of PPARa,M-CPT-I and MCAD declined,respectively(P≤0.01).When compared with the lSO group.significant decreases in serum CK and LDH were obsewed in the FF group.The concentrations of FFA both in serum and myocardiaI tissue were markedly decreased in the FF group.while the expressions of PPARo.M-CPT-I and MCAD mRNA were increased(vs Iso,P≤O.01).Conclusions The utilization of FFA was reduced in isoproterenol induced acute myocardial damage.PPARa activation by its activator fenofibrate may play a key role in energy metabolism in acute myocardial damage induced by isoproterenol in rats.

  16. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  17. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat.

    Science.gov (United States)

    York, Malcolm; Scudamore, Cheryl; Brady, Sally; Chen, Christabelle; Wilson, Sharon; Curtis, Mark; Evans, Gareth; Griffiths, William; Whayman, Matthew; Williams, Thomas; Turton, John

    2007-06-01

    The investigations aimed to evaluate the usefulness of cardiac troponins as biomarkers of acute myocardial injury in the rat. Serum from female Hanover Wistar rats treated with a single intraperitoneal (IP) injection of isoproterenol (ISO) was assayed for cardiac troponin I (cTnI) (ACS: 180SE, Bayer), cTnI (Immulite 2000, Diagnostic Products Corporation) and cardiac troponin T (cTnT) (Elecsys 2010, Roche). In a time-course study (50.0 mg/kg ISO), serum cTnI (ACS:180SE) and cTnT increased above control levels at 1 hour postdosing, peaking at 2 hours (cTnI, 4.30 microg/L; cTnT, 1.79 microg/L), and declined to baseline by 48 hours, with histologic cardiac lesions first seen at 4 hours postdosing. The Immulite 2000 assay gave minimal cTnI signals, indicating poor immunoreactivity towards rat cTnI. In a dose-response study (0.25 to 20.0 mg/kg ISO), there was a trend for increasing cTnI (ACS:180SE) values with increasing ISO dose levels at 2 hours postdosing. By 24 hours, cTnI levels returned to baseline although chronic cardiac myodegeneration was present. We conclude that serum cTnI and cTnT levels are sensitive and specific biomarkers for detecting ISO induced myocardial injury in the rat. Serum troponin values reflect the development of histopathologic lesions; however peak troponin levels precede maximal lesion severity.

  18. Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats.

    Science.gov (United States)

    Ojha, Shreesh; Golechha, Mahaveer; Kumari, Santosh; Arya, Dharamvir Singh

    2012-06-01

    Emblica officinalis, commonly known as amla, is an important medicinal plant reputed for its dietary and therapeutic uses. The aim of the present study was to investigate the protective role of E. officinalis against isoproterenol (ISP)-induced cardiotoxicity in rats and elucidate the possible mechanism involved. Rats were administered E. officinalis (100, 250 and 500 mg/kg, p.o.) or vehicle (normal saline) for 30 days, with concurrent subcutaneous injections of ISP (85 mg/kg, at 24 h interval) on 29th and 30th day. ISP-induced cardiac dysfunction as evidenced by decreased mean arterial pressure, heart rate, contractility (+LVdP/dt) and relaxation (-LVdP/dt) along with increased left ventricular end diastolic pressure. ISP significantly (p < 0.05) decreased antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase and myocyte-injury-specific marker enzymes, creatine phosphokinase-MB and lactate dehydrogenase in heart. A significant (p < 0.05) depletion of reduced glutathione and increase in thiobarbituric acid reactive substances along with histopathological alteration has further indicated the oxidative damage of myocardium. However, pretreatment with E. officinalis exhibited restoration of hemodynamic and left ventricular function along with significant preservation of antioxidants, myocytes-injury-specific marker enzymes and significant inhibition of lipid peroxidation. Furthermore, histopathological salvage of myocardium reconfirmed the protective effects of E. officinalis. Results of the present study demonstrate cardioprotective potential of E. officinalis attributed to its potent antioxidant and free radical scavenging activity as evidenced by favorable improvement in hemodynamic, contractile function and tissue antioxidant status.

  19. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    Directory of Open Access Journals (Sweden)

    Divya Hitler

    2014-10-01

    Full Text Available Context: Desmodium gangeticum (L DC (Fabaceae; DG, a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO-induced left ventricular cardiac hypertrophy (LVH in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection for 7 days induced LVH in rats. The LVH rats were post-treated orally with DG (100 mg/kg body weight for a period of 30 days. Thereafter, changes in heart weight (HW and body weight (BW, HW/BW ratio, percent of hypertrophy, collagen accumulation, activities of matrix metalloproteinase (MMP -2 and -9, superoxide dismutase (SOD and catalase (CAT enzymes, and the level of an oxidative stress marker, lipid peroxide (LPO, were determined. Results: HW/BW ratio, an indicator of hypertrophic growth, was significantly reduced in DG root post-treated LVH rats as compared with that for the non-treated LVH rats. The altered levels of ventricular LPO, collagen, MMPs-2 and -9, and antioxidant enzymes in the ISO-treated animals reverted back to near normal upon DG treatment. Further, the anti-hypertrophic activity of DG was comparable to that of the standard drug losartan (10 mg/kg. Conclusions: The results of the present study suggest that the aqueous root extract of DG exhibited anti-hypertrophic activity in-vivo by inhibiting ISO-induced ROS generation and MMP activities.

  20. Polyamine Depletion Attenuates Isoproterenol-Induced Hypertrophy and Endoplasmic Reticulum Stress in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2014-10-01

    Full Text Available Background/Aim: Polyamines (putrescine, spermidine and spermine play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. Methods: Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO. Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO. Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC and spermidine/spermine N1-acetyltransferase (SSAT were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. Results: DFMO (0.5 mM and 2 mM treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH and malondialdehyde (MDA level in the culture medium. In addition, DFMO (0.5 mM down regulated the expression of ODC, glucose-regulated protein 78 (GRP78, C/EBP homologous protein (CHOP, cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM. Conclusion: The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

  1. Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-04-01

    Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K(+) uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K(+) concentration, and to be critically dependent upon an increase in free cytosolic Ca(2+) concentration ([Ca(2+)]i), whereas cAMP plays only a facilitatory role together with increased [Ca(2+)]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca(2+)-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca(2+)-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K(+) activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca(2+), known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.

  2. 3-hydroxyflavone-bovine serum albumin interaction in Dextran medium

    Directory of Open Access Journals (Sweden)

    Voicescu Mariana

    2015-01-01

    Full Text Available Spectroscopic analysis of a bioactive flavonol, 3-Hydroxyflavone (3-HF, in systems based on Dextran 70 (Dx70 (an important bio-relevant polysacharide and Bovine Serum Albumin (BSA (a carrier protein, have been studied by fluorescence and circular dichroism. Changes produced by different concentrations of Dx70 on the fluorescent characteristics of 3-HF, and on the excited - state intramolecular proton transfer (ESIPT process were studied. The influence of 3-HF binding and of Dx70 on the secondary structure of BSA were investigated by circular dichroism spectroscopy. The influence of temperature (30-80°C range on the intrinsic Tryptophan fluorescence in 3-HF/BSA/Dx70 systems, was investigated. The results are discussed with relevance to 3-HF as a sensitive fluorescence probe for exploring flavone-protein interaction in plasma expander media and also for its biological evaluation.

  3. Dextran sulfate sodium (DSS)-induced colitis in mice.

    Science.gov (United States)

    Chassaing, Benoit; Aitken, Jesse D; Malleshappa, Madhu; Vijay-Kumar, Matam

    2014-02-04

    Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis and Crohn's Disease, are complex and multifactorial diseases with unknown etiology. For the past 20 years, to study human IBD mechanistically, a number of murine models of colitis have been developed. These models are indispensable tools to decipher underlying mechanisms of IBD pathogenesis as well as to evaluate a number of potential therapeutics. Among various chemically induced colitis models, the dextran sulfate sodium (DSS)-induced colitis model is widely used because of its simplicity and many similarities with human ulcerative colitis. This model has both advantages and disadvantages that must be considered when employed. This protocol describes the DSS-induced colitis model, focusing on details and factors that could affect DSS-induced pathology.

  4. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    Energy Technology Data Exchange (ETDEWEB)

    Paini, Marco, E-mail: marco.paini@unige.it [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Ruggiero, Carmelina; Pastorino, Laura [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa (Italy)

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment.

  5. Dextran Microsphere Hepatic Artery Embolization for Hepatoma: Pathological Assessment of Its Efficacy in Resected Cases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To evaluate the therapeutic effect and the mechanism of dextran microsphere hepatic artery embolization for hepatoma. Methods Partial hepatectomy was performed in 11 patients with hepatoma pretreated with dextran microsphere hepatic artery embolization. All specimens were for histopathologic studies in order to observe the destiny of dextran microspheres and necrotic degree of the tumor. Results complete necrosis of the tumor was found in seven cases and incomplete necrosis of the tumor in the rest 4. Tumors in the later were near to areas rich in arterial collateral anastomoses. The extent of tumor necrosis was unrelated to the presence and thickness of tumor capsule and capsular invasions. Dextran microspheres could cause permanent embolization of distal arterioles. The microspheres were very biocompatible and cause little foreign body reaction. No inflammatory changes were seen both inside and outside of the embolized artery 191 days after embolization. Dextran microspheres were not absorbed and the vessel recanalization was also not seen. Dextran microsphere was not found in portal veins. Conclusion Some hepatomas distant from the collateral circulation of arteries could be cured with dextran microsphere hepatic artery embolization alone.

  6. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima).

    Science.gov (United States)

    Baruah, Rwivoo; Maina, Ndegwa H; Katina, Kati; Juvonen, Riikka; Goyal, Arun

    2017-02-02

    Weissella cibaria RBA12 isolated from pummelo from Northeast India produces a dextran composed of 97% α-(1→6) linkages in the main chain and 3% α-(1→3) branched linkages. The in vitro prebiotic activity of dextran-RBA12 was explored. Dextran-RBA12 displayed enhanced growth of probiotic Bifidobacterium and Lactobacillus spp., and controlled growth of non-probiotic enteric bacteria. Dextran-RBA12 showed superior resistance to physiological barriers with a maximum hydrolysis of 0.51%, 0.31% and 0.24% by artificial gastric juice, α-amylase and intestinal fluid, respectively, whereas compared to maximum hydrolysis of 25.23%, 19.13% and 6%, respectively after 5h of incubation shown by commercial prebiotic inulin. The production of dextran from Weissella cibaria RBA12 in sourdough prepared from whole wheat flour, wheat bran and rye bran showed the highest dextran of 3.26±0.12% d.w. in rye bran. The overall study summarized that dextran-RBA12 can be used as a prebiotic and also can be easily produced in sourdough. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cardioprotective potential of hydro-alcoholic fruit extract ofAnanas comosus against isoproterenol induced myocardial infraction in Wistar Albino rats

    Institute of Scientific and Technical Information of China (English)

    Priya Saxena; Dharamveer Panjwani

    2014-01-01

    Objectives:To evaluate the cardioprotective effects of hydro alcoholic extract ofAnanas comosus (A. comosus)(HEAC), onIsoproterenol(ISO) induced myocardial infarction inAlbinoWistar rats. Methods:Myocardial infarction was induced byIsoproterenol(85 mg/kg,s.c.) for two consecutive days at an interval of24 h.Rats were pretreated withHEAC(200-400 mg/kg/day, oral) for a period of30 days andIsoproterenol(ISO) was injected on31st and32nd day and after24 h blood was collected through retro-orbital plexus for the estimation of biochemical parameters and histopathological studies were also performed.Results:In the present study,ISO administration significantly elevated the cholesterol, low density lipoprotein, very low density lipoprotein, triglycerides, alanine aminotransferase and aspartate aminotransferase levels while it decreases high density lipoprotein and total protein in plasma and administration ofHEAC decreases the level of cholesterol, low density lipoprotein, very low density lipoprotein, triglycerides, alanine aminotransferase and aspartate aminotransferase levels while it increases high density lipoprotein and total protein levels.Pretreatment with theHEAC protected the cardiotoxicity induced by Isoproterenol.The histopathological findings of theISO-induced myocardium showed infracted zone with inflammatory cells, lipid droplets, myocardial necrosis and vacuolization of myofibrils which were reduced by the pretreatment ofHEAC.Conclusion:It can be concluded thatHEAC possess cardioprotective activity againstIsoproterenol induced myocardial infarction in rats.

  8. Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats.

    Science.gov (United States)

    Abbas, Amr M

    2016-09-01

    Myocardial infarction (MI) is a common cause of mortality worldwide. Isorhapontigenin is a derivative of stilbene with chemical structure similar to resveratrol. The omega-3 fatty acids (FA) have beneficial effects on neurodegenerative, inflammatory, and cardiovascular diseases. The aim of this study was to investigate the effects of pretreatment with isorhapontigenin and omega-3 FA on rat model of isoproterenol-induced MI. Fifty-six rats were divided into seven groups: normal, normal + isorhapontigenin, normal + omega-3 FA, MI, MI + isorhapontigenin, MI + omega-3 FA, and MI + isorhapontigenin + omega-3 FA. Serum levels of cardiac marker enzymes [lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB)], cardiac troponin I (cTnI), inflammatory markers [tumor necrosis factor-alpha (TNF-α) and interleukin-6], and lipid profile [triglycerides, total cholesterol (T.Ch), high and low density lipoproteins (HDL, LDL), and phospholipids] as well as cardiac levels of malondialdehyde and anti-oxidants [reduced glutathione (GSH), superoxide dismutase (SOD), and catalase)] were measured in all rats. ECG and histopathological examination were performed. Isoproterenol caused a significant elevation of ST segment, decreased R wave amplitude, HDL, and anti-oxidants, and increased LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, triglycerides, T.Ch, LDL, and phospholipids. Omega-3 FA or isorhapontigenin significantly decreased the ST segment elevation, LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, and phospholipids and increased R wave amplitude and anti-oxidants. The effects of combined omega-3 FA and isorhapontigenin were more significant than either of them alone. Therefore, we conclude that omega-3 FA and isorhapontigenin have a cardioprotective effect on rats with isoproterenol-induced MI through their anti-oxidant and anti-inflammatory actions.

  9. Uncertainties in the use of periodate oxidation for determination of dextran structure.

    Science.gov (United States)

    Leonard, G J

    1975-05-01

    A glucan of high molecular weight isolated from stale sugar-cane, and previously shown to have a marked effect on sucrose crystallisation processes-1, is a relatively linear dextran. Approximately 96-97% of its D-glucose residues are involved in (1 yields 6)-alpha-D linkages and constitute the linear backbone of the polymer. The remaining 3-4% of D-glucose residues form branch-points by (1 yields 3)-alpha-D linkages. The periodate-oxidation technique, which has been extensively used by other workers to determine dextran structure, gave erroneous results when applied to the dextran from stale sugar-cane.

  10. Differential effects of isoproterenol on the activity of angiotensin-converting enzyme in the rat heart and aorta

    Directory of Open Access Journals (Sweden)

    Busatto V.C.W.

    1999-01-01

    Full Text Available The excessive stimulation of beta-adrenergic receptors in the heart induces myocardial hypertrophy. There are several experimental data suggesting that this hypertrophy may also depend, at least partially, on the increase of local production of angiotensin II secondary to the activation of the cardiac renin-angiotensin system. In this study we investigated the effects of isoproterenol on the activity of angiotensin-converting enzyme (ACE in the heart and also in the aorta and plasma. Male Wistar rats weighing 250 to 305 g were treated with a dose of (±-isoproterenol (0.3 mg kg-1 day-1, N = 8 sufficient to produce cardiac hypertrophy without deleterious effects on the pumping capacity of the heart. Control rats (N = 7 were treated with vehicle (corn oil. The animals were killed one week later. ACE activity was determined in vitro in the four cardiac chambers, aorta and plasma by a fluorimetric assay. A significant hypertrophy was observed in both ventricular chambers. ACE activity in the atria remained constant after isoproterenol treatment. There was a significant increase (P<0.05 of ACE activity in the right ventricle (6.9 ± 0.9 to 8.2 ± 0.6 nmol His-Leu g-1 min-1 and in the left ventricle (6.4 ± 1.1 to 8.9 ± 0.8 nmol His-Leu g-1 min-1. In the aorta, however, ACE activity decreased (P<0.01 after isoproterenol (41 ± 3 to 27 ± 2 nmol His-Leu g-1 min-1 while it remained unchanged in the plasma. These data suggest that ACE expression in the heart can be increased by stimulation of beta-adrenoceptors. However, this effect is not observed on other local renin-angiotensin systems, such as the aorta. Our data also suggest that the increased sympathetic discharge and the elevated plasma concentration of catecholamines may contribute to the upregulation of ACE expression in the heart after myocardial infarction and heart failure.

  11. Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice

    Science.gov (United States)

    Ning, Bing-bing; Zhang, Yong; Wu, Dan-dan; Cui, Jin-gang; Liu, Li; Wang, Pei-wei; Wang, Wen-jian; Zhu, Wei-liang; Chen, Yu; Zhang, Teng

    2017-01-01

    Myocardial injury and ensuing fibrotic alterations impair normal heart architecture and cause cardiac dysfunction. Oxidative stress has been recognized as a key player in the pathogenesis of cardiac injury and progression of cardiac dysfunction, and promoting fibrosis. In the current study we investigated whether luteolin-7-diglucuronide (L7DG), a naturally occurring antioxidant found in edible plants, could attenuate isoproterenol (ISO)-induced myocardial injury and fibrosis in mice and the underlying mechanisms. Myocardial injury and fibrosis were induced in mice via injection of ISO (5 mg·kg−1·d−1, ip) for 5 or 10 d. Two treatment regimens (pretreatment and posttreatment) were employed to administer L7DG (5–40 mg·kg−1·d−1, ip) into the mice. After the mice were euthanized, morphological examinations of heart sections revealed that both L7DG pretreatment and posttreatment regimens significantly attenuated ISO-induced myocardial injury and fibrosis. But the pretreatment regimen caused better protection against ISO-induced myocardial fibrosis than the posttreatment regimen. Furthermore, L7DG pretreatment blocked ISO-stimulated expression of the genes (Cyba, Cybb, Ncf1, Ncf4 and Rac2) encoding the enzymatic subunits of NADPH oxidase, which was the primary source of oxidant production in mammalian cells. Moreover, L7DG pretreatment significantly suppressed ISO-stimulated expression of collagen genes Col1a1, Col1a2, Col3a1, and Col12a1 and non-collagen extracellular matrix genes fibrillin-1, elastin, collagen triple helix repeat containing 1 and connective tissue growth factor. In addition, L7DG pretreatment almost reversed ISO-altered expression of microRNAs that were crosstalking with TGFβ-mediated fibrosis, including miR-29c-3p, miR-29c-5p, miR-30c-3p, miR-30c-5p and miR-21. The current study demonstrated for the first time that L7DG is pharmacologically effective in protecting the heart against developing ISO-induced injury and fibrosis, justifying

  12. Phytochemical Screening and Evaluation of Cardioprotective Activity of Ethanolic Extract of Ocimum Basilicum L. (Basil Against Isoproterenol Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Hamid Soraya

    2012-01-01

    Full Text Available Background and the purpose of the study: The objectives of the present study were phytochemical screening and study of the effects of ethanolic extract of aerial parts of Ocimum basilicum (basil on cardiac functions and histopathological changes in isoproterenol-induced myocardial infarction (MI.Methods: The leaves of the plant were extracted with ethanol by maceration and subjected to colorimetry to determine flavonoids and phenolic compounds. High-performance TLC analysis and subsequent CAMAG's TLC scanning were performed to quantify rosmarinic acid content. Wistar rats were assigned to 6 groups of normalcontrol, sham, isoproterenol, and treatment with 10, 20, and 40 mg/kg of the extract two times per day concurrent with MI induction. A subcutaneous injection of isoproterenol (100 mg/kg/day for 2 consecutive days was used to induce MI.Results: Phytochemical screening indicated the presence of phenolic compounds (5.36% and flavonoids (1.86%.Rosmarinic acid was the principal phenolic compound with a 15.74% existence. The ST-segment elevation induced by isoproterenol was significantly suppressed by all doses of the extract. A severe myocardial necrosis and fibrosis with a sharp reduction in left ventricular contractility and a marked increase in left ventricular end-diastolic pressure were seen in the isoproterenol group, all of which were significantly improved by the extract treatment. In addition to in-vitro antioxidant activity, the extract significantly suppressed the elevation of malondialdehyde levels both inthe serum and the myocardium.Conclusion: The results of the study demonstrate that Ocimum basilicum strongly protected the myocardium against isoproterenol-induced infarction and suggest that the cardioprotective effects could be related to antioxidative activities.

  13. Phase-transition and aggregation characteristics of a thermoresponsive dextran derivative in aqueous solutions.

    Science.gov (United States)

    Shi, Huan-Ying; Zhang, Li-Ming

    2006-10-16

    Grafting of poly(N-vinylcaprolactam) side chains onto a hydrophilic dextran backbone was found to provide the dextran with new, thermoresponsive properties in aqueous solutions. Depending on its solution concentration, the resulting dextran derivative could exhibit a temperature-induced phase-transition and critical transition temperature (T(c)). Different anions and cations of added salts, including five potassium salts and five alkali-metal chlorides, were observed to influence the T(c) value of its aqueous solution. Except for potassium iodide, all added salts were found to lower the T(c) value. The addition of the surfactant, cationic cetyltrimethylammonium bromide or anionic sodium dodecyl sulfate, resulted in an increase of the T(c) value. With the help of the Coomassie Brilliant Blue dye as a polarity probe, the formation of hydrophobic aggregates above the T(c) was revealed for this new dextran derivative in aqueous solution.

  14. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan); Unno, Hideaki [Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521 (Japan); Okuyama, Masayuki; Mori, Haruhide [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan); Nakada, Toshitaka [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Matsuura, Yoshiki [Institute for Protein Research, Osaka University, Suita, Osaka 565-0871 (Japan); Kimura, Atsuo [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan)

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, c = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.

  15. Inhibitory effect of substituted dextrans on MCF7 human breast cancer cell growth in vitro.

    Science.gov (United States)

    Morere, J F; Letourneur, D; Planchon, P; Avramoglou, T; Jozefonvicz, J; Israel, L; Crepin, M

    1992-12-01

    Substituted dextrans can reproduce some of the properties of heparin and can thus be used to alter cellular growth. We studied the effect of heparin (H108), dextran (D), carboxymethylbenzylamide dextran (CMDB) and carboxymethylbenzylamide sulfonate dextran (CMDBS) on the growth of human mammary cells of the MCF7 tumor line. The cells were cultured in minimum Eagle's medium containing 2% fetal calf serum without biopolymer, or with increasing concentrations of H108, D, CMDB or CMDBS. Growth curves were accurately based on cell counting using a Coulter counter. Cell distribution in the various phases of the cycle was analyzed by flow cytometry. Dose-dependent growth inhibitory effects (400-4000 micrograms/ml) were observed. The effect on MCF7 tumor cells was most apparent with CMDBS. The percentage of cells in the S phase decreased with preferential blocking in the G0/G1 phase. Pre-clinical studies can be anticipated as there is an absence of in vivo toxicity.

  16. Probing Conformational Change of Bovine Serum Albumin–Dextran Conjugates under Controlled Dry Heating

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuqin; Li, Yunqi; Zhao, Qin; Li, Ji; Xia, Qiuyang; Zhang, Xiaoming; Huang, Qingrong (Rutgers); (Chinese Aca. Sci.); (Jiangnan)

    2015-04-29

    The time-dependent conformational change of bovine serum album (BSA) during Maillard reaction with dextran under controlled dry heating has been studied by small-angle X-ray scattering, fluorescence spectroscopy, dynamic light scattering, and circular dichroism analysis. Through the research on the radii of gyration (Rg), intrinsic fluorescence, and secondary structure, conjugates with dextran coating were found to inhibit BSA aggregation and preserve the secondary structure of native BSA against long-time heat treatment during Maillard reaction. The results suggested that the hydrophilic dextran was conjugated to the compact protein surface and enclosed it and more dextran chains were attached to BSA with the increase of the heating time. The study presented here will be beneficial to the understanding of the conformational evolution of BSA molecules during the dry-heating Maillard reaction and to the control of the protein–polysaccharide conjugate structure.

  17. Exercise training provides cardioprotection via a reduction in reactive oxygen species in rats submitted to myocardial infarction induced by isoproterenol.

    Science.gov (United States)

    Frederico, Marisa J S; Justo, Simoni L; Da Luz, Gabrielle; Da Silva, Sabrina; Medeiros, Cleber; Barbosa, Viviane A; Silva, Luciano A; Boeck, Carina R; De Pinho, Ricardo A; De Souza, Claudio T

    2009-10-01

    Exercise training has demonstrated cardioprotection effects. However, the exact mechanism behind this effect is not is clear. The present study evaluated the effects of 12 weeks of previous treadmill training on the levels of oxidative damage, antioxidant enzyme activity and injury in the myocardium of rats submitted to infarction induced by isoproterenol (ISO). Isoproterenol treatment (80 mg/kg given over 2 days in two equal doses) caused arrhythmias and 60% mortality within 24 h of the last injection in the control group (C + ISO) group when compared with the saline control group (saline). Creatine Kinase--MB levels were markedly increased in hearts from ISO-treated animals in the C + ISO group. Twelve weeks of treadmill training reduced superoxide production, lipid peroxidation levels and protein carbonylation in these animals, as well as increasing the activities and expressions of SOD and CAT. Previous training also reduced CK-MB levels and numbers of deaths by 40%, preventing the deleterious effects of ISO. Based on the data obtained in this study, it is suggested that 12-week treadmill training increases antioxidant enzymes, decreases oxidative damage and reduces the degree of infarction induced by ISO in the hearts of male rats.

  18. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes.

    Science.gov (United States)

    Xie, Xiao-yun; Kong, Po-Ren; Wu, Jin-feng; Li, Ying; Li, Yan-xiang

    2012-12-15

    Curcumin, an active component derived from dietary spice turmeric (Curcuma longa), has been demonstrated antihyperglycemic, antiinflammatory and hypocholesterolemic activities in obesity and diabetes. These effects are associated with decreased level of circulating free fatty acids (FFA), however the mechanism has not yet been elucidated. The flux of FFA and glycerol from adipose tissue to the blood stream primarily depends on the lipolysis of triacylglycerols in the adipocytes. Adipocyte lipolysis is physiologically stimulated by catecholamine hormones. Tumor necrosis factor-α (TNFα) stimulates chronic lipolysis in obesity and type 2 diabetes. In this study, we examined the role of curcumin in inhibiting lipolytic action upon various stimulations in 3T3-L1 adipocytes. Glycerol release from TNFα or isoproterenol-stimulated 3T3-L1 adipocytes in the absence or presence of curcumin was determined using a colorimetric assay (GPO-Trinder). Western blotting was used to investigate the TNFα-induced phosphorylation of MAPK and perilipin expression. Fatcake and cytosolic fractions were prepared to examine the isoproterenol-stimulated hormone-sensitive lipase translocation. Treatment with curcumin attenuated TNFα-mediated lipolysis by suppressing phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) and reversing the downregulation of perilipin protein in TNFα-stimulated adipocytes (plipolysis response to TNFα and catecholamines. The antilipolytic effect could be a cellular basis for curcumin decreasing plasma FFA levels and improving insulin sensitivity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis

    Directory of Open Access Journals (Sweden)

    Tianzhu Zhang

    2014-01-01

    Full Text Available Berberine, an isoquinoline alkaloid originally isolated from the Chinese herb Coptis chinensis (Huanglian, has been shown to display a wide array of pharmacological activities. The present study was to investigate the effects of berberine against myocardial ischemia produced in rats by isoproterenol. 50 male Sprague-Dawley rats were randomized equally into five groups: a control group, an untreated model group, berberine (30, 60 mg/kg treatment, or propranolol (30 mg/kg. Rats were treated for 12 days and then given isoproterenol, 85 mg/kg for 2 consecutive days by subcutaneous injection. ST-segment elevation was measured after the last administration. Serum levels of creatine kinase isoenzyme (CK-MB, lactate dehydrogenase (LDH, tumor necrosis factor-α (TNF-α, and interleukin-6 (IL-6 were measured after the rats were sacrificed. The hearts were excised for determining heart weight index, microscopic examination, high mobility group box 1 (HMGB1, toll-like receptor (TLR4, prodeath protein (Bax, antideath protein (Bcl-2, and tumor necrosis factor (TNF-α protein were determined by western blot. Berberine decreased the ST elevation induced by acute myocardial ischemia, and decreased serum levels of CK-MB, LDH, TNF-α, and IL-6. Berberine increased total superoxide dismutase (T-SOD activity and decreased malondialdehyde (MDA content in myocardial tissue. Berberine can regulate HMGB1-TLR4 axis to protect myocardial ischemia.

  20. Dextran and 5-aminosalicylic acid (5-ASA) conjugates: synthesis, characterisation and enzymic hydrolysis.

    Science.gov (United States)

    Ahmad, Shavej; Tester, Richard F; Corbett, Alistair; Karkalas, John

    2006-11-27

    Mesalamine (5-aminosalicylic acid) is the drug of choice for the treatment of Crohn's disease. A scheme for the synthesis of 5-aminosalicylic acid (5-ASA) conjugates of dextrans was developed with a focus on Crohn's disease applications. Dextrans were oxidised using sodium periodate (NaIO(4)), where the aldehyde groups formed were coupled with the alpha-amino (-NH(2)) group of 5-ASA. The resulting imine bonds were unstable in water and were consequently reduced to secondary amine groups. The effects of different aspects of the conjugation reaction were studied. These included the following: the molecular weight of the dextrans, the molar proportion of NaIO(4) to the dextrans (for periodate oxidation), the pH of the conjugation solutions, the ratio 5-ASA to oxidised polysaccharide and the relationship between the degree of conjugation and the amount of enzyme hydrolysis. Conjugates incubated in HCl were stable in 0.5 and 1.0M HCl, but they underwent degradation in 2.0 and 4.0M HCl. Dextrans (MW 20,000) with various degrees of oxidation (12%, 26%, 46%, 65%, 90% and 93%) were also prepared. Each oxidised dextran sample was conjugated with 5-ASA, and the product was quantified by high-performance liquid chromatography (HPLC). Dextrans with a maximum degree of oxidation (93%) unsurprisingly gave maximum conjugation of 5-ASA (49.1mg per 100mg of product) but were resistant to dextranase hydrolysis. Less oxidised dextrans (12%) conjugated proportionally less 5-ASA (15.1mg per 100mg of product) but were successfully hydrolysed by dextranase, suggesting their potential applications for the treatment of Crohn's disease in the distal ileum and proximal colon.

  1. Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry.

    Science.gov (United States)

    Park, Jae Yoon; Yeom, Jihyeon; Kim, Jee Seon; Lee, Mihyun; Lee, Haeshin; Nam, Yoon Sung

    2013-11-01

    The resistance of bioceramics against non-specific adsorption of serum proteins is critical for a wide range of biomedical applications. Some polysaccharides serve as natural protein-resistant molecules in extracellular matrices; however, the stable adhesion of polysaccharides to ceramic biomaterials in an aqueous solution is very challenging because chemical linkages at organic/inorganic interfaces are susceptible to hydrolytic degradation. Here, a catechol-grafted dextran, which strongly binds to titania (TiO2 ) in an aqueous milieu to effectively suppress cell adhesion through anti-fouling activity against non-specific protein adsorption, is introduced. Catechol is conjugated approximately to 6.7 mol% of glucose units of dextran via a carbamate ester linkage, corresponding to roughly three catechols per dextran chain having an average molecular weight of 6 kDa. Multivalent interactions of catechols with a titanium atom, enabled by the graft-type structure, provide a very stable coating of dextran on this inorganic surface. The adhesion of HeLa cells on the dextran-coated titania surface is reduced by 2.4-fold compared to that on a pristine titania surface. These results suggest that the graft-type incorporation of a small number of catechol moieties along a dextran backbone is an effective means of producing a stable anti-fouling interface on inorganic biomaterials in an aqueous environment.

  2. An efficient acetylation of dextran using in situ activated acetic anhydride with iodine

    Directory of Open Access Journals (Sweden)

    MUHAMMAD A. HUSSAIN

    2010-02-01

    Full Text Available A facile, efficient, cost-effective and solvent-free acetylation method has been developed for the acetylation of dextran. Dextran acetates were successfully synthesized using different molar ratios of acetic anhydride in the presence of iodine as a catalyst without the use of any solvent. The reactions were realized at 50 °C for 3 h under stirring and nitrogen. This efficient method yielded highly pure and organosoluble dextran esters. The reaction appears highly effective for obtaining higher degrees of substitution (DS with great efficiency. Under solvent-free conditions, dextran triacetates were efficiently synthesized. It was also observed that the molar ratio can easily control the DS of pendant groups onto the polymer backbone. Hence, a range of products with varying DS were successfully designed, purified and characterized. Covalent attachment of the pendant groups onto the polymer backbone was verified by spectroscopic techniques. Thermogravimetric analysis indicated that the obtained dextran esters were thermally as stable as dextran. The DS of the pendant groups onto the polymer backbone was calculated using standard acid base titration after saponification. Furthermore, all products were thoroughly characterized by thermal analysis (TG and DTG, and FTIR and 1H-NMR spectroscopic analysis.

  3. Water Kefir grain as a source of potent dextran producing lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Davidović Slađana Z.

    2015-01-01

    Full Text Available Water kefir is abeverage fermented by a microbial consortium captured in kefir grains. The kefir grains matrix is composed of polysaccharide, primarily dextran, whichis produced by members of the microbial consortium. In this study, we have isolated lactic acid bacteria (LAB from non-commercial water kefir grains (from Belgrade, Serbia and screened for dextran production. Among twelve Lisolates threeproduced slime colonies on modified MRS (mMRS agar containing sucrose instead of glucoseand were presumed to produce dextran. Three LABwere identified based on morphological, physiological and biochemical characteristics and 16S rRNA sequencing as Leuconostoc mesenteroides(strains T1 and T3 and Lactobacillus hilgardii (strain T5. The isolated strains were able to synthesize a substantial amount of dextran in mMRS broth containing 5% sucrose. Maximal yields (11.56, 18.00 and 18.46 g/l were obtained after 16h, 20h and 32h for T1, T3 and T5, respectively. Optimal temperature for dextran production was 23oC for two Leuconostoc mesenteroides strains and 30oC for Lactobacillus hilgardii strain. The produced dextrans were identified based on paper chromatography while the main structure characteristics of purified dextranwere observed by FT-IR spectroscopy. Our study shows that water kefir grains are a natural source of potent dextranproducing LAB. [Projekat Ministarstva nauke Republike Srbije, br. TR 31035

  4. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Science.gov (United States)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  5. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Thambi, Thavasyappan; You, Dong Gil; Han, Hwa Seung; Deepagan, V G; Jeon, Sang Min; Suh, Yung Doug; Choi, Ki Young; Kim, Kwangmeyung; Kwon, Ick Chan; Yi, Gi-Ra; Lee, Jun Young; Lee, Doo Sung; Park, Jae Hyung

    2014-11-01

    Bioreducible carboxymethyl dextran (CMD) derivatives are synthesized by the chemical modification of CMD with lithocholic acid (LCA) through a disulfide linkage. The hydrophobic nature of LCA allows the conjugates (CMD-SS-LCAs) to form self-assembled nanoparticles in aqueous conditions. Depending on the degree of LCA substitution, the particle diameters range from 163 to 242 nm. Doxorubicin (DOX), chosen as a model anticancer drug, is effectively encapsulated into the nanoparticles with high loading efficiency (>70%). In vitro optical imaging tests reveal that the fluorescence signal of DOX quenched in the bioreducible nanoparticles is highly recovered in the presence of glutathione (GSH), a tripeptide capable of reducing disulfide bonds in the intracellular compartments. Bioreducible nanoparticles rapidly release DOX when they are incubated with 10 mm GSH, whereas the drug release is greatly retarded in physiological buffer (pH 7.4). DOX-loaded bioreducible nanoparticles exhibit higher toxicity to SCC7 cancer cells than DOX-loaded nanoparticles without the disulfide bond. Confocal laser scanning microscopy observation demonstrate that bioreducible nanoparticles can effectively deliver DOX into the nuclei of SCC7 cells. In vivo biodistribution study indicates that Cy5.5-labeled CMD-SS-LCAs selectively accumulate at tumor sites after systemic administration into tumor-bearing mice. Notably, DOX-loaded bioreducible nanoparticles exhibit higher antitumor efficacy than reduction-insensitive control nanoparticles. Overall, it is evident that bioreducible CMD-SS-LCA nanoparticles are useful as a drug carrier for cancer therapy.

  6. Covalent immobilization of Enterococcus faecalis Esawy dextransucrase and dextran synthesis.

    Science.gov (United States)

    Hashem, Amal M; Gamal, Amira A; Hassan, Mohamed E; Hassanein, Naziha M; Esawy, Mona A

    2016-01-01

    Enterococcus faecalis Esawy dextransucrase was immobilized in Fe(3+)-cross-linked alginate/carboxymethyl cellulose (AC) beads. The gel beads were modified with polyethylenimine (PEI) followed by glutaraldehyde (GA) to form Fe(3+) (ACPG) beads. Fe(3+) (ACPG) was characterized using FTIR and DSC techniques. GA activated beads showed new two peaks. The first was at 1,717 cm(-1) which refers to (CO) group of a free aldehyde end of glutaraldehyde, and another peak was at 1,660 cm(-1) referring to (CN) group. The immobilization process improved the optimum temperature from 35 to 45°C. The immobilized enzyme showed its optimum activity in wide pH range (4.5-5.4) compared to pH 5.4 in case of free form. Also, the immobilization process improved the thermal and pH enzyme stability to great extent. Reusability test proved that the enzyme activity retained 60% after 15 batch reactions. Immobilized enzyme was applied successfully in the synthesis of oligosaccharides and different molecular weights of dextran.

  7. Biotinylated dextran amine anterograde tracing of the canine corticospinal tract

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Guangming Lv; Huiqun Wu; Dafeng Ji; Zhou Sun; Yaofu Li; Lemin Tang

    2012-01-01

    In this study, biotinylated dextran amine (BDA) was microinjected into the left cortical motor area of the canine brain. Fluorescence microscopy results showed that a large amount of BDA-labeled pyramidal cells were visible in the left cortical motor area after injection. In the left medulla oblongata, the BDA-labeled corticospinal tract was evenly distributed, with green fluorescence that had a clear boundary with the surrounding tissue. The BDA-positive corticospinal tract entered into the right lateral funiculus of the spinal cord and descended into the posterior part of the right lateral funiculus, close to the posterior horn, from cervical to sacral segments. There was a small amount of green fluorescence in the sacral segment. The distribution of BDA labeling in the canine central nervous system was consistent with the course of the corticospinal tract. Fluorescence labeling for BDA gradually diminished with time after injection. Our findings indicate that the BDA anterograde tracing technique can be used to visualize the localization and trajectory of the corticospinal tract in the canine central nervous system.

  8. Agaricus bisporus attenuates dextran sulfate sodium-induced colitis.

    Science.gov (United States)

    Um, Min Young; Park, Jae Ho; Gwon, So Young; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-12-01

    Agaricus bisporus (white button mushroom, WBM) is widely consumed in most countries and is reported to have anti-inflammatory and antioxidant activities. However, little is known regarding its effects in dextran sulfate sodium (DSS)-induced colitis, which are related to dysfunction of intestinal immunity. The aim of the present study was to investigate the effects of WBMs in an animal model of DSS-induced colitis. Male, 4-week-old ICR mice (n=10 per group) were fed a normal diet with or without 10% WBM for 4 weeks, and colitis was induced by 3% DSS in drinking water for 7 days. WBMs prevented DSS-induced shortening of colon length (P=.033) and diminished diarrhea (P=.049) and gross bleeding (P=.001), resulting in a decreased disease activity index. Results of histological analysis showed that WBMs suppressed mucosal damage. In addition, WBMs attenuated the DSS-induced increase in myeloperoxidase activity (P=.012) and upregulation of proinflammatory cytokine tumor necrosis factor-α (P=.020) in the colon segment. Taken together, these findings suggest a possible role for the WBM as an immunomodulator that can prevent and/or treat ulcerative colitis.

  9. Dietary Curcuma longa protects myocardium against isoproterenol induced hemodynamic, biochemical and histopathological alternations in rats

    Directory of Open Access Journals (Sweden)

    I R Mohanty

    2008-12-01

    Full Text Available Summary: The present study was designed to investigate whether Curcuma longa (Cl, a natural herb, would attenuate the acute myocardial infarction in isoproterenol (ISP-treated rat model via maintaining cardiac function and activities of endogenous antioxidant enzymes. Haemodynamic parameters {systolic, diastolic and mean arterial pressure (SAP, DAP, MAP, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular (LV peak positive (+ dP/dt (rate of pressure development and negative  (- dP/dt (rate of pressure decline}were recorded. Cardiac marker enzyme: Creatinine phosphokinase(CPK and antioxidative parameters: Glutathione (GSH, Thiobarbituric acid reactive substances (TBARS, Catalase (CAT, Glutathione peroxidase (GSHPx and Superoxide dismutase (SOD of heart tissues were measured. Histopathological examination of heart tissues was also performed.  Induction of rats with ISP (85 mg/kg on 29th and 30th day, s.c. resulted in significant cardiac necrosis, decline in cardiac function, antioxidant status and elevation in lipid peroxidation. Oral administration of Cl (50, 100 and 200 mg/kg, respectively to healthy experimental animals (i.e. animals without any myocardial pathologic challenge viz. ISP for 30 days significantly enhanced the basal myocardial levels of GSHPx (p<0.05, CAT (p<0.05 activity as compared to the sham group. Subsequent to ISP induced myocardial injury, Cl (100 & 200 mg/kg pre-treatment for 30 days, resulted in significant mitigating effects on several myocardial injury induced biochemical {SOD (p<0.05, CAT(p<0.05, GSHPx(0.05, TBARS (p<0.05, CPK (p<0.05}, hemodynamic {MAP(p<0.05,, LVEDP(p<0.05} and histopathological perturbations. Cl (100 mg/kg was found to be the optimum cardioprotective dose. The results indicate that chronic Cl administration causes myocardial adaptation by augmenting endogenous antioxidants and protects rat hearts from decline in cardiac function and oxidative stress associated with ISP

  10. Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking

    DEFF Research Database (Denmark)

    Wang, Guankui; Chen, Fangfang; Banda, Nirmal K

    2016-01-01

    , whereas opsonization with C3 fragments promotes rapid recognition and clearance of nanomaterials by mononuclear phagocytes. We used dextran-coated superparamagnetic iron oxide nanoparticles (SPIO), which are potent activators of the complement system, to study the role of nanoparticle surface chemistry...

  11. Effects of beta-hydroxybutyrate and isoproterenol on lipolysis in isolated adipocytes from periparturient dairy cows and cows with clinical ketosis

    NARCIS (Netherlands)

    van der Drift, S. G. A.; Everts, R. R.; Houweling, M.; van Leengoed, L. A. M. G.; Stegeman, J. A.; Tielens, A. G. M.; Jorritsma, R.

    2013-01-01

    An in vitro model was used to investigate effects of beta-hydroxybutyrate and isoproterenol (beta-adrenergic receptor agonist) on lipolysis in isolated adipocytes from late pregnant and recently calved dairy cows (n = 5) and cows with clinical ketosis (n =3). Incubation with 3.0 mmol/L beta-hydroxyb

  12. (3H)-isoproterenol binding to subcellular fractions of mouse parotid: relationship to cyclic nucleotide formation and the stimulation of DNA synthesis.

    Science.gov (United States)

    Durham, J P; Galanti, N

    1976-12-01

    (3H) Isoproterenol binding to subcellular fractions of mouse parotid: Relationship to cyclic nucleotide formation and the stimulation of DNA synthesis. (Unión the (3H) Isoproterenol a fracciones subcelulares de parótida de ratón y su relacón con la formacón de nucleótidos cíclicos y la estimulación de la síntesis de DNA). Arch. Biol. Med. Exper. 10: 105-114, 1976. Tritiated isoproterenol binds to all subcellular fractions of mouse parotid but 70% of the binding is to the nuclear fraction. Binding to other mouse tissues was less than to the parotid. The patterns of binding did not correlate with the distribution of adenylate cyclase, guanylate cyclase or catechol-O-methyl transferase among the fractions or tissues nor with the extent of response in stimulation of DNA synthesis among the tissues. Inhibition of (3H) Isoproterenol binding to parotid fractions by catecholamine analogs was studied. There was no correlation between their ability to inhibit binding and the ability of the analogs themselves to raise cyclic AMP levels or stimulate DNA synthesis.

  13. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    Directory of Open Access Journals (Sweden)

    Vinicius C. Soeiro

    2016-08-01

    Full Text Available Dextrans (α-d-glucans extracted from Leuconostoc mesenteroides, with molecular weights (MW of 10 (D10, 40 (D40 and 147 (D147 kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50% when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50% when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50% of murine macrophages (RAW 264.7 and decreased the release of nitric oxide (~40% by the cells, both in the absence and presence of lipopolysaccharides (LPS. In addition, D40 showed a greater scavenging activity (50% for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%. These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis.

  14. Growth inhibition of human melanoma tumor cells by the combination of sodium phenylacetate (NaPA) and substituted dextrans and one NaPA-dextran conjugate.

    Science.gov (United States)

    Gervelas, C; Avramoglou, T; Crépin, M; Jozefonvicz, J

    2002-01-01

    We have studied the cytostatic effects of sodium phenylacetate (NaPA) in association with several substituted dextrans on human tumor melanoma 1205LU cells. We show that NaPA alone inhibits the growth of these cells (IC50 = 3.9 mM) while a weak inhibitory effect appears at a concentration of 37 microM (10 microg/ml) for a dextran methyl carboxylate benzylamide (LS17-DMCB). The precursors of LS17-DMCB [T40 Dextran and carboxymethyl dextran (LS17-DMC)] did not affect the growth of 1205LU cells. To potentiate the inhibitory activity of NaPA at low concentrations (below 5.6 mM), we have tested NaPA and LS17-DMCB in physical mixture (association) or linked together covalently (this conjugate is termed 'LS17-NaPaC'). We have observed an increase of the 1205LU cell growth inhibition effect with NaPA in association (IC50 1.8 mM). For a concentration of 5 mM of NaPA (free in the case of association or linked in the case of conjugate), the association with dextran derivative exhibits a 4.6-fold higher efficacy than with NaPA alone (9 versus 41% surviving fraction), while the conjugate is 1.3-fold smaller (52% growth inhibition). By performing isobologram analysis of the IC50 data, we have shown a synergistic effect for a particular molar ratio of NaPA and LS17-DMCB (NaPA:LS17-DMCB = 0.35).

  15. Correlation between UV-VIS spectra and the structure of Cu(II) complexes with hydrogenated dextran in alkaline solutions

    OpenAIRE

    Nikolić Goran S.; Cakić Milorad D.; Mitić Žarko J.; Nikolić Ružica S.; Ilić Ljubomir A.

    2005-01-01

    UV-VIS spectrophotometric investigations of Cu(II) complexes with hydroge-nated dextran showed that the complexation of Cu(II)-ions began at pH > 7. The formation of Cu(II) complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II)-dextran complex decomposed to Cu(OH)42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift) compare...

  16. Preventive effect of phytic acid on lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats.

    Science.gov (United States)

    Brindha, E; Rajasekapandiyan, M

    2015-02-01

    This study was aimed to evaluate the preventive role of phytic acid on lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for two days showed a significant increase in the activities of lysosomal enzymes (glucuronidase, N-acetyl glucosaminidase, galactosidase, cathepsin-B and cathepsin-D) were increased significantly in serum and the heart of ISO-induced rats, but the activities of glucuronidase and cathepsin-D were decreased significantly in the lysosomal fraction of the heart. Pretreatment with phytic acid (25 and 50 mg/kg) daily for a period of 56 d positively altered activities of lysosomal hydrolases in ISO-induced rats. Thus, phytic acid possesses a cardioprotective effect in ISO-induced MI in rats.

  17. Complexes of osmium, uranium, molybdenum, and tungsten with the catechol amines adrenaline, noradrenaline, dopamine, dopa, and isoproterenol

    Energy Technology Data Exchange (ETDEWEB)

    El-Hendawy, A.M.; Griffith, W.P.; Pumphrey, C.A.

    1988-07-01

    New complexes of the form trans-(OsO/sub 2/L/sub 2/)/sup 2-/ and UO/sub 2/Lcenter dotnH/sub 2/O (H/sub 2/L = adrenaline (H/sub 2/ad), noradrenaline (H/sub 2/nad), dopamine (H/sub 2/dpm), dopa (H/sub 2/dp), and isoproterenol (H/sub 2/prot)) are reported, as are cis(MO/sub 2/L/sub 2/)/sup 2-/(L = nad, dp, prot for M = Mo or W, and ad for M = W), (MO/sub 2/(Hdpm)/sub 2/) (M = Mo or W), and (Mo/sub 2/O/sub 5/(Had)/sub 2/). The structures of these species are discussed on the basis of their Raman, infrared, /sup 1/H and /sup 13/C n.m.r. spectra.

  18. Molecular and biochemical evidence on the protective effects of quercetin in isoproterenol-induced acute myocardial injury in rats.

    Science.gov (United States)

    Kumar, Mukesh; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Kumar, Vikas; Lahkar, Mangala

    2017-01-01

    Cardioprotection represents one of the most important and realistic aspects of preventive therapy today. Quercetin, a naturally occurring dietary flavone, has been studied extensively for its antioxidant properties. The objective of present study is to find out the cardioprotective activity and to explore the underlying mechanisms of quercetin pretreatment (50 mg/kg body weight, orally) for 14 days against isoproterenol (ISO; 100 mg/kg body weight, subcutaneously) induced myocardial infarction in Wistar rats. Cardiac diagnostic markers, oxidative stress, inflammatory cytokines, histopathology along with gene expression analysis of calpain 1 and 2 were carried out in experimental rats. Quercetin pretreatment showed protective effects on heart by significantly attenuating the ISO-induced oxidative stress, inflammation, protecting heart architecture, and by downregulation of the expression of calpain. Overall, these findings revealed the cardio-protective potential of quercetin and its mechanism of action against ISO-induced MI in rats.

  19. Protective effect of Lagenaria siceraria (Mol) against membrane-bound enzyme alterations in isoproterenol-induced cardiac damage in rats.

    Science.gov (United States)

    Vijayakumar, M; Selvi, V; Krishnakumari, S

    2012-01-01

    This study was aimed at evaluating the preventive role of the ethanolic extract of Lagenaria siceraria (Mol) fruit on membrane-bound enzymes, such as sodium potassium-dependent adenosine triphosphatase (Na(+)/K(+) ATPase), calcium-dependent adenosine triphosphatase (Ca(2+) ATPase) and magnesium-dependent adenosine triphosphatase (Mg(2+) ATPase) on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with the ethanolic extract of L. siceraria (Mol) fruit (125, 250 and 500 mg kg(-1) body weight) for a period of 30 days. After the treatment period, ISO (85mg kg(-1) body weight) was subcutaneously injected into rats at 24-h intervals for 2 days. ISO-induced rats showed a significant (p siceraria (Mol) fruit for a period of 30 days exhibited a significant (p siceraria (Mol) fruit has membrane-stabilising role in ISO-induced MI in rats.

  20. Toll-Like Receptor 4 Inhibition Improves Oxidative Stress and Mitochondrial Health in Isoproterenol-Induced Cardiac Hypertrophy in Rats

    Directory of Open Access Journals (Sweden)

    Parmeshwar B. Katare

    2017-06-01

    Full Text Available BackgroundInflammation remains a crucial factor for progression of cardiac diseases and cardiac hypertrophy remains an important cause of cardiac failure over all age groups. As a key regulator of inflammation, toll-like receptor 4 (TLR4 plays an important role in pathogenesis of cardiac diseases. Being an important regulator of innate immunity, the precise pathway of TLR4-mediated cardiac complications is yet to be established. Therefore, the primary objective of the present study was to find the role of TLR4 in cardiac hypertrophy and the molecular mechanism thereof.MethodsCardiac hypertrophy was induced with administration of isoproterenol (5 mg/kg/day, sc. TLR4 receptor inhibitor RS-LPS (lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides; 5 μg/day and agonist lipopolysaccharide (LPS (from Escherichia coli; 3.12 μg/day were administered through osmotic pump along with isoproterenol. Cardiac hypertrophy as well as oxidative stress and mitochondrial parameters were evaluated.ResultsCardiac hypertrophy was confirmed with increased heart weight/body weight ratio as well as assessment of hypertrophic markers in heart. There was a marked increase in the TLR4 expression and oxidative stress along with mitochondrial dysfunction in ISO group. TLR4 inhibition significantly decreased heart weight/body weight ratio and ANP, collagen, and β-MHC expression and restored the disturbed cellular antioxidant flux. The mitochondrial perturbations that were observed in hypertrophy heart was normalized after administration of TLR4 inhibitor but not with the agonist. TLR4 agonism further exaggerated the oxidative stress in heart and hence accelerated the disease development and progression.ConclusionOur data show that increased TLR4 ligand pool in cardiac hypertrophy may exaggerate the disease progression. However, inhibition of TLR4 attenuated cardiac hypertrophy through reduced cardiac redox imbalance and mitochondrial

  1. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na [Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul (Korea, Republic of); Lee, Jae Yung [Dept. Biological Science, Mokpo National University, Mokpo (Korea, Republic of); Park, Se Yeon [Dept. Applied Chemistry, Dongduk Women' s University, Seoul (Korea, Republic of)

    2016-12-15

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX.

  2. Antiviral activity of derivatized dextrans on HIV-1 infection of primary macrophages and blood lymphocytes.

    Science.gov (United States)

    Seddiki, N; Mbemba, E; Letourneur, D; Ylisastigui, L; Benjouad, A; Saffar, L; Gluckman, J C; Jozefonvicz, J; Gattegno, L

    1997-11-28

    The present study demonstrates at the molecular level that dextran derivatives carboxymethyl dextran benzylamine (CMDB) and carboxymethyl dextran benzylamine sulfonate (CMDBS), characterized by a statistical distribution of anionic carboxylic groups, hydrophobic benzylamide units, and/or sulfonate moieties, interact with HIV-1 LAI gp120 and V3 consensus clades B domain. Only limited interaction was observed with carboxy-methyl dextran (CMD) or dextran (D) under the same conditions. CMDBS and CMDB (1 microM) strongly inhibited HIV-1 infection of primary macrophages and primary CD4+ lymphocytes by macrophage-tropic and T lymphocyte-tropic strains, respectively, while D or CMD had more limited effects on M-tropic infection of primary macrophages and exert no inhibitory effect on M- or T-tropic infection of primary lymphocytes. CMDBS and CMDB (1 microM) had limited but significant effect on oligomerized soluble recombinant gp120 binding to primary macrophages while they clearly inhibit (> 50%) such binding to primary lymphocytes. In conclusion, the inhibitory effect of CMDB and the CMDBS, is observed for HIV M- and T-tropic strain infections of primary lymphocytes and macrophages which indicates that these compounds interfere with steps of HIV replicative cycle which neither depend on the virus nor on the cell.

  3. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

    Science.gov (United States)

    Khot, V M; Salunkhe, A B; Thorat, N D; Ningthoujam, R S; Pawar, S H

    2013-01-28

    MgFe(2)O(4) nanoparticles with sizes around 20 nm have been prepared by a combustion method and functionalized with dextran for their possible applications in magnetic particle hyperthermia. The induction heating study of these nanoparticles at different magnetic field amplitudes, from 6.7 kA m(-1) to 26.7 kA m(-1), showed self-heating temperature rise up to 50.25 °C and 73.32 °C (at 5 mg mL(-1) and 10 mg mL(-1) concentrations in water respectively) which was primarily thought to be due to hysteresis losses activated by an AC magnetic field. The dextran coated nanoparticles showed a maximum specific absorption rate (SAR) of about 85.57 W g(-1) at 26.7 kA m(-1) (265 kHz). Dextran coated nanoparticles at concentrations below 1.8 mg mL(-1) exhibit good viability above 86% on mice fibroblast L929 cells. The results suggest that combustion synthesized MgFe(2)O(4) nanoparticles coated with dextran can be used as potential heating agents in magnetic particle hyperthermia. Uncoated and dextran coated samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA) and zeta potential-DLS studies.

  4. Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates.

    Science.gov (United States)

    Kim, Sangho; Ong, Peng Kai; Johnson, Paul C

    2009-06-01

    Recently, we reported that collision efficiency (fraction of total collisions that result in the formation of aggregates) between red blood cells was an important factor in the formation of aggregates in postcapillary venules. In the present study, we focus on how high molecular weight dextran influences the overall radial migration trend of red blood cells in the postcapillary venule along a longitudinal distance of 50 microm from the bifurcation which would in turn affect collision behavior of these cells. A radial migration index, which defines the extent of radial migration of individual cells relative to the vessel center, was found to have a larger magnitude after infusion of dextran (1.9 +/- 2.73) compared to that before dextran infusion (1.48 +/- 3.89). This implied that dextran-induced aggregation might provide an external force to actively move cells towards the centerline of the vessel, which could contribute to the greater number of red blood cells participating in collision (16% increase) and aggregate formation. Further analysis of the collision behavior of individual red blood cells revealed that collision frequencies of individual cells decreased from a wide range (1 to 14) to a narrow range (1 to 5) after dextran treatment, indicating the alteration of collision behavior of red blood cells by the presence of aggregates along the flow stream.

  5. Fusion and infection of influenza and Sendai viruses as modulated by dextran sulfate: a comparative study.

    Science.gov (United States)

    Ramalho-Santos, J; de Lima, M C

    2001-06-01

    We have directly compared the effect of two types of dextran sulfate with distinct molecular weights (500 kDa and 5 kDa) on the fusion activity and infectivity of both Sendai and influenza viruses, two lipid-enveloped viruses that differ in their routes of entry into target cells. To correlate membrane merging and infectivity MDCK cells were used as targets for the viruses in both approaches. In either case pronounced inhibition of virus-cell interactions by dextran sulfate was only observed at low pH, even though Sendai virus fuses maximally at pH 7.4. Although membrane merging could not be fully abolished, the inhibitory effect was always greater when the higher molecular weight dextran sulfate was used. The presence of this residual fusion activity, that could not be reduced even with high concentrations of agent, suggests that a limited number of binding sites for dextran sulfate may exist on the viral envelopes. The compounds also inhibited fusion of bound virions, and all results could be reproduced using erythrocyte ghosts as target membranes in the fusion assay, instead of MDCK cells. In agreement with these observations only the infectivity of influenza virus (which requires a low pH-dependent step to enter target cells) was affected by dextran sulfate, again the higher molecular weight compound showing a more pronounced inhibitory effect.

  6. Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.

    Science.gov (United States)

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2015-05-01

    Various types of polysaccharides are widely used in cultured dairy products. However, the interaction mechanisms, between milk proteins and these polysaccharides, are not entirely clear. To explore the interactions between uncharged and charged polysaccharides and the caseins, we used a model acid-milk-gel system, which allowed acidification to occur separately from gelation. The effect of adding uncharged dextran (DX; molecular weight ~2.0×10(6) Da) and negatively charged dextran sulfate (DS; molecular weight ~1.4×10(6) Da) to model acid milk gels was studied. Two concentrations (0.075 and 0.5%, wt/wt) of DX or DS were added to cold milk (~0°C) that had been acidified to pH values 4.4, 4.6, 4.8, or 4.9. Acidified milks containing DX or DS were then quiescently heated at the rate of 0.5°C/min to 30°C, which induced gelation, and gels were then held at 30°C for 17 h to facilitate gel development. Dynamic small-amplitude-oscillation rheology and large-deformation (shear) tests were performed. Microstructure of gels was examined by fluorescence microscopy. Gels made with a high concentration of DX gelled at a lower temperature, but after 17 h at 30°C, these gels exhibited lower storage moduli and lower yield-stress values. At pH 4.8 or 4.9 (pH values greater than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in lower gelation temperature. At pH 4.4 (pH values less than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in gels with very high stiffness values. Gels made at pH 4.8 or 4.9 with both concentrations of DS had much lower stiffness and yield-stress values than control gels. Microstructural analysis indicated that gels made at pH 4.4 with the addition of 0.5% DX exhibited large protein strands and pores, whereas gels made with 0.075% DX or the control gels had a finer protein matrix. At higher pH values (>4.4), gels made with 0.5% DX had a finer structure. At all pH values, gels made

  7. Hypertonic Saline Dextran Ameliorates Organ Damage in Beagle Hemorrhagic Shock.

    Directory of Open Access Journals (Sweden)

    Jing-xiang Zhao

    Full Text Available The goal of this study was to investigate the effect of hypertonic saline with 6% Dextran-70 (HSD resuscitation on organ damage and the resuscitation efficiency of the combination of HSD and lactated ringers (LR in a model of hemorrhage shock in dogs.Beagles were bled to hold their mean arterial pressure (MAP at 50 ± 5 mmHg for 1 h. After hemorrhage, beagles were divided into three groups (n = 7 to receive pre-hospital resuscitation for 1 h (R1: HSD (4 ml/kg, LR (40 ml/kg, and HSD+LR (a combination of 4 ml/kg HSD and 40 ml/kg LR. Next, LR was transfused into all groups as in-hospital resuscitation (R2. After two hours of observation (R3, autologous blood was transfused. Hemodynamic responses and systemic oxygenation were measured at predetermined phases. Three days after resuscitation, the animals were sacrificed and tissues including kidney, lung, liver and intestinal were obtained for pathological analysis.Although the initial resuscitation with HSD was shown to be faster than LR with regard to an ascending MAP, the HSD group showed a similar hemodynamic performance compared to the LR group throughout the experiment. Compared with the LR group, the systemic oxygenation performance in the HSD group was similar but showed a lower venous-to-arterial CO2 gradient (Pv-aCO2 at R3 (p < 0.05. Additionally, the histology score of the kidneys, lungs and liver were significantly lower in the HSD group than in the LR group (p < 0.05. The HSD+LR group showed a superior hemodynamic response but higher extravascular lung water (EVLW and lower arterial oxygen tension (PaO2 than the other groups (p < 0.05. The HSD+LR group showed a marginally improved systemic oxygenation performance and lower histology score than other groups.Resuscitation after hemorrhagic shock with a bolus of HSD showed a similar hemodynamic response compared with LR at ten times the volume of HSD, but HSD showed superior efficacy in organ protection. Our findings suggest that

  8. Coagulation competence for predicting perioperative hemorrhage in patients treated with lactated Ringer's vs. Dextran

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten C; Højskov, Michael; Johansson, Per Ingemar

    2015-01-01

    BACKGROUND: Perioperative hemorrhage may depend on coagulation competence and this study evaluated the influence of coagulation competence on blood loss during cystectomy due to bladder cancer. METHODS: Forty patients undergoing radical cystectomy were included in a randomized controlled trial...... to receive either lactated Ringer's solution or Dextran 70 (Macrodex ®) that affects coagulation competence. RESULTS: By thrombelastography evaluated coagulation competence, Dextran 70 reduced "maximal amplitude" (MA) by 25 % versus a 1 % reduction with the administration of lactated Ringer's solution (P ....001). Blinded evaluation of the blood loss was similar in the two groups of patients - 2339 ml with the use of Dextran 70 and 1822 ml in the lactated Ringer's group (P = 0.27). Yet, the blood loss was related to the reduction in MA (r = -0.427, P = 0.008) and by multiple regression analysis independently...

  9. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Directory of Open Access Journals (Sweden)

    Stichtenoth Guido

    2006-06-01

    Full Text Available Abstract Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM and stereology allows the differentiation of active (large aggregates = LA and inactive (small aggregates = SA subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf, Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL, multilamellar vesicles (MV, unilamellar vesicles (UV] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA as well as UV (corresponding to SA. The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV ratio (resembling the SA/LA ratio increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.

  10. Synthesis and Characterization of Graft Copolymer of Dextran and 2-Acrylamido-2-methylpropane Sulphonic Acid

    Directory of Open Access Journals (Sweden)

    Venkanna Azmeera

    2012-01-01

    Full Text Available A novel biodegradable graft copolymer of dextran (Dx and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS was synthesized by grafting poly-AMPS chains onto dextran backbone by free radical polymerization using ceric ammonium nitrate (CAN as an initiator. Different amounts of AMPS were used to synthesize four different grades of graft copolymers with different side chain lengths. These grafted polymers were characterized by elemental analysis, FTIR, 1HNMR, rheological technique, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and X-ray diffractometry (XRD. They exhibited efficient flocculation performance in kaolin suspension.

  11. Camomile autofermentation in polyethylene glycol/dextran two-phase system

    Directory of Open Access Journals (Sweden)

    Đaković Sanja D.

    2008-01-01

    Full Text Available The objective of this study was the investigation of the extractive bioconversion of apigenin-7-O-β-glucoside in camomile ligulate flowers into apigenin by autofermentation in polyethylene glycol 6000/dextran 200000 two-phase system. In 22.5% polyethylene glycol/14% dextran aqueous two-phase system the obtained yield of apigenin in the top phase was 96.5%. In the presence of plant material that partiotioned to the interphase, the yield of apigenin in the top phase was 3.5 times higher in comparison to the model system.

  12. Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran.

    Science.gov (United States)

    Kajala, Ilkka; Mäkelä, Jari; Coda, Rossana; Shukla, Shraddha; Shi, Qiao; Maina, Ndegwa Henry; Juvonen, Riikka; Ekholm, Päivi; Goyal, Arun; Tenkanen, Maija; Katina, Kati

    2016-04-01

    The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.

  13. Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking

    DEFF Research Database (Denmark)

    Wang, Guankui; Chen, Fangfang; Banda, Nirmal K

    2016-01-01

    While having tremendous potential as therapeutic and imaging tools, the clinical use of engineered nanoparticles has been associated with serious safety concerns. Activation of the complement cascade and the release of proinflammatory factors C3a and C5a may contribute to infusion-related reactions......, whereas opsonization with C3 fragments promotes rapid recognition and clearance of nanomaterials by mononuclear phagocytes. We used dextran-coated superparamagnetic iron oxide nanoparticles (SPIO), which are potent activators of the complement system, to study the role of nanoparticle surface chemistry...... in inciting complement in human serum. Using complement inhibitors and measuring levels of fluid phase markers (sC5b-9, C5a, and Bb), we found that the majority of human complement activation by SPIO is through the alternative pathways (AP). SPIO prepared with high dextran/iron ratio showed some complement...

  14. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon.

    Science.gov (United States)

    Cho, Eunae; Tahir, Muhammad Nazir; Choi, Jae Min; Kim, Hwanhee; Yu, Jae-Hyuk; Jung, Seunho

    2015-11-20

    We present the synthesis of novel magnetic nanoparticles functionalized by benzene- and β-cyclodextrin-derivatized dextran. The grafting strategy was based on the [alkynyl-iron] cluster in the modified dextrans, which were prepared by click reaction from alkyne-modified dextran and benzyl azide or mono-6-O-deoxy-monoazido β-cyclodextrin. Characterization was then carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. Using the developed magnetic nanoparticles, the potential for removing polycyclic aromatic hydrocarbons such as phenanthrene and pyrene by sorption onto the nanomaterials was assessed. In the sorption, pi-stacking interactions of the benzene-derivatized dextran and host-guest chemistry of the β-cyclodextrin-derivatized dextran were considered to be significant. Furthermore, the polysaccharide derivative-coated magnetic adsorbents could be recovered by an external magnet for reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of Liposomal Compositions with Oxidized Dextrans on Functional Activity of U937 Macrophage-Like Cells In Vitro.

    Science.gov (United States)

    Kozhin, P M; Chechushkov, A V; Zaitseva, N S; Lemza, A E; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2015-11-01

    We studied the effects of liposomal pharmaceutical compositions with oxidized dextrans on functional activity of U937 monocyte/macrophage-like cells. Liposomes in the emulsion contained oxidized dextran with a molecular weights of 40 kDa or 70 kDa or isonicotinic acid hydrazide (INAH) conjugated with oxidized dextran (40 kDa). Cell viability was evaluated by MTT test; mitochondrial transmembrane potential and production of superoxide anion and H2O2 were studied by fluorescent methods. The studied compositions exhibited no cytotoxic effect and even improved cell viability and mitochondrial respiration. Liposomes with oxidized 40 kDa dextran, including those with INAH-conjugated dextran, inhibited production of superoxide anion, but increased H2O2 generation.

  16. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    Science.gov (United States)

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification.

  17. Leg amputation following intramuscular injection of iron dextran in a 32 year old woman

    Directory of Open Access Journals (Sweden)

    Gloria Shalviri

    2015-10-01

    Full Text Available To inform healthcare professionals of a rare serious reaction leading to leg amputation following intramuscular injection of iron dextran and report comments for preventing such reactions.A case of leg amputation following intramuscular injection of iron dextran reported to Iranian Pharmacovigilance Center was reviewed. Patient and reaction data was collected by assessing the reported yellow card, patient chart review and interviewing with patient and physicians. World Health Organization definition for serious reactions was used to determine the seriousness of the reaction. Naranjo algorithm was used to determine probability scale. The probability of the reaction was determined based on questionnaire of Schumock et al. The studied case is classified as a rare and serious but preventable reaction induced by intramuscular injection of iron dextran in a 32 year old woman. The probability of the reaction is appeared to be “probable” based on Naranjo algorithm. It seems that Iron dextran could cause serious and life threatening adverse effects. It is necessary for healthcare professionals to be informed of such rare but serious reaction in order to apply preventive actions.

  18. Stability of ketoprofen-dextran ester prodrugs in homogenates of various segments of pig GI tract

    DEFF Research Database (Denmark)

    Larsen, C.; Jensen, Bodil Hamborg; Olesen, H. P.

    1991-01-01

    Initial velocities of ketoprofen formation from ketoprofen-dextran ester prodrugs incubated in homogenates of various segments of the pig GI-tract were determined. Enzyme-mediated drug release was found in caecum and colon homogenates with their contents, whereas release rates in the stomach...

  19. Study on Thermosensitive Micellization of Dextran-g-PNIPAAm in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    Dan ZHAO; Li Qun WANG; Ke Hua TU; Song Wei TAN

    2006-01-01

    The thermosensitive micellization of dextran-g-PNIPAAm in aqueous solutions has been investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscope. The formed polymeric micelles showed different diameters of about 20 nm or 100nm, when the solution temperature was below or above the phase transition temperature.

  20. Phase separation of aqueous mixtures of poly(ethylene oxide) and dextran

    NARCIS (Netherlands)

    Edelman, M.W.; Linden, van der E.; Tromp, R.H.

    2003-01-01

    Abstract: The phase behavior of aqueous mixtures of poly(ethylene oxide) (PEO) and dextran is studied as a function of the polymer concentration, the PEO molar mass, and temperature. The molar mass distributions of the two polymers in the coexisting phases are measured. From the temperature dependen

  1. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics

    DEFF Research Database (Denmark)

    Yucel Falco, Cigdem; Falkman, Peter; Risbo, Jens

    2017-01-01

    Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media...

  2. Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion.

    Science.gov (United States)

    Su, Hongying; Jia, Qingming; Shan, Shaoyun

    2016-11-05

    Polysaccharide-based microgels with high water content, excellent biocompatibility and controllable particle size have been widely studied as ideal candidates for drug release and delivery. In this study, microgels based on dextran were developed via the Schiff base formation between aldehyded dextran and ethylenediamine in a water-in-oil (W/O) microemulsion. Particle size of the resulted microgel was controllable between 800 and 1100nm by modulating the amount of the employed co-surfactants (Span 80/Tween 80). Furthermore, fluoresceins (e.g., aminofluorescein) and drugs (e.g., doxorubicin) with free amino groups can be conjugated onto the network of the dextran-based microgel via Schiff base linkages. Since the Schiff base linkages are degradable via hydrolysis and their stability decreases with the environmental pH decreases, the resulted Schiff bases contained microgel showed a pH dependent degradation profile. These results indicated that the pH-sensitive microgel based on dextran could be used as promising drug delivery systems for biomedical applications.

  3. 77 FR 50121 - Hospira, Inc.; Withdrawal of Approval of a New Drug Application for DEXTRAN 70

    Science.gov (United States)

    2012-08-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Hospira, Inc.; Withdrawal of Approval of a New Drug... Drug Administration (FDA) is withdrawing approval of a new drug application (NDA) for DEXTRAN 70...

  4. Self-assembling microsphere-based dextran hydrogels for pharmaceutical applications

    NARCIS (Netherlands)

    Van Tomme, S.R.

    2007-01-01

    In this thesis novel self-assembling hydrogels, based on physical interactions between dextran microgels, potentially suitable for controlled drug delivery and tissue engineering, are presented. Two different approaches to self-assemble the hydrogels were investigated: ionic interactions and hydroph

  5. Regulation of signal transducer and activator of transcription 3 and apoptotic pathways by betaine attenuates isoproterenol-induced acute myocardial injury in rats.

    Science.gov (United States)

    Zheng, P; Liu, J; Mai, S; Yuan, Y; Wang, Y; Dai, G

    2015-05-01

    The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways.

  6. Expression of the mitochondrial uncoupling protein in brown adipocytes. Absence in brown preadipocytes and BFC-1 cells. Modulation by isoproterenol in adipocytes.

    Science.gov (United States)

    Forest, C; Doglio, A; Casteilla, L; Ricquier, D; Ailhaud, G

    1987-01-01

    The expression of the uncoupling protein has been compared in cells of BFC-1 clonal line established from mouse brown adipose tissue (BAT) and in preadipocytes, as well as in adipocytes from mouse BAT, both in primary culture. The results of immunoblots show that, after one week in culture, adipocytes have a reduced level of the 32 kD protein. This level can be raised 2-3.5-fold by a 24-h exposure to isoproterenol. Thus a direct modulation by a beta-agonist drug in the expression of the uncoupling protein is observed. Under the same conditions as well as under various other conditions, preadipocytes in primary culture and BFC-1 cells do not express the uncoupling protein. At the same time these cells are able both to differentiate into adipose cells, as demonstrated by the emergence of enzyme markers and triglyceride accumulation, and to respond to isoproterenol. Thus isoproterenol is not sufficient to trigger the expression of the uncoupling protein and behaves as a mere modulator once the cells have acquired the capacity to express it. Injection of undifferentiated BFC-1 cells into athymic mice bearing catecholamine-containing mini-osmotic pumps, or co-cultures of BFC-1 cells and pheochromocytoma PC-12 cells do not allow BFC-1 cells to express the uncoupling protein. Taken together, the results suggest that the formation of brown preadipocytes is critically linked during development to the release by sympathetic nerves of specific trophic factors acting locally.

  7. Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products.

    Science.gov (United States)

    Zhu, Fenlu; Heditke, Sarah; Kurtzberg, Joanne; Waters-Pick, Barbara; Hari, Parameswaran; Margolis, David A; Keever-Taylor, Carolyn A

    2015-12-01

    Removing DMSO post-thaw results in: reduced infusion reactions, improved recovery and stability of viable CD34+ cells. Validated methods use 5%-8.3% Dextran 40 with 2.5%-4.2% HSA for this purpose. Recent shortages of clinical grade Dextran require identification of suitable alternatives. PBPC were used to compare a standard 2X wash medium of 5 parts 10% Dextran 40 in saline (DEX) with 1 part 25% HSA (8.3% DEX/ 4.2% HSA) with Hydroxyethyl Starch (HES)-based solutions. Cells in replicate bags were diluted with an equal volume of wash solution, equilibrated 5 minutes, the bag filled with wash medium, pelleted and the supernatant expressed. Bags were restored to the frozen volume in wash medium and tested by single platform flow cytometry and CFU. Total viability, viable TNC, MNC, and CD34+ cell recovery, and CD34+ cell viability were compared immediately post-thaw and after 90 minutes. 5.2% HES/4.2% HSA did not differ from our standard in CD34 recovery or viability. Due to concerns that high concentrations of HES could affect renal function we tested 0.6% HES/2.5% HSA resulting in significantly poorer CD34 recovery and viability. Results improved using 2.4% HES/4.2% HSA and when 0.6% HES/4.2%HSA was used no significant differences were seen. CFU assays confirmed no differences between the standard dextran arm and HES at 2.4% or 0.6% so long as HSA was at 4.2%. We conclude that HES from 0.6% to 5.2% with 4.2% HSA is a suitable substitute for Dextran 40 as a reconstitution/washing medium for PBPC products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. The co-operative action of hyaluronidase and urokinase on the isoproterenol-induced myocardial infarction in rats.

    Science.gov (United States)

    Borrelli, F; Antonetti, F; Martelli, F; Caprino, L

    1986-04-15

    The effects of the intravenous administration of hyaluronidase (HY; 2,500 IU/kg) and urokinase (UK; 20,000 and 40,000 IU/kg), alone or in combination, on the isoproterenol (ISP) induced myocardial infarction (MI) in rats, were studied. The severity of infarction was determined by measuring the levels of serum enzymes (CPK, GOT, LDH) and by evaluating the extent of the injured areas and the incidence of mortality. Plasma thromboxane B2 (TXB2) levels were also determined. All the treatments reduced the infarction area and the enzyme levels (increased by ISP) to a varying degree. However, a definite potentiating activity was obtained when HY was combined with the highest dose of UK. This combination was also capable of reducing the mortality rate. Finally, both HY and UK or the combined preparation brought the plasma TXB2 levels back to normal. These findings suggest the possibility of complementary activities of HY and UK in the treatment of experimental MI.

  9. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure.

    Science.gov (United States)

    Richards, Daniel A; Bao, Weike; Rambo, Mary V; Burgert, Mark; Jucker, Beat M; Lenhard, Stephen C

    2013-05-01

    The loss of cardiac reserve is, in part, responsible for exercise intolerance in late-stage heart failure (HF). Exercise tolerance testing (ETT) has been performed in mouse models of HF; however, treadmill performance and at-rest cardiac indexes determined by magnetic resonance imaging (MRI) rarely correlate. The present study adopted a stress-MRI technique for comparison with ETT in HF models, using isoproterenol (ISO) to evoke cardiac reserve responses. Male C57BL/6J mice were randomly subjected to myocardial infarction (MI), transverse aortic constriction (TAC), or sham surgery under general anesthesia. Mice underwent serial ETT on a graded treadmill with follow-up ISO stress-MRI. TAC mice showed consistent exercise intolerance, with a 16.2% reduction in peak oxygen consumption vs. sham at 15-wk postsurgery (WPS). MI and sham mice had similar peak oxygen consumption from 7 WPS onward. Time to a respiratory exchange ratio of 1.0 correlated with ETT distance (r = 0.64; P change in ejection fraction under ISO stress was reduced in HF mice at 4 WPS [10.1 ± 3.9% change (Δ) and 8.9 ± 3.5%Δ in MI and TAC, respectively, compared with 32.0 ± 3.5%Δ in sham; P intolerance in mouse HF models.

  10. Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructurebased electrochemical sensor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mazloum-Ardakani; Fariba Sabaghian; Alireza Khoshroo; Hossein Naeimi

    2014-01-01

    A carbon paste electrode modified with 2-((7-(2,5- dihydrobenzylideneamino)heptylimino)methyl) benzene-1,4-diol (DHB) and carbon nanotubes were used to simultaneously determine the concen-trations of isoproterenol (IP), uric acid (UA), and folic acid (FA) in solution. First, cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. Next, the mediated oxidation of IP at the modified electrode is described. At the optimum pH of 7.0, the oxidation of IP occurs at a potential about 90 mV less than that of an unmodified carbon paste elec-trode. Based on the results of differential pulse voltammetry (DPV), the oxidation of IP showed a dynamic range between 10 and 6000 μmol/L, and a detection limit of 1.24 µmol/L. Finally, DPV was used to simultaneously determine the concentrations of IP, UA, and FA in solution at the modified electrode.

  11. Release of LHRH-activity from human fetal membranes upon exposure to PGE/sub 2/, oxytocin and isoproterenol

    Energy Technology Data Exchange (ETDEWEB)

    Poisner, A.M.; Poisner, R.; Becca, C.R.; Conn, P.M.

    1986-03-01

    The authors have previously reported that superfused chorion laeve (fetal membranes) release LHRH-like immunoreactivity upon exposure to angiotensin II. They have now studied the effects of other agonists on the release of LHRH-activity and something of its chemical nature. Fetal membranes were obtained from placentas delivered by cesarean section, the amnion stripped from the chorion, and the chorion superfused in an Amicon thin-channel device with the maternal surface facing up. The whole device was submerged in a 37 C water bath and perfused with a modified Locke's solution at 0.4 - 1.0 ml/min. LHRH-activity was measured by radioimmunoassay using three different antisera against LHRH. The release of LHRH-activity was stimulated by 6-10 min exposure to PGE/sub 2/, oxytocin, and isoproterenol. Extracts of chorion were studied using gel filtration on Sephacryl S-200 and ultrafiltration with Amicon PM-10 filters. The bulk of the LHRH-activity appeared as a higher molecular weight form (about 70,000 daltons). Since oxytocin has been reported to release PGE/sub 2/ from chorion, it may release LHRH-activity by virtue of liberating endogenous PGE/sub 2/. The chemical nature of the LHRH-activity is presently under investigation.

  12. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.

    Science.gov (United States)

    Sankar, Vandana; Pangayarselvi, Balasubramaniam; Prathapan, Ayyappan; Raghu, Kozhiparambil Gopalan

    2013-01-01

    Cardiac hypertrophy occurs in response to increased workload, such as hypertension or valvular heart disease. Oxidative stress has been implicated in cardiac hypertrophy and in its transition to heart failure. This study was taken up with the objective to evaluate the role of oxidative stress in cardiomyoblast hypertrophy and its modulation by Desmodium gangeticum (DG) that has been traditionally used in Ayurveda, an Indian system of medicine. The methanolic root extract was analyzed for total phenolic content and tested for antioxidant potential. Hypertrophy was induced by exposing H9c2 cell line to β-adrenergic receptor agonist, isoproterenol (ISO), for 96 hours. Analyses of reactive oxygen species (ROS) generation, mitochondrial transmembrane potential ([INCREMENT]Ψm), and integrity of permeability transition were performed in ISO as well as Desmodium and ISO-cotreated cells. The results demonstrated potent free radical scavenging activity of DG. Cell line studies showed significant increase in ROS generation, dissipation of [INCREMENT]Ψm, and permeability transition pore opening in ISO-treated cells. Desmodium was found to attenuate ISO-induced hypertrophy by reduction of ROS generation, restoration of [INCREMENT]Ψm, and prevention of permeability transition pore opening. This study is the first documentation of the modulatory effect of DG on cardiac hypertrophy.

  13. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate.

    Science.gov (United States)

    Li, Ping; Luo, Shike; Pan, Chunji; Cheng, Xiaoshu

    2015-12-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)‑induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator‑activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO‑induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO‑induced rat model, possibly via promoting fatty acid oxidation.

  14. In vivo pretreatment of Eudrilus eugeniae powder attenuates β-adrenoceptor toxicity mediated by isoproterenol in rat model

    Directory of Open Access Journals (Sweden)

    Jaganathan Anitha

    2016-08-01

    Full Text Available The present study was designed to discover the potential cardioprotective function of earthworm powder (EWP extracted from Eudrilus eugeniae on isoproterenol (ISO-induced myocardial infarction in male Wistar rats. The rats were divided into four groups, with six rats in each group. Certain rats were pretreated with EWP (200 mg/kg bwt (Group III, and a myocardial infarction was then induced by subcutaneous injection of ISO (85 mg/kg bwt (Group II. Oral pretreatment of 200 mg/kg bwt of EWP for 28 days significantly (p > 0.05 improved the blood profile levels, including (a the lipid profile of total cholesterol (TC, free fatty acids (FFA, and triglycerides (TG; (b low-density lipoprotein (LDL, very low-density lipoprotein (VLDL, high-density lipoprotein (HDL, and protein; and (c A/G ratio, glucose and uric acid levels. The electrophoretic pattern of elevated lactose dehydrogenase (LDH levels was recovered by EWP treatment as evidenced by comparison with ISO-induced rats with cardiac damage. The above results indicate that EWP (200 mg/kg bwt provides a cardioprotective effect by attenuating the blood profile, lipid profile, biochemical levels, and LDH patterns in rats that experienced an ISO-induced myocardial infarction.

  15. Role of protein kinase C-delta in isoproterenol-induced amylase release in rat parotid acinar cells.

    Science.gov (United States)

    Sugiya, Hiroshi; Satoh, Keitaro; Matsuki-Fukushima, Miwako; Qi, Bing; Guo, Ming-Yu; Fujita-Yoshigaki, Junko

    2009-01-01

    In parotid acinar cells, beta-adrenergic receptor activation results in accumulation of intracellular cAMP. Subsequently, cAMP-dependent protein kinase (PKA) is activated and consequently amylase release is provoked. In this paper, we investigated involvement of protein kinase C-delta (PKC delta), a novel isoform of PKC, in amylase release induced by beta-adrenergic receptor stimulation. Amylase release stimulated with the beta-agonist isoproterenol (IPR) was inhibited by rottlerin, an inhibitor of PKC delta. IPR activated PKC delta and the effect of IPR were inhibited by a PKA inhibitor, H89. Myristoylated alanine-rich C kinase substrate (MARCKS), a major cellular substrate for PKC, was detected in rat parotid acinar cells, and a MARCKS inhibitor, MARCKS-related peptide, inhibited the IPR-induced amylase release. IPR stimulated MARCKS phosphorylation, which was found to be inhibited by H89 and rottlerin. These observations suggest that PKC delta activation is a downstream pathway of PKA activation and is involved in amylase release via MARCKS phosphorylation in rat parotid acinar cells stimulated with beta-adrenergic agonist.

  16. Effects of Lagenaria sicessaria fruit juice on lipid profile and glycoprotein contents in cardiotoxicity induced by isoproterenol in rats.

    Science.gov (United States)

    Upaganlawar, Aman; Balaraman, R

    2012-01-01

    This study investigated antihyperlipidemic effects of Lagenaria siceraria fruit juice (LSFJ) in isoproterenol (ISO)induced cardiotoxicity in rats. Rats treated with ISO (200 mg/kg, s.c.) showed a significant increase in the levels of triglycerides, cholesterol, and free fatty acids, in both serum and heart tissue. An increase in the levels of phospholipids, low-density lipoprotein, and very low-density lipoprotein-cholesterol, and decrease in high-density lipoprotein-cholesterol in serum and phospholipid levels in the heart were observed. ISO intoxicated rats also showed a significant decrease in the activities of lecithin: cholesterol acyl transferase, whereas lipoprotein lipase was found to be increased. Administration of LSFJ (400 mg/kg, p.o.) for 30 consecutive days and challenged with ISO on day 29th and 30th significantly attenuated these alterations and restored the levels of serum and heart lipids along with lipid metabolizing enzymes. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the protective effect of LSFJ during ISO-induced cardiotoxicity in rats.

  17. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

    Science.gov (United States)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2017-06-01

    Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant. Moreover, weight ratio of dextran to magnetic nanoparticles has a remarkable influence on size and magnetic properties of nanoparticles, so that the sample prepared with a higher weight ratio of dextran to nanoparticles has the smaller size and saturation magnetization compare with the other samples. In addition, the ferrofluids containing such nanoparticles have an excellent stability at physiological pH for several months. Furthermore, the biocompatibility studies reveal that surface modification of nanoparticles by dextran dramatically decreases the cytotoxicity of bare nanoparticles and consequently improves their potential application for diagnostic and therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    Science.gov (United States)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  19. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Min Choi, Jae

    2015-01-01

    We present the synthesis of novel magnetic nanoparticles functionalized by benzene- and β-cyclodextrin-derivatized dextran. The grafting strategy was based on the [alkynyl-iron] cluster in the modified dextrans, which were prepared by click reaction from alkyne-modified dextran and benzyl azide...... or mono-6-O-deoxy-monoazido β-cyclodextrin. Characterization was then carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. Using the developed magnetic nanoparticles...... to be significant. Furthermore, the polysaccharide derivative-coated magnetic adsorbents could be recovered by an external magnet for reuse....

  20. Formation of nanoparticles by cooperative inclusion between (S-camptothecin-modified dextrans and β-cyclodextrin polymers

    Directory of Open Access Journals (Sweden)

    Thorbjørn Terndrup Nielsen

    2015-01-01

    Full Text Available Novel (S-camptothecin–dextran polymers were obtained by “click” grafting of azide-modified (S-camptothecin and alkyne-modified dextrans. Two series based on 10 kDa and 70 kDa dextrans were prepared with a degree of substitution of (S-camptothecin between 3.1 and 10.2%. The binding properties with β-cyclodextrin and β-cyclodextrin polymers were measured by isothermal titration calorimetry and fluorescence spectroscopy, showing no binding with β-cyclodextrin but high binding with β-cyclodextrin polymers. In aqueous solution nanoparticles were formed from association between the (S-camptothecin–dextran polymers and the β-cyclodextrin polymers.

  1. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis.

    Science.gov (United States)

    Famulla, Susanne; Schlich, Raphaela; Sell, Henrike; Eckel, Jürgen

    2012-07-01

    Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditions. In this study, we mimicked physiological conditions by differentiating human primary adipocytes under 10% or 5% O2 in comparison to 21% O2. Induction of differentiation markers was comparable between all three conditions. Adipokine release by adipocytes differentiated at lower oxygen levels was altered, with a marked upregulation of adiponectin, IL-6 and DPP4 secretion, and reduced leptin levels compared with adipocytes differentiated at 21% O2. Isoproterenol-induced lipolysis was significantly elevated in adipocytes differentiated at 10% and 5% compared with 21% O2. This effect was accompanied by increased protein expression of β-1 and -2 adrenergic receptor, HSL and perilipin. Conditioned medium (CM) of adipocytes differentiated at the three different conditions was generated for stimulation of human skeletal muscle cells (SkMC) or smooth muscle cells (SMC). CM-induced insulin resistance in SkMC was comparable for the different CMs. However, the SMC proliferative effect of CM from adipocytes differentiated at 10% O2 was significantly reduced compared with 21% O2. This study demonstrates that oxygen levels during adipogenesis are important factors altering adipocyte functionality such as adipokine release, in particular adiponectin secretion, as well as the hormone-induced lipolytic pathway.

  2. RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response.

    Science.gov (United States)

    Prunotto, Andrea; Stevenson, Brian J; Berthonneche, Corinne; Schüpfer, Fanny; Beckmann, Jacques S; Maurer, Fabienne; Bergmann, Sven

    2016-09-07

    The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the β-blocker atenolol (ATE) and the β-agonist isoproterenol (ISO). Differential expression analyses revealed a large set of genes responding to ISO (n = 1770 at FDR = 0.0001) and a comparatively small one responding to ATE (n = 23 at FDR = 0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r = -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibit coherent transcription profiles across some strains and/or treatments. Correlations between these modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Our study provides new insights into the transcriptional response of the heart to perturbations of the β-adrenergic system, implicating several new genes that had not been associated to this system previously.

  3. Effect of Piper betle on cardiac function, marker enzymes, and oxidative stress in isoproterenol-induced cardiotoxicity in rats.

    Science.gov (United States)

    Arya, Dharamvir Singh; Arora, Sachin; Malik, Salma; Nepal, Saroj; Kumari, Santosh; Ojha, Shreesh

    2010-11-01

    The present study was designed to investigate the cardioprotective potential of Piper betle (P. betle) against isoproterenol (ISP)-induced myocardial infarction in rats. Rats were randomly divided into eight groups viz. control, ISP, P. betle (75, 150, and 300 mg/kg) and P. betle (75, 150, and 300 mg/kg) + ISP treated group. P. betle leaf extract (75, 150, or 300 mg/kg) or saline was orally administered for 30 days. ISP (85 mg/kg, s.c.) was administered at an interval of 24 h on the 28(th) and 29(th) day and on day 30 the functional and biochemical parameters were measured. ISP administration showed a significant decrease in systolic, diastolic, mean arterial pressure (SAP, DAP, MAP), heart rate (HR), contractility (+LVdP/dt), and relaxation (-LVdP/dt) and increased left ventricular end-diastolic pressure (LVEDP). ISP also caused significant decrease in myocardial antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and myocyte injury marker enzymes; creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH) along with enhanced lipid peroxidation; thiobarbituric acid reacting species (TBARS) in heart. Pre-treatment with P. betle favorably modulated hemodynamic (SAP, DAP, and MAP) and ventricular function parameters (-LVdP/dt and LVEDP). P. betle pre-treatment also restored SOD, CAT, GSH, and GPx, reduced the leakage of CK-MB isoenzyme and LDH along with decreased lipid peroxidation in the heart. Taken together, the biochemical and functional parameters indicate that P. betle 150 and 300 mg/kg has a significant cardioprotective effect against ISP-induced myocardial infarction. Results of the present study suggest the cardioprotective potential of P. betle.

  4. Moringa oleifera leaf extract prevents isoproterenol-induced myocardial damage in rats: evidence for an antioxidant, antiperoxidative, and cardioprotective intervention.

    Science.gov (United States)

    Nandave, Mukesh; Ojha, Shreesh Kumar; Joshi, Sujata; Kumari, Santosh; Arya, Dharamvir Singh

    2009-02-01

    The present study evaluated cardioprotective effect of lyophilized hydroalcoholic extract of Moringa oleifera in the isoproterenol (ISP)-induced model of myocardial infarction. Wistar albino male rats were divided into three groups and orally fed saline once daily alone (sham) or with ISP (ISP control) or ISP with M. oleifera (200 mg/kg), respectively, for 1 month. On days 29 and 30 of administration, rats of the ISP control and M. oleifera-ISP groups were administered ISP (85 mg/kg, s.c.) at an interval of 24 hours. On day 31, hemodynamic parameters (mean arterial pressure [MAP], heart rate [HR], left ventricular end-diastolic pressure [LVEDP], and left ventricular peak positive [(+) LV dP/dt] and negative [(-) LV dP/dt] pressures were recorded. At the end of the experiment, the animals were sacrificed, and hearts were excised and processed for biochemical, histopathological, and ultrastructural studies. Chronic treatment with M. oleifera demonstrated mitigating effects on ISP-induced hemodynamic [HR, (+) LV dP/dt, (-) LV dP/dt, and LVEDP] perturbations. Chronic M. oleifera treatment resulted in significant favorable modulation of the biochemical enzymes (superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, and creatine kinase-MB) but failed to demonstrate any significant effect on reduced glutathione compared to the ISP control group. Moringa treatment significantly prevented the rise in lipid peroxidation in myocardial tissue. Furthermore, M. oleifera also prevented the deleterious histopathological and ultrastructural perturbations caused by ISP. Based on the results of the present study, it can be concluded that M. oleifera extract possesses significant cardioprotective effect, which may be attributed to its antioxidant, antiperoxidative, and myocardial preservative properties.

  5. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ana P Davel

    Full Text Available OBJECTIVE: Sustained β-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the β-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of β-adrenoceptor overactivation. METHODS AND RESULTS: Mice lacking the β1- or β2-adrenoceptor subtype (β1KO, β2KO and wild-type (WT were treated with isoproterenol (ISO, 15 μg.g(-1 x day(-1, 7 days. ISO significantly enhanced the maximal vasoconstrictor response (Emax of the aorta to phenylephrine in WT (+34% and β1KO mice (+35% but not in β2KO mice. The nitric oxide synthase (NOS inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and β1KO mice. Superoxide dismutase (SOD, pertussis toxin (PTx or PD 98,059 (p-ERK 1/2 inhibitor incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated β2KO mice was not altered. Immunoblotting revealed increased aortic expression of Giα-3 protein (+50% and phosphorylated ERK1/2 (+90% and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100% in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in β2KO mice. CONCLUSIONS: The β2-adrenoceptor/Giα signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term β2-AR activation might results in endothelial dysfunction.

  6. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles.

    Science.gov (United States)

    Hauser, Anastasia K; Mathias, Ronita; Anderson, Kimberly W; Hilt, J Zach

    2015-06-15

    Iron oxide nanoparticles coated with dextran were synthesized via four variations on the co-precipitation method. The methods ranged from in situ formation of the nanoparticles within the dextran solution to the adsorption of dextran to the nanoparticle surface following nucleation and extensive washing. The timing of the addition of dextran into the reaction mixture was found to greatly influence the physical and chemical properties of the magnetic nanoparticles. Batches of dextran coated iron oxide nanoparticles were synthesized by each method in triplicate, and the nanoparticles were further crosslinked with epichlorohydrin. The properties of the nanoparticles such as size, percentage of dextran coating, stability in solution, crystallinity, and magnetic properties were evaluated. The simultaneous semi-two-step method injected the reducing agent and the dextran solution into the reaction vessel at the same time. This method resulted in the greatest batch-to-batch reproducibility of nanoparticle properties and the least variation in nanoparticles synthesized in the same batch. The two-step method resulted in the greatest variation of the characteristics examined between batches. The one-step method was synthesized with both five grams and one gram of dextran to investigate the effects of solution viscosity on the resulting nanoparticle characteristics. The one-step method with five grams of dextran resulted in nanoparticles with significantly smaller crystal sizes (5.4 ± 1.9 nm) and lower specific adsorption rate (SAR) values (138.4 ± 13.6 W/g) in an alternating magnetic field (58 kA/m, 292 kHz). However, this method resulted in nanoparticles that were very stable in PBS over 12 hours, which is most likely due to the greater dextran coating (60.0 ± 2.7 weight percent). For comparison, the simultaneous semi-two-step method generated nanoparticles 179.2 ± 18.3 nm in diameter (crystal size 12.1 ± 0.2 nm) containing 18.3 ± 1.2 weight percent dextran with a SAR

  7. Stability and in vitro DNA packaging of bacteriophages: effects of dextrans, sugars, and polyols

    Energy Technology Data Exchange (ETDEWEB)

    Serwer, P. (The Univ. of Texas Health Science Center, San Antonio); Masker, W.E.; Allen, J.L.

    1983-02-01

    Attempts were made to increase the efficiency of infectious particle formation during the in vitro assembly of bacteriophage T7 from procapsids and DNA. It was found that dextrans and some smaller, related compounds (sucrose and sorbitol) increase this efficiency by a factor of 8 to 50. Dextrans also inhibited elevated temperature-induced emptying of DNA from bacteriophages T7, P22, and T4, suggesting that the stimulation of assembly is caused, at least in part, by the stabilization of packaged DNA in capsids. The data indicated that the sugars and polyols can slow DNA emptying from bacteriophages at elevated temperature whether they permeate the bacteriophage capsid or not. In contrast, the data suggested that permeation of some particle, probably a capsid, results in inhibition of in vitro T7 assembly.

  8. Capillary Zone Electrophoresis Investigation of Interactions between Granulocyte-colony Stimulating Factor and Dextran Sulfate / Carrageenan Oligosaccharide

    Institute of Scientific and Technical Information of China (English)

    Ai Ye LIANG; Yu Guang DU; Ke Yi WANG; Bing Cheng LIN

    2005-01-01

    The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosa1ccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2x106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.

  9. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy.

    Science.gov (United States)

    Chan, Maggie; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R; Cabral, Jaydee D

    2015-06-16

    A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100) containing 80% oxidized dextran aldehyde (DA-100) was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS). However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25) was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT) and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25). Although the CD-25 hydrogel's antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  10. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy

    Directory of Open Access Journals (Sweden)

    Maggie Chan

    2015-06-01

    Full Text Available A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100 containing 80% oxidized dextran aldehyde (DA-100 was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS. However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25 was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25. Although the CD-25 hydrogel’s antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  11. Magnetic investigation of zero-field-cooled dextran-coated magnetite-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil)]. E-mail: pcmor@unb.br; Santos, J.G. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Silveira, L.B. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Nunes, W.C. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Sinnecker, J.P. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Novak, M.A. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil)

    2005-03-15

    In this study, we investigate the temperature dependence of the zero-field-cooled magnetization of a quasi-monodisperse dextran-coated magnetite-based magnetic fluid. The well-defined maximum in the magnetization versus temperature curve and its downshift with the applied external field is explained by a simple model considering thermally activated dynamics of the nanoparticles magnetic moment and the temperature dependence of the saturation magnetization.

  12. Preclinical and Clinical In Vitro In Vivo Correlation of an hGH Dextran Microsphere Formulation

    OpenAIRE

    2007-01-01

    Purpose To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. Materials and Methods A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Results Single subcutaneous administration of the mic...

  13. Dextran X 500. sup(99m)Tc in abdominal lymphoscintillation

    Energy Technology Data Exchange (ETDEWEB)

    Ceriani, J.; Caneda, G.; Rozados, I. (Hospital Ramos Mejia, Buenos Aires (Argentina). Div. Medicina Nuclear); Arguelles, M.G.; Canellas, C.O.; Mitta, A.E.A. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina))

    1984-01-01

    The preparation of Dextran X 500 sup(99m)Tc, its control and biological behaviour in animals are described. Its use in the study of lymphatic system in human beings is also indicated. This method is of easy preparation and of great stability, both in vitro and in vivo, and besides it can be used in lymphoscintillation as well as for the study of blood pool.

  14. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    Science.gov (United States)

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers.

  15. Safety and efficacy of iron sucrose in patients sensitive to iron dextran: North American clinical trial.

    Science.gov (United States)

    Van Wyck, D B; Cavallo, G; Spinowitz, B S; Adhikarla, R; Gagnon, S; Charytan, C; Levin, N

    2000-07-01

    Sensitivity to iron dextran is a potent obstacle to maintaining optimum iron status in patients with dialysis-associated anemia. As part of the North American clinical trials for iron sucrose injection, we examined the effect of intravenous (IV) iron sucrose in 23 hemodialysis patients with documented sensitivity to iron dextran, ongoing epoetin alfa therapy, and below-target-range hemoglobin (Hgb) levels (iron dextran were judged to be mild (n = 16; group A) or severe (n = 7; group B). We prospectively examined adverse events and vital signs after administering 100 mg of IV iron sucrose in each of 10 consecutive dialysis treatment sessions and compared results with those recorded in each of three consecutive dialysis sessions without iron treatment. We administered iron sucrose by IV push over 5 minutes to group A patients and by IV push over 5 minutes or IV infusion over 15 to 30 minutes to group B patients. We did not administer a test dose. Results showed no serious adverse drug reactions after a total of 223 doses of iron sucrose (184 doses by IV push, 39 doses by IV infusion). Intradialytic blood pressure changes after IV iron sucrose injection did not differ from those recorded during dialysis sessions without treatment. An increase in values for Hgb, hematocrit, transferrin saturation, and ferritin, coupled with no significant change in epoetin dose and a decrease in total iron-binding capacity, confirmed the efficacy of iron sucrose injection in managing anemia. We conclude that iron sucrose injection is safe and effective in the management of anemia in patients sensitive to iron dextran and can be administered without a test dose by IV push or infusion.

  16. Effects of orally administered bovine lactoperoxidase on dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Shin, Kouichirou; Horigome, Ayako; Yamauchi, Koji; Takase, Mitsunori; Yaeshima, Tomoko; Iwatsuki, Keiji

    2008-07-01

    The effect of lactoperoxidase (LPO) on dextran sulfate sodium-induced colitis was examined in mice. After 9 d of colitis induction, weight loss, colon shortening, and the histological score were significantly suppressed in mice orally administered LPO (62.5 mg/body/d) as compared to a group administered bovine serum albumin. These results suggest that LPO exhibits anti-inflammatory effects in the gastrointestinal tract.

  17. Correlation between UV-VIS spectra and the structure of Cu(II complexes with hydrogenated dextran in alkaline solutions

    Directory of Open Access Journals (Sweden)

    Nikolić Goran S.

    2005-01-01

    Full Text Available UV-VIS spectrophotometric investigations of Cu(II complexes with hydroge-nated dextran showed that the complexation of Cu(II-ions began at pH > 7. The formation of Cu(II complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II-dextran complex decomposed to Cu(OH42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift compared with uncomplexed Cu(II. The UV spectra displayed bathochromic shifts. The changes of UV-VIS spectra with increasing in solution pH confirmed the formation of different kinds of complex species. The correlation between the results of UV-VIS spectrophotometry and the central metal ionligand coordination predicted that the copper binding within the complex depended on the pH and participation H2O molecules. Dextran complexes with Cu(II were formed by the displacement of water molecules from the coordination sphere of copper by OH groups. The analysis indicated that the Cu(II center was coordinated to two glucopyranose units of dextran. The spectrophotometric parameters of the investigated complexes were characteristic of a Cu(II-ion in a square-planar or tetragon ally distorted octahedral coordination.

  18. Differential inhibition of polymorphonuclear leukocyte recruitment in vivo by dextran sulphate and fucoidan

    Directory of Open Access Journals (Sweden)

    N. Van Osselaer

    1996-01-01

    Full Text Available The selectin-mediated rolling of leukocytes along the endothelial cells is a prerequisite step followed by firm adhesion and extravasation into the inflamed tissue. This initial contact can be suppressed by sulphated polysaccharides. We have studied the effect of sulphated polysaccharides on the ultimate polymorphonuclear leukocyte (PMN recruitment and plasma leakage in rabbit skin in response to intradermal injection of various inflammatory mediators. PMN infiltration evoked by various PMN chemoattractants (FMLP, C5a desArg, LTB4 and IL-8 was significantly inhibited after intravenous injection of dextran sulphate (25 mg/kg, heparin (2 × 90 mg/kg or fucoidan (1 mg/kg. PMN-dependent plasma leakage was equally well reduced by the different sulphated polymers. Vascular permeability induced by histamine or thrombin acting via a PMN-independent mechanism was not reduced. Fucoidan was the only polysaccharide able to suppress IL-1-induced PMN infiltration for 60–70%. Local administration of dextran sulphate had no effect on PMN-dependent plasma leakage. Differential inhibition of PMN recruitment was determined after injection of dextran sulphate or fucoidan depending on the type of insult. Therefore, these results suggest that different adhesion pathways are utilized during PMN recruitment in vivo in response to chemoattractants and IL-1.

  19. Magnetic retardance and magnetic heating in dextran-citrate coated ferrofluids

    Directory of Open Access Journals (Sweden)

    Jing-Fung Lin

    2017-02-01

    Full Text Available The Fe3O4 magnetic nanoparticles (MNPs coated by citrate and dextran prepared by the co-precipitation method was described. Influence induced by the mass variation of coating dextran was investigated. Magneto-optical birefringence of biocompatible dextran-citrate (DC coated ferrofluids (FFs was obtained by the Stokes polarimeter. Next, uniform design method was used to find the DC coated FF with high retardance and low dichroism. Retardance of the optimized A9 sample with 1 g/ml was measured as 56.7898° (dichroism was 0.3716 under 64.5 mT. Further, magnetic heating effect in alternating magnetic field was investigated. When the concentrations of A9 were of 2 mg/ml and 50 mg/ml, under the external alternating magnetic field with applied apparent current of 210 A, after heating 5 s the temperature of the DC coated FFs was greater than 47 °C, respectively, reached the requirements for the magnetic inductive heating treatment of cancer tumor. The potential of DC coated FFs in hyperthermia was highly evaluated.

  20. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  1. DNA replication by a possible continuous--discontinuous mechanism in homogenates of Physarum polycephalum containing dextran

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, E.N.

    1975-01-01

    Nuclear DNA synthesis in homogenates of Physarum is greatly stimulated by the presence of dextran in the homogenizing medium. In this cell-free system, the DNA precursor is incorporated approximately equally into two classes of DNA intermediates. One of these is similar in size to that observed previously in the intact organism, i.e., its sedimentation rate in alkaline sucrose density gradients increases, presumably by chain elongation, as the organism progresses through the S phase. The other class (approx. 10S) is similar to ''Okazaki'' fragments. Thus, nuclear DNA synthesis in homogenates of Physarum may occur by a continuous-discontinuous mechanism. Substantial DNA-synthetic activity is obtained by the addition of dextran to dextran-free homogenates. Maximal activity in this system requires the presence of both the nuclear and post-nuclear supernatant fractions. It is possible that a partial separation and recombination of a DNA polymerase and the endogenous template is effected by this procedure. (auth)

  2. Prevent Effects of Lactobacillus Fermentum HY01 on Dextran Sulfate Sodium-Induced Colitis in Mice

    Science.gov (United States)

    Chen, Xiaoyong; Zhao, Xin; Wang, Hongwei; Yang, Zelin; Li, Jian; Suo, Huayi

    2017-01-01

    The aim of this study is to assess the preventive effects of Lactobacillus fermentum HY01 (LF-HY01) to dextran sulfate sodium induced-colitis. We observed the ratio of colon weight to its length, colon pathological changes, and the concentrations of pro-inflammatory factors (IFN-γ, IL-12, TNFα, and IL-6) in serum. We also took account of the protein levels of IκBα, NF-κB p65, iNOS, and COX-2, and we measured the best effects of different doses of Lactobacillus fermentum HY01 (low dose group was 109 CFU/kg·bw, high dose group was 1010 CFU/kg·bw) on dextran sulfate sodium-induced colitis mice. The results were remarkable, suggesting that Lactobacillus fermentum HY01 had significant preventive effects in dextran sulfate sodium induced-colitis; simultaneously, the high dose group showed the best results among other groups. It can effectively alleviate the shortened colon length, reduce the ratio of colon weight to its length, reduce edema, inflammatory cells infiltration, and colon mucosa injury, and play an important role in the down-regulation of concentrations of pro-inflammatory factors (IFN-γ, IL-12, TNFα, and IL-6). Above all, Lactobacillus fermentum HY01 shows promising prevention for IκBα degradation, inhibition of NF-κB p65 phosphorylation cascades, and decreases the protein levels of iNOS and COX-2 as well. PMID:28587089

  3. Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    An, Lu; Yu, Yanrong; Li, Xuejian; Liu, Wei [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Yang, Hong, E-mail: yanghong@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Dongmei [Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Yang, Shiping, E-mail: shipingy@shnu.edu.cn [The Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2014-01-01

    Graphical abstract: A dextran-coated Fe–Co nanoalloy was developed serving as a sensitive contrast agent for magnetic resonance imaging applications. - Highlights: • Amorphous Fe–Co nanoalloy was prepared via wet chemical reduction approach. • The Fe–Co nanoalloy is water-soluble, stable, and biocompatible. • The Fe–Co nanoalloy is superparamagnetic. • The Fe–Co nanoalloy exhibits T{sub 2}-weighted MR enhancement both in vitro and in vivo. - Abstract: For magnetic resonance imaging applications, a facile approach for water-soluble dextran coated amorphous Fe–Co nanoalloy was developed. The as-synthesized nanoalloy had a diameter of 9 nm with a narrow size distribution and showed superparamagnetic property with a saturated magnetization (Ms) of 25 emu/g. In vitro cytotoxicity test revealed that it was biocompatible at a concentration below 120 μg/mL. It can be uptaken by HeLa cells effectively and resulted in the obvious T{sub 2} effect after internalization. Biodistribution studies in conjunction with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) confirmed that Fe–Co nanoalloy was preferentially accumulated in lung and spleen after intravenous injection for 4 h. In vivo MRI, dextran-coated Fe–Co nanoalloy can serve as a sensitive contrast agent for MR imaging, especially in the spleen, so we believe that it maybe hold great promise for diagnosis of splenic disease by appropriately functionalizing their surface.

  4. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.

    Science.gov (United States)

    Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae

    2016-05-01

    Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease.

  5. Magnetic field dependence of the diffusion of single dextran molecules within a hydrogel containing magnetite nanoparticles.

    Science.gov (United States)

    Al-Baradi, Ateyyah M; Mykhaylyk, Oleksandr O; Blythe, Harry J; Geoghegan, Mark

    2011-03-07

    We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels.

  6. New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules.

    Science.gov (United States)

    Mocanu, Georgeta; Nichifor, Marieta; Stanciu, Magdalena C

    2015-03-30

    Micelles formed in aqueous solution by dextran with hydrophobic (alkyl) end-groups were stabilized through divinyl sulfone crosslinking of the dextran shell. The efficacy of the crosslinking reaction was influenced by the divinyl sulfone amount, the pH and micelle concentration. Crosslinked micelles with a moderate crosslinking degree were further functionalized by attachment of 10 and 17 moles% N-(2-hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups along the dextran chain. The size and shape of both crosslinked micelles and their cationic derivatives were analyzed by DLS and TEM. The prepared micelles were able to bind anionic diclofenac (60-370 mg/g), hydrophobic anionic indometacin (70-120 mg/g), and hydrophobic alpha-tocopherol (170-220 mg/g) or ergocalciferol (90-110 mg/g) by hydrophobic or/and electrostatic forces. The release experiments and the antioxidant activity of bound alpha-tocopherol highlighted the potential of the new nano-sized micelles mainly as carriers for prolonged and controlled delivery of hydrophobic drugs.

  7. [Indirect articular lymphography using Tc 99m-labeled Dextran in animals].

    Science.gov (United States)

    Albuquerque, M; Pedroso de Lima, J; Cardoso, A; Mendes, F; Pires, J; Canha, N; Branco, R

    1990-01-01

    Looking for a standardization of the articular lymphoscintigraphy, an experimental research was conducted on 14 dogs injected in the ankle, with 2.5 mCi of 99m Tc-labeled dextran (P.M. = 70,000). Good scintigraphic images of the lymphatic system have been obtained. After having collected blood samples during the experimentation as well as aliquots of organs and of tissues, after the necropsy of the animal, it was verified that the 99m Tc-labeled dextran was useful for quantitative studies of the articular lymphatic drainage. The activities attained, in the drainage lymph nodes of injected articulation, are 152 times superior to those obtained in the kidney and one gramma of popliteal ganglion was 8929 times more active than one gramma of blood. The dextran 70,000, widely used in our clinical routine, can be injected to the human being, without any risk, and it may be the tracer which permits studies of the articular lymphatic drainage and the usage of the lymphoscintigraphy, already in expansion in many other Medicine branches, in the articular studies, nowadays.

  8. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    Science.gov (United States)

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  9. Fluorescence tomographic imaging of sentinel lymph node using near-infrared emitting bioreducible dextran nanogels

    Directory of Open Access Journals (Sweden)

    Li J

    2014-12-01

    Full Text Available Jiejing Li,1* Beiqi Jiang,1* Chao Lin,2 Zhigang Zhuang1 1Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, 2The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Sentinel lymph node (SLN mapping is a critical procedure for SLN biopsy and its diagnosis as tumor metastasis in clinical practice. However, SLN mapping agents used in the clinic frequently cause side effects and complications in the patients. Here, we report the development of a near-infrared (NIR emitting polymeric nanogel with hydrodynamic diameter of ~28 nm – which is the optimal size for SLN uptake – for noninvasive fluorescence mapping of SLN in a mouse. This polymeric nanogel was obtained by coupling Cy7, an NIR dye, to the self-assembled nanogel from disulfide-linked dextran-deoxycholic acid conjugate with the dextran of 10 kDa, denoted as Dex–Cy7. Fluorescence imaging analysis showed that Dex–Cy7 nanogels had an enhanced photostability when compared to Cy7 alone. After intradermal injection of Dex–Cy7 nanogel into the front paw of a mouse, the nanogels were able to migrate into the mouse’s axillary lymph node, exhibiting longer retention time and higher fluorescence intensity in the node when compared to Cy7 alone. An immunohistofluorescence assay revealed that the nanogels were localized in the central region of lymph node and that the uptake was largely by the macrophages. In vitro and in vivo toxicity results indicated that the dextran-based nanogels were of low cytotoxicity at a polymer concentration up to 1,000 µg/mL and harmless to normal liver and kidney organs in mice at an intravenous dose of 1.25 mg/kg. The results of this study suggest that NIR-emitting polymeric nanogels based on bioreducible dextran-deoxycholic acid conjugates show high potential as fluorescence

  10. Whole rat DNA array survey for candidate genes related to hypertension in kidneys from three spontaneously hypertensive rat substrains at two stages of age and with hypotensive induction caused by hydralazine hydrochloride.

    Science.gov (United States)

    Kinoshita, Kosho; Ashenagar, Mohammad Said; Tabuchi, Masaki; Higashino, Hideaki

    2011-03-01

    Clarification of the genetic nature and more effective care for hypertension are required, given the high incidences of cardiovascular and cerebrovascular mortality. Thus, we surveyed candidate genes for hypertension with rat whole gene DNA microarrays using three novel methods. Gene expression analyses were conducted as follows: Method 1, three types of spontaneously hypertensive rat (SHR) substrains, SHR, stroke-prone SHR (SHRSP) and malignant type of SHRSP (M-SHRSP) were used and compared to normotensive Wistar Kyoto rats; Method 2, the expressed genes between rats of different ages were compared for different blood pressures; and Method 3, genes that were expressed in rats treated with or without an acute hypotensive stimulus, the antihypertensive hydralazine hydrochloride, were compared. This approach identified dozens of genes, including Dusp15, Cyp8b1, Armc 3, Gtpbp4, Mettl2, Mapk14, Prkar2b, frame 12, Anxa13, Ephx2, Myr8 and Pcdh9 by Method 1; Cyp2C and Atp12a by Method 2; and Kcnc3, Vnn1, TC560558 and Gabrq and a number of unknown genes by Methods 2 and 3, as probable candidate genes for hypertension in SHR substrains. Ephx2 was previously reported as a candidate gene in SHRs; however other genes were identified for the first time in this study. Since it was not always possible to completely demonstrate that these genes are responsible for hypertension in SHRs, further research into true candidate genes that participate in the genesis of hypertension in SHR substrains is warranted.

  11. Beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, nitrate-hydralazine, diuretics, aldosterone antagonist, ivabradine, devices and digoxin (BANDAID(2) ): an evidence-based mnemonic for the treatment of systolic heart failure.

    Science.gov (United States)

    Chia, N; Fulcher, J; Keech, A

    2016-06-01

    Heart failure causes significant morbidity and mortality, with recognised underutilisation rates of guideline-based therapies. Our aim was to review current evidence for heart failure treatments and derive a mnemonic summarising best practice, which might assist physicians in patient care. Treatments were identified for review from multinational society guidelines and recent randomised trials, with a primary aim of examining their effects in systolic heart failure patients on mortality, hospitalisation rates and symptoms. Secondary aims were to consider other clinical benefits. MEDLINE and EMBASE were searched using a structured keyword strategy and the retrieved articles were evaluated methodically to produce an optimised reference list for each treatment. We devised the mnemonic BANDAID (2) , standing for beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, nitrate-hydralazine (or potentially neprilysin inhibitor), diuretics, aldosterone antagonist, ivabradine, devices (automatic implantable cardioverter defibrillator, cardiac resynchronisation therapy or both) and digoxin as a representation of treatments with strong evidence for their use in systolic heart failure. Treatment with omega-3 fatty acids, statins or anti-thrombotic therapies has limited benefits in a general heart failure population. Adoption of this mnemonic for current evidence-based treatments for heart failure may help improve prescribing rates and patient outcomes in this debilitating, high mortality condition.

  12. Comparative effects of isoproterenol and dopamine on myocardial oxygen consumption, blood flow distribution and total body oxygen consumption in conscious lambs with and without an aortopulmonary left to right shunt.

    Science.gov (United States)

    Bartelds, B; Gratama, J W; Meuzelaar, K J; Dalinghaus, M; Koers, J H; Heikens, W F; Zijlstra, W G; Kuipers, J R

    1998-02-01

    We sought to study the effects of catecholamines on myocardial oxygen consumption (VO2), regional blood flows and total body VO2 in lambs with circulatory congestion. Catecholamines are often used to support cardiovascular function in children with circulatory congestion because they increase contractility as well as heart rate. However, these changes increase myocardial oxygen demand and thus can lead to a mismatch between myocardial oxygen supply and demand. Catecholamines can also change regional blood flows and VO2 unfavorably. We infused isoproterenol (0.1 microg/kg body weight per min) and dopamine (10 microg/kg per min) and measured myocardial and total body VO2 and regional blood flows in chronically instrumented 7-week old lambs with and without a left to right shunt. Isoproterenol increased myocardial VO2, parallel to the increase in heart rate. However, myocardial blood flow and, consequently, oxygen supply also increased. This increase outweighed the increase in myocardial VO2, so that myocardial oxygen extraction decreased. Isoproterenol did not change blood flow distribution. Isoproterenol increased total body VO2; however, systemic oxygen supply increased even more, so that oxygen extraction decreased and mixed venous oxygen saturation increased. In contrast, dopamine had no or little effect on myocardial VO2 or blood flow distribution. We conclude that the catecholamines isoproterenol and dopamine do not lead to a mismatch between myocardial oxygen supply and demand, nor do they change blood flow distribution unfavorably in 7-week old lambs with a left to right shunt. We demonstrated that isoproterenol is superior to dopamine, because it shifts the balance between oxygen supply and consumption toward supply so that systemic oxygen extraction reserve increases.

  13. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes.

  14. Short-term treatment with metformin suppresses toll like receptors (TLRs) activity in isoproterenol-induced myocardial infarction in rat: are AMPK and TLRs connected?

    Science.gov (United States)

    Soraya, Hamid; Farajnia, Safar; Khani, Sajjad; Rameshrad, Maryam; Khorrami, Arash; Banani, Armita; Maleki-Dizaji, Nasrin; Garjani, Alireza

    2012-12-01

    AMP-activated protein kinase (AMPK) is a key sensor of cellular energy. The activation of AMPK by metformin prevents cardiac remodeling after myocardial infarction (MI). Besides, the innate immune response through TLRs is activated during MI. In the present study, the effects of short-term treatment with metformin on TLRs activity and its relation with AMPK in isoproterenol-induced MI were assessed in rats. To induce MI, a subcutaneous injection of isoproterenol was given to Wistar rats for two consecutive days. Metformin (25, 50, and 100mg/kg) was orally administered to rats twice daily for two days. Interstitial fibrosis was dose-dependently attenuated in the treated groups in comparison to the MI group (score: 1.25 ± 0.28 with 100 mg/kg metformin versus 3.5 ± 0.28; Pmetformin reduced TLR-dependent inflammatory cytokines as indexed by reduced myocardial levels of TNFα (maximum 68%; Pmetformin, but not with 25 and 50mg/kg. This was associated with a remarkable suppression of TLR4 expression and reduction of protein level of TLRs adapter protein, MyD88 (Pmetformin and the subsequent suppression of TLRs activity could be considered as a target in protecting the infarcted heart, which may indicate a link between AMPK and TLRs.

  15. Scale up of dextran production from a mutant of Pediococcus pentosaceus (SPAm using optimized medium in a bioreactor

    Directory of Open Access Journals (Sweden)

    Seema Patel

    2011-12-01

    Full Text Available The mutant of Pediococcus pentosaceus (SPAm produced earlier by UV-mutagenesis exhibiting higher dextransucrase activity as compared to wild-type was used. The generated mutant SPAm gave 12.2 mg/ml, a 20% higher dextran than wild-type. Response surface methodology was carried out for further enhancement of dextran production. To enhance dextran production by the mutant SPAm, Plackett-Burman Design and a 2² full factorial Central Composite Design was employed. After response optimization, the optimum concentration of sucrose and yeast extract was 5.115% (w/v and 0.635% (w/v, respectively. The experimental values of dextran 36.0 mg/ml at flask level and 35.0 mg/ml at bioreactor level were in good agreement with the predicted value of 40.8 mg/ml. The increase in dextran production by the mutant SPAm using the optimized medium was 3 fold higher as compared to unoptimized medium.

  16. Neutralization of complement component C5 ameliorates the development of dextran sulfate sodium (DSS)-colitis in mice

    Science.gov (United States)

    Aomatsu, Tomoki; Imaeda, Hirotsugu; Takahashi, Kenichiro; Fujimoto, Takehide; Kasumi, Eiji; Ban, Hiromitsu; Bamba, Shigeki; Yoden, Atsushi; Tamai, Hiroshi; Fujiyama, Yoshihide; Andoh, Akira

    2013-01-01

    The complement system is a potent effector of innate immunity. To elucidate the pathophysiological role of the complement system in inflammatory bowel disease, we evaluated the effects of anti-C5 antibodies on the development of dextran sulfate sodium-induced colitis in mice. Dextran sulfate sodium-colitis was induced in BALB/c mice with intraperitoneal administrations of anti-C5 antibodies (1 µg/body) every 48 h. Tissue samples were evaluated by standard histological procedures. The mucosal mRNA expression of the inflammatory cytokines was analyzed by real-time PCR. Body weight loss in the mice was completely blocked by the administration of anti-C5 antibody. The disease activity index was significantly lower in the anti-C5 antibody-treated mice than the dextran sulfate sodium mice. The colonic weight/length ratio, histological colitis score and mucosal myeloperoxidase activity were significantly lower in the anti-C5 antibody-treated mice than the dextran sodium sulfate mice. The administration of the anti-C5 antibody significantly reduced the mucosal expression of mRNAs for tumor necrosis factor-α, interleukin-1β and interleukin-6. In conclusion, the complement system plays a role in the development of dextran sodium sulfate-induced experimental colitis. PMID:23341701

  17. LONG-LIVED BONE MARROW PLASMA CELLS DURING IMMUNE RESPONSE TO ALPHA (1→3 DEXTRAN

    Directory of Open Access Journals (Sweden)

    I. N. Chernyshova

    2015-01-01

    Full Text Available Production kinetics and some functional properties of long-lived marrow plasma cells were studied in mice immunized with T-independent type 2 antigens. Alpha (1→3 dextran was used as an antigen for immunization. The mice were immunized by dextran, and the numbers of IgM antibody producing cells were determined by ELISPOT method. The cell phenotype was determined by cytofluorimetric technique. In the area of normal bone marrow lymphocytes ~4% of T and ~85% of B cells were detected. About 35% of the cells expressed a plasmocyte marker (CD138; 3% were CD138+IgM+, and about 6% of the lymphocytes were double-positive for CD138+IgA+. Among spleen lymphocytes, 50% of T and 47% of B cells were detected. About 1.5% lymphocytes were CD138+, and 0.5% were positive for CD138 and IgM. Time kinetics of antibody-producing cells in bone marrow and spleen was different. In spleen populations, the peak amounts of antibody-secreting cells have been shown on the day 4; the process abated by the day 28. Vice versa, the numbers of the antibody-producing cells in bone marrow started to increase on the day 4. The process reached its maximum on day 14, and after 28th day became stationary. The in vitro experiments have shown that supplementation of bone marrow cells from immune mice with dextran did not influence their functional activity. It was previously shown for cells responding to T-dependent antigens only. A specific marker for the long-lived plasma cells is still unknown. However, these cells possess a common CD138 marker specific for all plasma cells. A method for isolation of bone marrow CD138+ cells was developed. The CD138+ cells were of 87-97% purity, being enriched in long-lived bone marrow cells, and produced monospecific antibodies. 

  18. Aldehyded Dextran and ε-Poly(L-lysine Hydrogel as Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Yumiko Togo

    2013-01-01

    Full Text Available Background. The expression term of the gene transfected in cells needs to belong enough inorder to make a gene therapy clinically effective. The controlled release of the transfected gene can be utilized. The new biodegradable hydrogel material created by 20 w/w% aldehyded dextran and 10 w/w% ε-poly(L-lysine (ald-dex/PLL was developed. We examined whether it could be as a nonviral carrier of the gene transfer. Methods. A plasmid (Lac-Z was mixed with ald-dex/PLL. An in vitro study was performed to assess the expression of Lac-Z with X-gal stain after gene transfer into the cultured 293 cells and bone marrow cells. As a control group, PLL was used as a cationic polymer. Results. We confirmed that the transfection efficiency of the ald-dex/PLL had a higher transfection efficiency than PLL in 293 cells (plasmid of 2 μg: ald-dex/PLL 1.1%, PLL 0.23%, plasmid of 16 μg: ald-dex/PLL 1.23%, PLL 0.48%. In bone marrow cells, we confirmed the expression of Lac-Z by changing the quantity of aldehyded dextran. In the groups using ald-dextran of the quantity of 1/4 and 1/12 of PLL, their transfection efficiency was 0.43% and 0.41%, respectively. Conclusions. This study suggested a potential of using ald-dex/PLL as a non-carrier for gene transfer.

  19. Phase Transition and Micellization of Temperature Responsive Dextran-graft-poly (N-isopropylacrylamide) Polymers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Phase behavior and micellization of dextran-graft-poly (N-isopropylacrylamide) (PNIPAAm) polymers in aqueous solution are investigated in this paper using DSC and AFM methods. It is found that with the increase of grafting (G%) of the copolymers the endothermic enthalpy during the phase transition increases significantly and the transition temperature decreases slightly. The phase transition behavior of the copolymers is scanning rate dependent. Micelles are formed whenever the solution temperature is raised above the LCST of the copolymers. It is proposed that by using this thermal responsive property of the copolymers, drugs could be incorporated into the micelles without employing any organic solvent.

  20. Effect of Arctium lappa L.in the dextran sulfate sodium colitis mouse model

    Institute of Scientific and Technical Information of China (English)

    Tzou-Chi; Huang; Shinn-Shyong; Tsai

    2010-01-01

    AIM:To analyze the possible protective role of Arctium lappa L.(AL)in a murine model of ulcerative colitis(UC).METHODS:BALB/c mice were administered 100 mg/kg AL powder orally each day.After 7 d,colitis was induced by administration of dextran sulfate sodium(DSS)(5% W/V)in drinking water for a further 8 consecutive days.Diarrhea and bloody stools as well as colonic histology were observed.The level of interleukin-6(IL-6)and tu-mor necrosis factor-α(TNF-α)in colonic sections were detected by immunohistochemi...

  1. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  2. Dextran Sulfate Sodium (DSS)-Induced Acute Colitis in the Rat.

    Science.gov (United States)

    Martin, Jérôme C; Bériou, Gaëlle; Josien, Régis

    2016-01-01

    Inflammatory bowel diseases (IBDs) are complex multifactorial disease thought to result from inappropriate immune responses to the gut microbiota, in genetically susceptible individuals, under the influence of environmental factors. Among the different animal models developed to help in understanding IBDs pathophysiological mechanisms as well as to achieve pharmacological preclinical studies, the dextran sulfate sodium (DSS)-induced colitis model is the most widely used because of its simplicity, cost-effectiveness, and similarity with human IBDs. This section provides with a detailed protocol that we validated in our laboratory to perform DSS-induced acute colitis in the Sprague-Dawley (SPD) rat.

  3. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Nielsen, Thorbjørn Terndrup; Lambertsen Larsen, Kim

    2014-01-01

    NMR and isothermal titration calorimetry. Moreover, thermodynamic parameters of the complexation reaction between β-CD units and drug molecules in terms of molar enthalpy of complexation, equilibrium constant, and stability of the β-CD units/drug molecules complexes were also measured. For evaluation...... of solubilization efficiencies, phase-solubility diagrams where made employing two poorly soluble model drugs, one dissociating (ibuprofen, IBP) and one pH independent (hydrocortisone, HC). Thermodynamic results demonstrated that the presence of the dextran-back bone structure improves complexation efficiency...

  4. Structure and antioxidant activity of soy protein isolate-dextran conjugates obtained by TiO2 photocatalysis.

    Science.gov (United States)

    Jin, Bei; Zhou, Xiaosong; Li, Bing; Chen, Caiyan; Zhang, Xiaosa; Chen, Siqiao

    2015-01-01

    The aim of this study was to investigate the structural characteristics and antioxidant activities of soy protein isolate- (SPI-) dextran conjugates obtained by TiO2 photocatalysis treatment. Results revealed that the UV-vis absorption and the fluorescence intensity increased as the photocatalytic power increased (P photocatalysis. Moreover, significant changes of secondary structure occurred in SPI-dextran conjugates. The α-helix, β-sheet, β-turns, and random coil were changed from approximately 10.6%, 37.9%, 12.9%, and 38.6% to 3.8%, 10.4%, 17.7%, and 68.8%, respectively, after treatment at photocatalytic power of 1000 W. In addition, SPI-dextran conjugates obtained by TiO2 photocatalysis treatment exhibited high hydroxyl radical scavenging activity and possessed increased reducing power. All data indicated that TiO2 photocatalysis was an efficient method for promoting protein-polysaccharide copolymerisation.

  5. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability.

    Science.gov (United States)

    Venturoli, Daniele; Rippe, Bengt

    2005-04-01

    Polydisperse mixtures of dextran or Ficoll have been frequently used as molecular probes for studies of glomerular permselectivity because they are largely inert and not processed (reabsorbed) by the proximal tubules. However, dextrans are linear, flexible molecules, which apparently are hyperpermeable across the glomerular barrier. By contrast, the Ficoll molecule is almost spherical. Still, there is ample evidence that Ficoll fractional clearances (sieving coefficients) across the glomerular capillary wall (GCW) are markedly higher than those for neutral globular proteins of an equivalent in vitro Stokes-Einstein (SE) radius. Physical data, obtained by "crowding" experiments or measurements of intrinsic viscosity, suggest that the Ficoll molecule exhibits a rather open, deformable structure and thus deviates from an ideally hard sphere. This is also indicated from the relationship between (log) in vitro SE radius and (log) molecular weight (MW). Whereas globular proteins seem to behave in a way similar to hydrated hard spheres, polydisperse dextran and Ficoll exhibit in vitro SE radii that are much larger than those for compact spherical molecules of equivalent MW. For dextran, this can be partially explained by a high-molecular-size asymmetry. However, for Ficoll the explanation may be that the Ficoll molecule is more flexible (deformable) than are globular proteins. An increased compressibility of Ficoll and an increased deformability and size asymmetry for dextran may be the explanation for the fact that the permeability of the GCW is significantly higher when assessed using polysaccharides such as Ficoll or dextran compared with that obtained using globular proteins as molecular size probes. We suggest that molecular deformability, besides molecular size, shape, and charge, plays a crucial role in determining the glomerular permeability to molecules of different species.

  6. Sequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; López-Barrera, F; Yañez, L; Vidrio, S; Suárez, J; Cota-Garza, M D; Aranda-Fraustro, A; Cruz, D

    1997-12-01

    Acute myocardial infarction is the second cause of mortality in most countries, therefore, it is important to know the evolution and sequence of the physiological and biochemical changes involved in this pathology. This study attempts to integrate these changes and to correlate them in a long-term model (96 h) of isoproterenol-induced myocardial cell damage in the rat. We achieved an infarct-like damage in the apex region of the left ventricle, occurring 12-24 h after isoproterenol administration. The lesion was defined by histological criteria, continuous telemetric ECG recordings, and the increase in serum marker enzymes, specific for myocardial damage. A distinction is made among preinfarction, infarction, and postinfarction. Three minutes after drug administration, there was a 60% increase in heart rate and a lowering of blood pressure, resulting possibly in a functional ischemia. Ultrastructural changes and mitochondrial swelling were evident from the first hour of treatment, but functional alterations in isolated mitochondria, such as decreases in oxygen consumption, respiratory quotient, ATP synthesis, and membrane potential, were noticed only 6 h after drug administration and lasted until 72 h later. Mitochondrial proteins decreased after 3 h of treatment, reaching almost a 50% diminution, which was maintained during the whole study. An energy imbalance, reflected by a decrease in energy charge and in the creatine phosphate/creatine ratio, was observed after 30 min of treatment; however, ATP and total adenine nucleotides diminished clearly only after 3 h of treatment. All these alterations reached a maximum at the onset of infarction and were accompanied by damage to the myocardial function, drastically decreasing left ventricular pressure and shortening the atrioventricular interval. During postinfarction, a partial recovery of energy charge, creatine phosphate/creatine ratio, membrane potential, and myocardial function occurred, but not of mitochondrial

  7. Involvement of lymphocytes in dextran sulfate sodium-induced experimental colitis

    Institute of Scientific and Technical Information of China (English)

    Tae Woon Kim; Jae Nam Seo; Young Ho Suh; Hyo Jin Park; Ju Hyun Kim; Ji Young Kim; Kwon Tk Oh

    2006-01-01

    AIM: To investigate the roles of lymphocytes in the development of dextran sulfate sodium-induced colitis.METHODS: Using various doses of dextran sulfate sodium (DSS), we induced colitis in wild-type B6control and Rag-1 knockout (H-2b haplotype) mice,and evaluated the colitis in terms of symptomatic and histologic parameters, such as weight loss, survival,severity of diarrhea, shortage of colon length and histological changes. Symptomatic parameters were checked daily and histological changes were scored.RESULTS: Although development of colitis in Rag-1knockout mice treated with high dose (5%) of DSS was comparable to that in B6 control mice, colitis progression was much more tolerable in Rag-1 knockout mice compared to than in B6 mice treated with low dose (1.5%)DSS. Symptomatic parameters as well as histopathologic changes were improved in Rag-1 knockout mice.CONCLUSION: These results indicate that the presence of lymphocytes contributes to colitis progression at low dose of DSS stimulation. Lymphocytes may play roles as an aggravating factor in DSS-induced colitis.

  8. Synthesis, Characterization, and Toxicity Evaluation of Dextran-Coated Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihaela Balas

    2017-02-01

    Full Text Available We report the synthesis of dextran-coated iron oxide magnetic nanoparticles (DIO-NPs with spherical shape and uniform size distribution as well as their accumulation and toxic effects on Jurkat cells up to 72 h. The characterization of dextran-coated maghemite nanoparticles was done by X-ray diffraction and dynamic light scattering analyses, transmission electron microscopy imaging, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, magnetic hysteresis, and relaxometry measurements. The quantification of DIO-NPs intracellular uptake showed a progressive accumulation of iron as a function of time and dose accompanied by additional lysosome formation and an increasing darkening exhibited by a magnetic resonance imaging (MRI scanner. The cytotoxicity assays revealed a decrease of cell viability and a loss of membrane integrity in a time- and dose-dependent manner. Exposure to DIO-NPs determined an increase in reactive oxygen species level up to 72 h. In the first two days of exposure, the level of reduced glutathione decreased and the amount of malondyaldehyde increased, but at the end of the experiment, their concentrations returned to control values. These nanoparticles could be used as contrast agents for MRI but several parameters concerning their interaction with the cells should be taken into consideration for a safe utilization.

  9. Effectiveness of composition based on oxidized dextran in the treatment of grade IIIB skin burns.

    Science.gov (United States)

    Shkurupy, V A; Karpov, M A; Troitskii, A V; Arkhipov, S A; Neshchadim, D V

    2015-03-01

    Grade IIIB skin burns were treated with a composition based on oxidized dextran with a molecular weight of 40 kDa (oxidation of 7% glucose residues). On day 32 after burn infliction and from the start of the treatment, the area of skin defect in rats was 30% less than in the group without treatment and by 2.3 times less than in rats treated with panthenol. In rats treated with dextran-based composition or panthenol, the eschar was absent on day 21 after the start of the treatment; by day 32, we found cells of surface epithelium, hair follicles, and sebaceous glands above the scar tissue that were absent in untreated animals; in rats treated with the composition, their number was higher by 2.5 times than in animals treated with panthenol. Treatment with the composition increased volume density (by 2.5 times) and numerical density (by more than 3 times) of blood vessels in the wound and reduced signs of inflammation and fibroplastic activity of fibroblasts in comparison with the corresponding parameters in untreated animals or animals treated with panthenol.

  10. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    Science.gov (United States)

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments.

  11. Silane-dextran chemistry on lateral flow polymer chips for immunoassays.

    Science.gov (United States)

    Jönsson, Christina; Aronsson, Magnus; Rundström, Gerd; Pettersson, Christer; Mendel-Hartvig, Ib; Bakker, Jimmy; Martinsson, Erik; Liedberg, Bo; MacCraith, Brian; Ohman, Ove; Melin, Jonas

    2008-07-01

    The prognosis for patients suffering from cardiovascular and many other diseases can be substantially improved if diagnosed at an early stage. High performance diagnostic testing using disposable microfluidic chips can provide a platform for realizing this vision. Amic AB (Uppsala, Sweden) has developed a new microfluidic test chip for sandwich immunoassays fabricated by injection molding of the cycloolefin-copolymer Zeonor. A highly ordered array of micropillars within the fluidic chip distributes the sample solution by capillary action. Since wetting of the pillar array surface is the only driving force for liquid distribution precise control of the surface chemistry is crucial. In this work we demonstrate a novel protocol for surface hydrophilization and antibody immobilization on cycloolefin-copolymer test chips, based on direct silanisation of the thermoplastic substrate. Dextran is subsequently covalently coupled to amino groups, thus providing a coating with a low contact angle suitable for antibody immobilization. The contact angle of dextran coated chips is stable for at least two months, which enables production of large batches that can be stored for extended periods of time. We demonstrate the utility of the presented platform and surface chemistry in a C-reactive protein assay with a detection limit of 2.6 ng ml(-1), a dynamic range of 10(2) and a coefficient of variance of 15%.

  12. Persistent post-dural-puncture headache treated with epidural infusion of dextran.

    Science.gov (United States)

    Aldrete, J A

    1994-05-01

    A retrospective review was done on medical records of 13 patients with persistent post-dural-puncture headaches after one or more epidural blood patches. Headache occurred in nine patients with post-laminectomy syndrome after "wet taps" while performing epidural blocks. In two patients post-dural-puncture headache appeared after long term implanted intrathecal catheters were removed. In two other cases headache developed after spinal anesthesia. Treatment included bed rest, intravenous hydration and at least one epidural blood patch; three patients were given 60 milliliters of epidural saline, without success. Eight epidural catheters were inserted through the lumbar access and five through the caudal approach. Initially, a bolus of 20 milliliters of dextran-40 was given followed by an infusion of 3 mL/hr, until 12 hours after the head pain and any other related symptoms subsided. In all patients the headache disappeared within 20 hours after initiating therapy (9.55 mean hours, SD +/- 0.79). In five patients headache ceased in less than five hours. Nausea and photo-phobia subsided earlier. Patients with post-dural-puncture headache resistant to other treatments, including at least one epidural blood patch, were successfully treated by a bolus followed by continuous epidural infusion of dextran-40.

  13. Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives.

    Science.gov (United States)

    Bejar, Wacim; Gabriel, Valérie; Amari, Myriam; Morel, Sandrine; Mezghani, Monia; Maguin, Emmanuelle; Fontagné-Faucher, Catherine; Bejar, Samir; Chouayekh, Hichem

    2013-01-01

    Pear-derived Weissella sp. TN610 produced extracellular glycosyltransferase activity responsible for the synthesis of soluble exopolysaccharide from sucrose. Acid and dextranase-catalyzed hydrolysis revealed that the synthesized polymer was a glucan. According to (1)H and (13)C NMR analysis, the glucan produced by TN610 was a linear dextran made of 96% α-(1→6) and 4% α-(1→3) linkages. Zymogram analysis confirmed the presence of a unique glucansucrase of approximately 180 kDa in the cell-free supernatant from TN610. The crude enzyme, optimally active at 37°C and pH 5, has promising potential for application as a food additive since it catalyzes dextran synthesis in sucrose-supplemented milk, allowing its solidification. A 4257-bp product corresponding to the mature glucansucrase gene was amplified by PCR from TN610. It encoded a polypeptide of 1418 residues having a calculated molecular mass of 156.089 kDa and exhibiting 96% and 95% identity with glucansucrases from Lactobacillus fermentum Kg3 and Weissella cibaria CMU, respectively.

  14. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  15. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery.

    Science.gov (United States)

    Alibolandi, Mona; Mohammadi, Marzieh; Taghdisi, Seyed Mohammad; Ramezani, Mohammad; Abnous, Khalil

    2017-01-02

    In the current study, dextran (DEX) was covalently conjugated to the surface of nano-GO sheets, making stable biocompatible dextran coated GO (GO-DEX). The prepared GO-DEX was nontoxic to 4T1 mammary carcinoma cell line at concentrations up to 300μg/mL. AS1411 aptamer, a ssDNA aptamer which can improve the intracellular uptake by nucleolin recognition, also has been introduced to hydroxyl groups of DEX in GO-DEX to produce GO-DEX-Apt. Moreover, curcumin (CUR), a natural polyphenol, found in the rhizomes of Curcuma longa (turmeric) which shows antineoplastic effects, was loaded onto the GO-DEX and GO-DEX-Apt via π-π stacking interactions with a high loading capacity (∼29wt%). The GO-DEX-Apt-CUR could efficiently enter into 4T1 and MCF-7 nucleolin over-expressed cancer cells confirmed by fluorescence microscope and flowcytometry, and it also showed significantly higher cytotoxicity. These types of targeted nanoscale drug delivery vehicles on the basis of DEX coated GO may find potential application in cancer chemotherapy.

  16. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    Science.gov (United States)

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  17. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    Science.gov (United States)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  18. Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation.

    Science.gov (United States)

    Heinsbroek, Sigrid E M; Williams, David L; Welting, Olaf; Meijer, Sybren L; Gordon, Siamon; de Jonge, Wouter J

    2015-12-01

    β-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of β-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate β-glucans could ameliorate the development of aggravate dextran sulfate sodium (DSS) induced intestinal inflammation. To study this, mice were orally pre-treated with β-glucans for 14 days. We tested curdlan (a particulate β-(1,3)-glucan), glucan phosphate (a soluble β-(1,3)-glucan), and zymosan (a particle made from Saccharomyces cerevisiae, which contains around 55% β-glucans). Weight loss, colon weight, and feces score did not differ between β-glucan and vehicle treated groups. However, histology scores indicated that β-glucan-treated mice had increased inflammation at a microscopic level suggesting that β-glucan treatment worsened intestinal inflammation. Furthermore, curdlan and zymosan treatment led to increased colonic levels of inflammatory cytokines and chemokines, compared to vehicle. Glucan phosphate treatment did not significantly affect cytokine and chemokine levels. These data suggest that particulate and soluble β-glucans differentially affect the intestinal immune responses. However, no significant differences in other clinical colitis scores between soluble and particulate β-glucans were found in this study. In summary, β-glucans aggravate the course of dextran sulfate sodium (DSS)-induced intestinal inflammation at the level of the mucosa.

  19. Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate.

    Science.gov (United States)

    Wintgens, Véronique; Lorthioir, Cédric; Dubot, Pierre; Sébille, Bernard; Amiel, Catherine

    2015-11-01

    Novel βCD-based hydrogels have been synthesized using sodium trimetaphosphate (STMP) as non-toxic reagent. Straightforward mixing of βCD with dextran and STMP in basic aqueous media led to hydrogels incorporating dextran chains, phosphate groups and βCD units. The hydrogels have been characterized by swelling measurements, XPS and (31)P NMR. The swelling ratio was correlated to the content in phosphated groups, which give a polyelectrolyte character to these hydrogels. The significant rise of the swelling ratio with the βCD content increase has been attributed to a decrease of the number of phosphate-based crosslinks, the βCD units playing the role of dangling ends in the tridimensional network. Their loading capacity and their release properties have been investigated for methylene blue and benzophenone in order to demonstrate their potentiality for drug delivery. Through different interaction mechanisms, electrostatic and inclusion complex interactions, these compounds are loaded with different efficiencies. The release involves deswelling, diffusion mechanisms and partition equilibrium.

  20. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    Science.gov (United States)

    Osborne, Elizabeth A.; Atkins, Tonya M.; Gilbert, Dustin A.; Kauzlarich, Susan M.; Liu, Kai; Louie, Angelique Y.

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  1. Aponecrotic, antiangiogenic and antiproliferative effects of a novel dextran derivative on breast cancer growth in vitro and in vivo

    OpenAIRE

    Benedetto, Mélanie Di; Starzec, Anna; Colombo, Bruno M; Briane, Dominique; Perret, Gérard Y; Kraemer, Michel; Crépin, Michel

    2002-01-01

    1 Since the sodium phenylacetate (NaPa) was reported to enhance the inhibitory effect of carboxymethyl benzylamide dextran (CMDB) on the breast cancer growth, we performed the esterification of CMDB with NaPa to obtain a new drug carrying the characteristics of these two components. A new molecule, phenylacetate carboxymethyl benzylamide dextran, was named NaPaC.We investigated in vitro and in vivo the effects of NaPaC on MCF-7ras cell growth as well as its apoptotic and antiangiogenic effect...

  2. A comparative biocompatibility study of micropheres based on crosslinked dextran or poly(lactic-co-glycolic)acid after subcutaneous injection in rats

    NARCIS (Netherlands)

    Cadee, JA; Brouwer, LA; den Otter, W; Hennink, WE; van Luyn, MJA

    2001-01-01

    Microspheres based on methacrylated dextran (dex-MA), dextran derivatized with lactate-hydroxyethyl methacrylate (dex-lactate-HEMA) or derivatized with HEMA (dex-HEMA) were prepared. The microspheres were injected subcutaneously in rats and the effect of the particle size and network characteristics

  3. Protein-polysaccharide interactions: The determination of the osmotic second virial coefficients in aqueous solutions of ß-lactoglobulin and dextran

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2007-01-01

    Solutions containing dextran and solutions containing mixtures of dextran +ß-lactoglobulin are studied by membrane osmometry. The low concentration range of these solutions is considered. From the measured osmotic pressures the virial coefficients are obtained. These are analyzed using the osmotic

  4. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with Dextran Sodium Sulfate (DSS) induced gut leakage in broiler chickens

    Science.gov (United States)

    Dextran sodium sulfate (DSS) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, two doses of DSS (0.45g/dose) administered as oral gavage re...

  5. A comparative biocompatibility study of micropheres based on crosslinked dextran or poly(lactic-co-glycolic)acid after subcutaneous injection in rats

    NARCIS (Netherlands)

    Cadee, JA; Brouwer, LA; den Otter, W; Hennink, WE; van Luyn, MJA

    2001-01-01

    Microspheres based on methacrylated dextran (dex-MA), dextran derivatized with lactate-hydroxyethyl methacrylate (dex-lactate-HEMA) or derivatized with HEMA (dex-HEMA) were prepared. The microspheres were injected subcutaneously in rats and the effect of the particle size and network characteristics

  6. Protein-polysaccharide interactions: The determination of the osmotic second virial coefficients in aqueous solutions of ß-lactoglobulin and dextran

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2007-01-01

    Solutions containing dextran and solutions containing mixtures of dextran +ß-lactoglobulin are studied by membrane osmometry. The low concentration range of these solutions is considered. From the measured osmotic pressures the virial coefficients are obtained. These are analyzed using the osmotic v

  7. Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent

    Institute of Scientific and Technical Information of China (English)

    Bei ZHOU; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Fumiaki UCHIUMI; Takashi IKEJIMA

    2007-01-01

    Aim: To investigate the mechanism of silibinin-protected isoproterenol-induced apoptosis in rat cardiac myocytes.Methods: The viability of rat cardiac myocytes was measured by MTT method. The apoptotic ratio was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Protein kinase C (PKC) activity assay was carried out according to the instructions of the PepTag non-radioactive protein kinase C assay kit. Western blot analysis was used to evaluate the level of Ras, Raf-1 and mitogen-activated protein kinase (MAPK) expression.Results: The protective effects of silibinin were significantly sup-pressed by inhibitors, including genistein, manumycin A and GW5074 [inhibitors for protein tyrosine kinases (PTK), Ras and Raf- 1, respectively]. The exposure of rat cardiac myocytes to isoproterenol alone caused decreased PKC activity, which was prevented by pretreatment with silibinin dose-dependently. Simultaneously,the increased expression of Ras and Raf-1 activated by silibinin were blocked by the PKC inhibitor, stauroporine. In addition, the extracellularly responsive kinase (ERK) inhibitor, PD98059, suppressed silibinin-protected apoptosis, whereas the p38 MAPK inhibitor, SB203580, protected cardiac myocytes from isoproterenol-induced injury, and the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 had no protective effects. Furthermore, Western blot analysis showed that the expres-sion of phosphorylated ERK was increased by silibinin, the expression of phos-phorylated p38 MAPK was decreased and total ERK, p38, JNK and phosphory-lated JNK MAPK did not change after treatment with both isoproterenol and silibinin. Furthermore, pretreatment of cardiac myocyte with PKC, Ras and Raf inhibitors significantly blocked ERK phosphorylation.Conclusion: Silibinin is suggested to protect isoproterenol-induced rat cardiac myocyte apoptosis by activating the tyrosine kinase pathway, PKC and MAPK pathways.

  8. Protective effects of the standardized extract of Zingiber officinale on myocardium against isoproterenol-induced biochemical and histopathological alterations in rats.

    Science.gov (United States)

    Amran, Athirah Z; Jantan, Ibrahim; Dianita, Roza; Buang, Fhataheya

    2015-01-01

    Ginger [Zingiber officinale Roscoe. (Zingiberaceae)] has been universally used as a spice as well as for its health benefits. The present study evaluates the protective effect of the standardized extract of ginger against isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Wistar rats were pretreated orally with three doses of standardized ginger extract (100, 200, and 400 mg/kg of body weight) or propranolol (5 mg/mL) for 28 d prior to ISO (85 mg/kg) induced MI in two doses on days 29 and 30. The rats were sacrificed 48 h after the first induction; serum and hearts were collected for biochemical and histopathological analysis. Gingerols and shogaols were identified and quantitatively analyzed in the extracts using validated reversed phase HPLC methods. Pretreatment with ginger extract at 400 mg/kg showed a significant decrease (p ginger exhibited cardioprotective potential in treating myocardial injury following ISO administration.

  9. TERRA E SUA ASSOCIAÇÃO COM FERRO DEXTRAN NO DESEMPENHO DE LEITÕES EM ALEITAMENTO LAND AND ITS ASSOCIATION WITH IRON DEXTRAN IN THE PERFORMANCE OF PIGLETS

    Directory of Open Access Journals (Sweden)

    Sergito de Souza Cavalcanti

    2007-09-01

    Full Text Available

    Na central de Suínos de Goiás, no município de Senador Canedo, foi realizada esta pesquisa, onde se utilizou leitegada de quinze porcas Large White com a finalidade de se verificar o efeito da terra e de sua associação com ferro dextran no desempenho de leitões, aos 21 e 36 dias da idade. Os tratamentos utilizados foram os seguintes: T1 - 100 mg do ferro dextran via intramuscular no terceiro dia de vida dos leitões; T2 -50 mg de ferro dextran via intramuscular no terceiro dia de vida dos leitões mais 1,0 Kg de terra/dia do terceiro ao trigésimo quinto dia; T3 - 2,0 kg de terra/dia do terceiro ao trigésimo quinto dia de vida dos leitões. Observadas as condições em que foi realizado o experimento, conclui-se que: 1 a substituição de 50 mg de ferro dextran por 1,0 kg de terra/dia, do terceiro ao trigésimo quinto dia de vida dos leitões é tão eficiente quanto 100 mg de ferro dextran injetável intramuscularmente ao terceiro dia de vida; 2 o uso de 2,0 kg de terra diariamente do terceiro ao trigésimo quinto dia de vida dos leitões teve um desempenho inferior aos demais tratamentos.

    This research was developed in the Central Pig Farm in the county of Senador Canedo in Goiás State. Litters from 15 Large White sows were used to investigate the effect of feeding ground and its association with iron dextran to piglets from the third day of age. The evaluation of the effects of the treatments in the development of the piglets was done at 21 and 35 days of age. The treatments were as follow: T1 - 100 mg of iron dextran, via intramuscular, at the third day of age; T2 - 50 mg of iron dextran, via intramuscular, at the third day of age in association with 1.0 kg of ground, fed daily from the third to the 35th day of age; T3 - 2.0 kg of ground, daily, from the third to the 35th day of age. After observing

  10. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  11. Synthesis of silver nanoparticles in the presence of diethylaminoethyl-dextran hydrochloride polymer and their SERS activity

    Science.gov (United States)

    Mikac, L.; Jurkin, T.; Štefanić, G.; Ivanda, Mile; Gotić, Marijan

    2017-09-01

    The silver nanoparticles (AgNPs) were synthesized upon γ-irradiation of AgNO3 precursor suspensions in the presence of diethylaminoethyl-dextran hydrochloride (DEAE-dextran) cationic polymer as a stabilizer. The dose rate of γ-irradiation was 32 kGy h-1, and absorbed doses were 30 and 60 kGy. The γ-irradiation of the precursor suspension at acidic or neutral pH conditions produced predominantly the silver(I) chloride (AgCl) particles, because of the poor solubility of AgCl already present in the precursor suspension. The origin of AgCl in the precursor suspension was due to the presence of chloride ions in DEAE-dextran hydrochloride polymer. The addition of ammonia to the precursor suspension dissolved the AgCl precipitate, and the γ-irradiation of such colourless suspension at alkali pH produced a stable aqueous suspension with rather uniform spherical AgNPs of approximately 30 nm in size. The size of AgNPs was controlled by varying the AgNO3/DEAE-dextran concentration in the suspensions. The surface-enhanced Raman scattering (SERS) activities of synthesized AgNPs were examined using organic molecules rhodamine 6G, pyridine and 4-mercaptobenzoic acid (4-MBA). The NaBH4 was used as SERS aggregation agent. The SERS results have shown that in the presence of synthesized AgNPs, it was possible to detect low concentration of tested compounds.

  12. Histology of a novel injectable filler (polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose) in a rat model.

    Science.gov (United States)

    Lee, Young Bok; Park, Sae Mi; Song, Eun Jong; Park, Jun-Gyu; Cho, Kyoung-Oh; Kim, Jin Wou; Yu, Dong Soo

    2014-08-01

    A novel injectable filler of polymethylmethacrylate (PMMA) and cross-linked dextran in hydroxypropyl methylcellulose was introduced in the commercial filler market. For soft tissue augmentation, safety and biocompatibility should be evaluated and the stability at the implantation site should be assessed using histologic evaluation. In order to evaluate the biocompatibility of the novel soft tissue filler, PMMA and cross-linked dextran in hydroxypropyl methylcellulose was subdermally injected into the skin of Sprague-Dawley Rats. Histologic evaluation was performed at 13 weeks and 12 months after the injection. Inflammatory cell infiltration, neovascularization, and fibrosis were scored according to defined grading systems. The mean score of the histologic evaluation was 5.7 and 3.9 at 13 weeks and 12 months, respectively. At 12 months after injection, the PMMA and cross-linked dextran in hydroxypropyl methylcellulose appeared to be kept in place through fine fibrous capsules. The mixture of PMMA and cross-linked dextran in hydroxypropyl methylcellulose can be safely applied for soft tissue augmentation with longevity of greater than 12 months.

  13. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Science.gov (United States)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  14. Dextran-graft-linear poly(ethylene imine)s for gene delivery: importance of the linking strategy.

    Science.gov (United States)

    Ochrimenko, Sofia; Vollrath, Antje; Tauhardt, Lutz; Kempe, Kristian; Schubert, Stephanie; Schubert, Ulrich S; Fischer, Dagmar

    2014-11-26

    Low molar mass linear poly(ethylene imine)s (lPEI) were grafted onto dextran via different synthesis routes aiming at the elucidation of structure-property relationships of dextran-graft-linear poly(ethylene imine) (dex-g-lPEI) conjugates for gene delivery applications. Beside the molar mass of well-defined lPEIs and the linker unit, also the amount of lPEI in the polymeric vectors was varied. The synthesized dextran modifications were characterized regarding their chemical structure and showed enhanced complexation and stabilization of DNA against enzymatic degradation. The transfection efficiency of dex-g-lPEIs was increased compared to unmodified lPEI and revealed a dependency of the used linking strategy. All complexes of DNA and dex-g-lPEIs were found to be nontoxic, but the synthesis route showed a strong influence on the aggregation of red blood cells. In conclusion, the linking strategy of lPEI to dextran has a significant impact on the physicochemical characteristics of DNA/polymer complexes, the biocompatibility as well as the transfection efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Diffusion of dextran probes in a self-assembled fibrous gel composed of two-dimensional arborols.

    Science.gov (United States)

    Sun, Jirun; Lyles, Bethany F; Yu, Keunok Han; Weddell, Jaime; Pople, John; Hetzer, Max; De Kee, Daniel; Russo, Paul S

    2008-01-10

    Two-dimensional arborols are bolaform amphiphiles in which a central, hydrophobic spacer separates twin hydrophilic ends. Under appropriate conditions, these relatively small molecules assemble into very long fibers; subsequently, the system gels if the arborol concentration is sufficiently high. The diffusion of linear or slightly branched dextran probes in 3 and 6% arborol gels, as determined by fluorescence photobleaching recovery, resembles that of dextrans in water, suggesting a highly open network structure. Melting the gels produces almost no change in diffusion of the dextran probes. Small-angle X-ray scattering (SAXS) of wet arborol gels at different concentrations and temperatures reveals the diameter of the repeating unit of the fibers to be 8.26+/-0.68 nm. This dimension, which is independent of concentration and temperature, exceeds the length of a single arborol molecule by about a factor of 3. Rheological investigation identifies the linear response regime of the gels and permits an examination of the weak correlation between dextran probe diffusion and gel viscoelasticity.

  16. Treatment outcome of additional dextran to corticosteroid therapy on sudden deafness: propensity score-matched cohort analysis.

    Science.gov (United States)

    Wang, Chi-Te; Chou, Hsu-Wen; Fang, Kai-Min; Lai, Mei-Shu; Cheng, Po-Wen

    2012-12-01

    This study aimed to investigate whether adding low-molecular-weight dextran to oral steroids in patients with idiopathic sudden sensorineural hearing loss resulted in better hearing outcomes than those in patients receiving oral corticosteroids alone. Historical cohort study. Tertiary teaching hospital. The authors reviewed the clinical records of 166 patients with idiopathic sudden sensorineural hearing loss. Therapeutic effectiveness was measured by the gain of pure-tone averages and 4 categories of hearing outcome (complete recovery, marked recovery, mild improvement, or no improvement). To manage potential confounding factors associated with treatment allocation, the authors matched the subjects from each group according to the propensity score (ie, the predicted probability that they would receive a specific treatment). The authors identified 50 pairs of propensity score-matched subjects (n = 100) without significant difference of all clinical factors (P > .05). Subsequent analyses demonstrated that the average hearing gain in subjects receiving additional dextran to oral steroid was 31.7 ± 21.5 dB, which did not differ from 33.0 ± 21.8 dB in subjects receiving steroids alone (P = .76). Difference of hearing outcomes between the 2 groups was also nonsignificant (P = .92). Matching propensity scores successfully balanced the heterogeneity between the dextran and steroid groups. Analytical results demonstrated that adding low-molecular-weight dextran to oral corticosteroids was not associated with greater hearing gain or better hearing outcome in idiopathic sudden sensorineural hearing loss.

  17. Structure and Antioxidant Activity of Soy Protein Isolate-Dextran Conjugates Obtained by TiO2 Photocatalysis

    Directory of Open Access Journals (Sweden)

    Bei Jin

    2015-01-01

    Full Text Available The aim of this study was to investigate the structural characteristics and antioxidant activities of soy protein isolate- (SPI- dextran conjugates obtained by TiO2 photocatalysis treatment. Results revealed that the UV-vis absorption and the fluorescence intensity increased as the photocatalytic power increased (P<0.05. Higher photocatalytic power could promote the extent of glycation and the formation of high molecular weight SPI-dextran conjugates, which were evidenced by free amino group content and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE analysis. The Fourier transform infrared (FT-IR spectra suggested that the amide I, II, and III bands of SPI were altered by the glycation induced by TiO2 photocatalysis. Moreover, significant changes of secondary structure occurred in SPI-dextran conjugates. The α-helix, β-sheet, β-turns, and random coil were changed from approximately 10.6%, 37.9%, 12.9%, and 38.6% to 3.8%, 10.4%, 17.7%, and 68.8%, respectively, after treatment at photocatalytic power of 1000 W. In addition, SPI-dextran conjugates obtained by TiO2 photocatalysis treatment exhibited high hydroxyl radical scavenging activity and possessed increased reducing power. All data indicated that TiO2 photocatalysis was an efficient method for promoting protein-polysaccharide copolymerisation.

  18. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy.

    Science.gov (United States)

    Broaders, Kyle E; Cohen, Joel A; Beaudette, Tristan T; Bachelder, Eric M; Fréchet, Jean M J

    2009-04-07

    Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.

  19. Sodium arsenite reduces severity of dextran sulfate sodium-induced ulcerative colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Joshua J. MALAGO; Hortensia NONDOLI

    2008-01-01

    The histopathological features and the associated clinical findings of ulcerative colitis (UC) are due to persistent inflammatory response in the colon mucosa. Interventions that suppress this response benefit UC patients. We tested whether sodium arsenite (SA) benefits rats with dextran sulfate sodium (DSS)-colitis. The DSS-colitis was induced by 5% DSS in drinking water. SA (10 mg/kg; intraperitoneally) was given 8 h before DSS treatment and then every 48 h for 3 cycles of 7,14 or 21 d. At the end of each cycle rats were sacrificed and colon sections processed for histological examination. DSS induced diarrhea, loose stools, hemoccult positive stools, gross bleeding, loss of body weight, loss of epithelium, crypt damage, depletion of goblet cells and infiltration of inflammatory cells. The severity of these changes increased ir the order of Cycles 1,2 and 3. Treatment of rats with SA significantly reduced this severity and improved the weight gain.

  20. Concentration dependent effects of dextran on the physical properties of acid milk gels.

    Science.gov (United States)

    Mende, Susann; Peter, Michaela; Bartels, Karin; Dong, Tingting; Rohm, Harald; Jaros, Doris

    2013-11-06

    The effect of dextran from Leuconostoc mesenteroides (DEX500), added to milk prior to acidification with glucono-δ-lactone (GDL) or Streptococcus thermophilus DSM20259, was studied with respect to polysaccharide concentration. The incorporation of 5-30 g/kg DEX500 significantly affected gelation behavior. Increasing DEX500 concentrations resulted in a linear increase of gel stiffness (GDL gels: R(2)=0.96; microbial acidification: R(2)=0.94; Pgels without polysaccharide. The respective stirred gels depicted a significant reduction in syneresis, which decreased from 30.4% (0 g/kg DEX500) to 22.0% (30 g/kg DEX500) for chemically acidified gels after 1 d of storage. Physical characteristics of DEX500 in aqueous solution were helpful to explain its behavior in the complex system milk.

  1. Impaired skin barrier function in mice with colon carcinoma induced by azoxymethane and dextran sodium sulfate.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-01-01

    We have previously reported that impaired skin barrier function was induced by small intestinal injury in mice. Therefore, we postulated that other intestinal diseases might also influence skin barrier function. In this study, we evaluated the skin barrier function of hairless mice with colon carcinoma that was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). In mice treated with these drugs, we observed elevated transepidermal water loss and reduced skin hydration levels, compared to those in the control mice. In addition, plasma nitrogen di/trioxide (NO2(-)/NO3(-)) levels were significantly elevated, and expression of type I collagen was significantly reduced in the treated mice, compared to those in control. These results suggest that impaired skin barrier function occurs in mice when colon carcinoma is present.

  2. Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs.

    Science.gov (United States)

    Bae, Ki Hyun; Lee, Fan; Xu, Keming; Keng, Choong Tat; Tan, Sue Yee; Tan, Yee Joo; Chen, Qingfeng; Kurisawa, Motoichi

    2015-09-01

    Hydrogels have gained significant attention as ideal delivery vehicles for protein drugs. However, the use of hydrogels for protein delivery has been restricted because their porous structures inevitably cause a premature leakage of encapsulated proteins. Here, we report a simple yet effective approach to regulate the protein release kinetics of hydrogels through the creation of microstructures, which serve as a reservoir, releasing their payloads in a controlled manner. Microstructured dextran hydrogels enable burst-free sustained release of PEGylated interferon over 3 months without compromising its bioactivity. These hydrogels substantially extend the circulation half-life of PEGylated interferon, allowing for less frequent dosing in a humanized mouse model of hepatitis C. The present approach opens up possibilities for the development of sustained protein delivery systems for a broad range of pharmaceutical and biomedical applications.

  3. Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough.

    Science.gov (United States)

    Bowes, Brian D; Lenhoff, Abraham M

    2011-07-22

    Protein transport behavior was compared for the traditional SP Sepharose Fast Flow and the dextran-modified SP Sepharose XL and Capto S resins. Examination of the dynamic binding capacities (DBCs) revealed a fundamental difference in the balance between transport and equilibrium capacity limitations when comparing the two resin classes, as reflected by differences in the locations of the maximum DBCs as a function of salt. In order to quantitatively compare transport behavior, confocal microscopy and batch uptake experiments were used to obtain estimates of intraparticle protein diffusivities. For the traditional particle, such diffusivity estimates could be used to predict column breakthrough behavior accurately. However, for the dextran-modified media, neither the pore- nor the homogeneous-diffusion model was adequate, as experimental dynamic binding capacities were consistently lower than predicted. In examining the shapes of breakthrough curves, it was apparent that the model predictions failed to capture two features observed for the dextran-modified media, but never seen for the traditional resin. Comparison of estimated effective pore diffusivities from confocal microscopy and batch uptake experiments revealed a discrepancy that led to the hypothesis that protein uptake in the dextran-modified resins could occur with a shrinking-core-like sharp uptake front, but with incomplete saturation. The reason for the incomplete saturation is speculated to be that protein initially fills the dextran layer with inefficient packing, but can rearrange over time to accommodate more protein. A conceptual model was developed to account for the partial shrinking-core uptake to test whether the physical intuition led to predictions consistent with experimental behavior. The model could correctly reproduce the two unique features of the breakthrough curves and, in sample applications, parameters found from the fit of one breakthrough curve could be used to adequately match

  4. Higher fecal bile acid hydrophobicity is associated with exacerbation of dextran sodium sulfate colitis in mice.

    Science.gov (United States)

    Stenman, Lotta K; Holma, Reetta; Forsgård, Richard; Gylling, Helena; Korpela, Riitta

    2013-11-01

    Increased luminal bile acid hydrophobicity is associated with cytotoxicity and has been suggested to contribute to gut barrier dysfunction. The aim of this study was to compare 2 high-fat diets and a low-fat diet as to whether they modify fecal bile acid profile and hydrophobicity and/or susceptibility to dextran sodium sulfate (DSS) colitis in C57Bl/6J mice. Control and DSS-Control groups received a low-fat control diet [5.5% of total energy (E%) soy oil, 4.5 E% lard], and the DSS-Lard (5.5 E% soy oil, 54.5 E% lard) and DSS-Fish oil (5.5 E% soy oil, 27.2 E% lard and 27.2% menhaden oil) groups received high-fat diets. Feces for bile acid analysis were collected after 3-wk feeding, followed by induction of dextran DSS colitis (2 d 5% DSS in drinking water + 2 d tap water). Fecal bile acid hydrophobicity was elevated 76% in the lard group (P = 0.051) and 122% in the fish oil group (P = 0.001) compared with control, indicating potentially increased cytotoxicity. DSS caused severe colitis symptoms, evaluated as rectal bleeding, whereas all the controls were symptom free. The median symptom scores were: DSS-Control, 2.3 (IQR = 0.6, 3.0); DSS-Lard, 0.3 (IQR = 0, 2.3); and DSS-Fish oil, 2.4 (IQR = 1.9, 2.8). The only differences were DSS-Control vs. control (P fecal bile acid hydrophobicity (Spearman's ρ = 0.43; P = 0.028) and fecal deoxycholic acid concentration (Spearman's ρ = 0.39; P = 0.048). These results suggest that luminal bile acid modification, induced by altered dietary fat composition, may alter susceptibility to DSS colitis.

  5. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Naha, Pratap C; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M; Witschey, Walter R T; Litt, Harold I; Tsourkas, Andrew; Cormode, David P

    2014-12-14

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.

  6. Effect of Scutellariae Radix extract on experimental dextran-sulfate sodium-induced colitis in rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effect of Scutellariae Radix extract (SRE) on ulcerative colitis (UC) in rats induced by dextran-sulfate sodium (DSS).METHODS: Colitis was induced in male Sprague-Dawley (SD) rats (170-180 g) by 4% dextran sulfate sodium (DSS, wt/v; MW 54000) in drinking water for 8 d. The treated rats received 4% DSS and SRE orally (100 mg/kg per day). Control rats received either tap water or SRE only. Macroscopic assessment which included body weight changes, fecal occult blood and stool consistency were determined daily. At the appointed time, the rats were sacrificed and the entire colons were removed. The colon length and the myeloperoxidase (MPO) activity were measured. The severity of colitis was graded by morphological and histological assessments. The ion transport activity of the colonic mucosa was assessed by electrophysiological technique. RESULTS: Rats treated with oral administration of 4% DSS regularly developed clinical and macroscopic signs of colitis. Treatment with SRE relieved the symptoms, including the reduction in body weight, shortening and ulceration of the colon. Administration of SRE also significantly reduced the histological damage induced by DSS. Moreover, the Isc responses of the colonic mucosa to forskolin were suppressed after the induction of colitis. The stimulated ion transport activity of DSS-rats treated with SRE displayed significant improvement in the secretory responsiveness.CONCLUSION: SRE was effective in treating acute DSS -induced ulcerative colitis, as gauged by reduced clinical disease, improved macroscopic and histological damage scores, and enhanced recovery of normal colonic secretory function.

  7. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    Science.gov (United States)

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  8. Preparation and characterisation of Dextran-70 hydrogel for controlled release of praziquantel

    Directory of Open Access Journals (Sweden)

    Flávio dos Santos Campos

    2013-03-01

    Full Text Available A hydrogel was developed from 70 kDa dextran (DEX-70 and praziquantel (PZQ incorporated as a model drug. Biopharmaceutical properties, such as solubility and dissolution rate, were analysed in the design of the hydrogel. Furthermore, the hydrogel was also characterized by IR spectroscopy and DSC. Tests of the swelling rate showed that the hydrogel swelled slowly, albeit faster than the rate for the free polymer. In dissolution tests, the hydrogel released the drug slowly and continuously. This slow release was similar to that observed in the swelling tests and resulted in controlled release of the drug. Thus, this dextran is a suitable polymer for the development of hydrogels as vehicles for the controlled release of drugs.Um hidrogel foi desenvolvido a partir de dextrano 70 kDa (DEX-70 e praziquantel incorporado (PZQ como fármaco modelo. Propriedades biofarmacêuticas, como solubilidade e velocidade de dissolução, foram analisadas no desenvolvimento do hidrogel. Além disso, o hidrogel também foi caracterizado por espectroscopia na região do infravermelho e calorimetria diferencial exploratória (DSC. Testes da taxa de intumescimento mostraram que o hidrogel intumesce lentamente, embora tenha sido mais rápido do que a taxa do polímero livre. Nos testes de dissolução, o hidrogel liberou o fármaco lenta e continuamente. Esta liberação lenta foi semelhante a observada nos testes de intumescimento e resultou em uma liberação controlada do fármaco. Assim, o dextrano 70 kDa é um polímero adequado para o desenvolvimento de hidrogéis como veículos para a liberação controlada de fármacos.

  9. Papillomavirus microbicidal activities of high-molecular-weight cellulose sulfate, dextran sulfate, and polystyrene sulfonate.

    Science.gov (United States)

    Christensen, N D; Reed, C A; Culp, T D; Hermonat, P L; Howett, M K; Anderson, R A; Zaneveld, L J

    2001-12-01

    The high-molecular-weight sulfated or sulfonated polysaccharides or polymers cellulose sulfate, dextran sulfate, and polystyrene sulfonate were tested for microbicidal activity against bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 11 (HPV-11) and type 40 (HPV-40). In vitro assays included the BPV-1-induced focus-forming assay and transient infection of human A431 cells with HPVs. The compounds were tested for microbicidal activity directly by preincubation with virus prior to addition to cell cultures and indirectly by addition of virus to compound-treated cells and to virus-coated cells to test inactivation of the virus after virus-cell binding. The data indicated that all three compounds showed direct microbicidal activity with 50% effective concentrations between 10 to 100 microg/ml. These concentrations were nontoxic to cell cultures for both assays. When a clone of C127 cells was tested for microbicidal activity, approximately 10-fold-less compound was required to achieve a 50% reduction in BPV-1-induced foci than for the uncloned parental C127 cells. Pretreatment of cells with compound prior to addition of virus also demonstrated strong microbicidal activity with dextran sulfate and polystyrene sulfonate, but cellulose sulfate required several orders of magnitude more compound for virus inactivation. Polystyrene sulfonate prevented subsequent infection of HPV-11 after virus-cell binding, and this inactivation was observed up to 4 h after addition of virus. These data indicate that the polysulfated and polysulfonated compounds may be useful nontoxic microbicidal compounds that are active against a variety of sexually transmitted disease agents including papillomaviruses.

  10. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    Science.gov (United States)

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  11. p-CMB-dextran T 10. A useful tool in evaluating the functional importance of superficial SH-groups in rat adipocytes.

    Science.gov (United States)

    Simon, B; Kather, H

    1975-05-01

    A large SH-blocking reagent p-CMB-dextran T 10 (MW about 10,000) was applied to isolated rat adipocytes. This compound possesses the same reactivity towards SH-groups as uncoupled p-CMB. P-CMB-Dextran T 10 did not influence the basal glucose uptake in contrast to uncoupled p-CMB. The results are discussed with respect to the usefulness of p-CMB-dextran T 10 in evaluating the role of superficial SH-groups in various membrane functions.

  12. Caracterização funcional da hipertrofia miocárdica induzida pelo isoproterenol e de sua regressão

    Directory of Open Access Journals (Sweden)

    Murad Neif

    2001-01-01

    Full Text Available OBJETIVO: Analisar as disfunções da hipertrofia miocárdica induzida pelo isoproterenol e de sua regressão. Corações isolados hipertrofiados por isoproterenol (ISO (8 dias e após 22 dias de sua suspensão (regressão foram distendidos. MÉTODOS: Até pressão de repouso (Pr de 60mmHg, analisaram-se: pressão desenvolvida máxima (PDmáx.; estresse sistólico (sigmamáx; inclinação da reta estresses/deformações; constante de relaxamento; rigidez da câmara e rigidez miocárdica. RESULTADOS: Nos corações hipertrofiados (H as variações de volume (deltaV necessárias para Pr=60mmHg foram heterogêneas. Em alguns (H1; n=10 deltaV equivaleu à dos controle (C enquanto em outros (H2; n=10 foi inferior, e também diferiram quanto ao peso seco, complacência ventricular, rigidez miocárdica, constante de relaxamento,e sigmamáx. PDmáx dos grupos H1 e H2 foram superiores às de C (n=8 e Regressão (R (n=8. Contudo, sigmamáx de H2 foi menor que C, H1 e R. O mecanismo de Frank-Starling foi deprimido nos corações hipertrofiados. A constante de relaxamento de H2 indicou retardo no decaimento da pressão associado a menor complacência ventricular e rigidez miocárdica acentuada. CONCLUSÃO: Hipertrofia miocárdica induzida pelo ISO não é homogênea. Alguns corações têm alterações pouco expressivas; outros têm comprometimento das funções sistólica e diastólica. A hipertrofia miocárdica reduz a capacidade de gerar força e aprimora a capacidade em variar pressão por aumento da relação massa/volume. Há, também, comprometimento da complacência ventricular e da rigidez muscular.

  13. Comparison effects of dietary iron dextran and bacterial-iron supplementation on growth performance, fecal microbial flora, and blood profiles in sows and their litters.

    Science.gov (United States)

    Zhao, Pinyao; Upadhaya, Santi Devi; Li, Jian; Kim, Inho

    2015-11-01

    This study was conducted to compare effects of dietary administration of iron dextran and bacterial-iron on growth performance, fecal microbial flora, and blood profiles in sows and their litters. A total of 20 multiparous sows (Landrace × Yorkshire) were randomly allotted into two treatments: (i) ID (basal diet, piglets were injected with iron dextran); (ii) BR (basal diet + bacterial-iron; bacterial-iron was given to sows, piglets were not injected with iron dextran). There were five replicates per treatment with two sows per replicate. No differences were observed on sow and piglet growth performance, fecal microbial flora as well as sow blood profiles between ID and BR treatments. In piglets, blood iron, red blood cell and hemoglobin concentrations in ID treatment were higher (P growth performance in lactating sows and piglets, but iron dextran injection has higher blood iron, white blood cell, red blood cell and hemoglobin concentrations in piglets.

  14. Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus

    Directory of Open Access Journals (Sweden)

    Krishnamurthy Satish

    2009-12-01

    Full Text Available Abstract Background Popular circulation theory of hydrocephalus assumes that the brain is impermeable to cerebrospinal fluid (CSF, and is therefore incapable of absorbing the CSF accumulating within the ventricles. However, the brain parenchyma is permeable to water due to the presence of specific ion channels as well as aquaporin channels. Thus, the movement of water into and out of the ventricles may be determined by the osmotic load of the CSF. If osmotic load determines the aqueous content of CSF in this manner, it is reasonable to hypothesize that hydrocephalus may be precipitated by pathologies and/or insults that produce sustained elevations of osmotic content within the ventricles. Methods We investigated this hypothesis by manipulating the osmotic content of CSF and assaying the development of hydrocephalus in the rat brain. This was achieved by continuously infusing artificial CSF (negative control; group I, fibroblast growth factor (FGF2 solution (positive control; group II and hyperosmotic dextran solutions (10 KD and 40 KD as experimental solutions: groups III and IV for 12 days at 0.5 μL/h. The osmolality of the fluid infused was 307, 664, 337 and 328 mOsm/L in Groups I, II, III and IV, respectively. Magnetic resonance imaging (MRI was used to evaluate the ventricular volumes. Analysis of variance (ANOVA with pairwise group comparisons was done to assess the differences in ventricular volumes among the four groups. Results Group I had no hydrocephalus. Group II, group III and group IV animals exhibited significant enlargement of the ventricles (hydrocephalus compared to group I. There was no statistically significant difference in the size of the ventricles between groups II, III and IV. None of the animals with hydrocephalus had obstruction of the aqueduct or other parts of CSF pathways on MRI. Conclusion Infusing hyperosmolar solutions of dextran, or FGF into the ventricles chronically, resulted in ventricular enlargement. These

  15. Injection site radioactivity of (99m)Tc-labeled mannosylated dextran for sentinel lymph node mapping.

    Science.gov (United States)

    Yamaguchi, Aiko; Hanaoka, Hirofumi; Pirmettis, Ioannis; Uehara, Tomoya; Tsushima, Yoshito; Papadopoulos, Minas; Arano, Yasushi

    2015-02-01

    The high and persistent radioactivity at the injection site hinders the accuracy and expansion of sentinel lymph node (SLN) mapping. We investigated the mechanism underlying the undesirable radioactivity after subcutaneous injection of (99m)Tc-labeled mannosylated dextran ((99m)Tc(CO)3-DCM20), a SLN mapping agent targeting mannose receptors on macrophages and dendritic cells, in a mouse model. Biodistribution studies were performed 1 h after subcutaneous injection of (99m)Tc(CO)3-DCM20 from the rear footpad of mice in the presence of varying molar amounts of DCM20 or DC15, a modified dextran without mannose. Biodistribution studies were also conducted after subcutaneous injection of [(125)I]radioiodinated mannosyl-neoglycoalbumin ((125)I-NMA) from the rear footpad. The distribution of fluorescence-labeled DCM20 and DC15 at the injection site was also compared 1 h after subcutaneous injection by immunofluorescent histochemistry. The radioactivity levels of (99m)Tc(CO)3-DCM20 at the injection site and popliteal lymph node, a SLN in this model, decreased with an increase in the molar amounts of DCM20, whereas no significant changes in biodistribution were observed after injection of (99m)Tc(CO)3-DCM20 with varying molar amounts of DC15. (125)I-NMA exhibited rapid elimination of radioactivity from both the popliteal lymph node and the injection site. The fluorescence-labeled DCM20 colocalized well with CD68-positive cells such as macrophages and dendritic cells at the injection site. While partial colocalization was observed between DC15 and CD68-positive cells, the signal intensity was very weak. These findings suggest that specific binding of (99m)Tc(CO)3-DCM20 to the mannose receptor on macrophages and dendritic cells would be responsible for the sustained radioactivity levels at the injection site. These results also imply that discriminated blockage of (99m)Tc(CO)3-DCM20 binding to mannose receptors at the injection sites would reduce the radioactivity at the

  16. Mucoadhesive polyethylenimine-dextran sulfate nanoparticles containing Punica granatum peel extract as a novel sustained-release antimicrobial.

    Science.gov (United States)

    Tiyaboonchai, Waree; Rodleang, Ingdao; Ounaroon, Anan

    2015-06-01

    Mucoadhesive polyethylenimine-dextran sulfate nanoparticles (PDNPs) were developed for local oral mucosa delivery. Punica granatum peel extract (PGE) was loaded into PDNPs for oral malodor reduction and caries prevention. PDNPs were constructed using the polyelectrolyte complexation technique employing oppositely charged polymers polyethylenimine (PEI) and dextran sulfate (DS), with PEG 400 as a stabilizer. Under optimal conditions, spherical particles of ∼ 500 nm with a zeta potential of ∼+28 mV were produced. Up to 98%, drug entrapment efficiency was observed. The mass ratio of PEI:DS played a significant role in controlling particle size and entrapment efficacy. PDNPs shown to be a good mucoadhesive drug delivery system as confirmed by ex vivo wash off test. In vitro dissolution studies revealed that PGE-loaded PDNPs manifested a prolong release characteristic with a burst release within 5 min. In addition, they remained effectively against oral bacteria.

  17. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  18. Enzyme-resistant isomalto-oligosaccharides produced from Leuconostoc mesenteroides NRRL B-1426 dextran hydrolysis for functional food application.

    Science.gov (United States)

    Kothari, Damini; Goyal, Arun

    2016-07-01

    The extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-1426 was produced and purified using polyethylene glycol fractionation. In our earlier study, it was reported that L. mesenteroides dextransucrase synthesizes a high-molecular mass dextran (>2 × 10(6)  Da) with ∼85.5% α-(1→6) linear and ∼14.5% α-(1→3) branched linkages. Isomalto-oligosaccharides (IMOs) were synthesized through depolymerization of dextran by the action of dextranase. The degree of polymerization of IMOs was 2-10 as confirmed by mass spectrometry. The nuclear magnetic resonance spectroscopic analysis revealed the presence of α-(1→3) linkages in the synthesized IMOs. The IMOs were resistant to dextranase, α-glucosidase, and α-amylase, and therefore can have potential application as food additives in the functional foods. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  19. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum

    DEFF Research Database (Denmark)

    Banda, Nirmal K; Mehta, Gaurav; Chao, Ying

    2014-01-01

    BACKGROUND: The complement system is a key component of innate immunity implicated in the neutralization and clearance of invading pathogens. Dextran coated superparamagnetic iron oxide (SPIO) nanoparticle is a promising magnetic resonance imaging (MRI) contrast agent. However, dextran SPIO has...... pathway (LP) or alternative pathway (AP) components were used to study mechanisms of mouse complement activation. In vitro measurements of fluid phase markers of complement activation C4d and Bb and the terminal pathway marker SC5b-C9 in normal and genetically deficient sera were used to study...... the CP, but that did not affect the total level of C3 deposition on the particles. CONCLUSIONS: There were important differences and similarities in the complement activation by SPIO NW in mouse versus human sera. Understanding the mechanisms of immune recognition of nanoparticles in mouse and human...

  20. Assessment of 7.5% NaCl /6% Dextran-70 (HSD) Effects on Serum or Plasma Protein Determinations

    Science.gov (United States)

    1990-12-26

    determined by modified Lowry, dye-binding, and an automated biuret method, as well as by refractometry , before, and at various times following HSD...protein concentrations determined by the biuret assay or refractometry when dextran serum concentrations exceeded 1.2 g/dl. The in vivo studies... refractometry , before, and at various times following HSD infusion in both euvolemic and hemorrhaged animals. Other studies analyzed plasma protein

  1. Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer

    OpenAIRE

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko; Gonzalez, Frank J.

    2014-01-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)–induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival r...

  2. Inhibition of secretory phospholipase A2 activity attenuates acute cardiogenic pulmonary edema induced by isoproterenol infusion in mice after myocardial infarction.

    Science.gov (United States)

    Kawabata, Kenichi; Fujioka, Daisuke; Kobayashi, Tsuyoshi; Saito, Yukio; Obata, Jun-Ei; Nakamura, Takamitsu; Yano, Toshiaki; Watanabe, Kazuhiro; Watanabe, Yosuke; Mishina, Hideto; Kugiyama, Kiyotaka

    2010-10-01

    Several types of secretory phospholipase A2 (sPLA2) are expressed in lung tissue, yielding various eicosanoids that might cause pulmonary edema. This study examined whether inhibition of sPLA2 activity attenuates acute cardiogenic pulmonary edema in mice. Acute cardiogenic pulmonary edema was induced in C57BL/6J male mice by an increase in heart rate with continuous intravenous infusion of isoproterenol (ISP) (10 mg/kg/h) at 2 weeks after the creation of myocardial infarction by left coronary artery ligation. Just before ISP infusion, a single intraperitoneal injection of 100 mg/kg LY374388, a prodrug of LY329722 that inhibits sPLA2 activity, or vehicle was administered. The ISP infusion after myocardial infarction induced interstitial and alveolar edema on lung histology. Furthermore, it increased the lung-to-body weight ratio, pulmonary vascular permeability evaluated by the Evans blue extravasation method, lung activity of sPLA2, and lung content of thromboxane A2 and leukotriene B4. These changes were significantly attenuated by LY374388 treatment. In Kaplan-Meier analysis, the survival rate during the ISP infusion after myocardial infarction was significantly higher in LY374388- than in vehicle-treated mice. Similar results were obtained with another inhibitor of sPLA2 activity, para-bromophenacyl bromide. In conclusion, inhibition of sPLA2 activity suppressed acute cardiogenic pulmonary edema.

  3. Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat

    Science.gov (United States)

    Li, Jian-Dong; Cheng, Ai-Yuan; Huo, Yan-Li; Fan, Jie; Zhang, Yu-Ping; Fang, Zhi-Qin; Sun, Hong-Sheng; Peng, Wei; Zhang, Jin-Shun

    2016-01-01

    Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD. PMID:27746855

  4. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    Directory of Open Access Journals (Sweden)

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  5. Impaired gene expression of beta 1-adrenergic receptor, but not stimulatory G-protein Gs alpha, in rat ventricular myocardium treated with isoproterenol.

    Science.gov (United States)

    Kizaki, Keiichiro; Momozaki, Masami; Akatsuka, Keiko; Fujimori, Yuuki; Uchide, Tsuyoshi; Temma, Kyosuke; Hara, Yukio

    2004-07-01

    We investigated the gene expression of beta(1)-adrenergic receptor (beta(1)AR) and stimulatory G-protein Gsalpha, important signal transduction elements for regulating heart rate and contractility, in ventricle after chronic treatment with isoproterenol (ISO) in rat. Rats were treated with ISO (4 mg/kg, intraperitoneal) twice a day for 4 d. Ventricle weight of the heart and ventricle weight/body weight ratio were increased by 23% and 25% compared with control, respectively. Positive inotropic responses to ISO in left atrial muscle preparations isolated from ISO-treated rats were markedly decreased. Northern blot hybridization showed that the mRNA transcript of beta(1)AR was significantly decreased in ventricle of ISO-treated rats, whereas Gsalpha mRNA level was unchanged. Present results demonstrate that the gene expression of myocardial beta(1)AR, but not Gsalpha, was decreased in rat myocardium of ISO-induced cardiac hypertrophy, and suggesting that decrease in the gene expression of beta(1)AR may be one of the mechanisms responsible for the diminished cardiac function.

  6. Trace Element Determination and Cardioprotection of Terminalia pallida Fruit Ethanolic Extract in Isoproterenol Induced Myocardial Infarcted Rats by ICP-MS.

    Science.gov (United States)

    Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi

    2017-05-15

    The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.

  7. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  8. Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats.

    Science.gov (United States)

    Attaallah, Wafi; Yilmaz, Ayşe Mine; Erdoğan, Nusret; Yalçin, A Suha; Aktan, A Ozdemir

    2012-10-01

    Recent studies have shown that whey protein has many useful effects including its anti-cancer effect. In this study we have compared the protective effect of dietary whey protein with whey protein hydrolyzate against azoxymethane and dextran sodium sulfate induced colon cancer in rats. We used a rat model of the colon cancer induced by administration of azoxymethane followed by repeated dextran sodium sulfate ingestion which causes multiple tumor development. Colon tissues were analyzed histologically in addition to biochemical analyses performed by measuring lipid peroxidation, protein oxidation and glutathione levels in both of colon and liver tissues of rats after sacrification. Macroscopic and microscopic tumors were identified in all groups that received azoxymethane followed by repeated dextran sodium sulfate. Group fed with whey protein hydrolyzate showed significantly less macroscopic and microscopic tumor development compared with group fed with whey protein. The protocol applied to generate an appropriate model of colon cancer was successful. Whey protein hydrolyzate was found to be more effective in preventing colon tumor development compared with whey protein.

  9. Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug.

    Science.gov (United States)

    Daoud-Mahammed, S; Ringard-Lefebvre, C; Razzouq, N; Rosilio, V; Gillet, B; Couvreur, P; Amiel, C; Gref, R

    2007-03-01

    New nanoassemblies were instantaneously prepared by mixing two aqueous solutions, one containing a beta-cyclodextrin polymer (pbetaCD), and the other a hydrophobically modified by alkyl chains dextran (MD). The formation mechanism and the inner structure of these nanoassemblies were analysed using surface tension measurements and (1)H NMR spectroscopy. The effect of a hydrophobic guest molecule, such as benzophenone (BZ), on the formation and stability of the nanoassemblies was also evaluated. MD exhibited the typical behaviour of a soluble amphiphilic molecule and adsorbed at the air/water interface. Whereas the injection of native beta-CDs in the solution beneath the adsorbed MD monolayer did not produce any change in the surface tension, that of the pbetaCD resulted in an increase in the surface tension, indicating the desorption of the polymer from the interface. This result accounts for a cooperative effect of beta-CDs linked together in the pbetaCD polymer on dextran desorption. The presence of benzophenone in the system hindered the sequestration of dextran alkyl moieties by beta-CD in the polymer without impeding the formation of associative nanoassemblies of 100-200 nm. (1)H NMR investigations demonstrated that, in the BZ-loaded nanoassemblies, the hydrophobic molecule was mainly located into the cyclodextrin cavities.

  10. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  11. Incorporation of DMSO and dextran-40 into a gelatin/alginate hydrogel for controlled assembled cell cryopreservation.

    Science.gov (United States)

    Wang, Xiaohong; Xu, Huirong

    2010-12-01

    A new cell cryopreservation strategy for cell-assembling constructs was proposed. With this strategy, different concentrations of dimethysulfoxide (DMSO) and dextran-40 were directly incorporated into the cell/gelatin/alginate systems, prototyped according to a predesigned structure, cryopreserved at -80 °C for 10 days and followed a thawing process at 17 °C. The rheological properties, bonding water contents and melting points of the gelatin/alginate hydrogel systems were changed with the addition of different amounts of DMSO. The microscopy analysis, (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrasodium bromide (MTT) and hematoxylin and eosin (HE) staining indicated that the cell numbers were progressively in a selected DMSO concentration range. With DMSO 5% (v/v) alone, the metabolic rate in the construct attained (81.3±5.7)%. A synergistic effect was achieved with the combination of the DMSO/gelatin/alginate and dextran-40/gelatin/alginate hydrogel systems. These results indicated that the inclusion of DMSO and dextran-40 in the hydrogel could effectively enhance the cell preservation effects. This cryopreservation strategy holds the ability to be widely used in organ manufacturing techniques.

  12. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation.

    Science.gov (United States)

    Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Gju; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-09-01

    To develop a gentamicin-loaded wound dressing, cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and dextran using the freezing-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength, and thermal property were investigated. In vitro protein adsorption test, in vivo wound healing test, and histopathology were performed. Dextran decreased the gel fraction, maximum strength, and thermal stability of hydrogels. However, it increased the swelling ability, water vapor transmission rate, elasticity, porosity, and protein adsorption. The drug gave a little positive effect on the gel properties of hydrogels. The gentamicin-loaded wound dressing composed of 2.5% PVA, 1.13% dextran, and 0.1% drug was more swellable, flexible, and elastic than that with only PVA because of its cross-linking interaction with PVA. In particular, it could provide an adequate level of moisture and build up the exudates on the wound area. From the in vivo wound healing and histological results, this gentamicin-loaded wound dressing enhanced the healing effect more compared to conventional product because of the potential healing effect of gentamicin. Thus, this gentamicin-loaded wound dressing would be used as a potential wound dressing with excellent forming and improved healing effect in wound care.

  13. Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence?

    Directory of Open Access Journals (Sweden)

    Ortensia I. Parisi

    2017-08-01

    Full Text Available Background: Melanins are high molecular weight pigments responsible for the mammalian skin and hair colour and play a key role in skin protection from UV radiation; however, their overproduction and excessive accumulation lead to pigmentation problems including melasma, freckles, uneven colouring, and age spots. Therefore, the modulation of melanin synthesis represents a critical issue in medicine and cosmetology. In the present study, an innovative polymeric antioxidant to be used as skin whitening agent is developed by the conjugation of dextran with rosmarinic acid. Methods: Dextran-rosmarinic acid conjugates (DEX-RA were synthesized in a one-pot method starting from Origanum vulgare aqueous leaf extract and dextran. The total polyphenol content and the antioxidant activity were assessed by Folin-Ciocalteau assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH and bleaching tests, respectively. The efficacy of DEX-RA was evaluated by inhibition of tyrosinase activity, in vitro diffusion and stability studies and in vivo studies. The biocompatibility of the conjugates was investigated by 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazoliumbromide (MTT and EPISKIN™ model. Results: Efficacy and safety studies confirmed the antioxidant and tyrosinase inhibitory activities and the biocompatibility of the synthesized conjugates. Conclusion: The polymeric conjugates, comparing to the free antioxidant, show a long-lasting efficacy combined to an enhanced stability resulting in an improved performance of the cosmetic formulations prepared using this innovative whitening agent as a bioactive ingredient.

  14. Exploring the ameliorative potential of Punica granatum in dextran sulfate sodium induced ulcerative colitis in mice.

    Science.gov (United States)

    Singh, Kavinder; Jaggi, Amteshwar Singh; Singh, Nirmal

    2009-11-01

    The present study was designed to investigate the ameliorative potential of Punica granatum in dextran sulfate sodium (DSS) induced ulcerative colitis. DSS (2%) was administered orally in drinking water for 7 days to induce ulcerative colitis. The extent and severity of ulceration was analysed macroscopically, histopathologically and using a disease activity index. Myeloperoxidase (MPO), a specific marker of inflammation; histamine, a marker of mast cell degranulation; superoxide anion generation and, lipid peroxides were analysed. Administration of DSS resulted in a significant development of ulceration in the colon along with a rise in histamine, MPO activity and oxidative stress. Treatment with Punica granatum extract and its ellagic acid rich fraction (100 mg/kg and 200 mg/kg p.o.) significantly attenuated DSS-induced colonic inflammation along with attenuation of histamine, MPO and oxidative stress. The antiulcerative effect of Punica granatum extract and its ellagic acid rich fraction were comparable to sulphasalazine (100 mg/kg, p.o.) and sodium cromoglycate (40 mg/kg i.p). It is concluded that Punica granatum has a potential for ameliorating DSS-induced colitis and its ellagic acid rich fraction may be responsible for this effect. Further, the antiulcerative effects may be attributed to mast cell stabilizing, antiinflammatory and antioxidant actions.

  15. Glycyrrhetic Acid Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Vivo

    Directory of Open Access Journals (Sweden)

    Yong-Deok Jeon

    2016-04-01

    Full Text Available Glycyrrhizae Radix (GR is a Korean traditional herb medicine that is widely used in clinical health care. Glycyrrhetic acid (GA is an aglycone saponin extracted from GR that has anti-inflammatory, anti-cancer, and anti-viral effects. However, the anti-inflammatory effects of GA in colitis have not been reported. This study investigated the role of GA on ulcerative colitis in a dextran sulfate sodium (DSS-induced mouse colitis model. DSS-treated mice displayed weight loss and shortened colon length compared with control mice. Mice administered GA showed less weight loss and longer colon length than the DSS-treated group. Interleukin (IL-6, IL-1β, and tumor necrosis factor-alpha were decreased by GA treatment. GA treatment also reduced DSS-induced microscopic damage to colon tissue. GA regulates the phosphorylation of transcription factors including nuclear factor-kappa B (NF-κB and IκB alpha, and regulates the expression of cycloxygenase-2 and prostaglandin E2. GA thus showed beneficial effects in a mouse model of colitis, implicating GA might be a useful herb-derived medicine in the treatment of ulcerative colitis.

  16. Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Mukaiyama, Hiroyuki; Giga-Hama, Yuko; Tohda, Hideki; Takegawa, Kaoru

    2009-11-01

    The effect of medium supplementation on heterologous production of human serum transferrin (hTF) in the fission yeast Schizosaccharomyces pombe has been investigated. The productivity of recombinant hTF was low in wild-type S. pombe cells. To overcome this impediment, culture media supplements were screened for their ability to improve secretion of hTF. Casamino acids (CAA), which have been reported to increase heterologous protein productivity in Pichia pastoris, improved the secretion hTF by more than fourfold. An anion surfactant deoxycholate or polyethylene glycol also improved the secretion hTF. Interestingly, dextran sodium sulfate (DSS), a poly-anion surfactant, was found to enhance production of secreted hTF better than any other supplement tested. Addition of DSS in the presence of 2% CAA exhibited a synergistic effect on increasing hTF secretion, resulting in an increase of about sevenfold relative to conventional conditions. Cell growth was not found to be affected by the addition of DSS or CAA. DSS may act as a surfactant and may also facilitate the anchoring of liposomes, and these properties may contribute to efficient secretion or exocytosis through the plasma membrane.

  17. Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits.

    Science.gov (United States)

    Leonardi, Irina; Nicholls, Flora; Atrott, Kirstin; Cee, Alexandra; Tewes, Bernhard; Greinwald, Roland; Rogler, Gerhard; Frey-Wagner, Isabelle

    2015-06-01

    Trichuris suis ova (TSO) have shown promising results in the treatment of inflammatory bowel disease (IBD) but the mechanisms which underlies this therapeutic effect cannot be studied in mice and rats as T. suis fails to colonize the rodent intestine, whilst hatching in humans and rabbits. As a suitable rabbit IBD model is currently not available, we developed a rabbit colitis model by administration of dextran sodium sulphate (DSS). White Himalayan rabbits (n = 12) received 0.1% DSS in the daily water supply for five days. Clinical symptoms were monitored daily, and rabbits were sacrificed at different time points. A genomewide expression analysis was performed with RNA isolated from caecal lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC). The disease activity index of DSS rabbits increased up to 2.1 ± 0.4 (n = 6) at day 10 (controls colitis. Localization of the inflammation in the caecum and its similarities to IBD make this model particularly suitable to study TSO therapy in vivo.

  18. Preclinical and Clinical In Vitro In Vivo Correlation of an hGH Dextran Microsphere Formulation

    Science.gov (United States)

    de Vrueh, R.; Gresnigt, M. G.; Hoogerbrugge, C. M.; van Buul-Offers, S. C.; de Leede, L. G. J.; Sterkman, L. G. W.; Crommelin, D. J. A.; Hennink, W. E.; Verrijk, R.

    2007-01-01

    Purpose To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. Materials and Methods A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Results Single subcutaneous administration of the microspheres in mice resulted in a good correlation between hGH released in vitro and in vivo effects for the hGH-loaded microsphere formulation similar to daily injected hGH indicating a retained bioactivity. Testing the microspheres in healthy volunteers showed an increase (over 7–8 days) in hGH serum concentrations (peak concentrations: 1–2.5 ng/ml). A good in vitro in vivo correlation was obtained between the measured and calculated (from in vitro release data) hGH serum concentrations. Moreover, an increased serum concentration of biomarkers (insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3) was found again indicating that bioactive hGH was released from the microspheres. Conclusions Good in vitro in vivo correlations were obtained for hGH-loaded dex-HEMA microspheres, which is an important advantage in predicting the effect of the controlled drug delivery product in a clinical situations. PMID:17929148

  19. Protective Effect of Calculus Bovis Sativus on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Xiping Li

    2015-01-01

    Full Text Available Calculus Bovis Sativus (CBS is a commonly used traditional Chinese medicine, which has been reported to exhibit antispasmodic, fever-reducing, anti-inflammatory, and gallbladder-repairing effects. The present study aims to investigate the protective effect of CBS on dextran sulphate sodium- (DSS- induced ulcerative colitis (UC in mice. C57BL/6 male mice were exposed to 5% DSS in drinking water. CBS was given orally at 50 and 150 mg/kg once per day for 7 days. Body weight, disease activity index (DAI, colon length, colonic myeloperoxidase (MPO activity, superoxide dismutase (SOD activity, and malondialdehyde (MDA and nitric oxide (NO levels were measured. Administration of CBS significantly reserved these changes, decreased the MPO activity and MDA and NO level, and increased the SOD activity in the colon tissue. Histological observation suggested that CBS alleviated edema, mucosal damage, and inflammatory cells infiltration induced by DSS in the colon. Moreover, CBS significantly downregulated the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin- (IL- 1β and IL-6 in the colon tissue. Our data suggested that CBS exerted protective effect on DSS-induced UC partially through the antioxidant and anti-inflammatory activities.

  20. Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Latorre-Esteves, Magda; Cortes, Angel; Torres-Lugo, Madeline [Department of Chemical Engineering, University of Puerto Rico at Mayagueez, PO Box 9046, Mayagueez, PR 00680 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico at Mayagueez, PO Box 9046, Mayagueez, PR 00680 (Puerto Rico)], E-mail: crinaldi@uprm.edu

    2009-10-15

    Previous studies have shown that magnetic nanoparticles possess great potential for various in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, cancer treatment agents, and controlled drug delivery. Many of these applications require that magnetic nanoparticles be colloidally stable in biological media. The goal of this study was to obtain a magnetic fluid produced by the colloidal suspension of manganese/zinc ferrite (MZF) nanoparticles that could be stably dispersed in aqueous solution throughout the range of physiological pH and ionic strength. These superparamagnetic nanoparticles were stabilized through steric repulsion by coating with biologically compatible carboxymethyl dextran (CMDx). Samples of the resultant magnetic fluid were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), X-ray diffraction (XRD), zeta potential measurements, dynamic light scattering, transmission electron microscopy (TEM), and SQUID magnetometry. Results show that we obtained superparamagnetic metal-oxide crystals with composition of Mn{sub 0.24}Zn{sub 0.76}Fe{sub 2}O{sub 4}. Cell viability measurements show the material is non-toxic to MCF-7 and CaCo-2 cell lines at concentrations of up to 7.5 mg/mL of particle fraction for contact time of up to 48 h.

  1. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed.

  2. Effects of appendectomy and oral tolerance on dextran sulfate sodium colitis

    Institute of Scientific and Technical Information of China (English)

    Min Yue; Zhe Shen; Chao-Hui Yu; Hua Ye; Yue-Fang Ye; You-Ming Li

    2011-01-01

    AIM: To evaluate the concomitant effects of appendectomy and oral tolerance on colitis. METHODS: Delayed-type hypersensitivity (DTH) was investigated at a 7-d interval after ovalbumin (OVA) administration and immunization under normal and colitis conditions in appendectomized or sham-operated mice. Pathological scores for the colon were graded after ingestion of colon-extracted protein (CEP) and induction of dextran sulfate sodium (DSS) colitis in appendectomized or sham-operated mice. Thereafter, Th1 and Th2 in Peyer's patches and spleen lymphocytes were detected in CEP-treated and bovine serum albumin (BSA)-treated control mice. RESULTS: In appendectomized mice, DTH was not inhibited at day 7 after OVA administration and at the initial phase of DSS colitis, whereas it was inhibited at day 14 and day 21. However, in sham-operated mice, it was inhibited during the whole procedure and the onset of DSS colitis. The protective role of CEP against DSS colitis was present in sham-operated mice, with predominant improvement of colonic pathological changes, while vanished in the appendectomized mice. A shift from Th1 to Th2 in Peyer's patches resulted from a decrease of Th1 cells with the ingestion of CEP. Compared with BSA in the sham-operated group, no predominant changes were observed in the appendectomized mice. CONCLUSION: Appendectomy interferes with the protective role of CEP in DSS colitis via a shift from Th2 to Th1 during oral tolerance induction.

  3. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis.

    Science.gov (United States)

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-04-05

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis.

  4. Effects of ulinastatin in experimental colitis induced by dextran sulfate sodium in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: Ulinastatin has been reported to be beneficial for maintenance of steroid-refractory inflammatory bowel disease (IBD), but the mechanism underlying remains uncertain. Leukocyte recruitment to inflammatory site plays an important role in the pathogenesis of IBD, analysis of leukocyte and endothelium interaction may provide new avenues for treatment of IBD. In this study, we evaluated the efficacy of Ulinastatin in dextran sulfate sodium (DSS) induced colitis rat model using intravital video microscopy. METHODS: Rats were given drinking water containing 3.5% (W/V) DSS for 10 days then 1% for 14 days. DSS induced colitis rats were treated Ulinastatin 3 000 unit*kg-1*d-1 via intraperitoneum during 1% DSS feeding. Controls received distilled water for 24 days. Body weight was determined for all groups. Colitis severity was assessed using histological scoring systems by H&E sections. Intravital microscopic techniques were used to quantitate leukocyte adhesion (LA), leukocyte emigration (LE) and venular protein leakage (VPL) in rat mesentery. RESULTS: DSS induced loss of body weight, whereas Ulinastatin-treated rat showed a significant increase in body weight. Histological analysis revealed improvement of colitis such as leukocyte infiltration, loss of goblet cells, transmural edema. DSS intake elicited increase in LA, LE, and VPL compared to control group. Ulinstatin significantly reversed the increase in LA, LE, and VPL induced by DSS. CONCLUSION: Administration of Ulinastatin effectively ameliorates experimental colitis by interfering with leukocyte recruitment, and may become a potential candidate for control of inflammation of IBD.

  5. Antibody to eosinophil cationic protein suppresses dextran sulfate sodium-induced colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Kazuko Shichijo; Kazuya Makiyama; Chun-Yang Wen; Mutsumi Matsuu; Toshiyuki Nakayama; Masahiro Nakashima; Makoto Ihara; Ichiro Sekine

    2005-01-01

    AIM: To produce an antibody against rat eosinophil cationic protein (ECP) and to examine the effects of the antibody in rats with dextran sulfate sodium (DSS)-induced colitis.METHODS: An antibody was raised against rat ECP. Rats were treated with 3% DSS in drinking water for 7 d and received the antibody or normal serum. The colons were exarmined histologically and correlated with clinical symptoms.Immunohistochemistry and Western blot analysis were estimated as a grade of inflammation.RESULTS: The ECP antibody stained the activated eosinophils around the injured crypts in the colonic mucosa.Antibody treatment reduced the severity of colonic ulceration and acute clinical symptoms (diarrhea and/or blood-stained stool). Body weight gain was significantly greater and the colon length was significantly longer in anti-ECP-treated rats than in normal serum-treated rats. Expression of ECP in activated eosinophils was associated with the presence of erosions and inflammation. The number of Ki-67-positive cells in the regenerated surface epithelium increased in anti-ECP-treated rats compared with normal serum-treated rats. Western blot analysis revealed reduced expression of macrophage migration inhibitory factor (MIF) in anti-ECP-treated rats.CONCLUSION: Our results indicate that treatment with ECP antibody, improved DSS-induced colitis in rats, possibly by increasing the regenerative activity of the colonic epithelium and downregulation of the immune response,and suggest that anti-ECP may promote intestinal wound healing in patients with ulcerative colitis (UC).

  6. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate.

    Science.gov (United States)

    Lin, Wen-Ching; Yu, Da-Guang; Yang, Ming-Chien

    2005-08-01

    Water-soluble chitosan (WSC)/dextran sulfate (DS) was immobilized onto the surface of thermoplastic polyurethane (TPU) membrane after ozone-induced graft polymerization of poly(acrylic acid) (PAA). The surface was characterized with contact angle measurement and X-ray photoelectron spectroscopy (XPS). The adsorption of human plasma fibrinogen (HPF) followed the Langmuir adsorption isotherm. The results showed that the surface density of peroxides generated and poly(acrylic acid) (PAA) grafted reached the maximum value at 20 min of ozone treatment. It was found that the WSC- and DS-immobilized amount increased with pH and the molecular weight of WSC. The membrane/water interfacial free energy increased with PAA-grafting and WSC/DS-immobilization, indicating the increasing wettability of TPU membrane. The adsorption of HPF on TPU-WSC/DS membranes could be effectively curtailed and exhibited unfavorable adsorption. Moreover, WSC/DS immobilization could effectively reduce platelet adhesion and prolong the blood coagulation time, thereby membrane improving blood compatibility of TPU membrane. In addition, the in vitro cytotoxicity test of PEC modification was non-cytotoxic according to much low growth inhibition of L929 fibroblasts. Furthermore, TPU-WSC/DS membranes exhibited higher cell viability than native TPU membrane.

  7. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics.

    Science.gov (United States)

    Yucel Falco, Cigdem; Falkman, Peter; Risbo, Jens; Cárdenas, Marité; Medronho, Bruno

    2017-09-15

    Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media. The morphology analysis supports the swelling data showing distinct changes in microstructure depending on the composition. The viability and culturability tests showed approx. 3.6 log CFU/mL decrease of cells (L. acidophilus as model) incorporated into chemical hydrogels when compared to the number of viable native cells. However, the live/dead viability assay evidenced that a considerable amount of viable cells were still entrapped in the hydrogel network and therefore the viability is most likely underestimated. Overall, the developed systems are robust and their structure, rheology and swelling properties can be tuned by changing the blend ratio, thus constituting appealing bio-matrices for cell encapsulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering.

    Science.gov (United States)

    Fricain, Jean Christophe; Schlaubitz, Silke; Le Visage, Catherine; Arnault, Isabelle; Derkaoui, Sidi Mohammed; Siadous, Robin; Catros, Sylvain; Lalande, Charlotte; Bareille, Reine; Renard, Martine; Fabre, Thierry; Cornet, Sandro; Durand, Marlène; Léonard, Alain; Sahraoui, Nouredine; Letourneur, Didier; Amédée, Joëlle

    2013-04-01

    Research in bone tissue engineering is focused on the development of alternatives to allogenic and autologous bone grafts that can stimulate bone healing. Here, we present scaffolds composed of the natural hydrophilic polysaccharides pullulan and dextran, supplemented or not with nanocrystalline hydroxyapatite particles (nHA). In vitro studies revealed that these matrices induced the formation of multicellular aggregates and expression of early and late bone specific markers with human bone marrow stromal cells in medium deprived of osteoinductive factors. In absence of any seeded cells, heterotopic implantation in mice and goat, revealed that only the composite macroporous scaffold (Matrix + nHA) (i) retained subcutaneously local growth factors, including Bone Morphogenetic Protein 2 (BMP2) and VEGF165, (ii) induced the deposition of a biological apatite layer, (iii) favored the formation of a dense mineralized tissue subcutaneously in mice, as well osteoid tissue after intramuscular implantation in goat. The composite scaffold was thereafter implanted in orthotopic preclinical models of critical size defects, in small and large animals, in three different bony sites, i.e. the femoral condyle of rat, a transversal mandibular defect and a tibial osteotomy in goat. The Matrix + nHA induced a highly mineralized tissue in the three models whatever the site of implantation, as well as osteoid tissue and bone tissue regeneration in direct contact to the matrix. We therefore propose this composite matrix as a material for stimulating bone cell differentiation of host mesenchymal stem cells and bone formation for orthopedic and maxillofacial surgical applications.

  9. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-04-01

    Full Text Available This study investigates the in vivo functions of ginseng berry extract (GB as a therapy for dextran sodium sulfate (DSS-induced colitis. C57BL/6 mice were given drinking water containing DSS (3% for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs, and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis.

  10. Dextranase immobilization on epoxy CIM(®) disk for the production of isomaltooligosaccharides from dextran.

    Science.gov (United States)

    Bertrand, Emmanuel; Pierre, Guillaume; Delattre, Cédric; Gardarin, Christine; Bridiau, Nicolas; Maugard, Thierry; Štrancar, Aleš; Michaud, Philippe

    2014-10-13

    Endodextranase D8144 from Penicillium sp. (EC 3.2.1.2.) was immobilized on an epoxy-activated monolithic Convective Interaction Media (CIM(®)) disk in order to produce isomaltooligosaccharides (IMOS) from Dextran T40 in a continuous IMmobilized Enzymes Reactor (IMER). Enzymatic parameters and structure of IMOS were studied for free and immobilized enzymes. The immobilization efficiency of endodextranase D8144 was about 15.9% (w/w) and the real specific activity was close to 6.5 U mg enz(-1). The Km values (4.8 ± 0.2 g L(-1)) for free and immobilized enzymes were the same, showing the absence of diffusional limitation. Moreover, specific patterns of DPs (Degrees of Polymerization) distributions were observed during the enzymatic hydrolysis by HPAEC-PAD (High Pressure Anion Exchange Chromatography-Pulsed Amperometric Detection). Thus, sought-after sizes of IMOS (DPs 8-10) were generated all over the hydrolysis. Finally, the results showed the high stability of this IMER since a relative enzymatic activity about 78% was measured after 5400 volumes column.

  11. Direct electrochemistry of hemoglobin entrapped in dextran film on carbon ionic liquid electrode

    Indian Academy of Sciences (India)

    Xiaoqing Li; Yan Wang; Xiaoying Sun; Tianrong Zhan; Wei Sun

    2010-03-01

    Direct electrochemistry of hemoglobin (Hb) entrapped in the dextran (De) film on the surface of a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) has been investigated. UV-Vis and FT-IR spectroscopy showed that Hb retained its native structure in the De film. Scanning electron microscopy (SEM) indicated an uniform film was formed on the electrode surface. Cyclic voltammetric experiments indicated that the electron transfer efficiency between Hb and the electrode was greatly improved due to the presence of the De film and ionic liquid, which provided a biocompatible and higher conductive interface. A pair of well-defined and quasi-reversible redox peak was obtained with the anodic and cathodic peaks located at -0.195 V and -0.355 V in pH 7.0 phosphate buffer solution, respectively. The electrochemical parameters were calculated by investigating the relationship of the peak potential with the scan rate. The fabricated De/Hb/CILE showed good electrocatalytic ability to the reduction of H2O2 with the linear concentration range from 4.0 × 10-6 to 1.5 × 10-5 mol/L and the apparent Michaelis-Menten constant ($K_{M}^{\\text{app}}$) for the electrocatalytic reaction was calculated as 0.17 M.

  12. Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection.

    Science.gov (United States)

    Hoang, Ky V; Borteh, Hassan M; Rajaram, Murugesan V S; Peine, Kevin J; Curry, Heather; Collier, Michael A; Homsy, Michael L; Bachelder, Eric M; Gunn, John S; Schlesinger, Larry S; Ainslie, Kristy M

    2014-12-30

    AR-12 has been evaluated in clinical trials as an anti-cancer agent but also has demonstrated host-directed, broad-spectrum clearance of bacteria. We have previously shown that AR-12 has activity in vitro against Salmonella enterica serovar Typhimurium and Francisella species by inducing autophagy and other host immune pathways. AR-12 treatment of S. Typhimurium-infected mice resulted in a 10-fold reduction in bacterial load in the liver and spleen and an increased survival time. However, AR-12 treatment did not protect mice from death, likely due poor formulation. In the current study, AR-12 was encapsulated in a microparticulate carrier formulated from the novel degradable biopolymer acetalated dextran (Ace-DEX) and subsequently evaluated for its activity in human monocyte-derived macrophages (hMDMs). Our results show that hMDMs efficiently internalized Ace-DEX microparticles (MPs), and that encapsulation significantly reduced host cell cytotoxicity compared to unencapsulated AR-12. Efficient macrophage internalization of AR-12 loaded MPs (AR-12/MPs) was further demonstrated by autophagosome formation that was comparable to free AR-12 and resulted in enhanced clearance of intracellular Salmonella. Taken together, these studies provide support that Ace-DEX encapsulated AR-12 may be a promising new therapeutic agent to control intracellular bacterial pathogens of macrophages by targeting delivery and reducing drug toxicity.

  13. Somatostatin does not attenuate intestinal injury in dextran sodium sulphate-induced subacute colitis

    Directory of Open Access Journals (Sweden)

    J. D. van Bergeijk

    1998-01-01

    Full Text Available From several in vitro and in vivo studies involvement of som atostatin (SMS in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 μg daily or octreotide (3 μg daily subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin1 β (IL-1 β, IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.

  14. Diffusion des macromolécules de dextrane dans le gel Séphadex G-200

    Science.gov (United States)

    Moussaoui, M.; Hamieh, T.; Toufaily, J.; Naoufal, D.

    2005-05-01

    Dans cet article nous avons étudié la diffusion des macromolécules de dextrane marquées à l'isothiocyanate de fluorescéine (FITC), dans les perles de l'ultrogel AcA34, par la méthode du retour de la fluorescence après photoblanchiment (FRAP). Le coefficient de partage chromatographique (Kc), a été déterminé par chromatographie sur une colonne de l'ultrogel AcA34. Le coefficient de partage microfluorimétrique (Kf) a été déterminé par la technique de (FRAP), en mesurant à la fois, la fluorescence dans la perle et dans le solvant. La relation entre le coefficient de partage chromatographique et le rayon de Stokes (Rs) des macromolécules a été étudiée en appliquant la relation de Laurent et Killender, alors que la variation du coefficient de diffusion relatif D/D0, a été étudiée en fonction de Kc en appliquant la théorie d'Ogston et al.

  15. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery.

    Science.gov (United States)

    Zhao, Ziwei; Yao, Xuemei; Zhang, Zhe; Chen, Li; He, Chaoliang; Chen, Xuesi

    2014-11-01

    Herein, 3-carboxy-5-nitrophenylboronic acid (CNPBA) shell-crosslinked micelles based on amphiphilic dextran-block-polylactide (Dex-b-PLA) are prepared and used for efficient intracellular drug deliveries. Due to the reversible pH-dependent binding with diols to form boronate esters, CNPBA modified Dex-b-PLA shows excellent pH-sensitivity. In neutral aqueous conditions, CNPBA-Dex-b-PLA forms shell-crosslinked micelles to enable DOX loading, while in acid conditions, the boronate esters hydrolyze and the micelles de-crosslink to release loaded DOX. In vitro release studies indicate that the release of the DOX cargo is minimized at physiological conditions, while there is a burst release in response to low pHs. The cell viability of CNPBA-Dex-b-PLA investigated by MTT assay was more than 90%, indicating that, as a drug delivery system, CNPBA-Dex-b-PLA has good cytocompatibility. These features suggest that the pH-responsive biodegradable CNPBA-Dex-b-PLA can efficiently load and deliver DOX into tumor cells and enhance the inhibition of cellular proliferation in vitro, providing a favorable platform as a drug delivery system for cancer therapy.

  16. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Directory of Open Access Journals (Sweden)

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  17. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model.

    Science.gov (United States)

    Huang, Tzou-Chi; Tsai, Shinn-Shyong; Liu, Li-Fang; Liu, Yu Lin; Liu, Hung-Jen; Chuang, Kuo Pin

    2010-09-07

    To analyze the possible protective role of Arctium lappa L. (AL) in a murine model of ulcerative colitis (UC). BALB/c mice were administered 100 mg/kg AL powder orally each day. After 7 d, colitis was induced by administration of dextran sulfate sodium (DSS) (5% W/V) in drinking water for a further 8 consecutive days. Diarrhea and bloody stools as well as colonic histology were observed. The level of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in colonic sections were detected by immunohistochemistry. There were significant differences in mean body weight values and disease activity indices between controls and AL-treated animals. Moreover, the histological findings showed that AL treatment can prevent mucosal edema, submucosal erosions, ulceration, inflammatory cell infiltration and colon damage. In addition, immunohistochemistry analysis showed that the levels of the inflammatory cytokines, IL-6 and TNF-alpha were also decreased in AL-treated groups. We suggest that AL can prevent intestinal damage and decrease inflammatory cytokines in mice with DSS-induced colitis. Thus, AL could prove to be a useful food for UC.

  18. Evaluation of effectiveness of hydrolyzed dextran in treatment of dust-induced bronchitis

    Energy Technology Data Exchange (ETDEWEB)

    Slinchenko, N.Z.; Filipchenko, L.L.; Volkova, V.M.

    1986-05-01

    An experimental group and a control group identical in age, work experience, dust exposure and expression of disease were treated for dust-induced bronchitis. The control group received broncholytics, anti-inflammatory preparations and physiotherapy; the experimental group received same treatment plus 200 ml of rheopolyglucin, a 10% solution of dextran (water-soluble polysaccharide of glucose), twice a week for 2 to 3 weeks. In addition to general laboratory and clinical methods of investigation, cytologic analysis of sputum before and after treatment was carried out. Results of experiment are given in 3 tables showing: Dynamics of Allergic Signs after Treatment with Rheopolyglucin, Dynamics of Content of Eosinophils in Blood after Treatment, and Cytologic Characteristics of Mucus of Patients with Dust-Induced Bronchitis. Patients treated with rheopolyglucin improved more than control group in abatement of suppurative process in lungs, strengthening of specific cellular and humoral mechanisms of immune response at level of bronchopulmonary system, increased expulsion of mineral dust from lungs and significant reduction of allergic reaction. Results quantitated in tables prove advantages of adding rheopolyglucin to traditional therapy in treatment of dust-induced bronchitis. 19 refs.

  19. Synthesis, characterization and antimicrobial activity of carboxymethyl dextrane stabilized silver nanoparticles

    Science.gov (United States)

    Glišić, Slobodan; Cakić, Milorad; Nikolić, Goran; Danilović, Bojana

    2015-03-01

    Silver nanoparticles (AgNPs-CMD) were synthesized from aqueous solution of silver nitrate (AgNO3) and carboxymethyl dextrane (CMD) in mole ratio 1:1 and 1:2. The characterization of AgNPs-CMD was performed by ultraviolet-visible (UV-VIS) spectroscopy, gel permeation chromatography (GPC), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and antimicrobial activity. The formation of AgNPs-CMD was screened by color changes of the reaction mixture to yellow, by measuring the surface plasmon resonance absorption peak in UV-VIS region at 420 nm. The GPC chromatography measurement confirmed the formation of AgNPs-CMD. The SEM microscopy was used for size and shape of AgNPs-CMD nanoparticles determination. The presence of elemental silver and crystalline structure of AgNPs-CMD were confirmed by XRD analyses. The possible functional group of CMD responsible for the reduction and stabilization of AgNPs were determinated by FT-IR spectroscopy. The AgNPs-CMD showed strong antibacterial activity against Bacillus lutea, Bacillus aureus, Bacillus cereus, Enterococus fecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and antifungal activity against Aspergillus spp., Penicillum spp., and Candida albicans.

  20. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice.

    Science.gov (United States)

    Håkansson, Å; Tormo-Badia, N; Baridi, A; Xu, J; Molin, G; Hagslätt, M-L; Karlsson, C; Jeppsson, B; Cilio, C M; Ahrné, S

    2015-02-01

    Ulcerative colitis (UC) is characterized by chronic inflammation of the colonic mucosa. Administration of dextran sulfate sodium (DSS) to animals is a frequently used model to mimic human colitis. Deregulation of the immune response to the enteric microflora or pathogens as well as increased intestinal permeability have been proposed as disease-driving mechanisms. To enlarge the understanding of the pathogenesis, we have studied the effect of DSS on the immune system and gut microbiota in mice. Intestinal inflammation was verified through histological evaluation and myeloperoxidase activity. Immunological changes were assessed by flow cytometry in spleen, Peyer's patches and mesenteric lymph nodes and through multiplex cytokine profiling. In addition, quantification of the total amount of bacteria on colonic mucosa as well as the total amount of lactobacilli, Akkermansia, Desulfovibrio and Enterobacteriaceae was performed by the use of quantitative PCR. Diversity and community structure were analysed by terminal restriction fragment length polymorphism (T-RFLP) patterns, and principal component analysis was utilized on immunological and T-RFLP patterns. DSS-induced colitis show clinical and histological similarities to UC. The composition of the colonic microflora was profoundly changed and correlated with several alterations of the immune system. The results demonstrate a relationship between multiple immunological changes and alterations of the gut microbiota after DSS administration. These data highlight and improve the definition of the immunological basis of the disease and suggest a role for dysregulation of the gut microbiota in the pathogenesis of colitis.

  1. Preparation and Characterization of Quaternized Chitosan Coated Alginate Microspheres for Blue Dextran Delivery

    Directory of Open Access Journals (Sweden)

    Kuo-Yu Chen

    2017-06-01

    Full Text Available In this study, 2-[(Acryloyloxyethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS to form quaternary ammonium CS (QAC by using ammonium persulfate as a redox initiator. Alginate (ALG microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD, were obtained by corporation of coaxial gas-flow method and ionic gelation process. CS and QAC were then coated on the surfaces of ALG microspheres to generate core/shell structured CS/ALG and QAC/ALG microspheres, respectively. The experiment result showed that QAC/ALG microspheres had a smaller particle size due to the stronger electrostatic interactions between QAC and ALG molecules. In vitro drug release studies at pH 7.4 and pH 9.0 exhibited that the release rate of BD was significantly decreased after ALG microspheres coating with CS and QAC. Moreover, ALG microspheres coated with QAC showed a prolonged release profile for BD at pH 9.0. Therefore, QAC/ALG microspheres may be a promising hydrophilic macromolecular drug carrier for a prolonged and sustained delivery.

  2. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs.

    Science.gov (United States)

    Beloqui, Ana; Solinís, María Ángeles; des Rieux, Anne; Préat, Véronique; Rodríguez-Gascón, Alicia

    2014-07-01

    The main objectives of the present study were (i) to evaluate the effect of the mucus layer on saquinavir-loaded nanostructured lipid carriers (SQV-NLCs) uptake and (ii) to evaluate the mucopenetrating properties of dextran-protamine (Dex-Prot) coating on NLCs as per SQV permeability enhancement. Three different NLC formulations differing on particle size and surfactant content were obtained and coated with Dex-Prot complexes. SQV permeability was then evaluated across Caco-2 cell monolayers (enterocyte-like model) and Caco-2/HT29-MTX cell monolayers (mucus model). In the Caco-2 monolayers, Dex-Prot-NLCs increased up to 9-fold SQV permeability in comparison to uncoated nanoparticles. In the Caco-2/HT29-MTX monolayers, Dex-Prot-NLCs presenting a surface charge close to neutrality significantly increased SQV permeability. Hence, Dex-Prot complex coating is a promising strategy to ensure successful nanoparticle mucus-penetration, and thus, an efficient nanoparticle oral delivery. To our knowledge, this is the first time that Dex-Prot coating has been described as a nanoparticle muco-penetration enhancer across the intestinal mucus barrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Biodegradable stereocomplex micelles based on dextran-block-polylactide as efficient drug deliveries.

    Science.gov (United States)

    Zhao, Ziwei; Zhang, Zhe; Chen, Li; Cao, Yue; He, Chaoliang; Chen, Xuesi

    2013-10-22

    Biodegradable stereocomplex micelles (SCMs) based on amphiphilic dextran-block-polylactide (Dex-b-PLA) were designed and used for efficient intracellular drug deliveries. The Dex-b-PLA copolymers were successfully synthesized by click reaction. The structures of the resultant copolymers were verified by (1)H NMR and FT-IR spectra. The formation of stable micelles through self-assembly driven by the stereocomplexation between enantiomeric l- and d-PLA blocks was characterized by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and fluorescence techniques. It was interesting to observe that the SCMs showed lower critical micelle concentration values (CMCs) because of the stereocomplex interaction between PLLA and PDLA. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis provided information on the thermal and crystal properties of the copolymers and SCMs. The improved stability of SCMs should be attractive for intracellular drug delivery. Thus, a model anticancer drug doxorubicin (DOX) was loaded into micelles, and the in vitro drug release in was also studied. The release kinetics of DOX showed DOX-loaded SCMs exhibited slower DOX release. Confocal laser scanning microscopy (CLSM) and flow cytometry studies also showed that the DOX-loaded SCMs exhibited a slower drug release behavior. Meanwhile, the MTT assay demonstrated that DOX-loaded SCMs show lower cellular proliferation inhibition against HepG2. In sum, the micelles through self-assembly driven by stereocomplex interaction would have great potential to be used as stable delivery vehicles for pharmaceutical and biomedical applications.

  4. Dietary uptake of Wedelia chinensis extract attenuates dextran sulfate sodium-induced colitis in mice.

    Directory of Open Access Journals (Sweden)

    Yuh-Ting Huang

    Full Text Available SCOPE: Traditional medicinal herbs are increasingly used as alternative therapies in patients with inflammatory diseases. Here we evaluated the effect of Wedelia chinensis, a medicinal herb commonly used in Asia, on the prevention of dextran sulfate sodium (DSS-induced acute colitis in mice. General safety and the effect of different extraction methods on the bioactivity of W. chinensis were also explored. METHODS AND RESULTS: C57BL/6 mice were administrated hot water extract of fresh W. chinensis (WCHF orally for one week followed by drinking water containing 2% DSS for nine days. WCHF significantly attenuated the symptoms of colitis including diarrhea, rectal bleeding and loss of body weight; it also reduced the shortening of colon length and histopathological damage caused by colonic inflammation. Among four W. chinensis extracts prepared using different extraction techniques, WCHF showed the highest anti-colitis efficacy. Analyses of specific T-cell regulatory cytokines (TNF-α, IL-4, IFN-γ, IL-17, TGF-β, IL-12 revealed that WCHF treatment can suppress the Th1 and Th17, but not Th2, responses in colon tissues and dendritic cells of DSS-induced colitis mice. A 28-day subacute toxicity study showed that daily oral administration of WCHF (100, 500, 1000 mg/kg body weight was not toxic to mice. CONCLUSION: Together, our findings suggest that specific extracts of W. chinensis have nutritional potential for future development into nutraceuticals or dietary supplements for treatment of inflammatory bowel disease.

  5. Administração tópica de cloridrato de hidralazina na viabilidade de retalho cutâneo randômico em ratos Topical administration of hydralazine hydrochloride on the viability of randon skin flaps in rats

    Directory of Open Access Journals (Sweden)

    Ivaldo Esteves Junior

    2005-04-01

    Full Text Available OBJETIVO: Investigar o efeito da administração do cloridrato de hidralazina, por iontoforese, na viabilidade de retalho cutâneo randômico em ratos. MÉTODOS: Sessenta ratos da linhagem Wistar foram distribuídos aleatoriamente em 4 grupos (n=15, estes animais foram submetidos a retalho cutâneo randômico dorsal, de base cranial, com dimensões de 10X4cm. Os animais do grupo 1 foram utilizados como controle, os do grupo 2 foram submetidos a eletroestimulação com corrente direta 4mA-20' imediatamente após a técnica operatória e nos dois dias subseqüentes. No grupo 3 simulação de estímulo elétrico com Cloridrato de Hidralazina. No grupo 4 iontoforese com Cloridrato de Hidralazina 4mA-20'. A análise dos resultados foi realizada no sétimo dia pós-operatório e interpretada com o Teste não paramétrico de Kruskal-Wallis. RESULTADOS: A media da área de necrose foi: grupo 1 = 45%; grupo 2 = 39%; grupo 3 = 46% e grupo 4 = 41%, sendo que a análise estatística não evidenciou diferença significante entre os grupos (p>0,05. CONCLUSÃO: o Cloridrato de Hidralazina, quando administrado por iontoforese, não é eficaz em aumentar a área de viabilidade de retalho cutâneo randômico em ratos.PURPOSE: Assess the effect of hydralazine hydrochloride, for iontophoresis, on the viability of random skin flaps in rats. METHODS: Sixty Wistar rats was randonly destributed in 4 groups (n=15, these animals was submited as randon dorsal skin flaps as cranial base with measure 10X4 cm. The animals from group 1 was utilized as control, in group 2 was submitted to direct current o 4mA-20' immediately after the surgery and on the two subsequent days. In group 3 the stimulation eletric simulation with hydralazine hydrochloride. In group 4 iontophorese with hydralazine hydrochloride 4mA-20'. The analysis of the results was made on the seventh day post operative and interpreted with test non parametric of Kruskal-Wallis. RESULTS: and the necrotic area

  6. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine; Avaliacao da marcacao de celulas-tronco mesenquimais de cordao umbilical com nanoparticulas superparamagneticas de oxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Energy Technology Data Exchange (ETDEWEB)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto [Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Oliveira, Daniela Mara de [Universidade de Brasilia - UnB, Brasilia, DF (Brazil)

    2012-04-15

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  7. Time course characterization of serum cardiac troponins, heart fatty acid-binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat.

    Science.gov (United States)

    Clements, Peter; Brady, Sally; York, Malcolm; Berridge, Brian; Mikaelian, Igor; Nicklaus, Rosemary; Gandhi, Mitul; Roman, Ian; Stamp, Clare; Davies, Dai; McGill, Paul; Williams, Thomas; Pettit, Syril; Walker, Dana; Turton, John

    2010-08-01

    We investigated the kinetics of circulating biomarker elevation, specifically correlated with morphology in acute myocardial injury. Male Hanover Wistar rats underwent biomarker and morphologic cardiac evaluation at 0.5 to seventy-two hours after a single subcutaneous isoproterenol administration (100 or 4000 microg/kg). Dose-dependent elevations of serum cardiac troponins I and T (cTnI, cTnT), and heart fatty acid-binding protein (H-FABP) occurred from 0.5 hour, peaked at two to three hours, and declined to baseline by twelve hours (H-FABP) or forty-eight to seventy-two hours (Serum cTns). They were more sensitive in detecting cardiomyocyte damage than other serum biomarkers. The Access 2 platform, an automated chemiluminescence analyzer (Beckman Coulter), showed the greatest cTnI fold-changes and low range sensitivity. Myocardial injury was detected morphologically from 0.5 hour, correlating well with loss of cTnI immunoreactivity and serum biomarker elevation at early time points. Ultrastructurally, there was no evidence of cardiomyocyte death at 0.5 hour. After three hours, a clear temporal disconnect occurred: lesion scores increased with declining cTnI, cTnT, and H-FABP values. Serum cTns are sensitive and specific markers for detecting acute/active cardiomyocyte injury in this rat model. Heart fatty acid-binding protein is a good early marker but is less sensitive and nonspecific. Release of these biomarkers begins early in myocardial injury, prior to necrosis. Assessment of cTn merits increased consideration for routine screening of acute/ongoing cardiomyocyte injury in rat toxicity studies.

  8. Raman and UV-Vis Spectroscopy Applied to the Analysis of Liver Tissues from Rats with Myocardial Ischemia Induced by Isoproterenol

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-cheng; ZOU Ying-gang; HUANG Yu-xin; GAO Hai-mei; CHEN Lei; PEI Jin

    2011-01-01

    The application of the laser Raman spectroscopic(LRS) technique for the analysis of liver tissues from rats with myocardial ischemia induced by isoproterenol(ISO) was described.Animal model of myocardial ischemia was established for rats induced by ISO.Rats were randomly divided into four groups as normal group and myocardial ischemia groups.We observed the successful myocardial ischemia model via serum enzymes levels and hematoxylin-eosin(HE) staining,and detected the liver tissue of the rats from normal group and liver tissue of the rats from myocardial ischemia groups via UV-Vis spectroscopy(UV-Vis) and LRS,and the changes of the absorbance spectra were compared in the above four different groups.The results show that ISO can induce rat myocardial ischemia successfully.The spectrum of normal liver tissue supernatant exhibits a strong absorption band at 968 nm,but no absorption band appears in the spectra of liver tissue supernatant solutions from the rats with myocardial ischemia induction after 2,12 and 72 h presented at 968 nm.LRS results show that Raman intensities of the precipitates suffered from ISO-treatment after 2,12 and 72 h were obviously increased compared with that of the precipitate of the liver tissue of the normal rats suffered from 0.9 g/L normal saline(NS) treatment.These results indicate that LRS and UV-Vis can be harmless,nondestructive,rapid and effective methods for analyzing different pathological specimens of liver tissue from myocardial ischemia rats.

  9. Isoproterenol disperses distribution of NADPH oxidase, MMP-9, and pPKCε in the heart, which are mitigated by endothelin receptor antagonist CPU0213

    Institute of Scientific and Technical Information of China (English)

    Yusi CHENG; De-zai DAI; Yin DAI

    2009-01-01

    Aim: Spatial dispersion of bioactive substances in the myocardium could serve as pathological basis for arrhythmogenesis and cardiac impairment by β-adrenoceptor stimulation. We hypothesized that dispersed NADPH oxidase, protein kinase Cε (PKCε), early response gene (ERG), and matrix metalloproteinase 9 (MMP-9) across the heart by isoproterenol (ISO) medication might be mediated by the endothelin (ET) - ROS pathway. We aimed to verify if ISO induced spatially heterogeneous distribution of pPKCε, NAPDH oxidase, MMP-9 and ERG could be mitigated by either an ET receptor antagonist CPU0213 or iNOS inhibitor aminoguanidine.Methods: Rats were treated with ISO (1 mg/kg sc) for 10 days, and drug interventions (mg/kg) either CPU0213 (30 sc) or aminoguani-dine (100 ip) were administered on days 8-10. Expression of NADPH oxidase, MMP-9, ERG, and PKCε in the left and right ventricle (LV, RV) and septum (S) were measured separately.Results: Ventricular hypertrophy was found in the LV, S, and RV, in association with dispersed QTc and oxidative stress in ISO-treated rats. mRNA and protein expression of MMP-9, PKCε, NADPH oxidase and ERG in the LV, S, and RV were obviously dispersed, with aug-mented expression mainly in the LV and S. Dispersed parameters were re-harmonized by either CPU0213, or aminoguanidine. Conclusion: We found at the first time that ISO-induced dispersed distribution of pPKCε, NADPH oxidase, MMP-9, and ERG in the LV, S,and RV of the heart, which were suppressed by either CPU0213 or aminoguanidine. It indicates that the ET-ROS pathway plays a role in the dispersed distribution of bioactive substances following sustained β-receptor stimulation.

  10. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines.

    Science.gov (United States)

    Nagoor Meeran, Mohamed Fizur; Jagadeesh, Govindan Sangaran; Selvaraj, Palanisamy

    2015-05-05

    Inflammation plays an important role in the development of myocardial infarction (MI). The current study dealt with the protective effects of thymol on inflammation in isoproterenol (ISO) induced myocardial infarcted rats. Male albino Wistar rats were pre and co-treated with thymol (7.5mg/kg body weight) daily for 7 days. ISO (100mg/kg body weight) was injected subcutaneously into rats at an interval of 24h for two days (6th and 7th day) to induce MI. ISO induced myocardial infarcted rats showed increased levels of serum cardiac troponin-T, high sensitive C-reactive protein (hsCRP), lysosomal thiobarbituric acid reactive substances (TBARS) and elevated ST-segments. Also, the activities of lysosomal enzymes such as β-glucuronidase, β-galactosidase, cathepsin-B and D, the stimulators of inflammatory mediators were increased in the serum and heart of ISO induced myocardial infarcted rats. Furthermore, ISO up regulates the expressions of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) genes in the myocardium of rats analyzed by reverse transcription polymerase chain reaction (RT-PCR). Pre and co-treatment with thymol (7.5mg/kg body weight) near normalized the levels of lysosomal TBARS, activities of serum and heart lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines in the myocardium of ISO induced myocardial infarcted rats. Histopathological and transmission electron microscopic findings were also found in line with biochemical findings. Thus, the results of our study revealed that thymol attenuates inflammation by inhibiting the release of lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines by its potent anti-inflammatory effect.

  11. Insulin Like Growth Factor-1 (IGF-1 Causes Overproduction of IL-8, an Angiogenic Cytokine and Stimulates Neovascularization in Isoproterenol-Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Nagaraja Haleagrahara

    2011-11-01

    Full Text Available Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1 exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8, in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 µg/kg/day subcutaneously, for 5 and 10 days, isoproterenol (ISO treated (85 mg/kg, subcutaneously for two days and ISO with IGF-1 treated (for 5 and 10 days. Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.

  12. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy.

    Science.gov (United States)

    Willis, B Cicero; Salazar-Cantú, Ayleen; Silva-Platas, Christian; Fernández-Sada, Evaristo; Villegas, César A; Rios-Argaiz, Eduardo; González-Serrano, Pilar; Sánchez, Luis A; Guerrero-Beltrán, Carlos E; García, Noemí; Torre-Amione, Guillermo; García-Rivas, Gerardo J; Altamirano, Julio

    2015-03-01

    Stress-induced cardiomyopathy, triggered by acute catecholamine discharge, is a syndrome characterized by transient, apical ballooning linked to acute heart failure and ventricular arrhythmias. Rats receiving an acute isoproterenol (ISO) overdose (OV) suffer cardiac apex ischemia-reperfusion damage and arrhythmia, and then undergo cardiac remodeling and dysfunction. Nevertheless, the subcellular mechanisms underlying cardiac dysfunction after acute damage subsides are not thoroughly understood. To address this question, Wistar rats received a single ISO injection (67 mg/kg). We found in vivo moderate systolic and diastolic dysfunction at 2 wk post-ISO-OV; however, systolic dysfunction recovered after 4 wk, while diastolic dysfunction worsened. At 2 wk post-ISO-OV, cardiac function was assessed ex vivo, while mitochondrial oxidative metabolism and stress were assessed in vitro, and Ca(2+) handling in ventricular myocytes. These were complemented with sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and RyR2 expression studies. Ex vivo, basal mechanical performance index (MPI) and oxygen consumption rate (MVO2) were unchanged. Nevertheless, upon increase of metabolic demand, by β-adrenergic stimulation (1-100 nM ISO), the MPI versus MVO2 relation decreased and shifted to the right, suggesting MPI and mitochondrial energy production uncoupling. Mitochondria showed decreased oxidative metabolism, membrane fragility, and enhanced oxidative stress. Myocytes presented systolic and diastolic Ca(2+) mishandling, and blunted response to ISO (100 nM), and all these without apparent changes in SERCA, PLB, or RyR2 expression. We suggest that post-ISO-OV mitochondrial dysfunction may underlie decreased cardiac contractility, mainly by depletion of ATP needed for myofilaments and Ca(2+) transport by SERCA, while exacerbated oxidative stress may enhance diastolic RyR2 activity.

  13. Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery

    Institute of Scientific and Technical Information of China (English)

    Fa-ming CHEN; Zhi-wei MA; Guang-ying DONG; Zhi-fen WU

    2009-01-01

    Aim: Localized delivery of growth factors has significant potential as a future therapeutic strategy in tissue engineering and regenerative medicine. A nanoparticle vehicle was created and evaluated in this study with the intent to deliver growth factors for periodontal regeneration. Methods: Novel composite nanoparticles based on glycidyl methacrylate derivatized dextrans (Dex-GMA) and gelatin were fabricated by a facile method without using any organic solvents. The configurations of the resultant nanoparticles were evaluated by transmission electron microscopy, scanning electron microscopy, and atomic force microscope. Their surfaces were characterized by zeta-potential measurements, after which their properties including swelling, degradation, drug release, and cytotoxicity were also investigated using in vitro models,Results: The particle size of Dex-GMA/gelatin nanoparticles (DG-NPs) ranged from 20 to 100 nm and showed a mono-dis-perse size distribution (mean diameter 53.7 nm) and a strongly negative surface zeta potential (-20 mV). The DC,-NPs were characterized by good swelling and degradation properties in media including dextranase. The in vitro drug release stud-ies showed that the efficient bone morphogenetic protein (BMP) release from DG-NPs was maintained for more than 12 d under degradation conditions, where more than 90% of the loaded BMP was released. No any relevant cell damage caused by DG-NPs was found in the cytotoxicity tests for a period of 24 h.Conclusion: These combined results demonstrate that DG-NPs fulfill the basic prerequisites for growth factor delivery.With further in vivo studies, those nanoparticles may offer a promising vehicle for the delivery of active drugs to the perio-dontium.

  14. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis.

    Directory of Open Access Journals (Sweden)

    Lori A Coburn

    Full Text Available Inflammatory bowel disease (IBD, consisting of Crohn's disease and ulcerative colitis (UC, results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg, a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+ cationic amino acid transporter 2 (CAT2 and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO synthase (iNOS requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/- mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.

  15. Alterations of testosterone metabolism in microsomes from rats with experimental colitis induced by dextran sulfate sodium.

    Science.gov (United States)

    Huang, Yanjuan; Hu, Nan; Gao, Xuejiao; Yan, Zhixiang; Li, Sai; Jing, Wanghui; Yan, Ru

    2015-05-05

    Down-regulation of some hepatic cytochrome P450s (CYP450s) was observed in patients and animals with ulcerative colitis (UC). This study examined changes of CYP450s activities in microsomes of liver (RLMs), intestine (RIMs) and kidney (RRMs) from rats with experimental acute colitis induced by 5% dextran sulfate sodium (DSS) for 7days and those receiving DSS treatment followed by 7-d cessation through measuring 6α-(CYP1A1), 7α-(CYP2A1), 16α-(CYP2C11) and 2β-/6β-(CYP3A2) hydroxytestosterone (OHT) formed from testosterone. Both pro-(IL-1β, IL-6, TNF-α) and anti-(IL-4, IL-10) inflammatory cytokines were elevated in acute colitis, while the production of the former was enhanced and that of the latter declined by DSS withdrawal. In RLMs, the CYP2A1 activity was significantly increased at DSS stimulation and partially returned to normal level when DSS treatment was terminated. Activity of other CYP450s were decreased by acute colitis and remained after DSS withdrawal. In RRMs, formations of 6α-, 16α- and 2β-OHT significantly declined in acute colitis and DSS termination further potentiated the down-regulation, while 7α-OHT formation was suppressed at DSS stimulation and remained after DSS withdrawal. The formation of 6β-OHT only showed significant decrease after DSS withdrawal. Two metabolites (6α- and 6β-OHT) formed in RIMs and 6β-OHT formation was significantly decreased by DSS stimulation and continued after DSS treatment halted. These findings indicate that the alterations of CYP450s activities vary with organ, CYP isoforms and colitis status, which arouse cautions on efficacy and toxicity of drug therapy during disease progression.

  16. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice

    Institute of Scientific and Technical Information of China (English)

    Alfredo Santana; Carlos Medina; Maria Iristina Paz-Cabrera; Federico Díaz-Gonzalez; Esther Farré; Antonio Salas; Marek W Radomski; Enrique Quintero

    2006-01-01

    AIM: To study whether matrix metalloproteinase-9(MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice.METHODS: MMP-9-deficient and wild-type (wt)mice were given 5% DSS in drinking water for 5 dfollowed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases,MMP-2 and MMP-9,were measured in homogenates of colonic tissue by zymography and Western blot, whereas Tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover,intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs.Finally, colonic mucosal lesions were measured by microscopic examination.RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24±0.1 vs 21.3±6.4,P<0.05) and PMN from peripheral blood in wt (0.5±0.1 vs 10.4±0.7,P<0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5±0.5 vs 14.7±3.0, P<0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelial injury were significantly attenuated when compared with wt mice.CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modulated by MMP-9 and that inhibition of this gelatinase may reduce inflammation.

  17. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  18. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  19. Balsalazine decreases intestinal mucosal permeability of dextran sulfate sodium-induced colitis in mice

    Institute of Scientific and Technical Information of China (English)

    Xiao-chang LIU; Qiao MEI; Jian-ming XU; Jing HU

    2009-01-01

    Aim:To investigate the effect of balsalazine treatment on intestinal mucosal permeability in dextran sulfate sodium (DSS)-induced colitis and to determine the mechanism of the balsalazine-induced changes.Methods:Experimental colitis was induced in C57BL/6J mice by the administration of 5% DSS.Balsalazine was administered intragastrically at doses of 42,141,and 423 mg/kg.The disease activity index (DAI) score was evaluated and colon tissue was collected for the assessment of histological changes.The amount of malondialdehyde (MDA) in the colon was determined,along with the activity of myeloperoxidase (MPO),superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).Mucosa from the small intestine was collected to determine the levels of tumor necrosis factor (TNF)-α and interferon (IFN)-Y.The mucosa was ultrastructurally examined with transmission electron microscopy and intestinal permeability was assayed using Evans blue.Results:Balsalazine was found to reduce the DAI score and the histological index (HI) score,decrease the MDA content and the activity of MPO,and increase the activity of SOD and GSH-Px in colitis mice.At the same time,balsalazine ameliorated microvillus and tight junction structure,resulting in a decrease in the amount of Evans blue permeating into the intestinal wall and the levels of TNF-α and IFN-Y in colitis mice.Conclusion:In colitis mice,the anti-colitis effect of balsalazine results in a decrease in intestinal mucosal permeability.The mechanism of this effect is partly associated with balsalazine's antioxidative and anti-inflammatory effects.

  20. RAMP1 suppresses mucosal injury from dextran sodium sulfate-induced colitis in mice.

    Science.gov (United States)

    Kawashima-Takeda, Noriko; Ito, Yoshiya; Nishizawa, Nobuyuki; Kawashima, Rei; Tanaka, Kiyoshi; Tsujikawa, Kazutake; Watanabe, Masahiko; Majima, Masataka

    2017-04-01

    Calcitonin gene-related peptide (CGRP) is thought to be involved in the modulation of intestinal motility. CGRP receptor is composed of receptor activity-modifying protein (RAMP) 1 combined with calcitonin receptor-like receptor (CRLR) for CGRP. The study investigated the role of CGRP in mice with experimentally induced colitis. The study used dextran sodium sulfate (DSS) to induce colitis in mice. The study compared the severity of colitis in wild-type (WT) mice, mice treated with a CGRP receptor antagonist (CGRP8-37 ), and RAMP1 knockout ((-/-) ) mice. Pathological changes in the mucosa were assessed, and inflammatory cells and cytokine levels were measured. The severity of inflammation in DSS-induced colitis increased markedly in CGRP8-37 -treated mice and RAMP1(-/-) mice compared with WT mice. RAMP1(-/-) mice showed more severe damage compared with CGRP8-37 -treated mice. The number of periodic acid-Schiff-positive cells decreased in CGRP8-37 -treated mice compared with WT mice and was even further decreased in RAMP1(-/-) mice. RAMP1 was expressed by macrophages, mast cells, and T-cells. RAMP1(-/-) mice exhibited excessive accumulation of macrophages and mast cells into the colonic tissue with increased levels of tumor necrosis factor-α and interleukin-1β as compared with WT mice. Infiltration of T-cells into the colonic mucosa, which was associated with the expression of T helper (Th) cytokines including Th1 (interferon gamma) and Th17 (IL-17), was augmented in RAMP1(-/-) mice. The findings of this study suggest that RAMP1 exerted mucosal protection in DSS-induced colitis via attenuation of recruitment of inflammatory cells and of pro-inflammatory cytokines. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  1. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Pandurangan AK

    2015-07-01

    Full Text Available Ashok Kumar Pandurangan,1,2 Nooshin Mohebali,2 Mohd Esa Norhaizan,1,3 Chung Yeng Looi2 1Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 3Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: Gallic acid (GA is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2 were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05 reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA.Keywords: IL-21, NQO1, MDA, enzymic antioxidants

  2. Immunoadjuvant potential of cross-linked dextran microspheres mixed with chitosan nanospheres encapsulated with tetanus toxoid.

    Science.gov (United States)

    Pirouzmand, Haniyeh; Khameneh, Bahman; Tafaghodi, Mohsen

    2017-12-01

    Nasal mucosa is a desirable route for mucosal vaccine delivery. Mucosal co-administration of chitosan nanoparticles with absorption enhancers such as cross-linked dextran microspheres (CDM, Sephadex(®)) is a promising antigen delivery system. In the current study, the chitosan nanospheres loaded with tetanus toxoid (CHT:TT NPs) was prepared and characterized. The immune responses against tetanus toxoid after nasal administration of CHT:TT NPs alone or mixed with CDM were also determined. Chitosan nanospheres were prepared by ionic gelation method. Particle size, releasing profile and antigen stability were evaluated by dynamic light scattering, diffusion chamber and SDS-PAGE methods, respectively. Rabbits were nasally immunized with different formulations loaded with 40 Lf TT. After three times immunizations with 2 weeks intervals, sera IgG titres and nasal lavage sIgA titres were determined. Mean size of CHT NPs and CHT:TT NPs were 205 ± 42 nm and 432 ± 85 nm, respectively. The release profile showed that 42.4 ± 10.5% of TT was released after 30 min and reached to a steady state after 1.5 h. Stability of encapsulated TT in nanospheres was confirmed by SDS-PAGE. The antibody titres showed that CHT:TT NPs-induced antibody titres were higher than TT solution. CHT NPs mixed with CDM induced the systemic IgG and nasal lavage sIgA titres higher than intranasal administration of TT solution (p < 0.001). As the results indicated, these CHT:TT NPs when co-administered with CDM were able to induce more immune responses and have the potential to be used in mucosal immunization.

  3. Sirolimus-eluting dextran and polyglutamic acid hybrid coatings on AZ31 for stent applications

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Magnesium (Mg)-based cardiovascular stents are promising candidate as the next generation of novel stents. Clinical studies have revealed encouraging outcomes, but late restenosis and thrombogenesis still largely exist. Blood and vascular biocompatible coatings with drug-eluting features could be the solution to such problems. Objective This study was to investigate the feasibility of a three-layer hybrid coating on Mg alloy AZ31 with sirolimus-eluting feature for cardiovascular stent application. Materials and methods The first and third layers were low molecular weight dextran loaded with sirolimus, and the second layer was polyglutamic acid (PGA) to control sirolimus release. The hybrid coating was verified by scanning electron microscope (SEM). DC polarization and immersion tests were used to evaluate corrosion rate of the materials. Indirect cell viability and cell proliferation tests were performed by culturing cells with extract solutions of AZ31 samples. Blood compatibility was assessed using hemolysis assay. Results Coated samples had an enhanced corrosion resistance than that of uncoated controls, more PGA slower corrosion. Sirolimus had a burst release for the initial ~3 days and then a slower release until reached a plateau. The PGA thickness was able to control the sirolimus release, the thicker of PGA the slower release. The overall cell viability was extract concentration-dependent, and improved by the hybrid coatings. Cell proliferation was correlated to coating thickness and was inhibited by sirolimus. In addition, all coated AZ31 samples were non-hemolytic. Conclusion Results demonstrated that such a three-layer hybrid coating may be useful to improve the vascular biocompatibility of Mg stent materials. PMID:26202889

  4. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia.

    Science.gov (United States)

    Thadhani, Ravi; Hagmann, Henning; Schaarschmidt, Wiebke; Roth, Bernhard; Cingoez, Tuelay; Karumanchi, S Ananth; Wenger, Julia; Lucchesi, Kathryn J; Tamez, Hector; Lindner, Tom; Fridman, Alexander; Thome, Ulrich; Kribs, Angela; Danner, Marco; Hamacher, Stefanie; Mallmann, Peter; Stepan, Holger; Benzing, Thomas

    2016-03-01

    Preeclampsia is a devastating complication of pregnancy. Soluble Fms-like tyrosine kinase-1 (sFlt-1) is an antiangiogenic protein believed to mediate the signs and symptoms of preeclampsia. We conducted an open pilot study to evaluate the safety and potential efficacy of therapeutic apheresis with a plasma-specific dextran sulfate column to remove circulating sFlt-1 in 11 pregnant women (20-38 years of age) with very preterm preeclampsia (23-32 weeks of gestation, systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, new onset protein/creatinine ratio >0.30 g/g, and sFlt-1/placental growth factor ratio >85). We evaluated the extent of sFlt-1 removal, proteinuria reduction, pregnancy continuation, and neonatal and fetal safety of apheresis after one (n=6), two (n=4), or three (n=1) apheresis treatments. Mean sFlt-1 levels were reduced by 18% (range 7%-28%) with concomitant reductions of 44% in protein/creatinine ratios. Pregnancy continued for 8 days (range 2-11) and 15 days (range 11-21) in women treated once and multiple times, respectively, compared with 3 days (range 0-14) in untreated contemporaneous preeclampsia controls (n=22). Transient maternal BP reduction during apheresis was managed by withholding pre-apheresis antihypertensive therapy, saline prehydration, and reducing blood flow through the apheresis column. Compared with infants born prematurely to untreated women with and without preeclampsia (n=22 per group), no adverse effects of apheresis were observed. In conclusion, therapeutic apheresis reduced circulating sFlt-1 and proteinuria in women with very preterm preeclampsia and appeared to prolong pregnancy without major adverse maternal or fetal consequences. A controlled trial is warranted to confirm these findings.

  5. Anti-inflammatory mechanism of oxymatrine in dextran sulfate sodium-induced colitis of rats

    Institute of Scientific and Technical Information of China (English)

    Ping Zheng; Feng-Li Niu; Wen-Zhong Liu; Yao Shi; Lun-Gen Lu

    2005-01-01

    AIM: To investigate the anti-inflammatory mechanism of oxymatrine in dextran sulfate sodium (DSS)-induced colitis of rats.METHODS: Acute colitis was induced by giving 2% DSS orally in drinking water for 8 d. Twenty-six male rats were randomized into oxymatrine-treated group (group A, 10rats), DSS control (group B, 10 rats) and normal control (group C, 6 rats). The rats in group A were injected from d 1 to 11 and drank 2% DSS solution from d 4 to 11.The rats in group B were treated with 0.9% saline in an equal volume as group A and drank 2% DSS solution from d 4 to 11. The rats in group C were treated with 0.9% saline as group B from d 1 to 11 and drank water normally. Diarrhea and bloody stool as well as colonic histology were observed. The levels of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by ELISA, and nuclear factor-κB (NF-κB)activity and the expression of inter-cellular adhesion molecule-1 (ICAM-1) in colonic mucosa were detected by immunohistochernistry method.RESULTS: Compared with DSS control group, the inflammatory symptoms and histological damages of colonic mucosa in oxymatrine-treated group were significantly improved, the serum levels of TNF-α, IL-6, and the expression of NF-κB, ICAM-1 in colonic mucosa were significantly reduced.CONCLUSION: The fact that oxymatrine can reduce the serum levels of TNF-α, IL-6, and the expression of NF-κB and ICAM-1 in colonic mucosa in DSS-induced colitis of rats indicates that oxymatrine may ameliorate the colonic inflammation and thus alleviate diarrhea and bloody stool.

  6. Histopathological and morphometric changes induced by a dextran sodium sulfate (DSS) model in broilers.

    Science.gov (United States)

    Menconi, A; Hernandez-Velasco, X; Vicuña, E A; Kuttappan, V A; Faulkner, O B; Tellez, G; Hargis, B M; Bielke, L R

    2015-05-01

    Oral administration of dextran sodium sulfate (DSS) is commonly used as an inducer of enteric inflammation in rodents. However, there is a dearth of knowledge regarding appropriate dosage, timing, or ageresponses in broilers for this potential inducer of inflammation without necrosis. Two experiments were conducted in day-of-hatch chicks to analyze clinical parameters and enteric histological changes induced by DSS when administered via drinking water ( DW: ). In both experiments, birds were distributed into nontreated control or varying concentrations of DSS in DW. For both experiments, only 0.75% DSS in DW was histologically evaluated. In Experiment 1, chicks received DSS from day 3 to 11, and at 3, 6, and 8 d of treatment, chicks were weighed, and sections of the duodenum, ileum, and ceca were formalin fixed. The addition of 0.75% DSS caused depression, anemia, and watery bloody diarrhea, plus significantly (P DSS administration (P DSS from days 10 to 16 and were sampled at 3 and 6 d of treatment. Similar changes were found in ceca of treated birds. There was no significant change in the duodenal villus height and goblet cell density by 6 d of treatment, suggesting that 6 d of 0.75% DSS in DW was not sufficient for the reproduction of duodenal symptoms in these older birds. However, there was a significant decrease in ilealvillus height and decreased ileal epithelial cell height at 3 and 6 d of treatment, as well as a significant decrease in BW compared to the control group. These findings indicate that DW administration of 0.75% DSS caused generalized mild and non-necrotic enteritis in broilers and that this compound may be useful for enteric inflammation modeling in poultry.

  7. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo

    Science.gov (United States)

    Peng, Mingli; Li, Houli; Luo, Zhiyi; Kong, Jian; Wan, Yinsheng; Zheng, Lemin; Zhang, Qinlu; Niu, Hongxin; Vermorken, Alphons; van de Ven, Wim; Chen, Chao; Zhang, Xikun; Li, Fuqiang; Guo, Lili; Cui, Yali

    2015-06-01

    Dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) have gained considerable interest, because of their biocompatibility and biosafety in clinics. Doxorubicin (Dox), a widely used chemotherapeutic drug, always has limited applications in clinical therapy due to its serious side effects of dose-limiting irreversible cardiotoxicity and myelo suppression. Herein, DSPIONs were synthesized and developed as magnetic carriers for doxorubicin. The Dox-DSPION conjugates were evaluated in the in vitro test of Dox release, which showed pH-dependence with the highest release percentage of 50.3% at pH 5.0 and the lowest release percentage of 11.8% in a physiological environment. The cytotoxicity of DSPIONs and Dox-DSPIONs evaluated by the MTT assay indicated that DSPIONs had no cytotoxicity and the conjugates had significantly reduced the toxicity (IC50 = 1.36 μg mL-1) compared to free Dox (IC50 = 0.533 μg mL-1). Furthermore, confocal microscopic data of cell uptake suggest that less cytotoxicity of Dox-DSPIONs may be attributed to the cellular internalization of the conjugates and sustainable release of Dox from the formulation in the cytoplasm. More importantly, the results from the rabbit VX2 liver tumor model test under an external magnetic field showed that the conjugates had approximately twice the anti-tumor activity and two and a half times the animal survival rate, respectively, compared to free Dox. Collectively, our data have demonstrated that Dox-DSPIONs have less toxicity with better antitumor effectiveness in in vitro and in vivo applications, suggesting that the conjugates have potential to be developed into chemo-therapeutic formulations.

  8. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  9. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin.

    Science.gov (United States)

    Tran, Ngo Bich Nga Nathalie; Knorr, Fanny; Mak, Wing Cheung; Cheung, Kwan Yee; Richter, Heike; Meinke, Martina; Lademann, Jürgen; Patzelt, Alexa

    2016-09-29

    Hair follicle research is currently focused on the development of drug-loaded nanocarriers for the targeting of follicular structures in the treatment of skin and hair follicle-related disorders. In the present study, a dual-label nanocarrier system was implemented in which FITC-labeled BSA hydrogel nanocarriers loaded with the model drug and dye TRITC-dextran were applied topically to porcine ear skin. Follicular penetration and the distribution of both dyes corresponding to the nanocarriers and the model drug in the follicular ducts subsequent to administration to the skin were investigated using confocal laser scanning microscopy. The release of TRITC-dextran from the particles was induced by washing of the nanocarriers, which were kept in a buffer containing TRITC-labeled dextran to balance out the diffusion of the dextran during storage, thereby changing the concentration gradient. The results showed a slightly but statistically significantly deeper follicular penetration of fluorescent signals corresponding to TRITC-dextran as opposed to fluorescence corresponding to the FITC-labeled particles. The different localizations of the dyes in the cross-sections of the skin samples evidenced the release of the model drug from the labeled nanoparticles.

  10. Induction of experimental acute ulcerative colitis in rats by administration of dextran sulfate sodium at low concentration followed by intracolonic administration of 30% ethanol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Several models of experimental ulcerative colitis have been reported previously. However, none of these models showed the optimum characteristics. Although dextran sulfate sodium-induced colitis results in inflammation resembling ulcerative colitis, an obvious obstacle is that dextran sulfate sodium is very expensive. The aim of this study was to develop an inexpensive model of colitis in rats. Sprague-Dawley rats were treated with 2% dextran sulfate sodium in drinking water for 3 d followed by an intracolonic administration of 30% ethanol. The administration of 2% dextran sulfate sodium followed by 30% ethanol induced significant weight loss, diarrhea and hematochezia in rats. Severe ulceration and inflammation of the distal part of rat colon were developed rapidly. Histological examination showed increased infiltration of polymorphonuclear leukocytes,lymphocytes and existence of cryptic abscesses and dysplasia. The model induced by dextran sulfate sodium at lower concentration followed by 30% ethanol is characterized by a clinical course, localization of the lesions and histopathological features similar to human ulcerative colitis and fulfills the criteria set out at the beginning of this study.

  11. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System.

    Directory of Open Access Journals (Sweden)

    Bumseok Namgung

    Full Text Available This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats was induced by infusing Dextran 500. To elucidate the impact of RBC aggregation on microvascular perfusion, blood flow in the venular network of a rat cremaster muscle was analyzed with a stepwise reduction of the arterial pressure (100 → 30 mmHg. The LSCI analysis revealed a substantial decrease in the functional vascular density after the infusion of dextran. The relative decrease in flow velocity after dextran infusion was notably pronounced at low arterial pressures. Whole blood viscosity measurements implied that the reduction in venular flow with dextran infusion could be due to the elevation of medium viscosity in high shear conditions (> 45 s-1. In contrast, further augmentation to the flow reduction at low arterial pressures could be attributed to the formation of RBC aggregates (< 45 s-1. This study confirmed that RBC aggregation could play a dominant role in modulating microvascular perfusion, particularly in the venular networks.

  12. A novel mouse model for colitis-associated colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sulfate sodium

    Institute of Scientific and Technical Information of China (English)

    Jian-Guo Wang; Dong-Fei Wang; Bing-Jian Lv; Jian-Min Si

    2004-01-01

    AIM: To develop an efficient animal colitis-associated carcinogenesis model and to detect the expression of β-catenin and p53 in this new model.METHODS: Dysplasia and cancer were investigated in mice pretreated with a single intraperitoneal injection of 20 mg/kg body mass of 1,2-dimethylhydrazine prior to three repetitive oral administrations of 30 g/L dextran sulfate sodium to give conditions similar to the clinically observed active and remission phases. Immunohistochemical staining of β-catenin and p53 was performed on paraffin-imbedded specimens of animals with cancer and/or dysplasia, those without dysplasia and the normal control animals.RESULTS: At wk 11, four early-invasive adenocarcinomas and 36 dysplasia were found in 10 (90.9%) of the 11 mice that underwent 1,2-dimethylhydrazine-pretreatment with 3 cycles of 30 g/L dextran sulfate sodium-exposure. Dysplasia and/or cancer occurred as flat lesions or as dysplasia-associated lesion or mass (DALM) as observed in humans. Colorectal carcinogenesis occurred primarily on the distal portion of the large intestine. No dysplasia and/or cancer lesion was observed in the control groups with 1,2-dimethylhydrazine pretreatment or 3 cycles of 30 g/L dextran sulfate sodium exposure alone. Immunohistochemical investigation revealed that β-catenin was translocated from cell membrane to cytoplasm and/or nucleus in 100% of cases with dysplasia and neoplasm, while normal membrane staining was observed in cases without dysplasia and the normal control animals. Nuclear expression of p53 was not detected in specimens.CONCLUSION: A single dose of procarcinogen followed by induction of chronic ulcerative colitis results in a high incidence of colorectal dysplasia and cancer. Abnormal expression of β-catenin occurs frequently in dysplasia and cancer. This novel mouse model may provide an excellent vehicle for studying colitis-related colon carcinogenesis.

  13. Preparation and characterization of electrospun PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering.

    Directory of Open Access Journals (Sweden)

    Jian-feng Pan

    Full Text Available In this study, two different biomaterials were fabricated and their potential use as a bilayer scaffold for skin tissue engineering applications was assessed. The upper layer biomaterial was a Poly(ε-caprolactone-co-lactide/Poloxamer (PLCL/Poloxamer nanofiber membrane fabricated using electrospinning technology. The PLCL/Poloxamer nanofibers (PLCL/Poloxamer, 9/1 exhibited strong mechanical properties (stress/strain values of 9.37 ± 0.38 MPa/187.43 ± 10.66% and good biocompatibility to support adipose-derived stem cells proliferation. The lower layer biomaterial was a hydrogel composed of 10% dextran and 20% gelatin without the addition of a chemical crosslinking agent. The 5/5 dextran/gelatin hydrogel displayed high swelling property, good compressive strength, capacity to present more than 3 weeks and was able to support cells proliferation. A bilayer scaffold was fabricated using these two materials by underlaying the nanofibers and casting hydrogel to mimic the structure and biological function of native skin tissue. The upper layer membrane provided mechanical support in the scaffold and the lower layer hydrogel provided adequate space to allow cells to proliferate and generate extracellular matrix. The biocompatibility of bilayer scaffold was preliminarily investigated to assess the potential cytotoxicity. The results show that cell viability had not been affected when cocultured with bilayer scaffold. As a consequence, the bilayer scaffold composed of PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels is biocompatible and possesses its potentially high application prospect in the field of skin tissue engineering.

  14. Enhanced stability and decolorization of Coomassie Brilliant Blue R-250 by dextran aldehyde-modified horseradish peroxidase.

    Science.gov (United States)

    Altikatoglu, Melda; Celebi, Mithat

    2011-06-01

    Horseradish peroxidase (EC 1.11.1.7) was chemically modified by periodate-activated dextran. The activities of free and modified enzyme against organic-aqueous interface and some chemicals were determined. Modified HRP remained fully active in the presence of organic solvent for 4 h. However, the unmodified enzyme lost 50% of its activity within the first 2 h. The effects of possible inhibitors on enzyme activity were investigated. In addition, Coomassie Brilliant Blue R-250 was efficiently decolorized using the free and modified HRP. After 5 minutes of treatment, the color removal of dye was 80-90%. Modified HRP showed effective performance compared to free HRP.

  15. Sodium phenylacetate enhances the inhibitory effect of dextran derivative on breast cancer cell growth in vitro and in nude mice

    OpenAIRE

    Benedetto, M Di; Kourbali, Y; Starzec, A; Vassy, R; Jozefonvicz, J; Perret, G.; Crepin, M; Kraemer, M.

    2001-01-01

    Sodium phenylacetate (NaPa) and carboxymethyl benzylamide dextran derivative (CMDBLS4) are able to inhibit growth of breast tumour cells. In this study, we explored whether the combination of NaPa and CMDBLS4 may enhance their respective inhibitory effects on the MCF-7ras cell growth in vitro and in vivo. NaPa inhibited MCF-7ras cell proliferation by reducing the DNA replication concomitantly with a recruitment of cells in G0/G1 phase and by inducing apoptosis in a dose- and time-dependent ma...

  16. Dextran-b-poly(L-histidine copolymer nanoparticles for pH-responsive drug delivery to tumor cells

    Directory of Open Access Journals (Sweden)

    Hwang JH

    2013-08-01

    Full Text Available Jong-Ho Hwang,1,2 Cheol Woong Choi,1 Hyung-Wook Kim,1 Do Hyung Kim,3 Tae Won Kwak,3 Hye Myeong Lee,3 Cy Hyun Kim,3 Chung Wook Chung,3 Young-Il Jeong,3 Dae Hwan Kang1,3 1Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea; 2Department of Internal Medicine, Busan Medical Center, Yeonje-gu, Busan, Republic of Korea; 3National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea Purpose: Nanoparticles based on stimuli-sensitive drug delivery have been extensively investigated for tumor targeting. Among them, pH-responsive drug targeting using pH-sensitive polymers has attracted attention because solid tumors have an acidic environment. A dextran-b-poly(L-histidine (DexPHS copolymer was synthesized and pH-responsive nanoparticles were fabricated for drug targeting. Methods and results: A DexPHS block copolymer was synthesized by attaching the reductive end of dextran to the amine groups of poly(L-histidine. pH-responsive nanoparticles incorporating doxorubicin were fabricated and studied in HuCC-T1 cholangiocarcinoma cells. Synthesis of DexPHS was confirmed by 1H nuclear magnetic resonance spectroscopy, with specific peaks of dextran and PHS observed at 2–5 ppm and 7.4–9.0 ppm, respectively. DexPHS nanoparticles showed changes in particle size with pH sensitivity, ie, the size of the nanoparticles increased at an acidic pH and decreased at a basic pH. DexPHS block copolymer nanoparticles incorporating doxorubicin were prepared using the nanoprecipitation dialysis method. The doxorubicin release rate was increased at acidic pH compared with basic pH, indicating that DexPHS nanoparticles have pH-sensitive properties and that drug release can be controlled by variations in pH. The antitumor activity of DexPHS nanoparticles incorporating doxorubicin were studied using HuCC-T1

  17. Immunoglobulin and enzyme-conjugated dextran polymers enhance u-PAR staining intensity of carcinoma cells in peripheral blood smears

    DEFF Research Database (Denmark)

    Werther, K; Normark, M; Hansen, B F;

    1999-01-01

    phenotyping of disseminated carcinoma cells in bone marrow and peripheral blood smears. In the first step, the cells were incubated with antibodies against urokinase plasminogen activator receptor (u-PAR) and subsequently with secondary antibodies conjugated to peroxidase-labeled dextran polymers. A brown...... color reaction was developed with diaminobenzidine as chromogen. In the second step, the cells were incubated with alkaline phosphatase-conjugated murine monoclonal antibodies against a common cytokeratin epitope and a red color reaction was developed with new fuchsin as substrate. This method allows...

  18. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  19. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  20. Effect of metabolic regulation on renal leakiness to dextran molecules in short-term insulin-dependent diabetics

    DEFF Research Database (Denmark)

    Parving, H H; Rutili, F; Granath, K;

    1979-01-01

    Renal clearance of dextran of two ranges of molecular size and glomerular filtration rate (GFR, 51Cr-EDTA) were measured in seven short-term insulin-dependent diabetics (mean age 25 years). Measurements were carried out in the same patient during good and poor metabolic regulation (plasma glucose...... were normalized within one to three weeks of effective insulin treatment. This rapid reversibility can hardly be explained by the previously demonstrated enlargement in glomerular size and filtration surface area, since these alterations remain unchanged after more than one month of insulin treatment...

  1. Preparation of recombinant human bone morphogenetic protein-2 loaded dextran-based microspheres and their characteristics

    Institute of Scientific and Technical Information of China (English)

    Fa-ming CHEN; Zhi-fen WU; Qin-tao WANG; Hong WU; Yong-jie ZHANG; Xin NIE; Yan JIN

    2005-01-01

    Aim: To prepare new pharmaceutical forms with sustained delivery properties of recombinant human bone morphogenetic protein-2 (rhBMP2) for tissue engineering and guided tissue regeneration (GTR) use. Methods: rhBMP2-1oaded dextranbased hydrogel microspheres (rhBMP2-MPs), which aimed to keep rhBMP2 bioactivity and to achieve long-term sustained release of rhBMP2, were prepared by double-phase emulsified condensation polymerization. The physical, chemical performances and biological characteristics of those microspheres were studied both in vitro and in vivo. Results: The microspheres' average diameter was 30.33±4.32 μm with 75.4% ranging from 20 μm to 40 μm and the drug loading and encapsulation efficiency were 7.82% and 82.25%, respectively. The rhBMP2-releasing profiles in vitro showed that rhBMP2 release could be maintained more than 10 d. The rhBMP2-MPs, with good swelling and biodegradation behavior,could be kept for 6 months at below 4 ℃ without significant characteristic change or bioactivity loss. Cytology studies showed that rhBMP2-MPs could promote the proliferation of periodontal ligament cells (PDLCs) approximately 10 d, while the bioactivity of concentrated rhBMP2 solution could keep no more than 3 d.Scanning electron microscope showed that rhBMP2-MPs could be enchased into the porous structure of calcium phosphate ceremic (CPC) and the eugonic growth of PDLCs in CPC/rhBMP2-MPs scaffolds. Animal experiments indicated that using CPC/rhBMP2-MPs scaffolds could gain more periodontal tissue regeneration than using rhBMP2 compound firsthand with CPC (CPC/rhBMP2). Conclusion:By encapsulating rhBMP2 into dextran-based microspheres, a small quantity of rhBMP2 could achieve equivalent effects to the concentrated rhBMP2 solution and at the same time, could prolong rhBMP2 retention both in vitro and in vivo.

  2. cis-Urocanic acid attenuates acute dextran sodium sulphate-induced intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Eric Albert

    Full Text Available On exposure to sunlight, urocanic acid (UCA in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10(-/- mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 µg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10(-/- mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory

  3. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats

    Science.gov (United States)

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-01-01

    AIM: To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. METHODS: Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15th day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. RESULTS: The DAI was lower in the kefir-colitis group than in the colitis group (on the 3rd and 5th days of colitis induction; P colitis group between days 2 and 6 of colitis induction when compared to the normal control and kefir-control groups. The DAI was statistically higher only on the 6th day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P colitis group was significantly higher than in the kefir-control group (P colitis-induced TNF-α increase (P colitis group were significantly higher than those in the

  4. Plasminogen activator inhibitor-1 removal using dextran sulphate columns. Evidence of PAI-1 homeostasis.

    LENUS (Irish Health Repository)

    Maher, Vincent M G

    2009-08-01

    Patients with high plasma plasminogen activator inhibitor-1 (PAI-1) antigen levels are prone to develop thrombosis. Lowering PAI-1 levels may offer a therapeutic option and help to better understand PAI-1 metabolism. We examined the effect on plasma PAI-1 levels of LDL-apheresis using dextran sulphate (DS) columns in 12 patients (9 male, 3 female, 49 +\\/- 10 years) with heterozygous familial hypercholesterolaemia and coronary artery disease. One plasma volume equivalent (2.3-4.0 l) was treated during each procedure (at flow rates of 23 +\\/- 2 ml\\/min). Lipids and PAI-1 antigen levels were measured in plasma before and immediately after 19 aphereses (once in 7 patients, twice in 3 patients and three times in 2 patients) and also at 3 and 7 days post apheresis in five of these patients and in the column eluates from 8 of these patients. DS-apheresis reduced plasma cholesterol (50 +\\/- 8%), triglyceride (45 +\\/- 27%), apolipoprotein B (59 +\\/- 10%) and PAI-1 antigen levels from 10.2 +\\/- 5.2 to 6.0 +\\/- 3.1 ng\\/ml (P = 0.005). The PAI-I changes were independent of circadian variation. PAI-I bound to the DS-columns (3.51 +\\/- 1.03 ng\\/ml filtered plasma) and the percent of filtered PAI-1 that was bound correlated inversely (r = -0.81, P < 0.02) with basal PAI-1 levels indicating a high affinity saturable binding process. In four patients, plasma PAI-1 levels post-apheresis were higher than expected based on the amount of PAI-removed by the DS columns. The difference between the expected and actual PAI-1 level post apheresis, reflecting PAI-1 secretion or extracellular redistribution, correlated inversely with basal PAI-1 levels (r = -0.83, P = 0.01). PAI-1 levels returned to baseline pre-apheresis values 7 days post apheresis. PAI-1 antigen may be removed from plasma without adverse effect, resulting temporarily in its extracellular redistribution and restoration to baseline levels over one week. PAI-1 redistribution particularly when baseline pre

  5. Biotinylated dextran amine as a neural tracer in the rat corticospinal tract

    Institute of Scientific and Technical Information of China (English)

    Biao Gong; Changqing Li; Xiaofeng Li; Ying Wang

    2008-01-01

    BACKGROUND: The corticospinal tract is the core structure of cerebral control of extremity movement and plasticity, which are prerequisites for movement rehabilitation after brain injury. The measurement and assessment of plasticity changes within the corticospinal tract has become one of the key goals in this field.OBJECTIVE: To explore the effects of biotinylated dextran amine (BDA) as a neural tracer in the rat corticospinal tract and the possibilities of assessing plasticity within the corticospinal tract.DESIGN: An observational experiment.SETTING: Department of Acupuncture of Chinese Medical College, Chongqing Medical University, Department of Neurology, the Second Affiliated Hospital, Chongqing Medical University.MATERIALS: Eighteen male adult Sprague Dawley (SD) rats of clean grade, weighing 200-250 g, were provided by the experimental animal center of Chongqing Medical University. The animal procedures in this study were in accordance with the animal ethics standards. BDA was provided by Vector Laboratories Company (USA, catalogue Sp-1140; serial number R0721).METHODS: This experiment was performed in the Laboratory of Chongqing Medical University between September and December 2006. Adult SD rats were used in the experiment and 15% BDA was injected slowly with a mini-syringe through two round (3 mm diameter) holes into the left sensory and motor cortex. The center of one hole was located 3 mm anterior from the anterior fontanel and 1.5 mm left of the midline; the second hole was located 1.5 mm posterior from the anterior fontanel and 4 mm left of the midline. Three injections were made at each hole at three different levels: 1.4, 1.2, and 1 mm ventral from the surface of the flat skull. After 14 days, the brains and spinal cords were removed and frozen. Sections were cut on a cryostat and BDA transportation absorbed by axons was observed under a fluorescence microscope.MAIN OUTCOME MEASURES: Axonal absorption and transportation of BDA was observed under

  6. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    Directory of Open Access Journals (Sweden)

    Zhang X

    2015-12-01

    , Crohn’s disease, tanshinone IIA, pregnane X receptor, inflammatory bowel disease, dextran sodium sulfate

  7. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats.

    Science.gov (United States)

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-12-14

    To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15(th) day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. The DAI was lower in the kefir-colitis group than in the colitis group (on the 3(rd) and 5(th) days of colitis induction; P kefir-control groups. The DAI was statistically higher only on the 6(th) day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P kefir-control group (P Kefir treatment significantly reduced the DSS colitis-induced TNF-α increase (P kefir-colitis groups (P Kefir reduces the clinical DAI and histologic colitis scores in a DSS-induced colitis model, possibly via reduction of MPO, TNF-α, and iNOS levels.

  8. Complex comprised of dextran magnetite and conjugated cisplatin exhibiting selective hyperthermic and controlled-release potential

    Directory of Open Access Journals (Sweden)

    Akinaga Sonoda

    2010-07-01

    Full Text Available Akinaga Sonoda1, Norihisa Nitta1, Ayumi Nitta-Seko1, Shinich Ohta1, Shigeyuki Takamatsu2, Yoshio Ikehata3, Isamu Nagano3, Jun-ichiro Jo4, Yasuhiko Tabata4, Masashi Takahashi1, Osamu Matsui3, Kiyoshi Murata11Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga, 520-2192, Japan; 2Department of Radiology, Graduate School of Medical Science, Kanazawa University, Takara-machi 13-1, Kanazawa Ishikawa, 920-8641, Japan; 3Department of Natural Science and Technology, Graduate School of Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; 4Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Shogoin kawara-machi 53, Sakyo-ku 606-8507, Kyoto, JapanAbstract: We developed a dextran-magnetite conjugated cisplatin (DM-Cis complex for use in thermal ablation and as a chemotherapeutic drug. To produce DM-Cis we reacted Cis with 1 mL DM (56 mg/mL iron. The temperature rise of DM-Cis was measured in vitro and in vivo under a portable induction-heating (IH device. Platinum desorption from DM-Cis over 24 hours was measured in bovine serum. In in vivo accumulation and magnet and exothermic experiments we used four rat groups. In group 1 we delivered DM-Cis intraperitoneally (ip and placed magnets subcutaneously (sc. In group 2 we injected saline (ip and placed magnets (sc. In group 3 we injected DM-Cis (ip and placed a sc incision (sham. The control (group 4 received an ip injection of saline. Rectus abdominis muscle tissue was stained with hematoxylin-eosin and iron-stained tissue areas (µm2 were calculated. The maximum platinum concentration in DM-Cis was approximately 105.6 µg/mL. Over 24 hours, 33.48% of platinum from DM-Cis was released. There was a significant difference (P < 0.05 in the iron-stained area between group 1 and the other groups. The temperature in muscle tissue registered a maximum of 56°C after about 4 min. DM-Cis may represent a

  9. [Removal of low density lipoproteins on dextrans sulfate in 2 patients with familial monogenic hypercholesterolemia].

    Science.gov (United States)

    Aubert, I; Bombail, D; Erlich, D; Goy-Loeper, J; Chanu, B; Bussel, A; Rouffy, J

    1988-01-01

    Two patients-a 32 year old man with severe heterozygote familial hyperlipoproteinemia (FH) and a 9 years old girl with homozygote FH-were treated over eight months by LDL apheresis using dextran sulfate cellulose column (Liposorber, Kaneka, Japon). Plasma was separated from blood cells by filtration (TPE Cobe) or centrifugation (2,997 Cobe) through peripheral veins. An IV bolus of 10 IU/kg heparin was given together with local anti-coagulation with 55 g/l sodium citrate, 20 g/l citric acid at a ratio 1:25. Albumin supply was unnecessary. Plasma was removed every 2 weeks through liposorber LA 40 in the adult, and every week through liposorber LA 40 then 2 LA 15 in the child, mean plasma volume exchanged being 1.2 litres in the adult and 1.5 litres par session in the child. the DSC column removed on the average 60 p. 100 of total cholesterol (TC) and 65 p. 100 of LDL.C. Apoproteins B levels were reduced by 58 p. 100. After each procedure there was a rapid increase in lipid levels to about the 80 to 90 p. 100 of pretreatment value. In the adult, we obtained levels of TC of less than 300 mg/dl with exchanges every 2 weeks combined with an HMG CoA reductase inhibitor (40 mg/day); in the child, with exchanges every week the same inhibitor did not permit a prolongation of the interval between 2 aphereses. this was confirmed by elution of DSC column bound lipoproteins by 0.1 mol/l NaCl solution. However, the average removal of HDL.C and apoprotein A1 was respectively 31 p. 100 and 32 p. 100. Triglycerides levels were also reduced (48 p. 100). this was good in both cases. Using the filtration technic, hypotension was reported; this side effect did not appear with centrifugation. In the child, we observed immediate type reactions: nasal obstruction, headache and abdominal pain. The change in plasma protein concentration was caused by dilution and/or non specific absorption. LDL apheresis alone or combined with an HMG CoA reductase inhibitor is a safe technic, simple to

  10. Biotinylated dextran amine is an ideal anterograde tracer for the corticospinal tract in a goat model of ischemic corticospinal tract injury

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Yang; Yufei Gao; Zhigang Qin; Xia Cao; Xinquan Gu

    2011-01-01

    Existing visualized tracer studies of the corticospinal tract have been focused on rodents, which have markedly different spinal cord structures compared with humans. In this study, the segmental artery feeding the spinal cord was embolized with digital subtraction angiography to establish a goat model of ischemic spinal cord injury. Biotinylated dextran amine was injected into the motor function areas of the cortex in goats with ischemic spinal cord injury. The corticospinal tract originates from the cerebral cortex motor function area, and travels towards the lateral funiculus at the contralateral spinal dorsal horn after decussation at the pyramid. The number of corticospinal tract positive fibers was found to be gradually reduced. These findings indicate that digital subtraction angiography can be applied to a goat model of ischemic spinal cord injury. Biotinylated dextran amine visualizes the course of the goat corticospinal tract in the spinal cord, which is similar to the human spinal cord. Biotinylated dextran amine is an ideal tracer for the corticospinal tract.

  11. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart - a longitudinal MR study.

    Science.gov (United States)

    Desrois, Martine; Kober, Frank; Lan, Carole; Dalmasso, Christiane; Cole, Mark; Clarke, Kieran; Cozzone, Patrick J; Bernard, Monique

    2014-05-01

    The chronic administration of the β-adrenoreceptor agonist isoproterenol (IsoP) is used in animals to study the mechanisms of cardiac hypertrophy and failure associated with a sustained increase in circulating catecholamines. Time-dependent changes in myocardial blood flow (MBF), morphological and functional parameters were assessed in rats in vivo using multimodal cardiac MRI. Energy metabolism, oxidative stress and the nitric oxide (NO) pathway were evaluated in isolated perfused rat hearts following 7 days of treatment. Male Wistar rats were infused for 7 days with IsoP or vehicle using osmotic pumps. Cine-MRI and arterial spin labeling were used to determine left ventricular morphology, function and MBF at days 1, 2 and 7 after pump implantation. Isolated hearts were then perfused, and high-energy phosphate compounds and intracellular pH were followed using ³¹P MRS with simultaneous measurement of contractile function. Total creatine and malondialdehyde (MDA) contents were measured by high-performance liquid chromatography. The NO pathway was evaluated by NO synthase isoform expression and total nitrate concentration (NO(x)). In IsoP-treated rats, left ventricular mass was increased at day 1 and maintained. Wall thickness was increased with a peak at day 2 and a tendency to return to baseline values at day 7. MBF was markedly increased at day 1 and returned to normal values between days 1 and 2. The rate-pressure product and phosphocreatine/adenosine triphosphate ratio in perfused hearts were reduced. MDA, endothelial NO synthase expression and NO(x) were increased. Sustained high cardiac function and normal MBF after 24 h of IsoP infusion indicate imbalance between functional demand and blood flow, leading to morphological changes. After 1 week, cardiac hypertrophy and decreased function were associated with impaired phosphocreatine, increased oxidative stress and up-regulation of the NO pathway. These results provide supplemental information on the

  12. Aqueous extract from leaf of Artocarpus altilis provides cardio-protection from isoproterenol induced myocardial damage in rats: Negative chronotropic and inotropic effects.

    Science.gov (United States)

    Nwokocha, Chukwuemeka; Palacios, Javier; Simirgiotis, Mario J; Thomas, Jemesha; Nwokocha, Magdalene; Young, Lauriann; Thompson, Rory; Cifuentes, Fredi; Paredes, Adrian; Delgoda, Rupika

    2017-05-05

    The leaves of Artocarpus altilis (Parkinson ex F.A.Zorn, Fosberg) (Moraceae) are used in the management of hypertension; this study assessed the cardio-protective effects of the leaf extract on isoproterenol (ISO) induced myocardial damage in rats. Twenty (20) adult male Sprague-Dawley rats (175-230g) were divided into 5 groups. Group 1 (Control), 2 (AA) received 50mg/Kg Artocarpus altilis (AA) only; 3 (ISO) received 85mg/Kg ISO only; 4 (ISO+AA/50) and 5 (ISO+AA/100) received 50 and 100mg/Kg AA respectively for 6 days, after induced with ISO twice (85mg/Kg) at a 24-h period. Blood pressure readings were taken before and after the administering of ISO using the tail cuff method. ECG was performed on anaesthetized rats. Cardiac contractility was measured in isolated right atrial muscles. Assessment of myocardial infarct (MI) size, heart/body weight ratio, biochemical, hematological and histo-morphological parameters were conducted at the end of seven days. An aqueous extract from leaves of A. altilis was analyzed for organic compounds using UHPLC mass spectrometry. ISO induced myocardial damage through an elevation of the heart rate (HR), infarct size and ECG distortions. Treatment with AA significantly (p˂0.05) reduced heart/body weight ratio (49%), MI (96%), HR (27%), sympathovagal imbalance (36%) and serum cardiac biomarkers (AST, LDH, HDL, triglycerides and CCK) caused by ISO. AA decreased the beat frequency of isolated right atrium (11%) cause by ISO, an action similar to propranolol (beta-adrenergic antagonist; 20%), but showed no significant changes in the QTc intervals of the ECG (suggesting no cardio-toxic drug-herb interactions), Thirty nine compounds were detected using high resolution LC-MS analysis (HPLC-Orbitrap-APCI-MS) in the extract. Pure compounds, as gallic acid and rutin, presented a higher negative chronotropic effect, similar to propranolol. Oral administration of aqueous extract of Artocarpus artilis has cardio-protective functions in

  13. Reversal of isoproterenol-induced downregulation of phospholamban and FKBP12.6 by CPU0213-mediated antagonism of endothelin receptors

    Institute of Scientific and Technical Information of China (English)

    Yu FENG; Xiao-yun TANG; De-zai DAI; Yin DAI

    2007-01-01

    Aim:The downregulation of phospholamban (PLB) and FKBPI 2.6 as a result of βreceptor activation is involved in the pathway(s) of congestive heart failure. We hypothesized that the endothelin (ET)-I system may link to downregulated PLB and FKBP12.6. Methods:Rats were subjected to ischemia/reperfusion (I/R) to cause heart failure (HF). 1 mg/kg isoproterenol (ISO) was injected subcutaneously (sc) for 10 d to worsen HF. 30 mg/kg CPU0213 (sc),a dual ET receptor (ETAR/ETBR) antagonist was given from d 6 to d 10. On d 11,cardiac function was assessed together with the determination of mRNA levels of ryanodine receptor 2,calstabin-2 (FKBP12.6),PLB,and sarcoplasmic reticulum Ca2+-ATPase. Isolated adult rat ventricular myocytes were incubated with ISO at lx 10-6 mol/L to set up an in vitro model of HF. Propranolol (PRO),CPU0213,and darusentan (DAR,an ETAR antagonist) were incubated with cardiomyocytes at 1 x 10.5 mol/L or 1 × 10-6mol/L in the presence of ISO (1× 10.6 mol/L). Immunocytochemistry and Western blotting were applied for measuring the protein levels of PLB and FKBP12.6.Results:The worsened hemodynamics produced by I/R were exacerbated by ISO pretreatment. The significant downregulation of the gene expression of PLB and FKBPI 2.6 and worsened cardiac function by ISO were reversed by CPU0213. In vitro ISO lx 10-6 mol/L produced a sharp decline of PLB and FKBP12.6 proteins relative to the control. The downregulation of the protein expression was significantly reversed by the ET receptor antagonist CPU0213 or DAR,comparable to that achieved by PRO. Conclusion:This study demonstrates a role of ET in mediating the downregulation of the cardiac Ca2+-handling protein by ISO.AcknowledgementWe are most grateful to Prof David J TRIGGLE from the State University of New York at Buffalo for assistance in revising the English of the manuscript.

  14. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy.

    Science.gov (United States)

    Zarogoulidis, P; Hohenforst-Schmidt, W; Darwiche, K; Krauss, L; Sparopoulou, D; Sakkas, L; Gschwendtner, A; Huang, H; Turner, F J; Freitag, L; Zarogoulidis, K

    2013-10-01

    Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.

  15. Intravenous Iron Dextran as a Component of Anemia Management in Chronic Kidney Disease: A Report of Safety and Efficacy

    Directory of Open Access Journals (Sweden)

    Lenar Yessayan

    2013-01-01

    Full Text Available Objective. We aimed to demonstrate safety and efficacy of intravenous (IV low molecular weight iron dextran (LMWID during treatment of anemic stage 3 and 4 chronic kidney disease (CKD patients. Methods. Efficacy data was obtained by retrospective chart review of 150 consecutively enrolled patients. Patients were assigned per protocol to oral or IV iron, with IV iron given to those with lower iron stores and/or hemoglobin. Iron and darbepoetin were administered to achieve and maintain hemoglobin at 10–12 g/dL. Efficacy endpoints were mean hemoglobin and change in iron indices approximately 30 and 60 days after enrollment. Safety data was obtained by retrospective review of reported adverse drug events (ADEs following 1699 infusions of LMWID (0.5–1.0 g. Results. Mean hemoglobin, iron saturation, and ferritin increased significantly from baseline to 60 days in patients assigned to LMWID (hemoglobin: 11.3 versus 9.4 g/dL; iron saturation: 24% versus 12.9%; ferritin: 294.7 versus 134.7 ng/mL; all . Iron stores and hemoglobin were maintained in the group assigned to oral iron. Of 1699 iron dextran infusions, three ADEs occurred. Conclusions. Treatment of anemia in CKD stages 3 and 4 with LMWID and darbepoetin is efficacious. The serious ADE rate was 0.06% per infusion.

  16. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    Science.gov (United States)

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells.

  17. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Abedini F

    2012-07-01

    Full Text Available Fatemeh Abedini,1 Hossein Hosseinkhani,2 Maznah Ismail,1,3 Abraham J Domb,4 Abdul Rahman Omar,1,5 Pei Pei Chong,1,2 Po-Da Hong,3 Dah-Shyong Yu,6 Ira-Yudovin Farber41Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 3Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel, 5Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia, 6Nanomedicine Research Center, National Defense Medical Center, Taipei, TaiwanPurpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles.Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was

  18. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    Science.gov (United States)

    Cheng, Yuanyuan; Zhao, Jia; Tse, Hung Fat; Le, X Chris; Rong, Jianhui

    2015-01-01

    Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury.

  19. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2015-01-01

    Full Text Available Leukotriene B4 12-hydroxydehydrogenase (LTB4DH catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO activity and malondialdehyde (MDA level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury.

  20. Control of red cell volume and pH in trout: Effects of isoproterenol, transport inhibitors, and extracellular pH in bicarbonate/carbon dioxide-buffered media

    DEFF Research Database (Denmark)

    NIKINMAA, M; STEFFENSEN, JF; TUFTS, BL

    1987-01-01

    , and that the Na+/H+ exchanger is not activated by changes in intracellular pH alone. The adrenergic drug, isoproterenol, promoted cell swelling and proton extrusion even in the presence of 10 mM HCO3-, showing that the adrenergic response plays a significant role in the control of cytoplasmic pH. These responses......The effects of extracellular pH and beta-adrenergic stimula-tion on the volume and pH of rainbow. trout red cells were studied in HCO3-/ CO2 butfered media. A decrease in extracellular pH caused an increase in red cell volume and a decrease in intracellular pH. The pH-induced changes in cell volume...... were enhanced by a decrease in extracellular pH, showing that the adrenergic response is of benefit to stressed animals. DIDS markedly enhanced the effect of isoproterenol on the pHi, but abolished the increase in red cell volume. The effects of furosemide were similar to those of DIDS, suggesting...

  1. Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat%褪黑素对异丙肾上腺素诱导大鼠tau蛋白过度磷酸化的预防作用

    Institute of Scientific and Technical Information of China (English)

    王小川; 张菁; 余娴; 韩柳; 周震涛; 张瑶; 王建枝

    2005-01-01

    异常过度磷酸化的微管相关蛋白tau是阿尔茨海默病(Alzheimer's disease,AD)患者大脑中神经原纤维缠结的主要组成部分.迄今为止,尚无有效的措施阻止tau蛋白的过度磷酸化.为探讨褪黑素(melatonin,Mel)对AD样tau蛋白过度磷酸化的预防作用,我们以β受体激动剂异丙肾上腺素(isoproterenol,IP)来复制AD样tau蛋白过度磷酸化的动物模型,在大鼠双侧海马注射IP前,以褪黑素作为保护组药物,于腹腔连续注射5 d.应用磷酸化位点特异性抗体(PHF-1和Tau-1)作免疫印迹和免疫组织化学检测tau蛋白的磷酸化水平,并用非磷酸化依赖的总tau蛋白抗体(111e)进行标准化.免疫印迹结果显示:在注射IP 48 h后,tau蛋白在PHF-1表位的免疫反应显著增强,在Tau-1表位显著减弱,表明tau蛋白在Ser396/Ser404(PHF-1)和Ser199/Ser202(Tau-1)位点有过度磷酸化.免疫组织化学染色结果与免疫印迹结果相似,主要检测到在大鼠海马CA3区的神经纤维有tau蛋白过度磷酸化.褪黑素预处理大鼠可有效地阻止IP诱导tau蛋白在Tau-1和PHF-1位点的过度磷酸化.上述结果提示:褪黑素可预防大鼠脑组织中由异丙肾上腺素引起的AD样tau蛋白的过度磷酸化.%Hyperphosphorylated microtubule-associated protein tau is the major protein component of neurofibrillary tangles in the brain of patients with Alzheimer's disease (AD). Until now, there is no effective cure to arrest this hyperphosphorylation. The present study was designed to explore the in vivo preventive effect of melatonin on Alzheimer-like tau hyperphosphorylation. Isoproterenol,a β-receptor agonist, was used to induce tau hyperphosphorylation, and for preventive effect of melatonin, the rats were injected intraperitoneally with melatonin for 5 d before hippocampi infusion of isoproterenol. The level of tau phosphorylation was detected by Western blot and immunohistochemistry using sites specific antibodies (PHF-1 and Tau

  2. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline-without dextran-inhibits neutrophil and endothelial cell activation.

    Science.gov (United States)

    Junger, Wolfgang G; Rhind, Shawn G; Rizoli, Sandro B; Cuschieri, Joseph; Shiu, Maria Y; Baker, Andrew J; Li, Linglin; Shek, Pang N; Hoyt, David B; Bulger, Eileen M

    2012-10-01

    Posttraumatic inflammation and excessive neutrophil activation cause multiple organ dysfunction syndrome (MODS), a major cause of death among hemorrhagic shock patients. Traditional resuscitation strategies may exacerbate inflammation; thus, novel fluid treatments are needed to reduce such posttraumatic complications. Hypertonic resuscitation fluids inhibit inflammation and reduce MODS in animal models. Here we studied the anti-inflammatory efficacy of hypertonic fluids in a controlled clinical trial. Trauma patients in hypovolemic shock were resuscitated in a prehospital setting with 250 mL of either 7.5% hypertonic saline (HS; n = 9), 7.5% hypertonic saline + 6% dextran 70 (HSD; n = 8), or 0.9% normal saline (NS; n = 17). Blood samples were collected on hospital admission and 12 and 24 h after resuscitation. Multicolor flow cytometry was used to quantify neutrophil expression of cell-surface activation/adhesion (CD11b, CD62L, CD64) and degranulation (CD63, CD66b, CD35) markers as well as oxidative burst activity. Circulating concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVACM-1), P- and E-selectins, myeloperoxidase (MPO), and matrix metalloproteinase 9 (MMP-9) were assessed by immunoassay. Multiple organ dysfunction syndrome, leukocytosis, and mortality were lower in the HS and HSD groups than in the NS group. However, these differences were not statistically significant. Hypertonic saline prevented priming and activation and neutrophil oxidative burst and CD11b and CD66b expression. Hypertonic saline also reduced circulating markers of neutrophil degranulation (MPO and MMP-9) and endothelial cell activation (sICAM-1, sVCAM-1, soluble E-selectin, and soluble P-selectin). Hypertonic saline + 6% dextran 70 was less capable than HS of suppressing the upregulation of most of these activation markers. This study demonstrates that initial resuscitation with HS, but neither NS nor HSD, can attenuate

  3. Extracorporeal irradiation of the blood in a rat model for human acute myelocytic leukemia. Increased efficacy after combination with cell mobilization by low-molecular-weight dextran sulfate

    NARCIS (Netherlands)

    Hagenbeek, A.; Martens, A.C.M.

    1981-01-01

    The efficacy of extracorporeal irradiation of the blood (ECIB) in combination with cell mobilization by dextran sulfate (DS; MW 17,000) was investigated in a rat model for human acute myelocytic leukemia. Repeated injections with DS (q 3 hr) induced a significant increase in the number of peripheral

  4. Dextran sodium sulfate (DSS induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon.

    Directory of Open Access Journals (Sweden)

    Hamed Laroui

    Full Text Available Inflammatory bowel diseases (IBDs, primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs, such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ~200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity.

  5. The gel-forming behaviour of dextran in the presence of KCl: a quantitative 13C and pulsed field gradient (PFG) NMR study.

    Science.gov (United States)

    Naji, L; Schiller, J; Kaufmann, J; Stallmach, F; Kärger, J; Arnold, K

    2003-05-01

    Although the gel forming ability of certain polysaccharides in the presence of ions is a well-known phenomenon, detailed physicochemical mechanisms of such processes are still unknown. In this investigation high resolution 13C NMR as well as 1H pulsed field gradient (PFG) NMR were used to investigate the mobility of dextran in the sol and in the gel state. Gel-formation of dextran can be easily induced by the addition of large amounts of potassium chloride. No major differences in the T(1) relaxation times of dextran in the sol and in the gel state could be observed. Accordingly, the analysis of the 13C NMR spectroscopic data did not provide any indication of an observable line-broadening upon gel-formation. However, a KCl concentration dependent decrease of signal intensity in comparison to an internal standard was detected. On the other hand, the PFG NMR studies clearly indicated a gradual diminution of the self-diffusion coefficient of the dextran with increasing molecular weight as well as in the presence of potassium chloride. These measurements revealed in agreement with spectroscopic data that at least one potassium ion per monomer subunit (i.e. one glycopyranose residue) is necessary for gel formation.

  6. Intraoperative injection of technetium-{sup 99m}-dextran 500 for the identification of sentinel lymph node in breast cancer; Injecao intraoperatiria de dextran-500-{sup 99m}-tecnecio para identificacao do linfonodo sentinela em cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Delazeri, Gerson Jacob, E-mail: gersonjacob@gmail.co [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Medicina e Ciencias Medicas; Xavier, Nilton Leite [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Fac. de Medicina. Dept. de Ginecologia e Obstetricia; Menke, Carlos Henrique; Bittelbrunn, Ana Cristina [Hospital de Clinicas (HCPA), Porto Alegre, RS (Brazil). Servico de Mastologia; Spiro, Bernardo Leao [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Fac. de Medicina. Dept. de Radiologia; Mosmann, Marcos Pretto [Hospital de Clinicas (HCPA), Porto Alegre, RS (Brazil). Servico de Medicina Nuclear; Graudenz, Marcia Silveira [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Patologia

    2010-07-01

    Purpose: to determine the efficacy of intraoperative injection of Dextran-500-{sup 99m}-technetium (Tc) for the identification of the sentinel lymph node (SLN) in breast cancer and analyze time to label the SLN in the axillary region. Methods: a prospective study between April 2008 and June 2009, which included 74 sentinel lymph node biopsies (SLNB) in patients with breast cancer in stages T1N0 and T2N0. After induction of anesthesia, 0.5 to 1.5 mCi of Dextran-500-{sup 99m}-Tc filtered 0.22 {mu}m in a volume of 5 mL was injected intraoperative using the subareolar technique for SLNB. After labeling with the radioisotope, 2 mL of patent blue was injected. The time elapsed between injection and the axillary hot spot, the in vivo and ex vivo counts of the hottest nodes, the background count, and the number of SLN identified were documented. Data were analyzed using descriptive statistics with SPSS program, version 18. Results: we identified the SLN in 100% of cases. The rate of SLN identification with the probe was 98% (73/74 cases). In one case (1.35%) the SLN was labeled only with the blue dye. The mean dose of radioisotope injected was 0.97{+-}0.22 mCi. The average time to label the SLN was 10.7 minutes ({+-}5.7 min). We identified on average of 1.66 SLN labeled with the radioisotope. Conclusion: the procedure for SLN identification with an intraoperative injection of the radioisotope is oncologically safe and comfortable for the patient, providing agility to the surgical team. (author)

  7. Protein-loaded microspheres prepared by sequential adsorption of dextran sulphate and protamine on melamine formaldehyde core.

    Science.gov (United States)

    Balabushevich, Nadezda G; Larionova, Natalia I

    2009-11-01

    Polyelectrolyte multilayer microspheres were fabricated by layer-by-layer self-assembly of a dextran sulphate and a protamine on melamine formaldehyde cores, followed by the partial decomposition of the core. Effects of pH on the encapsulation of proteins and enzymes with different physico-chemical properties (insulin, aprotinin, peroxidase, glucose oxidase (GOD), catalase (Cat)) in the prepared microspheres were then studied. This method of protein encapsulation demonstrated a high loading capacity and efficiency. The protein incorporation and release was regulated by the pH of the solution. Encapsulated enzymes retained a high specific activity depending on the amount of protein incorporated. Bienzyme system GOD/Cat immobilized in the microspheres was suitable for the glucose content assay.

  8. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κВ activation.

    Science.gov (United States)

    Lv, Jun; Zhang, Yahong; Tian, Zhiqiang; Liu, Fang; Shi, Ying; Liu, Yao; Xia, Peiyuan

    2017-05-01

    Astragalus polysaccharide (APS) is a bioactive extract of Astragalus membranaceus (AM), which possess a wide range of medicinal benefits, including anti-inflammatory, anti-oxidative, anti-tumor and anti-diabetic effects. The present work evaluated the therapeutic effect of APS and its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. The APS treatment led to significant improvements in colitis disease activity index (DAI) and histological scores, as well as significantly increased weight and colon length in mice as compared to the control group. Mechanically, reduced NF-κВ DNA phosphorylation activity and downregulated TNF-α, IL-1β, IL-6, IL-17 expressions and myeloperoxidase (MPO) activity were associated with improvement in colitis observed in APS-treated mice. These findings suggest that APS may represent a natural therapeutic approach for treating inflammatory bowel disease, such as ulcerative colitis.

  9. A new dextran-graft-polybutylmethacrylate copolymer coated on 316L metallic stents enhances endothelial cell coverage.

    Science.gov (United States)

    Derkaoui, S M; Labbé, A; Chevallier, P; Holvoet, S; Roques, C; Avramoglou, T; Mantovani, D; Letourneur, D

    2012-09-01

    Amphiphilic copolymers based on the copolymerization of hydrophilic and hydrophobic moieties offer versatility in various biomedical material applications. Here, a new biocompatible copolymer of dextran-graft-polybutylmethacrylate is synthesized for the coating of metallic endovascular stents. Coating of metallic surfaces is performed and analyzed by X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, contact angle measurement, atomic force microscopy and scanning electron microscopy before and after deformation corresponding to stent deployment by a balloon catheter. In the conditions described here, the resulting coating is smooth and uniform with neither cracks nor detachment after stent expansion. Interestingly, surfaces coated with the copolymer greatly improve in vitro adhesion and growth of endothelial cells. This copolymer provides new opportunities for implanted biomaterials.

  10. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo.

    Science.gov (United States)

    Jansson, Björn; Hägerström, Helene; Fransén, Nelly; Edsman, Katarina; Björk, Erik

    2005-04-01

    The nasal uptake of a 3000 Da fluorescein dextran (FD3) was investigated in rats, using fluorescence microscopy. The uptake from a formulation containing deacetylated gellan gum, an in situ gelling agent, was compared to that from a mannitol solution. Additionally, the rheological behavior of the gellan gum in water and saline was studied. It was shown that the gellan gum solution was easily administered owing to its low viscosity, and upon contact with the mucosa, a gel was formed. The epithelial uptake and transfer of FD3 appeared to be increased and prolonged using the gellan gum formulation. This increase was not accompanied by qualitative changes of the epithelial FD3 distribution or any visible harmful effects.

  11. Dextran Sulfate Suppression of Viruses in the HIV Family: Inhibition of Virion Binding to CD4+ Cells

    Science.gov (United States)

    Mitsuya, Hiroaki; Looney, David J.; Kuno, Sachiko; Ueno, Ryuji; Wong-Staal, Flossie; Broder, Samuel

    1988-04-01

    The first step in the infection of human T lymphocytes by human immunodeficiency virus type 1 (HIV-1) is attachment to the target cell receptor, the CD4 antigen. This step may be vulnerable to attack by antibodies, chemicals, or small peptides. Dextran sulfate (molecular weight approximately 8000), which has been given to patients as an anticoagulant or antilipemic agent for more than two decades, was found to block the binding of virions to various target T lymphocytes, inhibit syncytia formation, and exert a potent inhibitory effect against HIV-1 in vitro at concentrations that may be clinically attainable in human beings. This drug also suppressed the replication of HIV-2 in vitro. These observations could have theoretical and clinical implications in the strategy to develop drugs against HIV types 1 and 2.

  12. 葡聚糖对煮糖及白砂糖晶体形态的影响%Effects of Dextran on Boiling and White Sugar Crystal Morphology

    Institute of Scientific and Technical Information of China (English)

    莫柳珍; 廖炳权; 焦博; 谢彩锋

    2015-01-01

    葡聚糖是高分子高粘度多糖,对制糖生产过程危害很大。通过使用小型试验型真空煮糖设备煮制含有不同葡聚糖的糖浆,分析糖膏粘度、煮糖时间、提糖率及观察蔗糖晶体形态,研究煮糖物料中含不同浓度的葡聚糖对煮糖操作及白砂糖晶形的影响。结果表明:葡聚糖浓度增大,会增大糖膏粘度,延长煮糖时间,降低提糖率,改变蔗糖晶体形态甚至出现针状晶体;高分子量葡聚糖比低分子量葡聚糖对煮糖影响更大。%Dextran is a kind of polysaccharide, a macromolecule and high viscosity material. It can do great harm in the sugar producing process. Using a small experimental vacuum equipment to cook syrup containing different dextran, this paper analyzed the massecuite, boiling time, sugar extraction rate, observed the sucrose crystal morphology, studied the influence of boiled sugar material containing different concentrations of dextran to the operation of boiling sugar and sugar crystal morphology. The results showed that dextran concentration increases will increase the viscosity of massecuite, prolong boiling time, reduce the sugar extraction rate, change sucrose crystal morphology even cause acicular crystals to appear. High molecular weight dextran has greater influence on boiling sugar than low molecular one has.

  13. Chemical Functionalization of Germanium with Dextran Brushes for Immobilization of Proteins Revealed by Attenuated Total Reflection Fourier Transform Infrared Difference Spectroscopy.

    Science.gov (United States)

    Schartner, Jonas; Hoeck, Nina; Güldenhaupt, Jörn; Mavarani, Laven; Nabers, Andreas; Gerwert, Klaus; Kötting, Carsten

    2015-07-21

    Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.

  14. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes

    Science.gov (United States)

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N-nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism. PMID:28243064

  15. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting.

    Science.gov (United States)

    Mojica Pisciotti, M L; Lima, E; Vasquez Mansilla, M; Tognoli, V E; Troiani, H E; Pasa, A A; Creczynski-Pasa, T B; Silva, A H; Gurman, P; Colombo, L; Goya, G F; Lamagna, A; Zysler, R D

    2014-05-01

    In this research work, DEXTRAN- and polyethylene glycol (PEG)-coated iron-oxide superparamagnetic nanoparticles were synthetized and their cytotoxicity and biodistribution assessed. Well-crystalline hydrophobic Fe3 O4 SPIONs were formed by a thermal decomposition process with d = 18 nm and σ = 2 nm; finally, the character of SPIONs was changed to hydrophilic by a post-synthesis procedure with the functionalization of the SPIONs with PEG or DEXTRAN. The nanoparticles present high saturation magnetization and superparamagnetic behavior at room temperature, and the hydrodynamic diameters of DEXTRAN- and PEG-coated SPIONs were measured as 170 and 120 nm, respectively. PEG- and DEXTRAN-coated SPIONs have a Specific Power Absorption SPA of 320 and 400 W/g, respectively, in an ac magnetic field with amplitude of 13 kA/m and frequency of 256 kHz. In vitro studies using VERO and MDCK cell lineages were performed to study the cytotoxicity and cell uptake of the SPIONs. For both cell lineages, PEG- and DEXTRAN-coated nanoparticles presented high cell viability for concentrations as high as 200 μg/mL. In vivo studies were conducted using BALB/c mice inoculating the SPIONs intravenously and exposing them to the presence of an external magnet located over the tumour. It was observed that the amount of PEG-coated SPIONs in the tumor increased by up to 160% when using the external permanent magnetic as opposed to those animals that were not exposed to the external magnetic field.

  16. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers.

    Science.gov (United States)

    Xiao, F; Hrabetová, S

    2009-06-16

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and a real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (alpha) in the neocortex of AQP4(-/-) mice compared to AQP4(+/+) mice but no change in the hindrance imposed to diffusing molecules (tortuosity lambda). In contrast, other diffusion studies employing large molecules (dextran polymers) and a fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10%-20% in lambda in the neocortex of AQP4(-/-) mice. These conflicting findings on lambda would imply that large molecules diffuse more readily in the enlarged ECS of AQP4(-/-) mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (molecular weight [MW] 547, lambda(AF)) and two large dextran polymers (MW 3000, lambda(dex3) and MW 75,000, lambda(dex75)) in the in vitro neocortex of AQP4(+/+) and AQP4(-/-) mice. We found that lambda(AF)=1.59, lambda(dex3)=1.76 and lambda(dex75)=2.30 obtained in AQP4(-/-) mice were not significantly different from lambda(AF)=1.61, lambda(dex3)=1.76, and lambda(dex75)=2.33 in AQP4(+/+) mice. These IOI results demonstrate that lambda measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4(-/-) mice compared to values in AQP4(+/+) mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure.

  17. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery

    Directory of Open Access Journals (Sweden)

    Lee Y

    2015-07-01

    Full Text Available Yonghyun Lee,1,2,* Jungyun Kim,1,* Wooseong Kim,1,* Joon Nam,1,* Seongkeun Jeong,1 Sunyoung Lee,1 Jin-Wook Yoo,1 Min-Soo Kim,1 Yunjin Jung1 1College of Pharmacy, Pusan National University, Busan, 2Bio-Nanomedicine Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran–glutamic acid–celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD] was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages. Keywords: colon-specific drug delivery, dextran, celecoxib, prodrug, cardiovascular toxicity

  18. Sodium phenylacetate enhances the inhibitory effect of dextran derivative on breast cancer cell growth in vitro and in nude mice.

    Science.gov (United States)

    Di Benedetto, M; Kourbali, Y; Starzec, A; Vassy, R; Jozefonvicz, J; Perret, G; Crepin, M; Kraemer, M

    2001-09-14

    Sodium phenylacetate (NaPa) and carboxymethyl benzylamide dextran derivative (CMDB(LS4)) are able to inhibit growth of breast tumour cells. In this study, we explored whether the combination of NaPa and CMDB(LS4)may enhance their respective inhibitory effects on the MCF-7ras cell growth in vitro and in vivo. NaPa inhibited MCF-7ras cell proliferation by reducing the DNA replication concomitantly with a recruitment of cells in G0/G1 phase and by inducing apoptosis in a dose- and time-dependent manner. The addition of CMDB(LS4)potentiated the NaPa antiproliferative effect in the manner dependent on the ratio of CMDB(LS4)and NaPa concentrations. In nude mice, CMDB(LS4)(150 mg kg(-1)) or NaPa (40 mg kg(-1)) administrated twice a week, for 7 weeks inhibited MCF-7ras xenograft growth by 40% and 60%, respectively. The treatment by both, CMDB(LS4)and NaPa, decreased tumour growth by 83% without any toxicity. To better understand the mechanism of NaPa and CMDB(LS4)action we assessed their effect on mitogenic activity of MCF-7ras conditioned medium (CM) on BALBC/3T3 fibroblasts. CMDB(LS4)added to the CM, inhibited its mitogenic activity whereas NaPa had an anti-mitogenic effect when CM was prepared from MCF-7ras cells pretreated with NaPa. Thus, the antiproliferative effects of NaPa and CMDB(LS4)involve 2 different mechanisms explaining, at least in part, the possible synergism between them. Overall, this study points to the potential use of a combination of dextran derivatives with NaPa to inhibit the breast tumour growth.

  19. 参麦注射液对异丙肾上腺素诱导大鼠心肌缺血的保护作用%Protective effect of Shenmai injection against myocardial ischemia injury induced by isoproterenol in rats

    Institute of Scientific and Technical Information of China (English)

    于佳慧; 刘谈; 郭茂娟; 朱利洁; 陈景瑞; 樊官伟

    2014-01-01

    [目的]研究参麦注射液对异丙肾上腺素诱导大鼠心肌缺血的保护作用。[方法]皮下多点注射异丙肾上腺素(ISO)85 mg/kg,每日1次,连续2 d,制备大鼠心肌缺血模型。记录大鼠心电图(ECG)的变化,观察血流动力学、超声心动图及心肌组织病理学的改变,并测定血清肌酸激酶(CK)、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)及丙二醛(MDA)的活性以及心脏指数的改变。[结果]参麦注射液能够降低由 ISO 所致的心肌缺血大鼠 ST 段的抬高,明显改善左室功能,降低心肌组织病变程度,并且显著降低 CK、LDH、MDA 水平及心脏指数,增加 SOD 水平,与模型组比较有统计学意义(P<0.05或 P<0.01)。[结论]参麦注射液对 ISO 诱导的大鼠心肌缺血有一定的保护作用。%[Objective] To study the protective effect of Shenmai injection (SMI) against myocardial ischemia injury induced by isoproterenol in rats. [Methods] A rat model of myocardial ischemia was established by subcutaneous injections of isoproterenol (85 mg/kg for two consecutive days). The rat electrocardiogram (ECG) was recorded, the changes of hemodynamics, echocardiography and myocardial histopathology were also observed. Activities of creatine phosphokinase (CK), lactate dehydrogenase (LDH), the superoxide diSMIutase (SOD) and the levels of malondialdehyde (MDA) in rat serum were determined, heart index were measured simultaneously. [Results] In comparison with model group, SMI could inhibit the elevation in ST-segment. The hemodynamic parameters, left ventricular function and myocardial ischemic injury were visibly improved. The levels of CK, LDH and MDA activities and the heart index were significantly decreased. The level of SOD activity was obviously increased (P<0.05 or P<0.01). [Conclusion] SMI has some protective effects against myocardial ischemia injury induced by isoproterenol in rats.

  20. Colorimetry and constant-potential coulometry determinations of transferrin-bound iron, total iron-binding capacity, and total iron in serum containing iron-dextran, with use of sodium dithionite and alumina columns.

    Science.gov (United States)

    Jacobs, J C; Alexander, N M

    1990-10-01

    After the parenteral administration of iron-dextran (imferon), the increased total iron concentrations in serum can be determined by atomic absorption spectroscopy and by colorimetric methods involving sodium dithionite, which reductively dissociates iron from the dextran complex. We report that constant-potential coulometry detects only about 55-70% of dextran-bound iron before dithionite reduction and variable amounts after reaction with the reducing agent. In addition, we have developed a procedure for determining transferrin-bound iron, total iron-binding capacity (TIBC), total iron, and dextran-bound iron with the Kodak Ektachem colorimetric system. In determining total serum iron, the sample is first mixed with sodium dithionite, which rapidly dissociates all dextran-bound iron, but does not remove iron from either transferrin or hemoglobin. After the mixture is applied to an Ektachem slide, transferrin-bound iron is released at pH 4 and is detected together with the iron previously bound to dextran. TIBC is determined by mixing serum with ferric citrate in moderate excess and filtering through a small alumina (Al2O3) column, which binds excess free iron and iron-dextran; the iron in the column eluate represents the TIBC. Transferrin-bound iron is determined by applying diluted serum without added ferric citrate to an alumina column and measuring the iron in the column eluate. Dextran-bound iron is equivalent to the difference between total and transferrin-bound iron. Using this method, we found that transferrin iron-binding sites are saturated in vitro by excess iron-dextran less efficiently than by ferric citrate.

  1. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application.

    Science.gov (United States)

    Chen, Xiao Yan; Levy, Clemens; Gänzle, Michael G

    2016-12-19

    Exopolysaccharides from lactic acid bacteria may improve texture and shelf life of bread. The effect of exopolysaccharides on bread quality, however, depends on properties of the EPS and the EPS producing strain. This study investigated structure-function relationships of EPS in baking application. The dextransucrase DsrM and the reuteransucrase GtfA were cloned from Weissella cibaria 10M and Lactobacillus reuteri TMW1.656, respectively, and heterologously expressed in Escherichia coli. Site-directed mutagenesis of GtfA was generates reuterans with different glycosidic bonds. NMR spectrum indicated reuteranPI, reuteranNS and reuteranPINS produced by GtfA-V1024P:V1027I, GtfA-S1135N:A1137S and GtfA-V1024P:V1027I:S1135N:A1137S, respectively, had a higher proportion of α-(1→4) linkages when compared to reuteran. ReuteranNS has the lowest molecular weight as measured by asymmetric flow-field-flow fractionation. The reuteransucrase negative mutant L. reuteri TMW1.656ΔgtfA was generated as EPS-negative derivative of L. reuteri TMW1.656. Cell counts, pH, and organic acid levels of sourdough fermented with L. reuteri TMW1.656 and TMW1.656ΔgtfA were comparable. Reuteran produced by L. reuteri TMW1.656 during growth in sourdough and reuteran produced ex situ by GtfA-ΔN had comparable effects on bread volume and crumb hardness. Enzymatically produced dextran improved volume and texture of wheat bread, and of bread containing 20% rye flour. ReuteranNS but not reuteranPI or reuteran was as efficient as dextran in enhancing wheat bread volume and texture. Overall, reuteran linkage type and molecular weight are determinants of EPS effects on bread quality. This study established a valuable method to elucidate structure-function relationships of glucans in baking applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Aponecrotic, antiangiogenic and antiproliferative effects of a novel dextran derivative on breast cancer growth in vitro and in vivo.

    Science.gov (United States)

    Di Benedetto, Mélanie; Starzec, Anna; Colombo, Bruno M; Briane, Dominique; Perret, Gérard Y; Kraemer, Michel; Crépin, Michel

    2002-04-01

    1. Since the sodium phenylacetate (NaPa) was reported to enhance the inhibitory effect of carboxymethyl benzylamide dextran (CMDB) on the breast cancer growth, we performed the esterification of CMDB with NaPa to obtain a new drug carrying the characteristics of these two components. A new molecule, phenylacetate carboxymethyl benzylamide dextran, was named NaPaC. 2. We investigated in vitro and in vivo the effects of NaPaC on MCF-7ras cell growth as well as its apoptotic and antiangiogenic effects in comparison to NaPa and CMDB. In addition, we assessed in vitro the antiproliferative effects of these drugs on other breast cancer cells, including MDA-MB-231, MDA-MB-435 and MCF-7. 3. In vitro, NaPaC inhibited MCF-7ras cell proliferation by 40% at concentration lower than that of CMDB and NaPa (12 microM vs 73 microM and 10 mM). IC(50)s were 6 and 28 microM for NaPaC and CMDB, respectively. The similar results were obtained for three other breast cancer cell lines. NaPaC reduced the DNA replication and induced cell recruitment in G(0)/G(1) phase more efficiently than its components. Moreover, it induced a cell death at concentration 1000-fold lower than NaPa. 4. In vivo, CMDB (150 mg kg(-1)) and NaPa (40 mg kg(-1)) inhibited the MCF-7ras tumour growth by 37 and 57%, respectively, whereas NaPaC (15 mg kg(-1)) decreased tumour growth by 66% without toxicity. 5. NaPa or CMDB reduced the microvessel number in tumour by 50% after 7 weeks of treatment. NaPaC had the same effect after only 2 weeks. After 7 weeks, it generated a large necrosis area without detectable microvessels. In vitro, NaPaC inhibited human endothelial cell proliferation more efficiently than CMDB or NaPa. NaPaC interacts with vascular endothelial growth factor as observed by affinity electrophoresis. 6. NaPaC acts like NaPa and CMDB but in more potent manner than components used separately. Its antiproliferative, aponecrotic and anti-angiogenic actions make it a good candidate for a new anti

  3. Direct patterning of probe proteins on an antifouling PLL-g-dextran coating for reducing the background signal of fluorescent immunoassays.

    Science.gov (United States)

    Egea, Amandine M C; Trévisiol, Emmanuelle; Vieu, Christophe

    2013-12-01

    The limit of detection of advanced immunoassays, biochips and micro/nano biodetection devices is impacted by the non-specific adsorption of target molecules at the sample surface. In this paper, we present a simple and versatile low cost method for generating active surfaces composed of antibodies arrays surrounded by an efficient anti-fouling layer, capable to decrease drastically the fluorescence background signal obtained after interaction with a solution to be analyzed. The technological process involves the direct micro-contact printing of the antibodies probe molecules on a pre-coated PLL-g-dextran thin layer obtained by contact printing using a flat PDMS stamp. Compared to other blocking strategies (ethanolamine blocking treatment, PLL-g-PEG incubation, PLL-g-dextran incubation, printing on a plasma-deposited PEO layer), our surface chemistry method is more efficient for reducing non-specific interactions responsible for a degraded signal/noise ratio.

  4. Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles.

    Science.gov (United States)

    Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi

    2017-08-01

    The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.

  5. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    OpenAIRE

    Bagheri-Yarmand, R.; Kourbali, Y; Mabilat, C; Morère, J. F.; Martin, A; Lu, H; Soria, C; Jozefonvicz, J; Crépin, M

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of t...

  6. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    Science.gov (United States)

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators.

  7. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Melika, E-mail: Melika.kiani@gmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Mirzazadeh Tekie, Farnaz Sadat, E-mail: mirzazadehf@yahoo.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Dinarvand, Meshkat, E-mail: mdinarvand@hotmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Soleimani, Masoud, E-mail: soleim_m@modares.ac.ir [Stem Cell Technology Research Centre, P.O. Box 14155-3174, Tehran (Iran, Islamic Republic of); Department of Hematology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul, E-mail: dinarvand@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    Gene therapy is an optimistic approach in cancer treatment. However, for efficient delivery of gene materials, designing an appropriate vector is necessary. Polyelectrolyte complexes (PECs) of chitosan and dextran could be considered a proper nanoparticulate carrier for sensitive biomaterials. In this study, PECs of chitosan and thiolated dextran were used as either an injectable or oral gene delivery system. hSET1 antisense was loaded into the PECs to suppress proliferation of colon cancer cell line. The prepared nanoparticles have ~ 115 nm diameter size and positive zeta potential with high mucoadhesion properties. They are able to protect antisense from degradation in serum and biorelevant fluids (FaSSIF and FaSSGF). Furthermore, prepared nanoparticles demonstrated superior cellular penetration and inhibitory effect on SW480 colon cancer cell proliferation. All nanoparticles significantly down regulated hSET1 in comparison with naked antisense. It can be concluded that thiolated PECs have potential use for injectable or oral delivery of nucleic acids such as antisense. - Highlights: • Formation of stable nanoparticle with dextran and chitosan derivatives for oral and intravenous gene delivery. • Satifactory cellular uptake of nanoparticles and approximately complete suppression of hSET1 expression in SW480 cell lines • Prolonged stability of nanoparticles against biorelevent media with desirable release rate.

  8. Clinical observation of Danzhi Xiaoyao Capsule with hypromellose 2910,dextran 70 and glycerol eye drops for dry eye in menopausal patients

    Directory of Open Access Journals (Sweden)

    Wen-Li Cai

    2016-06-01

    Full Text Available AIM: To evaluate the clinical effects, corneal surface shape and corneal thickness variation after treated by Danzhi Xiaoyao Capsule combined with hypromellose 2910,dextran 70 and glycerol eye drops for dry eye in menopausal patients. METHODS: Eighty menopausal patients(160 eyesdiagnosed as dry eye were randomly divided into groups A and B(40 patients each. Group A was treated with hypromellose 2910,dextran 70 and glycerol eye drops only and group B was treated with Danzhi Xiaoyao Capsule and eye drops. Before and 1mo after treatment, the clinical effects were evaluated by symptom scores, fluorescein staining(FL, tear film breakup time(BUTand Schirmer Ⅰ test. While the corneal surface regularity index(SRI, surface asymmetry index(SAIand central corneal thickness(CCTwere observed. RESULTS: At 1mo after treatment, the symptoms scores and FL scores of the 2 groups decreased significantly(PPPP>0.05. CONCLUSION: Combination therapy of Danzhi Xiaoyao Capsule and hypromellose 2910,dextran 70 and glycerol eye drops for menopausal patients with dry eye is more effective than single eye drops, and can improve the symptoms and signs.

  9. Efficacy and Durability in Direct Labeling of Mesenchymal Stem Cells Using Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Organosilica, Dextran, and PEG Coatings

    Directory of Open Access Journals (Sweden)

    Ken Cham-Fai Leung

    2011-04-01

    Full Text Available We herein report a comparative study of mesenchymal stem cell (MSC labeling using spherical superparamagnetic iron oxide (SPIO nanoparticles containing different coatings, namely, organosilica, dextran, and poly(ethylene glycol (PEG. These nanomaterials possess a similar SPIO core size of 6–7 nm. Together with their coatings, the overall sizes are 10–15 nm for all SPIO@SiO2, SPIO@dextran, and SPIO@PEG nanoparticles. These nanoparticles were investigated for their efficacies to be uptaken by rabbit bone marrow-derived MSCs without any transfecting agent. Experimentally, both SPIO@SiO2 and SPIO@PEG nanoparticles could be successfully uptaken by MSCs while the SPIO@dextran nanoparticles demonstrated limited labeling efficiency. The labeling durability of SPIO@SiO2 and SPIO@PEG nanoparticles in MSCs after three weeks of culture were compared by Prussian blue staining tests. SPIO@SiO2 nanoparticles demonstrated more blue staining than SPIO@PEG nanoparticles, rendering them better materials for MSCs labeling by direct uptake when durable intracellullar retention of SPIO is desired.

  10. Prevention of Chronic Experimental Colitis Induced by Dextran Sulphate Sodium (DSS in Mice Treated with FR91

    Directory of Open Access Journals (Sweden)

    Valter R. M. Lombardi

    2012-01-01

    Full Text Available One of the main treatments currently used in humans to fight cancer is chemotherapy. A huge number of compounds with antitumor activity are present in nature, and many of their derivatives are produced by microorganisms. However, the search for new drugs still represents a main objective for cancer therapy, due to drug toxicity and resistance to multiple chemotherapeutic drugs. In animal models, a short-time oral administration of dextran sulfate sodium (DSS induces colitis, which exhibits several clinical and histological features similar to ulcerative colitis (UC. However, the pathogenic factors responsible for DSS-induced colitis and the subsequent colon cancer also remain unclear. We investigated the effect of FR91, a standardized lysate of microbial cells belonging to the Bacillus genus which has been previously shown to have significant immunomodulatory effects, against intestinal inflammation. Colitis was induced in mice during 5 weeks by oral administration 2% (DSS. Morphological changes in the colonic mucosa were evaluated by hematoxylin-eosin staining and immunohistochemistry methods. Adenocarcinoma and cryptal cells of the dysplastic epithelium showed cathenin-β, MLH1, APC, and p53 expression, together with increased production of IFN-γ. In our model, the optimal dose response was the 20% FR91 concentration, where no histological alterations or mild DSS-induced lesions were observed. These results indicate that FR91 may act as a chemopreventive agent against inflammation in mice DSS-induced colitis.

  11. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Sonia Martinez-Herrero

    2016-11-01

    Full Text Available The link between intestinal inflammation, microbiota, and colorectal cancer (CRC is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM in microbiota composition and its impact on colitis with an inducible knockout (KO mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT mice by pyrosequencing. Colitis was induced in mice by administration of azoxymethane (AOM followed by dextran sulfate sodium (DSS in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p<0.05 in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology.

  12. Transdermal delivery of fluorescein isothiocyanate-dextrans using the combination of microneedles and low-frequency sonophoresis

    Directory of Open Access Journals (Sweden)

    Boonnada Pamornpathomkul

    2015-10-01

    Full Text Available This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers, in particular, the combination of microneedles patch (MNs patch and low-frequency sonophoresis (SN. The hydrophilic macromolecule drug fluorescein isothiocyanate (FITC-dextrans (FD-4: MW 4.4 kDa was used as the model drug in our experimental design. In this study, excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs- and SN-facilitated FD-4 delivery. In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone, SN alone or untreated skin, respectively. The optimal parameters for the combination of MNs and SN included the following: 10 N insertion force of MNs, 4 W/cm2 SN intensity, 6 mm radiation diameter of the SN probe, 2 min application time, and the continuous mode duty cycle of SN. In addition, vertical sections of skin, clearly observed under a confocal microscope, confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers. These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin.

  13. Dextran-functionalized magnetic fluid mediating magnetohyperthermia for treatment of Ehrlich-solid-tumor-bearing mice: toxicological and histopathological evaluations.

    Science.gov (United States)

    Miranda-Vilela, Ana Luisa; Yamamoto, Kelly Reis; Miranda, Kely Lopes Caiado; Matos, Breno Noronha; de Almeida, Marcos Célio; Longo, João Paulo Figueiró; de Souza Filho, José; Fernandes, Juliana Menezes Soares; Sartoratto, Patrícia Pommé Confessori; Lacava, Zulmira Guerrero Marques

    2014-04-01

    Dextran-functionalized maghemite fluid (DexMF) has been tested to treat Ehrlich-solid-tumor-bearing mice, evidencing its potential use in mediating magnetohyperthermia in breast cancer treatment. However, although magnetic nanoparticles tend to accumulate in tumor tissues, part of the nanomaterial can reach the blood stream, and then the organism. The aim of this study was to investigate the acute systemic effects of the intratumoral injection of DexMF mediating magnetohyperthermia in the treatment of an advanced clinical Ehrlich-solid-tumor, assessed through histopathological analyses of liver, kidneys, heart and spleen, comet assay, micronucleus test, hemogram, and serum levels of bilirubin, aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatinine, and urea. The tumor's histopathology and morphometry were used to assess its aggressiveness and regression. DexMF mediating hyperthermia was effective in containing tumor aggressiveness and in inducing tumor regression, besides showing no toxic effects. Its physical characteristics also suggest that it is safe to use in other biomedical applications.

  14. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice.

    Science.gov (United States)

    De Fazio, Luigia; Spisni, Enzo; Cavazza, Elena; Strillacci, Antonio; Candela, Marco; Centanni, Manuela; Ricci, Chiara; Rizzello, Fernando; Campieri, Massimo; Valerii, Maria C

    2016-01-01

    (Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg((-1)) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg((-1)) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.

  15. Dietary geraniol by oral or enema administration strongly reduces dysbiosis and systemic inflammation in dextran sulphate sodium-treated mice.

    Directory of Open Access Journals (Sweden)

    Luigia eDe Fazio

    2016-03-01

    Full Text Available (Trans-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH, is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulphate sodium (DSS-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120mg kg(-1 body weight, starting six days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg(-1 dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2 expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.

  16. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    Science.gov (United States)

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-10

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease.

  17. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine.

    Science.gov (United States)

    Hu, Nan; Huang, Yanjuan; Gao, Xuejiao; Li, Sai; Yan, Zhixiang; Wei, Bin; Yan, Ru

    2017-06-01

    Dextran sulfate sodium (DSS) induced experimental colitis presents a histologic resemblance to human ulcerative colitis (UC). Altered cytochrome P450s (CYPs) have been reported in this model and patients with UC. In this study, six CYPs activities were quantitatively determined in microsomes of liver (RLMs), kidney (RRMs) and intestine (RIMs) from rats with colitis at acute (5% DSS for 7 days, UCA) and remission (7-day DSS treatment followed by 7-day cessation, UCR) phases and compared with normal rats. Generally, CYPs activities varied with isoform, organ, and disease status. Hepatic CYP1A2, 2B1, 2C6/11, 2E1 and 3A1/2 activities were reduced by acute colitis and completely or partially restored after DSS was halted. Although DSS treatment decreased the Vmax of renal CYP2C6/11 and increased that of CYP2D2, their CLint, in vitro were comparable among normal, acute and remission stages. DSS treatment changed the kinetics of CYP3A1/2-mediated nifedipine metabolism in RRMs from biphasic to classical kinetics. Notably, CYP2D2 activity was elevated in liver and kidney in acute UC, while enhanced in liver and decreased in kidney in remission. In intestine, CYP3A1/2 activity was increased in UCA and further enhanced after DSS withdrawal. These findings highlight the necessity of quantifying enzyme activity for precision drug therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Mäkilä, Ermei; Fan, Jin; Herranz-Blanco, Bárbara; Wang, Chang-Fang; Rosa, Ricardo; Ribeiro, António J; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-01-01

    An advanced nanocomposite consisting of an encapsulated porous silicon (PSi) nanoparticle and an acid-degradable acetalated dextran (AcDX) matrix (nano-in-nano), was efficiently fabricated by a one-step microfluidic self-assembly approach. The obtained nano-in-nano PSi@AcDX composites showed improved surface smoothness, homogeneous size distribution, and considerably enhanced cytocompatibility. Furthermore, multiple drugs with different physicochemical properties have been simultaneously loaded into the nanocomposites with a ratiometric control. The release kinetics of all the payloads was predominantly controlled by the decomposition rate of the outer AcDX matrix. To facilitate the intracellular drug delivery, a nona-arginine cell-penetrating peptide (CPP) was chemically conjugated onto the surface of the nanocomposites by oxime click chemistry. Taking advantage of the significantly improved cell uptake, the proliferation of two breast cancer cell lines was markedly inhibited by the CPP-functionalized multidrug-loaded nanocomposites. Overall, this nano-in-nano PSi@polymer composite prepared by the microfluidic self-assembly approach is a universal platform for nanoparticles encapsulation and precisely controlled combination chemotherapy.

  19. New nasal nanocomplex self-assembled from charged biomacromolecules: N,N,N-Trimethyl chitosan and dextran sulfate.

    Science.gov (United States)

    Kulkarni, Abhijeet D; Vanjari, Yogesh H; Sancheti, Karan H; Patel, Harun M; Belgamwar, Veena S; Surana, Sanjay J; Pardeshi, Chandrakantsing V

    2016-07-01

    Although chitosan (CHT, a linear cationic polysaccharide) is biodegradable, biocompatible, non-toxic, and mucoadhesive in nature, the low solubility of CHT in aqueous and alkaline media limits its applicability in pharmaceutical and biomedical field. This necessitate the introduction of new chemically-modified derivatives of CHT those can surmount the solubility barrier. Herein, N,N,N-trimethyl chitosan (TMC), a quaternized hydrophilic derivative of CHT, was synthesized by two-step reductive methylation of CHT and characterized for (1)H NMR and zeta potential measurements. Polyelectrolyte complexes (PECs) based on TMC and dextran sulfate (DS) were prepared via ionic interactions between charged functional groups of former polysaccharides at different pH conditions (pH 5, 8, 10, and 12) and characterized for physicochemical (particle size and zeta potential) and solid- state characterizations (HR-TEM, SEM, FTIR, TGA and XRD). At alkaline pH conditions, the participant polymer chains (TMC and DS) are sufficiently close to form more stable PECs. The release efficiency was assessed after loading a model drug into optimized PEC formulation. Data indicated that the PECs fabricated at alkaline pH presents a reliable formulation for pharmaceutical and biomedical applications.

  20. Impact of colonic mucosal lipoxin A4 synthesis capacity on healing in rats with dextran sodium sulfate-induced colitis.

    Science.gov (United States)

    Ağış, Erol R; Savaş, Berna; Melli, Mehmet

    2015-09-01

    Ulcerative colitis is a chronic inflammatory disease of the colon. This study evaluates the role of colonic mucosal lipoxin A4 (LXA4) synthesis in an experimental rat model of dextran sodium sulfate (DSS)-induced colitis. Wistar rats were randomly assigned to four groups: healthy controls, DSS-induced colitis with no or vehicle therapy, misoprostol or 5-aminosalicylic acid (5-ASA) therapy groups. Disease severity and colonic mucosal LXA4 synthesis was assessed specifically during the acute phase (day 5), chronic phase (day 15) and healing phases (day 19). Both misoprostol and 5-ASA reduced histopathologic score during the acute phase and reduced disease activity score at the healing phase. In addition, misoprostol reduced histopathologic score and colon weight/length ratio during the healing phase. Only misoprostol therapy increased colonic mucosal LXA4 synthesis. Furthermore, LXA4 levels correlated negatively with disease progression (R=-0.953). Collectively, our findings suggest that misoprostol-induced LXA4 synthesis may be favorable for the healing of ulcerative colitis.