WorldWideScience

Sample records for device applications utilizing

  1. Exploring the Utility and Application of Framing Devices in College/University President Speeches

    Science.gov (United States)

    Young, Ira George

    2013-01-01

    The purpose of this study was to explore the utility and application of the framing devices identified by Fairhurst (1993) and Fairhurst and Sarr (1996) in the college/university setting as evidenced through college/university presidents' speeches. Fifty-seven college/university presidents' speeches were collected from institution…

  2. Practical application of dosimetry systems utilized in radiation processing of medical devices

    International Nuclear Information System (INIS)

    Shaffer, H.L.; Garcia, R.D.

    1988-01-01

    A review is presented on the practical application of current dosimetry systems used in the monitoring of industrial radiation facilities. The dosimeter characteristics important for realistic routine monitoring, the problems associated with raw material receipt, calibration, packaging, and radiation, the reading of the routine dosimeter, and the process controls necessary for the use of a monitoring dosimeter within a medical device manufacturing facility are discussed. The setting of process parameters to reduce inefficiencies in irradiation of products are also introduced. (author)

  3. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  4. Utilization technique on variable speed device

    International Nuclear Information System (INIS)

    1989-12-01

    This reports of workshop on power technology describes using technique on variable speed device, which deals with alternating current situation and prospect of current variable speed device, technical trend and prospect of electronics, reduce expenses by variable speed device, control technique, measurement technology, high voltage variable speed device, recent trend of inverter technology, low voltage and high voltage variable speed device control device, operating variable speed device in cooling fan, FDF application and defect case of variable speed device, cooling pump application of water variable transformer, inverter application and energy effect of ventilation equipment, application of variable speed device and analysis of the result of operation and study for application of variable speed technology.

  5. Nanoplasmonics advanced device applications

    CERN Document Server

    Chon, James W M

    2013-01-01

    Focusing on control and manipulation of plasmons at nanometer dimensions, nanoplasmonics combines the strength of electronics and photonics, and is predicted to replace existing integrated circuits and photonic devices. It is one of the fastest growing fields of science, with applications in telecommunication, consumer electronics, data storage, medical diagnostics, and energy.Nanoplasmonics: Advanced Device Applications provides a scientific and technological background of a particular nanoplasmonic application and outlines the progress and challenges of the application. It reviews the latest

  6. Superconductor electronic device applications

    International Nuclear Information System (INIS)

    VanDuzer, T.

    1989-01-01

    Superconductors are becoming important in many applications where high sensitivity or speed is required. In this paper the authors give brief introduction to superconductive device physics and some comments on the role of high-temperature superconductors. They then present the basic principles of a number of applications in metrology, electromagnetic sensing, and analog and digital circuits. They conclude with the prospects for hybrid semiconductor-superconductor devices, circuits, and systems

  7. Nanoelectronic device applications handbook

    CERN Document Server

    Morris, James E

    2013-01-01

    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  8. Multi-Device Knob Utility for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Michael; Chevtsov, Sergei; Chu, Chungming Paul; Fairley, Diane; Krejcik, Patrick; Rogind, Deborah; Smith, Howard; White, Greg; Yocky, Gerald; /SLAC

    2009-12-09

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) has developed a new Multi-Device Knob Utility (MKB) based on the Experimental Physics and Industrial Control System (EPICS) toolkit for controlling one or more Process Variables (PVs) in unison, or simultaneously, from a physical knob located in the control room, or from various software tools such as the EPICS Extensible Display Manager (EDM) or a Swing slider in Java. A group of devices are hooked up to a knob, and then the value written to the devices is a simple function of the value of the knob. This is used, most commonly, to create a bump in the electron beam for the Linac Coherent Light Source (LCLS). Control system variables typically controlled are magnetic fields, phases, and timing offsets. This paper describes the technologies used to implement this utility.

  9. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  10. Solar heat utilization for adsorption cooling device

    Science.gov (United States)

    Pilát, Peter; Patsch, Marek; Malcho, Milan

    2012-04-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  11. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  12. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  13. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  14. High speed serdes devices and applications

    CERN Document Server

    Stauffer, David R; Sorna, Michael A; Dramstad, Kent; Ogilvie, Clarence Rosser; Amanullah, Mohammad; Rockrohr, James Donald

    2008-01-01

    Offers an understanding of the features and functions typically found on HSS devices. This book explains how these HSS devices are used in protocol applications and the analysis which must be performed to use such HSS devices.

  15. Ferromagnetic Swimmers - Devices and Applications

    Science.gov (United States)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  16. Utilizing Mobile Devices to Enrich the Learning Style of Students

    Science.gov (United States)

    McGovern, Enda F.; Luna-Nevarez, Cuauhtemoc; Baruca, Arne

    2017-01-01

    As digital technologies evolve in education, business faculty have increased access to an extensive range of mobile devices and online applications to help them inspire students' passion for learning. Adopting new digital approaches to teaching can also enhance the learning style of students who are immersed in the use of digital devices. How can…

  17. Laboratory for Development, Calibration and Utilization of MEMS Devices

    National Research Council Canada - National Science Library

    Reshotko, Eli

    1997-01-01

    ... (notification letter dated 28 May 1997) to 31 May 1997. This DURIP equipment grant has provided us with the means to proceed in our development of MEMS devices for fluid dynamic and aerodynamic applications...

  18. Seismic Device UVS 1504, possibilities of its Utilization

    Directory of Open Access Journals (Sweden)

    Leššo Igor

    1996-09-01

    Full Text Available Department of Mining and Geotechnics for many years deals with questions of the technical seismicity. In the paper are given possibilities of utilizing the UVS 1504 device and results obtained from the measurement of seismic effects of blasting as well as others sources of bursts. The measurements showed that this device enables to measure parameters and to evaluate measured data quickly, reliably, and with a very high precision. The device enables evaluating individual time degrees of blasts, determining the law of attenuation of the seismic waves, and precise determination of the maximum charge permissible for futher advance of the blasting in given conditions.

  19. Multi-Device Knob Utility for LCLS at SLAC

    International Nuclear Information System (INIS)

    Zelazny, Michael

    2009-01-01

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) has developed a new Multi-Device Knob Utility (MKB) based on the Experimental Physics and Industrial Control System (EPICS) toolkit for controlling one or more Process Variables (PVs) in unison, or simultaneously, from a physical knob located in the control room, or from various software tools such as the EPICS Extensible Display Manager (EDM) or a Swing slider in Java. A group of devices are hooked up to a knob, and then the value written to the devices is a simple function of the value of the knob. This is used, most commonly, to create a bump in the electron beam for the Linac Coherent Light Source (LCLS). Control system variables typically controlled are magnetic fields, phases, and timing offsets. This paper describes the technologies used to implement this utility.

  20. Flexible devices: from materials, architectures to applications

    Science.gov (United States)

    Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong

    2018-01-01

    Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

  1. Structure and application of galvanomagnetic devices

    CERN Document Server

    Weiss, H

    1969-01-01

    International Series of Monographs on Semiconductors, Volume 8: Structure and Application of Galvanomagnetic Devices focuses on the composition, reactions, transformations, and applications of galvanomagnetic devices. The book first ponders on basic physical concepts, design and fabrication of galvanomagnetic devices, and properties of galvanomagnetic devices. Discussions focus on changes in electrical properties on irradiation with high-energy particles, magnetoresistor field-plate, Hall generator, preparation of semiconductor films by vacuum deposition, structure of field-plate magnetoresist

  2. Variable wavelength selection devices: Physics and applications

    Science.gov (United States)

    Xianyu, Haiqing

    Variable wavelength selection (VWS) achieved by implementing tunability to wavelength discriminating devices has generated great interest in basic science, applied physics, and technology. This thesis focuses on the underlying physics and application of several novel wavelength discriminating devices. Holographical polymer dispersed liquid crystals (HPDLCs) are switchable volume gratings formed by exposing a photopolymerizable monomer and liquid crystal mixture to interfering monochromatic light beams. An HPDLCs wavelength discriminating ability along with its switchability, allow it to be utilized in VWS devices. A novel mode HPDLC, total internal reflection (TIR) HPDLC, has been developed as a wavelength selective filter. The grating planes in this device are tilted so that the diffracted light experiences total internal reflection at the glass-air interface and is trapped in the cell until it eventually escapes from an edge. A VWS device is demonstrated by stacking TIR HPDLCs operating at different wavelengths. Converging or diverging recording beams are employed to fabricate chirped reflection HPDLCs with a pitch gradient along the designated direction, creating chirped switchable reflection gratings (CSRGs). A pixelated version of the CSRG is developed herein, and a dynamic spectral equalizer is presented by combining the pixelated CSRG with a prism (for wavelength discrimination). A switchable circular to point converter (SCPC), which enables the random selection of the wavelength bands divided by the Fabry-Perot interferometer utilizing the controllable beam steering capability of transmission HPDLCs, is demonstrated. A random optical cross-switch (TIROL) can be created by integrating a Fabry-Perot interferometer with a stack of SCPC units. The in-plane electric field generated by the interdigitated electrodes is utilized to elongate the helical pitch of a cholesteric liquid crystal and thereby induces a red shift of the transmission reflection peak

  3. Utility of Nasogastric Tube for Medical and Surgical Oncology of Gastric Cancer: A Prospective Institutional Study on a New and Precious Application of an Old and Economic Device.

    Science.gov (United States)

    Virgilio, Edoardo; Balducci, Genoveffa; Mercantini, Paolo; Giarnieri, Enrico; Giovagnoli, Maria Rosaria; Montagnini, Monica; Proietti, Antonella; D'Urso, Rosaria; Cavallini, Marco

    2018-01-01

    Concerning gastric cancer (GC), nasogastric tube (NGT) is routinely employed for peri-operative decompression and palliative enteral nutrition. Additionally, we believe to have found a further application. Between April 2012 and April 2017, 96 GC patients received preoperative nasogastric lavage (GL). All samples were cytologically examined to detect the presence (GL1) or absence (GL0) of malignant cells. Data were analyzed with classificatory, staging and prognostic purpose. GL1 was detected in 46 GC patients: association with tumor depth, lymph node and distant metastasis, lymphovascular and peri-neural invasion, diffuse type and signet-ring cells was significant (respectively p=0.0274, 0.0324, 0.0446, 0.0287, <0.0001, 0.0413, <0.0001). GL1 entailed significantly poorer overall (OS), progression-free, disease-free survival and tumor progression (18 vs. 32 months). At multivariate analysis, GL1 was an independent prognostic factor for worse OS (p=0.0287). NGT seems an economic oncologic measure useful for obtaining information on GC staging and prognosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  5. MEMS variable capacitance devices utilizing the substrate: I. Novel devices with a customizable tuning range

    KAUST Repository

    Elshurafa, Amro M.

    2010-03-22

    This paper, the first in a series of two, presents a paradigm shift in the design of MEMS parallel plate PolyMUMPS variable capacitance devices by proposing two structures that utilize the substrate and are able to provide predetermined, customizable, tuning ranges and/or ratios. The proposed structures can provide theoretical tuning ranges anywhere from 4.9 to 35 and from 3.4 to 26 respectively with a simple, yet effective, layout modification as opposed to the previously reported devices where the tuning range is fixed and cannot be varied. Theoretical analysis is carried out and verified with measurements of fabricated devices. The first proposed device possessed initially a tuning range of 4.4. Two variations of the structure having tuning ranges of 3 and 3.4, all at 1 GHz, were also successfully developed and tested. The second proposed variable capacitance device behaved as a switch. © 2010 IOP Publishing Ltd.

  6. Context aware mobile application for mobile devices

    CSIR Research Space (South Africa)

    Masango, Mfundo

    2016-08-01

    Full Text Available Android smart devices have become an integral part of peoples lives, having evolved beyond the capability of just sending a text message or making a call. Currently, smart devices have applications that can restrict access to other applications...

  7. Utilization of Remote Experimentation in Mobile Devices for Education

    Directory of Open Access Journals (Sweden)

    Willian Rochadel

    2012-07-01

    Full Text Available In this paper the authors intend to demonstrate the utilization of remote experimentation (RE using mobile computational devices in the Science areas of the elementary school, with the purpose to develop practices that will help in the assimilation process of the subjects taught in classroom seeking to interlink them with the daily students’ activities. Allying mobility with RE we intend to minimize the space-temporal barrier giving more availability and speed in the information access. The implemented architecture utilizes technologies and freely distributed softwares with open code resources besides remote experiments developed in the Laboratory of Remote Experimentation (RExLab of Federal University of Santa Catarina (UFSC, in Brazil, through the physical computation platform of the “open hardware” of construction of our own. The utilization of open code computational tools and the integration of hardware to the 3D virtual worlds, accessible through mobile devices, give to the project an innovative face with a high potential for reproducibility and reusability.

  8. Secure smart embedded devices, platforms and applications

    CERN Document Server

    Markantonakis, Konstantinos

    2013-01-01

    New generations of IT users are increasingly abstracted from the underlying devices and platforms that provide and safeguard their services. As a result they may have little awareness that they are critically dependent on the embedded security devices that are becoming pervasive in daily modern life. Secure Smart Embedded Devices, Platforms and Applications provides a broad overview of the many security and practical issues of embedded devices, tokens, and their operation systems, platforms and main applications. It also addresses a diverse range of industry/government initiatives and consider

  9. Vaginoscopy in Ewes Utilizing a Laparoscopic Surgical Port Device

    Directory of Open Access Journals (Sweden)

    Jeremiah Easley

    2017-01-01

    Full Text Available Vaginoscopy allows for diagnostic evaluation and treatment of the vaginal vault. A laparoscopic surgical port device and rigid telescope were utilized for serial vaginoscopy in 8 healthy anesthetized ewes. Vaginoscopy examinations were performed in each ewe at days 1, 14, and 28. This technique was well-tolerated and facilitated carbon dioxide vaginal inflation, complete vaginal examination, identification of the cervix, and targeted biopsy collection. No complications were encountered during or following the vaginoscopy procedures. The laparoscopic port device was well-suited to the ewe vulvar size. This technique could be applied to clinical evaluation in ewes for the purposes of examination, biopsy, culture, foreign body removal, and minor surgical procedures.

  10. Aesthetic Applications of Radiofrequency Devices.

    Science.gov (United States)

    Sadick, Neil; Rothaus, Kenneth O

    2016-07-01

    Radiofrequency (RF)-based devices are used to improve face and neck laxity, a major feature of aging that until recently could only be addressed with surgery. Although these treatments are not meant to replace surgical procedures, patient satisfaction studies have been consistently high. For physicians offering these skin rejuvenation procedures, it is essential to have intimate knowledge of how the devices work, select appropriate candidates, set realistic expectations, and combine treatments to optimize outcomes. This article discusses the various noninvasive RF technologies currently in use and reviews pertinent clinical studies evaluating their efficacy and safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Novel Biomedical Device Utilizing Light-Emitting Nanostructures Developed

    Science.gov (United States)

    Scardelletti, Maximilian C.; Goldman, Rachel

    2004-01-01

    and viruses in fluids. A novel sample preparation technique that exploits micromembrane filtration and centrifugation methods has been developed for this device. The technique greatly reduces the time required to prepare the sample and the amount of sample needed to perform an accurate and comprehensive analysis. Last, and probably most important, because of the nano-light-emitting source and the novel sample preparation technique, the overall size of the device could be reduced dramatically. This device will serve as a nanoscale lab-on-a-chip for in situ microorganism detection and will enable tests to be performed on a time scale of minutes rather than days. Thus, it is ideally suited for monitoring the environmental conditions onboard the International Space Station and the space shuttles, thereby enhancing the safety of the astronauts. In addition, the device has important commercial applications, such as detecting the presence of bacteria and viruses in water at food- and beverage-processing centers, water treatment plants, and restaurants. Also, this technology has the potential to be used to detect bacteria and viruses in more complex fluids, such as blood--which in all likelihood would revolutionize blood analysis as it is performed today. This project was made possible through the Director's Discretionary Fund and is ongoing. In addition, this project provides funding to Dr. Rachel Goldman of the University of Michigan for the research and development of nanostructured quantum dots.

  12. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  13. Hydrogel-based devices for biomedical applications

    NARCIS (Netherlands)

    Deligkaris, Kosmas; Tadele, T.S.; Olthuis, Wouter; van den Berg, Albert

    2010-01-01

    This review paper presents hydrogel-based devices for biomedical applications. The first part of the paper gives a comprehensive, qualitative, theoretical overview of hydrogels' synthesis and operation. Crosslinking methods, operation principles and transduction mechanisms are discussed in this

  14. Some Improvements in Utilization of Flash Memory Devices

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.

  15. FED-R: a fusion engineering device utilizing resistive magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Kalsi, S.S. (eds.)

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  16. Survey of utility robotic applications (1990)

    International Nuclear Information System (INIS)

    1991-08-01

    This special report presents the results of a survey to identify areas of usage where utilities have found robotics to be most beneficial. The survey, which was conducted by U/M RUG, an ad hoc robotics group, should be of interest to all utilities interested in proven applications. The survey shows that robotics are finding increasing use in maintenance tasks, and in cleanup applications. Extended usage of precision positioning, dexterity, intelligence and mobility is not yet apparent. Improvements in these areas would greatly aid maintenance applications of robotics. 7 figs

  17. Processes for multi-layer devices utilizing layer transfer

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  18. Microoxygraph Device for Biosensoristic Applications

    Directory of Open Access Journals (Sweden)

    A. Aloisi

    2016-01-01

    Full Text Available Oxygen consumption rate (OCR is a significant parameter helpful to determine in vitro respiratory efficiency of living cells. Oxygen is an excellent oxidant and its electrocatalytic reduction on a noble metal allows accurately detecting it. By means of microfabrication technologies, handy, low-cost, and disposable chip can be attained, minimizing working volumes and improving sensitivity and response time. In this respect, here is presented a microoxygraph device (MOD, based on Clark’s electrode principle, displaying many advantageous features in comparison to other systems. This lab-on-chip platform is composed of a three-microelectrode detector equipped with a microgrooved electrochemical cell, sealed with a polymeric reaction chamber. Au working/counter electrodes and Ag/AgCl reference electrode were fabricated on a glass slide. A microchannel was realized by photoresist lift-off technique and a polydimethylsiloxane (PDMS nanoporous film was integrated as oxygen permeable membrane (OPM between the probe and the microreaction chamber. Electrochemical measurements showed good reproducibility and average response time, assessed by periodic injection and suction of a reducing agent. OCR measurements on 3T3 cells, subjected, in real time, to chemical stress on the respiratory chain, were able to show that this chip allows performing consistent metabolic analysis.

  19. Dynamic Analysis of Mobile Device Applications

    Energy Technology Data Exchange (ETDEWEB)

    Corey Thuen

    2013-01-01

    The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.

  20. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  1. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  2. Organic nanowire fabrication and device applications.

    Science.gov (United States)

    Min, Sung-Yong; Kim, Tae-Sik; Lee, Yeongjun; Cho, Himchan; Xu, Wentao; Lee, Tae-Woo

    2015-01-07

    Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next-generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applications such as flexible displays and flexible photovoltaics. Numerous methods can be used to prepare ONWs, but the practical industrial application of ONWs has not been achieved because of the lack of reliable techniques for controlling and patterning of individual nanowires. Therefore, an "individually controllable" technique to fabricate ONWs is essential for practical device applications. In this paper, three types of fabrication methods of ONWs are reviewed: non-alignment methods, massive-alignment methods, and individual-alignment methods. Recent research on electronic and photonic device applications of ONWs is then reviewed. Finally, suggestions for future research are put forward. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. MEMS variable capacitance devices utilizing the substrate: II. Zipping varactors

    KAUST Repository

    Elshurafa, Amro M.

    2010-03-22

    This paper, the second and last in this series, introduces PolyMUMPS zipping varactors that exploit the substrate and provide a high tuning range and a high quality factor. Building on the important findings of part I of this paper, the substrate was utilized effectively once again in the design and fabrication of zipping varactors to attain devices with very good performance. Two zipping varactors are proposed, analysed theoretically, simulated, fabricated and tested successfully. The tuning range, quality factor and actuation voltage of those varactors are 4.5, 16.4, 55 V and 4.2, 17, 55 V respectively. Finally, and based on one of the proposed zipping varactors, a very large capacitance value varactor array, with a tuning range of 5.3, was designed and tested. To the best of our knowledge, these zipping varactors exhibit the best reported characteristics in PolyMUMPS to date within their category in terms of tuning range, quality factor, required actuation voltage and total area consumed. © 2010 IOP Publishing Ltd.

  4. A Novel Biomedical Device Utilizing Light Emitting Nano-Structures

    Science.gov (United States)

    Varaljay, Vanessa A.

    2004-01-01

    This paper will discuss the development of a novel biomedical detection device that will be used to detect microorganisms with the use of infrared fluorochrome polymers attached to antibodies in fluids such as water. The fluorochrome polymers emit light in the near inferred region (NIR), approximately 805 nm, when excited by an NIR laser at 778 nm. The device could remarkably change the way laboratory testing is done today. The testing process is usually performed on a time scale of days while our device will be able to detect microorganisms in minutes. This type of time efficient analysis is ideal for use aboard the International Space Station and the Space Shuttle (ISS/SS) and has many useful commercial applications, for instance at a water treatment plant and food processing plants. With more research and experimentation the testing might also one day be used to detect bacteria and viruses in complex fluids such as blood, which would revolutionize blood analysis as it is performed today. My contribution to the project has been to develop a process which will allow an antibody/fluorescent dye pair to be conjugated to a specific bacteria or virus and than to to be separated from a sample body of water for detection. The antibody being used in this experiment is anti beta galactosidase and its complement enzyme is beta galactosidase, a non harmful derivative of E. Coli. The anti beta galactosidase has been conjugated to the fluorochrome polymer, IRDye800, which emits at approximately 806 nm. The dye when excited by the NIR laser emits a signal which is detected by a spectrometer and then is read by state of the art computer software. The state-of-the-art process includes incubating the anti beta galactosidase and beta galactosidase in a phosphate buffer solution in a test tube, allowing the antibody to bind to specific sites on the enzyme. After the antibody is bound to the enzyme, it is centrifuged in specific filters that will allow free antibody to wash away and

  5. Development of beam utilization/application technology

    International Nuclear Information System (INIS)

    Choi, B. H.; Kim, Y.K.; Song, T.Y.

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs

  6. Development of beam utilization/application technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. H.; Kim, Y.K.; Song, T.Y. [and others

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.

  7. Voltage controlled spintronics device for logic applications.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S. D.; You, C.-Y.

    1999-09-03

    We consider logic device concepts based on our previously proposed spintronics device element whose magnetization orientation is controlled by application of a bias voltage instead of a magnetic field. The basic building block is the voltage-controlled rotation (VCR) element that consists of a four-layer structure--two ferromagnetic layers separated by both nanometer-thick insulator and metallic spacer layers. The interlayer exchange coupling between the two ferromagnetic layers oscillates as a function of applied voltage. We illustrate transistor-like concepts and re-programmable logic gates based on VCR elements.

  8. Planning manual for utility application of WECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.L. (ed.)

    1979-06-01

    A two-part approach for evaluating the feasibility of wind electric conversion systems (WECS) for utility application is presented and explained. Assessment of wind energy potential, sites, interconnection, and capital and production costing is included. The first part is a brief preliminary procedure used to determine whether the expense and effort of a detailed investigation is justified. The preliminary procedure requires assumptions which limit its accuracy. If the result indicates that WECS have probable potential for a specific utility application, then a set of modifications to detailed conventional planning procedures is developed. The modifications include discussion of wind velocity estimation and effects of site features on wind velocity, institutional problems, siting, choosing generation cases with WECS, reliability considerations, production costing, and operating problems. Appendices include an annotated bibliography, wind measurement methods, procedure for estimating WECS capacity factor, and a method for generating correlated wind velocity samples for use in production cost programs.

  9. Plasma electronics applications in microelectronic device fabrication

    CERN Document Server

    Makabe, Toshiaki

    2014-01-01

    Beyond enabling new capabilities, plasma-based techniques, characterized by quantum radicals of feed gases, hold the potential to enhance and improve many processes and applications. Following in the tradition of its popular predecessor, Plasma Electronics, Second Edition: Applications in Microelectronic Device Fabrication explains the fundamental physics and numerical methods required to bring these technologies from the laboratory to the factory. Emphasizing computational algorithms and techniques, this updated edition of a popular monograph supplies a complete and up-to-date picture of plas

  10. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  11. Physics and applications of electrochromic devices

    Science.gov (United States)

    Pawlicka, Agnieszka; Avellaneda, Cesar O.

    2003-07-01

    Solid state electrochromic devices (ECD) are of considerable technological and commercial interest because of their controllable transmission, absorption and/or reflectance. For instance, a major application of these devices is in smart windows that can regulate the solar gains of buildings and also in glare attenuation in automobile rear view mirrors. Other applications include solar cells, small and large area flat panel displays, satellite temperature control, food monitoring, and document authentication. A typical electrochromic device has a five-layer structure: GS/TC/EC/IC/IS/TC/GS, where GS is a glass substrate, TC is a transparent conductor, generally ITO (indium tin oxide) or FTO (fluorine tin oxide), EC is an electrochromic coating, IC is an ion conductor (solid or liquid electrolyte) and IS is an ion storage coating. Generally, the EC and IS layers are deposited separately on the TC coatings and then jointed with the IC and sealed. The EC and IS are thin films that can be deposited by sputtering, CVD, sol-gel precursors, etc. There are different kinds of organic, inorganic and organic-inorganic films that can be used to make electrochromic devices. Thin electrochromic films can be: WO3, Nb2O5, Nb2O5:Li+ or Nb2O5-TiO2 coatings, ions storage films: CeO2-TiO2, CeO2-ZrO2 or CeO2-TiO2-ZrO2 and electrolytes like Organically Modified Electrolytes (Ormolytes) or polymeric films also based on natural polymers like starch or cellulose. These last are very interesting due to their high ionic conductivity, high transparency and good mechanical properties. This paper describes construction and properties of different thin oxide and polymeric films and also shows the optical response of an all sol-gel electrochromic device with WO3/Ormolyte/CeO2-TiO2 configuration.

  12. Diamond semiconductor technology for RF device applications

    Science.gov (United States)

    Gurbuz, Yasar; Esame, Onur; Tekin, Ibrahim; Kang, Weng P.; Davidson, Jimmy L.

    2005-07-01

    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions which forms the basis for a technology choice in an RF device/system (such as transceiver or receiver) structure. Based on our literature survey, we concluded that, despite the technological challenges and few mentioned examples, diamond can seriously be considered as a base material for RF electronics, especially RF power circuits, where the important parameters are high speed, high power density, efficient thermal management and low signal loss in high power/frequencies. Simulation and experimental results are highly regarded for the surface acoustic wave (SAW) and field emission (FE) devices which already occupies space in the RF market and are likely to replace their conventional counterparts. Field effect transistors (FETs) are the most promising active devices and extremely high power densities are extracted (up to 30 W/mm). By the surface channel FET approach 81 GHz operation is developed. Bipolar devices are also promising if the deep doping problem can be solved for operation at room temperature. Pressure, thermal, chemical and acceleration sensors have already been demonstrated using micromachining/MEMS approach, but need more experimental results to better exploit thermal, physical/chemical and electronic properties of diamond.

  13. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  14. Nanostructured Transparent Conducting Oxides for Device Applications

    Science.gov (United States)

    Dutta, Titas

    2011-12-01

    Research on transparent conducting oxides (TCOs) alternative to indium tin oxide (ITO) has attracted a lot of attention due to the serious concern related to cost and chemical stability of indium tin oxide. The primary aim of this research is to develop low cost alternative transparent conducting oxides with an eye towards (1) increasing the organic solar cell efficiency and (2) fabricating transparent electronic devices utilizing p-type TCOs. To investigate the fundamental properties, the novel TCO films have been grown on sapphire and economical glass substrates using pulsed laser deposition (PLD) technique. The films were also grown under different deposition conditions in order to understand the effect of processing parameters on the film properties. The characteristics of the thin films have been investigated in detail using (X-ray diffraction, TEM, X-ray photoelectron spectroscopy (XPS), UV- photoelectron spectroscopy (UPS), four probe resistivity and UV-Vis transmittance measurements) in order to establish processing-structure-property correlation. ZnO doped with group III elements is a promising candidate because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function (4.4 eV, compared to that of 4.8 eV for ITO), which increases the energy barrier and affects the carrier transport across ZnGa0.05O/organic layer interface. To overcome this issue of ZnO based TCOs, the growth of bilayered structure consisting of very thin MoOx (2.0 laser ablation is proposed. The multiple oxidation states present in the over layers (Mo4+, Mo 5+ and Mo6+ in MoOx and Ni2+ and Ni3+ in NiO1+x), which result in desired TCO characteristics were determined and controlled by growth parameters and optimal target composition. These optimized bilayer films exhibited good optical transmittance (≥ 80%) and low resistivity of ˜ 10-4 O-cm. The optimized NiO1+x / GZO and MoOx / GZO

  15. Factors affecting the utilization of safety devices by commercial ...

    African Journals Online (AJOL)

    Background: Motorcycle crashes are common causes of morbidity and mortality for both riders and passengers. To prevent and reduce the severity of injuries sustained through road traffic accidents (RTA) many countries enforce the use of safety devices while riding. Certain factors including non-enforcement of the existing ...

  16. Utilization of ocular safety devices among Sawmill workers in Nigeria

    African Journals Online (AJOL)

    Objective: The study was carried out to assess the use of eye safety devices in sawmill workers in Nigeria. Methods: A cross-sectional study of sawmill workers was carried out using pretested questionnaires. Ocular examination was done on site with a pen torch, portable hand-held slit lamp bio-microscope and direct ...

  17. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    Science.gov (United States)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  18. On iris detection for mobile device applications

    Science.gov (United States)

    Mohamed, Magdi A.; Sarkis, Michel; Bi, Ning; Zhong, Xin; Qi, Yingyong

    2014-09-01

    A novel transform called Gradient Direction Transform for fast detection of naturally curved items in digital images is described in this article. This general purpose image transform is defined to suit platforms with limited memory and processing footprints by utilizing only additions and simple shift and bitwise operations. We present this unique algorithmic approach in application to real world problems of iris detection. The new approach is tested on a large data set and the experiments show promising and superior performance compared to existing techniques.

  19. Emerging digital micromirror device (DMD) applications

    Science.gov (United States)

    Dudley, Dana; Duncan, Walter M.; Slaughter, John

    2003-01-01

    For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.

  20. Fabrication of nanofluidic devices utilizing proton beam writing and thermal bonding techniques

    International Nuclear Information System (INIS)

    Wang, L.P.; Shao, P.G.; Kan, J.A. van; Ansari, K.; Bettiol, A.A.; Pan, X.T.; Wohland, T.; Watt, F.

    2007-01-01

    The fabrication of polymer lab-on-a-chip systems for applications in Chemistry and Biology is one of the envisaged niche areas for the Proton Beam Writing (PBW) technique developed at the Centre for Ion Beam Applications (CIBA). Utilizing a highly focused beam of MeV protons, well-defined nanostructures with smooth and straight side walls have been directly written in a 500 nm to 10 μm thick PMMA layer spin coated onto a Kapton substrate. By subsequently thermally bonding the fabricated structures to bulk PMMA and carefully peeling off the Kapton, nanostructures can be attached to bulk PMMA. Finally, by bonding a PMMA sheet to the bottom side of the structure, an integrated PMMA device with enclosed multiple high aspect ratio nanochannels can be realized. Preliminary experiments conducted in order to test this polymeric device indicate good fluidic properties. The nanochannels can be easily filled with dye solution using both pressure and capillary action in the case of hydrophilic solutions

  1. A low-cost man-portable free-space optics communication device for ethernet applications

    OpenAIRE

    Alrasheedi, Mohammad H.

    2005-01-01

    Approved for public release, distribution is unlimited This thesis sought to design and implement a low-cost, portable, Free-Space Optics (FSO) communications device for Ethernet applications. Under some circumstances such a device would have utility at a Combat Operations Center (COC), a Field Artillery Position, or wherever else fiber optic cable is used in garrison or field. The design was based on commercial off the shelf components originally designed for fiber optic applications. Bas...

  2. Contemporary optoelectronics materials, metamaterials and device applications

    CERN Document Server

    Sukhoivanov, Igor

    2016-01-01

    This book presents a collection of extended contributions on the physics and application of optoelectronic materials and metamaterials.   The book is divided into three parts, respectively covering materials, metamaterials and optoelectronic devices.  Individual chapters cover topics including phonon-polariton interaction, semiconductor and nonlinear organic materials, metallic, dielectric and gyrotropic metamaterials, singular optics, parity-time symmetry, nonlinear plasmonics, microstructured optical fibers, passive nonlinear shaping of ultrashort pulses, and pulse-preserving supercontinuum generation. The book contains both experimental and theoretical studies, and each contribution is a self-contained exposition of a particular topic, featuring an extensive reference list.  The book will be a useful resource for graduate and postgraduate students, researchers and engineers involved in optoelectronics/photonics, quantum electronics, optics, and adjacent areas of science and technology.

  3. Utilizing Wireless Polling Devices to Enhance Classroom Participation

    Directory of Open Access Journals (Sweden)

    Cathy Hall

    2007-06-01

    Full Text Available Actively engaging students in learning processes, especially as class sizes increase, has become a major challenge for many in education. While technological advances have begun to provide viable options, it can be a daunting task to choose among the technology available that will serve one's specific needs. The first part of this paper discusses some of the options that allow for more active learning, discussion of faculty/student factors in adoption considerations, and a focus on wireless polling devices (WPD in particular. The second section discusses data obtained from student opinion surveys on the use of WPDs in undergraduate classrooms and assessment of WPD technology on student learning via course grades.

  4. BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.

    Science.gov (United States)

    Ma, Rong-Hua; Chen, Yu-Chia

    2012-01-01

    A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.

  5. BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Yu-Chia Chen

    2011-12-01

    Full Text Available A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV panel and an all-solid-state electrochromic (EC stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO3/Ta2O5/ITO and one stack comprising ITO/WO3/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO3/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V. The experimental results show that the smart window incorporating an ITO/WO3/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750–1,500 Lux under typical summertime conditions in Taiwan.

  6. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume VIII. Device utilities

    International Nuclear Information System (INIS)

    Erickson, D.T.

    1982-01-01

    This report describes the activities conducted during the Preliminary Design Period for the Device Utilities Systems. All GAI preliminary specifications, drawings, and reports (listed in Section 4.0) have been transmitted to ORNL for review and approval. Device Utility Systems Descriptions are also presented in Section 4.0. The GAI Device Enclosure Gamma Radiation Analysis is presented in Appendix B. Pending design criteria revisions are described in Section 6.0. A type B Change Notice Request (CNR) has been transmitted to GAI. The Type B CNR authorizes cost and schedule assessment for each revision identified. Formal Proposed Design Changes (PDC's) will be provided to ORNL when this data is available

  7. Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices.

    Science.gov (United States)

    Liao, Chung-Yu; Su, Yu-Chuan

    2010-02-01

    We have successfully demonstrated the formation of biodegradable microcapsules utilizing PDMS double-emulsification devices. Specially designed 3D PDMS microchannels with surfaces selectively modified by a self-aligned photografting process are employed to generate monodisperse water-in-organic-solvent-in-water (W/O/W) emulsions in a controlled manner. Mainly by varying the outer and inner fluid flow-rates, the dimensions of resulting double emulsions can be adjusted as desired. Meanwhile, biodegradable materials are dissolved in the middle organic solvent (in this work ethyl acetate is used), and solidified into microcapsules once the solvent is extracted. In the prototype demonstration, microcapsules made up of poly(L-lactic acid), trilaurin, and phosphocholine were successfully fabricated. In addition, it was also demonstrated that gamma-Fe(2)O(3) nanoparticles can be simultaneously embedded into the microcapsules, which consequently become responsive to electromagnetic stimulation. As such, the presented PDMS microfluidic devices could potentially serve as versatile encapsulation apparatus, and the fabricated biodegradable microcapsules could function as controlled delivery systems, which are desired for a variety of biological and pharmaceutical applications.

  8. Utilization of Smartphone Applications by Anesthesia Providers

    Directory of Open Access Journals (Sweden)

    Michael S. Green

    2018-01-01

    Full Text Available Health care-related apps provide valuable facts and have added a new dimension to knowledge sharing. The purpose of this study is to understand the pattern of utilization of mobile apps specifically created for anesthesia providers. Smartphone app stores were searched, and a survey was sent to 416 anesthesia providers at 136 anesthesiology residency programs querying specific facets of application use. Among respondents, 11.4% never used, 12.4% used less than once per month, 6.0% used once per month, 12.1% used 2-3 times per month, 13.6% used once per week, 21% used 2-3 times per week, and 23.5% used daily. Dosage/pharmaceutical apps were rated the highest as most useful. 24.6% of the participants would pay less than $2.00, 25.1% would pay $5.00, 30.3% would pay $5–$10.00, 9.6% would pay $10–$25.00, 5.1% would pay $25–$50.00, and 5.1% would pay more than $50.00 if an app saves 5–10 minutes per day or 30 minutes/week. The use of mobile phone apps is not limited to reiterating information from textbooks but provides opportunities to further the ever-changing field of anesthesiology. Our survey illustrates the convenience of apps for health care professionals. Providers must exercise caution when selecting apps to ensure best evidence-based medicine.

  9. Mobile devices and computing cloud resources allocation for interactive applications

    Directory of Open Access Journals (Sweden)

    Krawczyk Henryk

    2017-06-01

    Full Text Available Using mobile devices such as smartphones or iPads for various interactive applications is currently very common. In the case of complex applications, e.g. chess games, the capabilities of these devices are insufficient to run the application in real time. One of the solutions is to use cloud computing. However, there is an optimization problem of mobile device and cloud resources allocation. An iterative heuristic algorithm for application distribution is proposed. The algorithm minimizes the energy cost of application execution with constrained execution time.

  10. Porous Microfluidic Devices - Fabrication adn Applications

    NARCIS (Netherlands)

    de Jong, J.; Geerken, M.J.; Lammertink, Rob G.H.; Wessling, Matthias

    2007-01-01

    The major part of microfluidic devices nowadays consists of a dense material that defines the fluidic structure. A generic fabrication method enabling the production of completely porous micro devices with user-defined channel networks is developed. The channel walls can be used as a (selective)

  11. MARS and its applications at Northeast Utilities

    International Nuclear Information System (INIS)

    Khalil, Y.F.; Raines, J.C.

    1992-01-01

    The MAAP Accident Response System (MARS) for Northeast Utilities Millstone Unit 1 (MP-1) has been jointly developed by Northeast Utilities (NU) and Fauske ampersand Associates, Inc. (FAI). Millstone Unit 1 is a 2011-MW(thermal) boiling water reactor (BWR)/3 with a Mark-I containment. MARS/MP1 is user-friendly computer software that is structured to provide Northeast Utilities management and engineering staff with key insights during actual or simulated accidents. Times to core uncovery, vessel failure, and containment failure are among the figures of merit that can be obtained from this system. MARS/MP1 can predict future conditions of the MP-1 plant based on current plant data and their trends (time-dependent plant data). The objective of this paper is to present the research and development effort of the MARS/MP1 software at Northeast Utilities

  12. Web Application Development Utilizing Cloud Virtual Machine

    OpenAIRE

    Muukka, Olli

    2014-01-01

    The thesis goes through a development project where a web application was implemented to support the start-up company business operations. The main reason to implement a web application was the company needed a system where business data is centrally managed with cost-efficient, simple and easy tool. The deployed cloud service provided a platform for the web application. The alternative to the web application development was to deploy commercial customer relationship management tool, but the ...

  13. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.

    Science.gov (United States)

    Hwang, Bohee; Lee, Jang-Sik

    2017-08-01

    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and application of artificial rainfall device

    International Nuclear Information System (INIS)

    Gao Xiaomei; Li Zhaolin; Jia Xue; Tadatoshi Yamamoto; Shinichi Takebe

    2000-01-01

    An artificial sprinkling simulation device was designed and developed to be used for radioactive nuclides migration tests. In this device water drops are sprinkled through medical syringe needles which vibrate along a circle. After several year operation at the field test site, it was demonstrated that this device is stable and sprinkling homogeneous, with the rainfall intensity from 2 mm/h to 100 mm/h and the low limit of 2 mm/h. Compared with spraying nozzle, it is easy to control the rainfall quantity and sprinkling area, and the evaporation loss is small. The device can meet the requirement of radioactive nuclide migration test and may also be used for other purpose

  15. Wearable Device Control Platform Technology for Network Application Development

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2016-01-01

    Full Text Available Application development platform is the most important environment in IT industry. There are a variety of platforms. Although the native development enables application to optimize, various languages and software development kits need to be acquired according to the device. The coexistence of smart devices and platforms has rendered the native development approach time and cost consuming. Cross-platform development emerged as a response to these issues. These platforms generate applications for multiple devices based on web languages. Nevertheless, development requires additional implementation based on a native language because of the coverage and functions of supported application programming interfaces (APIs. Wearable devices have recently attracted considerable attention. These devices only support Bluetooth-based interdevice communication, thereby making communication and device control impossible beyond a certain range. We propose Network Application Agent (NetApp-Agent in order to overcome issues. NetApp-Agent based on the Cordova is a wearable device control platform for the development of network applications, controls input/output functions of smartphones and wearable/IoT through the Cordova and Native API, and enables device control and information exchange by external users by offering a self-defined API. We confirmed the efficiency of the proposed platform through experiments and a qualitative assessment of its implementation.

  16. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume VIII. Device utilities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D.T.

    1982-02-26

    This report describes the activities conducted during the Preliminary Design Period for the Device Utilities Systems. All GAI preliminary specifications, drawings, and reports (listed in Section 4.0) have been transmitted to ORNL for review and approval. Device Utility Systems Descriptions are also presented in Section 4.0. The GAI Device Enclosure Gamma Radiation Analysis is presented in Appendix B. Pending design criteria revisions are described in Section 6.0. A type B Change Notice Request (CNR) has been transmitted to GAI. The Type B CNR authorizes cost and schedule assessment for each revision identified. Formal Proposed Design Changes (PDC's) will be provided to ORNL when this data is available.

  17. Smart Inverters for Utility and Industry Applications

    DEFF Research Database (Denmark)

    Xue, Yaosuo; Guerrero, Josep M.

    2015-01-01

    Smart inverters are emerging with increasing renewable energy and smart grid development. While the recent work reviewed mostly focuses on defining standardized control functionalities and smart grid communication protocols, we take a holistic approach in this paper and propose a holon-type smart...... inverter concept, which features autonomous, adaptive, cooperative and plug-and-play functions. Self-awareness is also continually driven by power electronics inherently. These features can be favorable in a complex environment with more and more small-scale power electronics-based devices, and can reduce...

  18. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  19. Biomedical device innovation methodology: applications in biophotonics.

    Science.gov (United States)

    Beswick, Daniel M; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F; Maria, Peter Luke Santa

    2017-12-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Biomedical device innovation methodology: applications in biophotonics

    Science.gov (United States)

    Beswick, Daniel M.; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F.; Maria, Peter Luke Santa

    2018-02-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success.

  1. Augmented reality application utility for aviation maintenance work instruction

    Science.gov (United States)

    Pourcho, John Bryan

    Current aviation maintenance work instructions do not display information effectively enough to prevent costly errors and safety concerns. Aircraft are complex assemblies of highly interrelated components that confound troubleshooting and can make the maintenance procedure difficult (Drury & Gramopadhye, 2001). The sophisticated nature of aircraft maintenance necessitates a revolutionized training intervention for aviation maintenance technicians (United States General Accounting Office, 2003). Quite simply, the paper based job task cards fall short of offering rapid access to technical data and the system or component visualization necessary for working on complex integrated aircraft systems. Possible solutions to this problem include upgraded standards for paper based task cards and the use of integrated 3D product definition used on various mobile platforms (Ropp, Thomas, Lee, Broyles, Lewin, Andreychek, & Nicol, 2013). Previous studies have shown that incorporation of 3D graphics in work instructions allow the user to more efficiently and accurately interpret maintenance information (Jackson & Batstone, 2008). For aircraft maintenance workers, the use of mobile 3D model-based task cards could make current paper task card standards obsolete with their ability to deliver relevant, synchronized information to and from the hangar. Unlike previous versions of 3D model-based definition task cards and paper task cards, which are currently used in the maintenance industry, 3D model based definition task cards have the potential to be more mobile and accessible. Utilizing augmented reality applications on mobile devices to seamlessly deliver 3D product definition on mobile devices could increase the efficiency, accuracy, and reduce the mental workload for technicians when performing maintenance tasks (Macchiarella, 2004). This proposal will serve as a literary review of the aviation maintenance industry, the spatial ability of maintenance technicians, and benefits of

  2. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  3. Devices using resin wafers and applications thereof

    Science.gov (United States)

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL; Martin, Edward [Libertyville, IL; Arora, Michelle [Woodridge, IL; de la Garza, Linda [Woodridge, IL

    2009-03-24

    Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60.degree. C. to about 170.degree. C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.

  4. Device Data Protection in Mobile Healthcare Applications

    Science.gov (United States)

    Weerasinghe, Dasun; Rajarajan, Muttukrishnan; Rakocevic, Veselin

    The rapid growth in mobile technology makes the delivery of healthcare data and services on mobile phones a reality. However, the healthcare data is very sensitive and has to be protected against unauthorized access. While most of the development work on security of mobile healthcare today focuses on the data encryption and secure authentication in remote servers, protection of data on the mobile device itself has gained very little attention. This paper analyses the requirements and the architecture for a secure mobile capsule, specially designed to protect the data that is already on the device. The capsule is a downloadable software agent with additional functionalities to enable secure external communication with healthcare service providers, network operators and other relevant communication parties.

  5. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  6. Lasers and optoelectronics fundamentals, devices and applications

    CERN Document Server

    Maini, Anil K

    2013-01-01

    With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diag

  7. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  8. Mobile phone applications and the utilization of library services in ...

    African Journals Online (AJOL)

    Mobile phone applications and the utilization of library services in the university of Calabar library, Calabar, Nigeria. ... Global Journal of Educational Research ... The findings revealed that there was a significant relationship between Tweeter apps and the utilization of library services, (r=0.57*, P<.05, df=223, rcritical=.

  9. Frontiers of graphene and carbon nanotubes devices and applications

    CERN Document Server

    2015-01-01

    This book focuses on carbon nanotubes and graphene as representatives of nano-carbon materials, and describes the growth of new technology and applications of new devices. As new devices and as new materials, nano-carbon materials are expected to be world pioneers that could not have been realized with conventional semiconductor materials, and as those that extend the limits of conventional semiconductor performance. This book introduces the latest achievements of nano-carbon devices, processes, and technology growth. It is anticipated that these studies will also be pioneers in the development of future research of nano-carbon devices and materials. This book consists of 18 chapters. Chapters 1 to 8 describe new device applications and new growth methods of graphene, and Chapters 9 to 18, those of carbon nanotubes. It is expected that by increasing the advantages and overcoming the weak points of nanocarbon materials, a new world that cannot be achieved with conventional materials will be greatly expanded. W...

  10. Applications of Photonic Crystals to Photovoltaic Devices

    Science.gov (United States)

    Foster, Stephen

    Photonic crystals are structures that exhibit wavelength-scale spatial periodicity in their dielectric function. They are best known for their ability to exhibit complete photonic band gaps (PBGs) - spectral regions over which no light can propagate within the crystal. PBGs are specific instances of a more general phenomenon, in which the local photonic density of states can be enhanced or suppressed over different frequency ranges by tuning the properties of the crystal. This can be used to redirect, concentrate, or even trap light incident on the crystal. In this thesis, we investigate how photonic crystals can be used to enhance the efficiency of photovoltaic devices by trapping light. Due to the many different types of photovoltaic devices in existence (varying widely in materials used, modes of operation, and internal structure), there is no single light trapping architecture that can be applied to all photovoltaics. In this work we study a number of different devices: dye-sensitized solar cells, polymer solar cells, silicon-perovskite tandem cells, and single-junction silicon cells. We propose novel photonic crystal-based light trapping designs for each type of device, and evaluate these designs numerically to demonstrate their effectiveness. Full-field optical simulations of the cell are performed for each design, using either finite element method (FEM) or finite-difference time-domain (FDTD) techniques. Where appropriate, electrical modelling of the cell is also performed, through either the use of a simple one-diode model, or by obtaining full solutions to the semiconductor drift-diffusion equations within the cell. In all cases we find that the photonic crystal-based designs significantly outperform their non-nanostructured counterparts. In the case of dye-sensitized and polymer cells, enhancements in light absorption of 33% and 40% (respectively) are seen, relative to reference cells with planar geometries. In the case of silicon-perovskite tandem cells

  11. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  12. Nanopatterning and nanoscale devices for biological applications

    CERN Document Server

    Šelimović, Seila

    2014-01-01

    ""This book is a good reference for researchers interested in realizing bio-applications based on micro- and nanostructures, where their interface with liquids and biomolecules is the key point. The most important 'players' of micro- and nano-bioengineering are considered, from DNA to proteins and cells. The work is a good merger of basic concepts and real examples of applications.""-Danilo Demarchi, Politecnico di Torino, Italy

  13. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  14. Utility of a three-dimensional wound measurement device in pressure ulcers

    Directory of Open Access Journals (Sweden)

    Goto T

    2017-10-01

    Full Text Available Taichi Goto,1–3 Gojiro Nakagami,1,4 Ayano Nakai,1 Shuhei Noyori,1,5 Sanae Sasaki,6 Chieko Hayashi,6 Tomomitsu Miyagaki,7 Kaname Akamata,7 Hiromi Sanada1,4 1Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 2Global Leadership Initiative for an Age-Friendly Society, The University of Tokyo, Bunkyo-ku, 3Japan Society for the Promotion of Science, Chiyoda-ku, Japan; 4Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, 5Graduate Program for Social ICT Global Creative Leaders, The University of Tokyo, 6Department of Nursing, 7Department of Dermatology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan Introduction: Depth assessment is important for severe pressure ulcers (PUs; however, a device for the metric measurement of wounds, including depth, is lacking in clinical settings. Recent technological advancements have enabled the evaluation of the depth of wounds, and three-dimensional measurements are now available. The aim of this study was to test the utility of a newly developed three-dimensional wound measurement device in the clinical setting.Methods: We recruited three patients, each with a PU, who were being treated by a PU team at a university hospital. We measured the length, width, area, and maximal depth of the ulcers by using the device and with the conventional method. The ulcer volume was measured only with the device. The difference in measurement results of the device before and after debridement was compared in the first patient. The difference in measurement results between the conventional method and the device was compared in the second patient. Correlation coefficients between the conventional method and the device obtained from longitudinal data were calculated in the third patient.Results: The changes in measurements between before and after debridement were easily detected by the device in the first patient. Although the maximal depth was

  15. Photo-thermal hybrid module with photovoltaic cells and thermoelectric devices for space application

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-11-30

    Based upon the assumption that higher efficeint thermoelectric device will come in practice, a feasibility study was carried out to investigate the performance of photo-thermal hybrid module for space application. The photo-thermal hybrid modules consist of laminate of photovoltaic cells, thermoelectric devices and radiators. Solar energies collected are converted to the power generation by the photovoltaic cells and to heat them to the moderate temperature level, and then the thermoelectric devices generate the electric power, utilizing the temperature difference of thermoelectric devices between the junction surface with the photovoltaic cells (high temperature side) and one with the radiators (low temperature side). As an experimental result on the photo-thermal hybrid module which was constituted of the combination of a GaAs photovoltaic cell and a BiTe thermoelectric device, the hybrid module was able to have higher efficiency than a concentration type GaAs system. The photo-thermal arrays for space application with higher efficiency and lower specific weight might be realized, when a high performance thermoelectric device, such as a FeSi thermoelectric device, the performance of which is able to expect to be one digit higher than a BiTe thermoelectric device, is developed. 4 references, 10 figures, 1 table.

  16. Bibliography: injection technology applicable to geothermal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  17. System Control Applications of Low-Power Radio Frequency Devices

    Science.gov (United States)

    van Rensburg, Roger

    2017-09-01

    This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.

  18. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...

  19. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    International Nuclear Information System (INIS)

    Kefeni, Kebede K.; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-01

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  20. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  1. Multijet atmospheric plasma device for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Churpita, Olexandr; Hubička, Zdeněk; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 1, č. 2 (2011), s. 135-141 ISSN 1947-5764 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : atmospheric plasma * plasma sources * biomedical applications Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Joint with application in electrochemical devices

    Science.gov (United States)

    Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

    2010-09-14

    A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

  3. Uses and applications of climate forecasts for power utilities

    Energy Technology Data Exchange (ETDEWEB)

    Changnon, S.A.; Changnon, J.M.; Changnon, D. [Changnon Climatologist, Mahomet, IL (United States)

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed: (1) to discern needs for improving climate forecasts and guiding future research, and (2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector. 17 refs., 1 fig., 9 tabs.

  4. Doped oxide nanoarchitectures for device applications

    International Nuclear Information System (INIS)

    Lupan, O.; Railean, S.; Sontea, V.; Pocaznoi, I.; Chow, L.

    2011-01-01

    Full text: We present an experimental approach to study magnesium and cadmium-alloyed zinc oxide nanorods and their integration in wavelength-tunable light-emitting diodes (LEDs). Doped zinc oxide were deposited on p-GaN substrates. Low-dimensional ternary structures have been obtained for magnesium sulfate, cadmium chloride concentration in the deposition bath. Accordingly to SEM observations the cadmium-alloyed zinc oxide have a nanorod morphology. Structural analyses demonstrate that the zinc oxide nanomaterial is doped with the magnesium or cadmium incorporated within ZnO nanorods. Reported results are of great importance for wavelength-tunable LED and nanosensors applications. (authors)

  5. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  6. Understanding surveillance technologies spy devices, their origins & applications

    CERN Document Server

    Petersen, JK

    2001-01-01

    From electronic wire taps to baby monitors and long-distance video and listening devices, startling changes occur everyday in how we gather, interpret, and transmit information. An extraordinary range of powerful new technologies has come into existence to meet the requirements of this expanding field.Your search for a comprehensive resource for surveillance devices is over. Understanding Surveillance Technologies: Spy Devices, Their Origins and Applications serves as a provocative, broad-based, and visually appealing reference that introduces and describes the technologies rapidly moving into

  7. Nanostructured Diamond Device for Biomedical Applications.

    Science.gov (United States)

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  8. Shock Tube as an Impulsive Application Device

    Directory of Open Access Journals (Sweden)

    Soumya Ranjan Nanda

    2017-01-01

    Full Text Available Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.

  9. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  10. Guided-wave acousto-optic devices for space applications

    Science.gov (United States)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-09-01

    Production of high- performance and low-cost new devices to be used in space applications is strongly required due to the remarkable development of innovative technologies in the last few years. Guided-wave optoelectronics technologies, including integrated optics, acousto-optics and electro-optics can provide some significant benefits to the space applications. In particular, they can overcome the intrinsic limits of the conventional technologies improving also the cost/performance figures, and enabling new services. Earth observation, telecommunications, radar surveillance and navigation control are the main space areas where guided-wave devices can contribute significantly. In this paper, after some general considerations on the potential of optoelectronics for space, on the use of acousto-optic guided-wave devices, a brief description of the acousto-optic interaction is given. Some functional devices reported in literature having significant potential impact in space applications are described with the aim of highlighting the main features of the acousto-optic technology. The performance limits of guided-wave devices for space applications are also shortly discussed.

  11. Utilizing Windows Azure to Support Geo-science Applications

    Science.gov (United States)

    Xia, J.

    2014-12-01

    Windows Azure is a cloud computing platform and infrastructure, created by Microsoft for developing, deploying and managing applications through global networks. It provides Platform as a service (PaaS) which have been widely used in different domains to support scientific studies. This paper experiences the feasibility of utilizing Windows Azure to support different type of geo-science applications. Specially, the load balancing feature of Azure is used to address intensive concurrent access for geo-science data; cloud-based database is utilized for support Big Spatial data management; and the global deployment feature is used to improve the evaluation accuracy for geo-science services.

  12. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    Science.gov (United States)

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  13. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  14. Optimized fast mixing device for real-time NMR applications

    Science.gov (United States)

    Franco, Rémi; Favier, Adrien; Schanda, Paul; Brutscher, Bernhard

    2017-08-01

    We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.

  15. Colorimetric Characterization of Mobile Devices for Vision Applications.

    Science.gov (United States)

    de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David

    2016-01-01

    Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.

  16. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  17. Nanotechnology based devices and applications in medicine: An overview

    Directory of Open Access Journals (Sweden)

    Elvis A Martis

    2012-01-01

    Full Text Available Nanotechnology has been the most explored and extensively studied area in recent times. Many devices which were earlier impossible to imagine, are being developed at a lightning speed with the application of nanotechnology. To overcome the challenges offered by the most dreaded diseases, such as cancer or any disease involving the central nervous system or other inaccessible areas of the human body, nanotechnology has been proved to be a boon in making the treatment more target specific and minimizing the toxicities. This review describes a handful of important devices and applications based on nanotechnology in medicine made in recent times. This article also describes in brief the regulatory concerns and the ethical issues pertaining to nanomedical devices.

  18. Health state utilities associated with attributes of weekly injection devices for treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Louis S. Matza

    2017-11-01

    Full Text Available Abstract Background Glucagon-like peptide-1 (GLP-1 receptor agonists are often recommended as part of combination therapy for type 2 diabetes when oral medication does not result in sufficient glycemic control. Several GLP-1 receptor agonists are available as weekly injections. These medications vary in their injection delivery systems, and these differences could impact quality of life and treatment preference. The purpose of this study was to estimate utilities associated with attributes of injection delivery systems for weekly GLP-1 therapies. Methods Participants with type 2 diabetes in the UK valued health states in time trade-off interviews. The health states (drafted based on literature, device instructions for use, and clinician interviews had identical descriptions of type 2 diabetes, but differed in description of the treatment process. One health state described oral treatment, while six others described oral treatment plus a weekly injection. The injection health states varied in three aspects of the treatment administration process: requirements for reconstituting the medication (i.e., mixing the medication prior to the injection, waiting during medication preparation, and needle handling. Every participant valued all seven health states. Results A total of 209 participants completed interviews (57.4% male; mean age = 60.4y. The mean utility of the oral treatment health state was 0.89. All injection health states had significantly (p < 0.01 lower utilities ranging from 0.86 to 0.88. Differences among health state utilities suggest that each administration requirement had a small but measureable disutility: -0.004 (reconstitution, -0.004 (needle handling, -0.010 (reconstitution, needle handling, and -0.020 (reconstitution, waiting, needle handling. Conclusions Findings suggest it is feasible to use the TTO method to quantify preferences among injection treatment processes. It may be useful to incorporate these utility differences

  19. mobile phone applications and the utilization of library services in ...

    African Journals Online (AJOL)

    Global Journal

    This study examined mobile phone apps and the utilization of library services in university of Calabar library .... Face Book and Skype can be used by Libraries as the interface between the Library and the. Librarys users. Mobile Phone Applications are potential learning ..... In Hong Kong, Chu and Du (2013) investigated.

  20. ICT Application and Utilization for Distance and Open Learning ...

    African Journals Online (AJOL)

    ... facilities at NOUN while Telephone, photocopier and computers are the most utilized lCT facilities [or the open and distance learning bli NOUN staff The findings further revealed the areas of lCT application at NOUN to include online app lication for admission, online registration, administrative functions, online submission ...

  1. Exploring Spin-transfer-torque devices and memristors for logic and memory applications

    Science.gov (United States)

    Pajouhi, Zoha

    As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS. Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL. Second, we investigated reliable design of STT-MRAM bit-cells and addressed the conflicting read and write requirements, which results in overdesign of the bit-cells. Further, a Device/Circuit/Architecture co-design framework was developed to optimize the STT-MRAM devices by exploring the design space through jointly considering yield enhancement techniques at different levels of abstraction. Recent advancements in the development of memristive devices have opened new opportunities for hardware implementation of non-Boolean computing. To this end, the suitability of memristive devices for swarm intelligence algorithms has enabled researchers to solve a maze in hardware. In this research, we utilized swarm intelligence of memristive networks to perform image edge detection. First, we proposed a hardware-friendly algorithm for image edge detection based on ant colony. Next, we designed the image edge detection algorithm using memristive networks.

  2. Process and device integration for silicon tunnel FETs utilizing isoelectronic trap technology to enhance the ON current

    Science.gov (United States)

    Mori, Takahiro; Asai, Hidehiro; Fukuda, Koichi; Matsukawa, Takashi

    2018-04-01

    A tunnel FET (TFET) is a candidate replacement for conventional MOSFETs to realize low-power LSI. The most significant issue with the practical application of TFETs concerns their low tunneling current. Si is an indirect-gap material with a low band-to-band tunneling probability and is not favored for the channel. However, a new technology has recently been proposed to enhance the tunneling current in Si-TFETs by utilizing isoelectronic trap (IET) technology. IET technology provides an innovative approach to realizing low-power LSI with TFETs. In this paper, state-of-the-art research on Si-TFETs with IET technology from the viewpoint of process and device integration is reviewed.

  3. Need for and Interest in a Sports Nutrition Mobile Device Application Among Division I Collegiate Athletes.

    Science.gov (United States)

    Zuniga, Krystle E; Downey, Darcy L; McCluskey, Ryan; Rivers, Carley

    2017-02-01

    The majority of National Collegiate Athletic Association (NCAA) programs do not have a sports nutritionist, leaving athletes to gather information from resources that vary in reputability. The objective of this study was to identify a need for the development of accessible and reputable resources of nutrition information by assessing the current use of nutrition information resources, dietary habits, and sports nutrition knowledge among Division I collegiate athletes. Seventy-two athletes across eight sports completed questionnaires concerning nutrition resources used, dietary habits, and sports nutrition knowledge. In addition, interest levels in a mobile device application for delivery of nutrition information and tools were assessed. Primary sources for nutrition information included parents and family, athletic trainers (AT), and the internet/media, and athletes felt most comfortable discussing nutrition with parents and family, ATs, and strength and conditioning specialists. Performance on a sports nutrition knowledge questionnaire indicated a general lack of nutrition knowledge, and the high frequency of "unsure" responses suggested a lack of confidence in nutrition knowledge. Athletes conveyed a high likelihood that they would use a mobile device application as a nutrition resource, but were more interested in access to nutrition topics than tools such as a food log. We found that college athletes possess minimal sports nutrition knowledge, obtain nutrition information from nonprofessional resources, and were interested in utilizing a mobile device application as a resource. Further research is needed to explore the feasibility and effectiveness of alternative resources, such as a mobile device application, to deliver nutrition information and improve nutrition knowledge.

  4. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  5. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  6. RF tunable devices and subsystems methods of modeling, analysis, and applications methods of modeling, analysis, and applications

    CERN Document Server

    Gu, Qizheng

    2015-01-01

    This book serves as a hands-on guide to RF tunable devices, circuits and subsystems. An innovative method of modeling for tunable devices and networks is described, along with a new tuning algorithm, adaptive matching network control approach, and novel filter frequency automatic control loop.  The author provides readers with the necessary background and methods for designing and developing tunable RF networks/circuits and tunable RF font-ends, with an emphasis on applications to cellular communications. ·      Discusses the methods of characterizing, modeling, analyzing, and applying RF tunable devices and subsystems; ·      Explains the necessary methods of utilizing RF tunable devices and subsystems, rather than discussing the RF tunable devices themselves; ·      Presents and applies methods for MEMS tunable capacitors, which can be used for any RF tunable device; ·      Uses analytic methods wherever possible and provides numerous, closed-form solutions; ·      Includ...

  7. Symposium on applications of superconducting quantum interference devices (SQUIDS)

    International Nuclear Information System (INIS)

    1978-01-01

    The abstracts are given of thirteen papers presented at a ''SQUID Symposium'' organized by the Division of Materials Sciences of the U.S. Department of Energy and held March 23--25, 1978, at the University of Virginia. Since SQUID systems have already been utilized in feasibility demonstration in geothermal reservoir exploration, it was recognized that these devices also hold great potential for many other important scientific measurements. Many of these are energy-related, and others include forefront investigations in a diverse group of scientific areas, from biomedical to earthquake monitoring. Research in SQUIDs has advanced so rapidly in recent years that it was felt that a symposium to review the current status and future prospects of the devices would be timely. The abstracts given present an overview of work in this area and hopefully provide an opportunity to increase awareness among basic and applied scientists of the inherent implications of the extreme measurement sensitivity in advanced SQUID systems

  8. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  9. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  10. Electromagnetic radiation screening of semiconductor devices for long life applications

    Science.gov (United States)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  11. Research and application of devices for synchronously tracking the sun

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ming; Sun, Youhong; Wang, Qinghua; Wu, Xiaohan [Jilin Univ. Changchun (China). College of Construction Engineering

    2008-07-01

    This paper introduces a concept of apparent motion orbit of the sun, and put forward the theory of synchronous (linear) tracking the sun. Using solarium mechanism to trail the running path of solar hour angel, and using modified sine function framework to trace solar apparent declination path, and then connect these two mechanisms with linear transmission chain. More than 45%{proportional_to}122% electricity can be output by the synchronous tracking photovoltaic (PV) devices compare with those fixed PV ones with the same area between the spring equinox to the summer solstice. The 17m{sup 2} heat collector of synchronous tracking, its static wind-driven power consumption is less than 3.5W (0.2W/m{sup 2}), and the gale consumption is less than 7W(0.34W/m{sup 2}). The apparatus can be utilized widely in solar power, heating, lighting systems and other solar energy utilization. (orig.)

  12. Additional collection devices used in conjunction with the SurePath Liquid-Based Pap Test broom device do not enhance diagnostic utility

    Directory of Open Access Journals (Sweden)

    O'Connor Jason C

    2004-09-01

    Full Text Available Abstract Background We have previously shown that use of an EC brush device in combination with the Rovers Cervex-Brush (SurePath broom offered no significant improvement in EC recovery. Here we determine if use of additional collection devices enhance the diagnostic utility of the SurePath Pap for gynecologic cytology. Methods After informed consent, 37 women ages 18–56 receiving their routine cervical examinations were randomized into four experimental groups. Each group was first sampled with the SurePath broom then immediately re-sampled with an additional collection device or devices. Group 1: Rover endocervix brush (n = 8. Group 2: Medscand CytoBrush Plus GT (n = 7. Group 3: Rover spatula + endocervix brush (n = 11. Group 4: Medscand spatula + CytoBrush Plus GT (n = 11. Results Examination of SurePath broom-collected cytology yielded the following abnormal diagnoses: atypia (n = 2, LSIL (n = 5 and HSIL (n = 3. Comparison of these diagnoses to those obtained from paired samples using the additional collection devices showed that use of a second and or third device yielded no additional abnormal diagnoses. Importantly, use of additional devices did not improve upon the abnormal cell recovery of the SurePath broom and in 4/10 cases under-predicted or did not detect the SurePath broom-collected lesion as confirmed by cervical biopsy. Finally, in 36/37 cases, the SurePath broom successfully recovered ECs. Use of additional devices, in Group 3, augmented EC recovery to 37/37. Conclusions Use of additional collection devices in conjunction with the SurePath broom did not enhance diagnostic utility of the SurePath Pap. A potential but not significant improvement in EC recovery might be seen with the use of three devices.

  13. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  14. Focused microwave-assisted Soxhlet extraction: devices and applications.

    Science.gov (United States)

    Luque-García, J L; Luque de Castro, M D

    2004-10-20

    An overview of a new extraction technique called focused microwave-assisted Soxhlet extraction (FMASE) is here presented. This technique is based on the same principles as conventional Soxhlet extraction but using microwaves as auxiliary energy to accelerate the process. The different devices designed and constructed so far, their advantages and limitations as well as their main applications on environmental and food analysis are discussed in this article.

  15. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2017-02-01

    Full Text Available Dilute bismide in which a small amount of bismuth is incorporated to host III-Vs is the least studied III-V compound semiconductor and has received steadily increasing attention since 2000. In this paper, we review theoretical predictions of physical properties of bismide alloys, epitaxial growth of bismide thin films and nanostructures, surface, structural, electric, transport and optic properties of various binaries and bismide alloys, and device applications.

  16. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures.

    Science.gov (United States)

    Wu, Huei-Wen; Lin, Xi-Zhang; Hwang, Shiaw-Min; Lee, Gwo-Bin

    2009-12-01

    Human mesenchymal stem cells can differentiate into multiple lineages for cell therapy and, therefore, have attracted considerable research interest recently. This study presents a new microfluidic device for bead and cell separation utilizing a combination of T-junction focusing and tilted louver-like structures. For the first time, a microfluidic device is used for continuous separation of amniotic stem cells from amniotic fluids. An experimental separation efficiency as high as 82.8% for amniotic fluid mesenchymal stem cells is achieved. Furthermore, a two-step separation process is performed to improve the separation efficiency to 97.1%. These results are based on characterization experiments that show that this microfluidic chip is capable of separating beads with diameters of 5, 10, 20, and 40 microm by adjusting the volume-flow-rate ratio between the flows in the main and side channels of the T-junction focusing structure. An optimal volume-flow-rate ratio of 0.5 can lead to high separation efficiencies of 87.8% and 85.7% for 5-microm and 10-microm beads, respectively, in a one-step separation process. The development of this microfluidic chip may be promising for future research into stem cells and for cell therapy.

  17. Utility of extra-oral aiming device in imaging periapical regions of posterior teeth.

    Science.gov (United States)

    S, Sudhakar; P, Ramaswamy; B, Smitha; G, Uday

    2014-10-01

    Intraoral film placement and the film holding equipments are not acceptable by many due to varied reasons. To evaluate the utility of extra-oral aiming device developed by Chia-hui chen for imaging the periapical regions of posterior teeth employing the technique suggested by saberi et al. The study subjects included 20 patients in the age group of 10-35 y. The subjects were further subdivided according to the area to be imaged into four groups, with 5 in each. Imaging was done using the device developed by chia-hui chen, with the method employed by newmann and saberi et al., The radiographs were then interpreted for complete coverage of the anatomical structure. The findings were recorded and subjected to Analysis of variance (ANOVA) statistical analysis. The visibility of imaging area was more in mandible (95%) than maxilla (86.5%). The overall accuracy was 90.75%. These findings were statistically non-significant (F- 2.152 & P-0.134). Among the reason for reduced accuracy, overlapping of the opposite arch (4%) was more common and the horizontal overlapping (0.5%) was least common. This technique is not meant to replace conventional intraoral radiography. It is a useful supplementary aid to our clinical practice.

  18. Utility of mobile devices in the computerized tomography evaluation of intracranial hemorrhage

    International Nuclear Information System (INIS)

    Panughpath, Sridhar G; Kumar, Savith; Kalyanpur, Arjun

    2013-01-01

    To evaluate the utility of a mobile device to detect and assess intracranial hemorrhage (ICH) on head computed tomographys (CT) performed in the emergency setting. 100 head CT scans were randomly selected from our emergency radiology database and anonymized for patient demographics and clinical history. The studies were independently interpreted by two experienced radiologists in a blinded manner, initially on a mobile device (iPad, Apple computers) and subsequently, at an interval of one week, on a regular desktop workstation. Evaluation was directed towards detection, localization and characterization of hemorrhage. The results were assessed for accuracy, sensitivity, specificity and positive predictive value. Statistical significance was ascertained using Fisher's exact test. 27 of the examinations were positive for ICH, of which 11 had multiple hemorrhages. Of these there were 17 subdural, 18 intraparenchymal, 8 subarachnoid, 4 intraventricular and 2 extradural hemorrhages. In 96 of the studies there was complete concurrence between the iPad and desktop interpretations for both radiologists. Of 49 hemorrhages, 48 were accurately detected on the iPad by one of the radiologists. In the remaining case, a tiny intraventricular hemorrhage was missed by both radiologists on the iPad as well as on the workstation, indicating that the miss was more likely related to the very small size of the hemorrhage than the viewer used. We conclude that in the emergency setting, a mobile device with appropriate web-based pictue archiving and communication system (PACS) is effective in the detection of intracranial hemorrhage present on head CT

  19. Utility of mobile devices in the computerized tomography evaluation of intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    Sridhar G Panughpath

    2013-01-01

    Full Text Available Aim: To evaluate the utility of a mobile device to detect and assess intracranial hemorrhage (ICH on head computed tomographys (CT performed in the emergency setting. Materials and Methods: 100 head CT scans were randomly selected from our emergency radiology database and anonymized for patient demographics and clinical history. The studies were independently interpreted by two experienced radiologists in a blinded manner, initially on a mobile device (iPad, Apple computers and subsequently, at an interval of one week, on a regular desktop workstation. Evaluation was directed towards detection, localization and characterization of hemorrhage. The results were assessed for accuracy, sensitivity, specificity and positive predictive value. Statistical significance was ascertained using Fisher′s exact test. Results: 27 of the examinations were positive for ICH, of which 11 had multiple hemorrhages. Of these there were 17 subdural, 18 intraparenchymal, 8 subarachnoid, 4 intraventricular and 2 extradural hemorrhages. In 96 of the studies there was complete concurrence between the iPad and desktop interpretations for both radiologists. Of 49 hemorrhages, 48 were accurately detected on the iPad by one of the radiologists. In the remaining case, a tiny intraventricular hemorrhage was missed by both radiologists on the iPad as well as on the workstation, indicating that the miss was more likely related to the very small size of the hemorrhage than the viewer used. Conclusion: We conclude that in the emergency setting, a mobile device with appropriate web-based pictue archiving and communication system (PACS is effective in the detection of intracranial hemorrhage present on head CT.

  20. Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction

    Science.gov (United States)

    Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho

    2018-02-01

    A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis

  1. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    Science.gov (United States)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  2. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    International Nuclear Information System (INIS)

    Wook Jung, Min; Myung, Sung; Woong Kim, Ki; Song, Wooseok; Suk Lee, Sun; Lim, Jongsun; An, Ki-Seok; Jo, You-Young; Park, Chong-Yun

    2014-01-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  3. Optoelectronic devices product assurance guideline for space application

    Science.gov (United States)

    Bensoussan, A.; Vanzi, M.

    2017-11-01

    New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.

  4. Wonder of nanotechnology quantum optoelectronic devices and applications

    CERN Document Server

    Razeghi, Manijeh; von Klitzing, Klaus

    2013-01-01

    When you look closely, Nature is nanotechnology at its finest. From a single cell, a factory all by itself, to complex systems, such as the nervous system or the human eye, each is composed of specialized nanostructures that exist to perform a specific function. This same beauty can be mirrored when we interact with the tiny physical world that is the realm of quantum mechanics.The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, edited by Manijeh Razeghi, Leo Esaki, and Klaus von Klitzing focuses on the application of nanotechnology to modern semiconductor optoelectr

  5. A Comparative Study of Spreadsheet Applications on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Veera V. S. M. Chintapalli

    2016-01-01

    Full Text Available Advances in mobile screen sizes and feature enhancement for mobile applications have increased the number of users accessing spreadsheets on mobile devices. This paper reports a comparative usability study on four popular mobile spreadsheet applications: OfficeSuite Viewer 6, Documents To Go, ThinkFree Online, and Google Drive. We compare them against three categories of usability criteria: visibility; navigation, scrolling, and feedback; and interaction, satisfaction, simplicity, and convenience. Measures for each criterion were derived in a survey. Questionnaires were designed to address the measures based on the comparative criteria provided in the analysis.

  6. Creating a Prototype Web Application for Spacecraft Real-Time Data Visualization on Mobile Devices

    Science.gov (United States)

    Lang, Jeremy S.; Irving, James R.

    2014-01-01

    Mobile devices (smart phones, tablets) have become commonplace among almost all sectors of the workforce, especially in the technical and scientific communities. These devices provide individuals the ability to be constantly connected to any area of interest they may have, whenever and wherever they are located. The Huntsville Operations Support Center (HOSC) is attempting to take advantage of this constant connectivity to extend the data visualization component of the Payload Operations and Integration Center (POIC) to a person's mobile device. POIC users currently have a rather unique capability to create custom user interfaces in order to view International Space Station (ISS) payload health and status telemetry. These displays are used at various console positions within the POIC. The Software Engineering team has created a Mobile Display capability that will allow authenticated users to view the same displays created for the console positions on the mobile device of their choice. Utilizing modern technologies including ASP.net, JavaScript, and HTML5, we have created a web application that renders the user's displays in any modern desktop or mobile web browser, regardless of the operating system on the device. Additionally, the application is device aware which enables it to render its configuration and selection menus with themes that correspond to the particular device. The Mobile Display application uses a communication mechanism known as signalR to push updates to the web client. This communication mechanism automatically detects the best communication protocol between the client and server and also manages disconnections and reconnections of the client to the server. One benefit of this application is that the user can monitor important telemetry even while away from their console position. If expanded to the scientific community, this application would allow a scientist to view a snapshot of the state of their particular experiment at any time or place

  7. A stand-alone tidal prediction application for mobile devices

    Science.gov (United States)

    Tsai, Cheng-Han; Fan, Ren-Ye; Yang, Yi-Chung

    2017-04-01

    It is essential for people conducting fishing, leisure, or research activities at the coasts to have timely and handy tidal information. Although tidal information can be found easily on the internet or using mobile device applications, this information is all applicable for only certain specific locations, not anywhere on the coast, and they need an internet connection. We have developed an application for Android devices, which allows the user to obtain hourly tidal height anywhere on the coast for the next 24 hours without having to have any internet connection. All the necessary information needed for the tidal height calculation is stored in the application. To develop this application, we first simulate tides in the Taiwan Sea using the hydrodynamic model (MIKE21 HD) developed by the DHI. The simulation domain covers the whole coast of Taiwan and the surrounding seas with a grid size of 1 km by 1 km. This grid size allows us to calculate tides with high spatial resolution. The boundary conditions for the simulation domain were obtained from the Tidal Model Driver of the Oregon State University, using its tidal constants of eight constituents: M2, S2, N2, K2, K1, O1, P1, and Q1. The simulation calculates tides for 183 days so that the tidal constants for the above eight constituents of each water grid can be extracted by harmonic analysis. Using the calculated tidal constants, we can predict the tides in each grid of our simulation domain, which is useful when one needs the tidal information for any location in the Taiwan Sea. However, for the mobile application, we only store the eight tidal constants for the water grids on the coast. Once the user activates the application, it reads the longitude and latitude from the GPS sensor in the mobile device and finds the nearest coastal grid which has our tidal constants. Then, the application calculates tidal height variation based on the harmonic analysis. The application also allows the user to input location and

  8. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  9. An application for delivering field results to mobile devices

    Science.gov (United States)

    Kanta, A.; Hloupis, G.; Vallianatos, F.; Rust, D.

    2009-04-01

    Mobile devices (MD) such as personal digital assistants (PDAs) and Smartphones expand the ability of Internet communication between remote users. In particular these devices have the possibility to interact with data centres in order to request and receive information. For field surveys MDs used primarily for controlling instruments (in case of field measurements) or for entering data needed for later processing (e.g damage description after a natural hazard). It is not unusual in areas with high interest combined measurements took place. The results from these measurements usually stored in data servers and their publicity is driven mainly by web-based applications. Here we present a client / server application capable of displaying the results of several measurements for a specific area to a MD. More specific, we develop an application than can present to the screen of the MD the results of existing measurements according to the position of the user. The server side hosted at data centre and uses a relational data base (including the results), a SMS/MMS gateway and a receiver daemon application waiting for messages from MDs. The client side runs on MD and is a simple menu driven application which asks the user to enter the type of requested data and the geographical coordinates. In case of embedded GPS receiver, coordinates automatically derived from the receiver. Then a message is sent to server which responds with the results. In case of absence of Internet communication the application can switched to common Short/Multimedia Messaging Systems: the client request data using SMS and the server responds with MMS. We demonstrate the application using results from TEM, VES and HVSR measurements Acknowledgements Work of authors AK, GH and FV is partially supported by the EU-FP6-SSA in the frame of project "CYCLOPS: CYber-Infrastructure for CiviL protection Operative ProcedureS"

  10. Applying Utility Functions to Adaptation Planning for Home Automation Applications

    Science.gov (United States)

    Bratskas, Pyrros; Paspallis, Nearchos; Kakousis, Konstantinos; Papadopoulos, George A.

    A pervasive computing environment typically comprises multiple embedded devices that may interact together and with mobile users. These users are part of the environment, and they experience it through a variety of devices embedded in the environment. This perception involves technologies which may be heterogeneous, pervasive, and dynamic. Due to the highly dynamic properties of such environments, the software systems running on them have to face problems such as user mobility, service failures, or resource and goal changes which may happen in an unpredictable manner. To cope with these problems, such systems must be autonomous and self-managed. In this chapter we deal with a special kind of a ubiquitous environment, a smart home environment, and introduce a user-preference-based model for adaptation planning. The model, which dynamically forms a set of configuration plans for resources, reasons automatically and autonomously, based on utility functions, on which plan is likely to best achieve the user's goals with respect to resource availability and user needs.

  11. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    Science.gov (United States)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  12. Applications of DNA Nanomechanical Devices to Molecular Biology and to Programmed Dynamic Motion

    Science.gov (United States)

    Liu, Chunhua

    Not merely is DNA a favorable genetic material, but an effective supermolecular subunit for nanoconstruction as well. In structural DNA nanotechnology, rigid branched DNA motifs have been combined with sticky-ended cohesion to build DNA objects, arrays and devices for functional purposes. Reciprocating devices are key features in macroscopic machines. In Chapter II, I report the construction of two reciprocal PX-JX2 devices, wherein the control strands leading to the PX state in one device lead to the JX2 state in the other device, and vice versa. The formation, transformation and reciprocal motions of these two devices are confirmed utilizing gel electrophoresis, and atomic force microscopy. This system is likely to be of use for molecular robotic applications where reciprocal motions are of value in addition its inherent contribution to molecular choreography and molecular aesthetics. Recently, several DNA-based nanomechanical devices have been developed as an attractive tool for fine measurements on nanoscale objects. In Chapter III, I have constructed a device wherein two DNA triple crossover (TX) molecules are connected by a shaft, similar to a previous device that measured the amount of work that can be performed by integration host factor [Shen, W., Bruist, M., Goodman, S. & Seeman, N. C., Angew. Chemie Int. Ed. 43, 4750-4752 (2004)]. In the present case, the binding site on the shaft contains the sequence recognized by apo-SoxR, the apo-form of a protein that is a redox-sensing transcriptional activator; previous data suggest that it distorts its binding site by an amount that corresponds to about two base pairs. A pair of dyes reports the fluorescence resonance energy transfer (FRET) signal between the two TX domains, reflecting changes in the shape of the device upon binding the protein. The TX domains are used to amplify the signal expected from a relatively small distortion of the DNA binding site. From FRET analysis of apo-SoxR binding, the effect of

  13. 3-5 modulation and switching devices for optical systems applications

    Science.gov (United States)

    Singh, Jasprit; Bhattacharya, Pallab

    1995-04-01

    The thrust for this three year program has been to develop novel devices and systems applications for multiple quantum well based devices. We have investigated architectures based upon the quantum confined Stark effect (QCSE), a means by which excitonic resonances in a quantum well are electric field tuned to shift the peaked absorption spectrum of the material. The devices based upon this concept have been used, in the past, to realize switching structures employing the characteristic negative differential resistance available in PIN-MQW diodes under illumination. We have focuses, primarily on three schemes based upon the QCSE, to extend the utility of quantum well based devices. Firstly, we have developed, tested and optimized a novel tunable optical filter for wavelength selective applications. Secondly, we have demonstrated an MQW based scheme for optical pattern recognition which we have applied towards header recognition in a packet switching network environment. Thirdly, we have extended previous MQW based switching schemes to implement an optical read only memory (ROM) which can store two bits of information on a single sight, read by two different probe wavelengths of light.

  14. Applications of Si/SiGe heterostructures to CMOS devices

    International Nuclear Information System (INIS)

    Sidek, R.M.

    1999-03-01

    For more than two decades, advances in MOSFETs used in CMOS VLSI applications have been made through scaling to ever smaller dimensions for higher packing density, faster circuit speed and lower power dissipation. As scaling now approaches nanometer regime, the challenge for further scaling becomes greater in terms of technology as well as device reliability. This work presents an alternative approach whereby non-selectively grown Si/SiGe heterostructure system is used to improve device performance or to relax the technological challenge. SiGe is considered to be of great potential because of its promising properties and its compatibility with Si, the present mainstream material in microelectronics. The advantages of introducing strained SiGe in CMOS technology are examined through two types of device structure. A novel structure has been fabricated in which strained SiGe is incorporated in the source/drain of P-MOSFETs. Several advantages of the Si/SiGe source/drain P-MOSFETs over Si devices are experimentally, demonstrated for the first time. These include reduction in off-state leakage and punchthrough susceptibility, degradation of parasitic bipolar transistor (PBT) action, suppression of CMOS latchup and suppression of PBT-induced breakdown. The improvements due to the Si/SiGe heterojunction are supported by numerical simulations. The second device structure makes use of Si/SiGe heterostructure as a buried channel to enhance the hole mobility of P-MOSFETs. The increase in the hole mobility will benefit the circuit speed and device packing density. Novel fabrication processes have been developed to integrate non-selective Si/SiGe MBE layers into self-aligned PMOS and CMOS processes based on Si substrate. Low temperature processes have been employed including the use of low-pressure chemical vapor deposition oxide and plasma anodic oxide. Low field mobilities, μ 0 are extracted from the transfer characteristics, Id-Vg of SiGe channel P-MOSFETs with various Ge

  15. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine, E-mail: c.vittoria@neu.edu

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10{sup −4} G/Vm{sup −1}. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~10{sup 6}) improvements in sensitivity and tunability.

  16. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  17. Pointing device usage guidelines for people with quadriplegia: a simulation and validation study utilizing an integrated pointing device apparatus.

    Science.gov (United States)

    Chen, Hsieh-Ching; Chen, Chia-Ling; Lu, Chang-Ching; Wu, Ching-Yi

    2009-06-01

    This study undertakes a simulation and validation experiment to provide guidelines regarding pointing device usage for quadriplegic individuals assisted by a newly developed integrated pointing device apparatus (IPDA). The simulation experiment involving 30 normal subjects whose upper limb movement was restricted by splints. Another 15 subjects with high level cervical spinal cord injury (SCI) were recruited for the validation study. All normal subjects employed six control modes for target-acquisition and drag-and-drop tasks using an IPDA to integrate common pointing devices. A previously designed software was used to evaluate the operational efficiency (OE), expressed as "able performance" (%AP), of the subjects. The experimental results indicated that the OE of normal subjects for controlling the pointing devices were dominated first by using the unilateral hand (69-100 %AP), then by using the wrist/hand (65-73 %AP), and finally by using either bilateral body parts or the combination of limb and chin (45-53 %AP). The OE for operating an orientation-rotated mouse using the dominant wrist/hand via IPDA in both tasks was equivalent to that for operating a trackball using the dominant hand. The experimental results obtained by subjects with SCI also demonstrated similar findings, although the OEs in each control mode were lower than in normal subjects. Results of this study provide valuable guidelines for selecting and integrating common pointing devices using IPDA for quadriplegic individuals. The priority for selecting which body part should control the pointing devices was as follows: unilateral hands, unilateral wrist/hands, and either bilateral body parts or a limb and chin/head/neck in combination.

  18. Fundamentals of silicon carbide technology growth, characterization, devices and applications

    CERN Document Server

    Kimoto, Tsunenobu

    2014-01-01

    A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applicationsBased on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001.  The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls.  SiC power MOSFETs entered commercial production in 2011, providing rugged, hig

  19. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  20. Processing and utilization of palm date fruits for edible applications.

    Science.gov (United States)

    Kamal-Eldin, Afaf; Hashim, Isameldin B; Mohamed, Ibrahim O

    2012-04-01

    The date palm tree (Phoenix dactylifra L., family: Palmaceae) is perhaps the oldest and most important fruit crop in the Middle East and North Africa. From this region, the tree spread to other parts of the world and is cultivated in some parts of USA. About 6-7 Million tons of date fruits, belonging to a large variety of cultivars with different characteristics, are produced annually. The date fruit is mainly composed of sugars (invert sugars and/or sucrose) and fiber and, as such, can find a wide range of applications. However, processing applications of the date fruits are limited and new possibilities need to be exploited. This paper reviews the state-of-art knowledge on the compositional and technological aspects and patents pertinent to the processing and utilization of date fruits.

  1. A piezoelectric fibre composite based energy harvesting device for potential wearable applications

    International Nuclear Information System (INIS)

    Swallow, L M; Luo, J K; Siores, E; Patel, I; Dodds, D

    2008-01-01

    Rapid technological advances in nanotechnology, microelectronic sensors and systems are becoming increasingly miniaturized to the point where embedded wearable applications are beginning to emerge. A restriction to the widespread application of these microsystems is the power supply of relatively sizable dimensions, weight, and limited lifespan. Emerging micropower sources exploit self-powered generators utilizing the intrinsic energy conversion characteristics of smart materials. 'Energy harvesting' describes the process by which energy is extracted from the environment, converted and stored. Piezoelectric materials have been used to convert mechanical into electrical energy through their inherent piezoelectric effect. This paper focuses on the development of a micropower generator using microcomposite based piezoelectric materials for energy reclamation in glove structures. Devices consist of piezoelectric fibres, 90–250 µm in diameter, aligned in a unidirectional manner and incorporated into a composite structure. The fibres are laid within a single laminate structure with copper interdigitated electrodes assembled on both sides, forming a thin film device. Performances of devices with different fibre diameters and material thicknesses are investigated. Experiments are outlined that detail the performance characteristics of such piezoelectric fibre laminates. Results presented show voltage outputs up to 6 V which is considered enough for potential applications in powering wearable microsystems

  2. 77 FR 45594 - San Francisco Public Utilities Commission; Notice of Application Accepted for Filing and...

    Science.gov (United States)

    2012-08-01

    ...-000] San Francisco Public Utilities Commission; Notice of Application Accepted for Filing and... the San Francisco Public Utilities Commission's Water Supply and Treatment Divisions transmission... Public Utilities Commission, Power Enterprise Division, 1155 Market Street, 4th Floor, San Francisco...

  3. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  4. Optically Tunable Magnetoresistance Effect: From Mechanism to Novel Device Application.

    Science.gov (United States)

    Liu, Pan; Lin, Xiaoyang; Xu, Yong; Zhang, Boyu; Si, Zhizhong; Cao, Kaihua; Wei, Jiaqi; Zhao, Weisheng

    2017-12-28

    The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

  5. III–V Nanowires: Synthesis, Property Manipulations, and Device Applications

    Directory of Open Access Journals (Sweden)

    Ming Fang

    2014-01-01

    Full Text Available III–V semiconductor nanowire (NW materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.

  6. Patients' Reactions to Local Anaesthetic Application Devices in Paediatric Dentistry.

    Science.gov (United States)

    Bajrić, Elmedin; Kobasglija, Sedin; Jurić, Hrvoje

    2015-09-01

    Local anaesthesia is the most common medium for pain control in most dental treatments. Physical appearance of syringe itself can be considered as a provoking factor for the emergence of dental fear and anxiety (DFA). In this research the patient reactions to local anaesthesia application devices, as one of the main causes for DFA emergence, were inquired. The sample comprised of 120 patients, divided in three age groups, formed of 40 patients aged 8, 12 and 15 years. DFA prevalence was quantified by Children Fear Survey Schedule-Dental Subscale (CFSS-DS). Three different syringes were offered to the patients. Reasons for choosing one of the syringes were detected. Patients assigned statistically highest rank to plastic syringe. Boys chose metal and intraligamental syringe statistically more often than girls. Patients with higher CFSS-DS scores chose metal syringe as last option. None of the reasons for selection was dominant, except pain that could be caused by usage of any of the three syringes. A large number of patients did not mention any of the reasons for choosing particular syringes. Plastic syringe represented the most acceptable device for local anaesthetic application to our patients. Patients often linked pain with dental syringes.

  7. Applications of Transparent Conducting Oxides in Organic Light Emitting Devices.

    Science.gov (United States)

    Yan, Meng; Zhang, Qiaoxia; Zhao, Yanghua; Yang, Jianping; Yang, Tao; Zhang, Jian; Li, Xing'ao

    2015-09-01

    Organic light emitting devices (OLEDs) have received great attention in the field of flat panel display. The transparent metal oxide semiconductor materials play crucial roles in the applications of OLEDs and have strong influence on the performance of OLEDs. In this review, we mainly pay attention to the application of transparent conducting oxides (TCOs) as anodes and buffer layers in OLEDs. Currently indium tin oxide (ITO) is the most widely used anode material in OLEDs owing to the advantage on electrical and optical properties, such as high work function, low resistivity and high transparency. TCO materials, such as ZnO et al., as the anode candidates also have been discussed and analyzed. The energy level can be controlled by semiconductor doping which improve the carrier density and Hall mobility. Interfacial engineering between the anodes and the overlying organic layers is an important process to obtain the high performance of the devices. Physical, chemical and the combined treatment methods to modify the TCO/organic interfaces are reviewed. The property of anode/organic interfaces can be modified and enhanced by introducing the buffer layers between anodes and hole transport layers.

  8. The market potential for SMES in electric utility applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  9. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  10. Comparison of Six Different Silicones In Vitro for Application as Glaucoma Drainage Device

    Directory of Open Access Journals (Sweden)

    Claudia Windhövel

    2018-02-01

    Full Text Available Silicones are widely used in medical applications. In ophthalmology, glaucoma drainage devices are utilized if conservative therapies are not applicable or have failed. Long-term success of these devices is limited by failure to control intraocular pressure due to fibrous encapsulation. Therefore, different medical approved silicones were tested in vitro for cell adhesion, cell proliferation and viability of human Sclera (hSF and human Tenon fibroblasts (hTF. The silicones were analysed also depending on the sample preparation according to the manufacturer’s instructions. The surface quality was characterized with environmental scanning electron microscope (ESEM and water contact angle measurements. All silicones showed homogeneous smooth and hydrophobic surfaces. Cell adhesion was significantly reduced on all silicones compared to the negative control. Proliferation index and cell viability were not influenced much. For development of a new glaucoma drainage device, the silicones Silbione LSR 4330 and Silbione LSR 4350, in this study, with low cell counts for hTF and low proliferation indices for hSF, and silicone Silastic MDX4-4210, with low cell counts for hSF and low proliferation indices for hTF, have shown the best results in vitro. Due to the high cell adhesion shown on Silicone LSR 40, 40,026, this material is unsuitable.

  11. Mechanisms and clinical applications of the vacuum-assisted closure (VAC) Device: a review.

    Science.gov (United States)

    Venturi, Mark L; Attinger, Christopher E; Mesbahi, Ali N; Hess, Christopher L; Graw, Katherine S

    2005-01-01

    The use of sub-atmospheric pressure dressings, available commercially as the vacuum-assisted closure (VAC) device, has been shown to be an effective way to accelerate healing of various wounds. The optimal sub-atmospheric pressure for wound healing appears to be approximately 125 mm Hg utilizing an alternating pressure cycle of 5 minutes of suction followed by 2 minutes off suction. Animal studies have demonstrated that this technique optimizes blood flow, decreases local tissue edema, and removes excessive fluid from the wound bed. These physiologic changes facilitate the removal of bacteria from the wound. Additionally, the cyclical application of sub-atmospheric pressure alters the cytoskeleton of the cells in the wound bed, triggering a cascade of intracellular signals that increases the rate of cell division and subsequent formation of granulation tissue. The combination of these mechanisms makes the VAC device an extremely versatile tool in the armamentarium of wound healing. This is evident in the VAC device's wide range of clinical applications, including treatment of infected surgical wounds, traumatic wounds, pressure ulcers, wounds with exposed bone and hardware, diabetic foot ulcers, and venous stasis ulcers. VAC has also proven useful in reconstruction of wounds by allowing elective planning of the definitive reconstructive surgery without jeopardizing the wound or outcome. Furthermore, VAC has significantly increased the skin graft success rate when used as a bolster over the freshly skin-grafted wound. VAC is generally well tolerated and, with few contraindications or complications, is fast becoming a mainstay of current wound care.

  12. The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings.

    Science.gov (United States)

    Haik, Josef; Kornhaber, Rachel; Blal, Biader; Harats, Moti

    2017-05-01

    Objectives: The aim of this study was to determine the feasibility of a portable electrospinning device for the application of wound dressings. Approach: Four polymer nanofibers dressings were applied on superficial partial thickness wounds to a porcine model and compared with a traditional paraffin tulle gras dressing. The polymer nanofibrous dressings were applied using a handheld portable electrospinning device activated at a short distance from the wound. The partial thickness donor sites were evaluated on day 2, 7, and 14 when dressings were removed and tissue samples were taken for histological examination. Results: No significant difference was detected between the different electrospun nanofibrous dressings and traditional paraffin tulle gras. Desirable characteristics of the electrospun nanofiber dressing group included nontouch technique, ease of application, adherence and reduction in wound edema and inflammation. There was no delayed wound healing or signs of infection reported in both the electrospun nanofiber and traditional tulle gras dressings. Innovation: Used on partial thickness wounds, polymer electrospun nanofiber dressings provide excellent surface topography and are a nontouch, feasible, and safe method to promote wound healing with the potential to reduce wound infections. Such custom-made nanofibrous dressings have implications for the reduction of pain and trauma, number of dressing changes, scarring, and an added cost benefit. Conclusion: We have demonstrated that this portable handheld electrospinning device can be utilized for different formulations and materials and customized according to the characteristics of the target wound at the various stages of wound healing.

  13. Feedback about Astronomical Application Developments for Mobile Devices

    Science.gov (United States)

    Schaaff, A.; Boch, T.; Fernique, P.; Houpin, R.; Kaestlé, V.; Royer, M.; Scheffmann, J.; Weiler, A.

    2013-10-01

    Within a few years, Smartphones have become the standard for mobile telephony, and we are now witnessing a rapid development of Internet tablets. These mobile devices have enough powerful hardware features to run more and more complex applications. In the field of astronomy it is not only possible to use these tools to access data via a simple browser, but also to develop native applications reusing libraries (Java for Android, Objective-C for iOS) developed for desktops. We have been working for two years on mobile application development and we now have the skills in native iOS and Android development, Web development (especially HTML5, JavaScript, CSS3) and conversion tools (PhoneGap) from Web development to native applications. The biggest change comes from human/computer interaction that is radically changed by the use of multitouch. This interaction requires a redesign of interfaces to take advantage of new features (simultaneous selections in different parts of the screen, etc.). In the case of native applications, the distribution is usually done through online stores (App Store, Google Play, etc.) which gives visibility to a wider audience. Our approach is not only to perform testing of materials and developing of prototypes, but also operational applications. The native application development is costly in development time, but the possibilities are broader because it is possible to use native hardware such as the gyroscope and the accelerometer, to point out an object in the sky. Development depends on the Web browser and the rendering and performance are often very different between different browsers. It is also possible to convert Web developments to native applications, but currently it is better to restrict this possibility to light applications in terms of functionality. Developments in HTML5 are promising but are far behind those available on desktops. HTML5 has the advantage of allowing development independent from the evolution of the mobile

  14. Optofluidic devices and applications in photonics, sensing and imaging.

    Science.gov (United States)

    Pang, Lin; Chen, H Matthew; Freeman, Lindsay M; Fainman, Yeshaiahu

    2012-10-07

    Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.

  15. Research and Application of an Automatic Clam Collecting Device

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2017-01-01

    Full Text Available To collect clams automatically and effectively on coastal beach, an automatic clam collecting device was designed. The device consists of a connecting device, a shovelling device, a conveying device, and a filtering device. The mechanical device is designed based on some of the presented devices, such as a blade with slope, a pipelined conveyor belt, planar linkage mechanisms and a ski mechanism. The connecting device is connected to the device body by bolts. The shovelling device adopts a blade with slope, which can reduce the resistance between sandy soil and the device. The transmission device adopts a conveyor belt with a two-stage reducer, which can effectively control the speed of the transmission and avoid the splash of mud. A mesh structure is used for soil filtering, which is designed with a certain slope, thus sandy soil and other impurities fall from the mesh for its own weight. The designed device for clam collecting will improve efficiency and decrease cost effectively.

  16. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  17. Development and Application of Devices for Remote Monitoring of Gamma-Ray Contamination at RECOM Ltd

    International Nuclear Information System (INIS)

    Ivanov, O.P.; Stepanov, V.E.; Chesnokov, A.V.; Sudarkin, A.N.; Urutskoev, L.I.

    1999-01-01

    Devices for remote monitoring of gamma-ray contamination develop at RECOM Ltd. are described and typical examples of their application are show. The following devices are discussed: spectrum-sensitive collimated devices for mapping of radioactivity on contaminated surfaces- scanning collimated Gamma Locator, device for field Cs-137 contamination mapping-CORAD; devices for gamma-ray imaging computer-controlled High-Energy Radiation Visualizer (HERV) and Coded Mask Imager

  18. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    Science.gov (United States)

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. © 2016 Japanese Society of Developmental Biologists.

  19. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  20. [Design and application of implantable medical device information management system].

    Science.gov (United States)

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  1. 77 FR 38048 - Ketchikan Public Utilities; Notice of Application for Amendment of License and Soliciting...

    Science.gov (United States)

    2012-06-26

    ... Energy Regulatory Commission Ketchikan Public Utilities; Notice of Application for Amendment of License...-020. c. Date Filed: June 15, 2012. d. Applicant: Ketchikan Public Utilities. ] e. Name of Project..., Ketchikan Public Utilities, Electric Division, 1065 Fair Street, Ketchikan, Alaska 99901, [email protected

  2. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  3. Investigation of aerodynamic braking devices for wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [R. Lynette & amp; Associates, Seattle, WA (United States)

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  4. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  5. Integrated optic polymer waveguide devices for sensor applications

    Science.gov (United States)

    Paul, Dilip K.

    1994-11-01

    Organic polymeric materials and devices have attracted considerable attention in recent years. Non-linear optical polymers have show promise of very high electro-optical coefficients and useful device characteristics with compatible device processing on semiconductor wafers leading to development of compact, high reliability OEICs. In this paper, the state-of-the-art technology and performance of polymeric integrated optical waveguide devices will be received and feasibility of using these devices as sensor elements (e.g., to measure temperature, pressure, displacement, vibration, chemical analysis, etc.) and also as components in optical sensor subsystems (e.g., optical gyro chip) explored.

  6. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  7. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.

    Science.gov (United States)

    Watanabe, Masayoshi; Thomas, Morgan L; Zhang, Shiguo; Ueno, Kazuhide; Yasuda, Tomohiro; Dokko, Kaoru

    2017-05-24

    Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially for energy storage and conversion materials and devices, because there is a continuously increasing demand for clean and sustainable energy. In this article, various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries, Li-oxygen batteries, and nonhumidified fuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors. Due to their characteristic properties such as nonvolatility, high thermal stability, and high ionic conductivity, ILs appear to meet the rigorous demands/criteria of these various applications. However, for further development, specific applications for which these characteristic properties become unique (i.e., not easily achieved by other materials) must be explored. Thus, through strong demands for research and consideration of ILs unique properties, we will be able to identify indispensable applications for ILs.

  8. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  9. Utility/Manufacturers Robots Users Group: a partnership promoting the applications of robots in all utility industries

    International Nuclear Information System (INIS)

    Meieran, H.B.; Roman, H.T.

    1988-01-01

    The purpose of this presentation is to describe the roles and the goals of the recently established Utility/Manufacturers Robots Users Group (U/M RUG), an organization which is dedicated to promoting the employment of robots in all utility facilities. This group is composed of volunteer representatives from the utilities, robot manufacturers, service organizations/consulting groups, academia, national and non-government funding agencies, and national laboratories. Although the Group primarily serves as a forum and a guide for technology transfer, exchanging ideas, and promoting philosophies of applications among its members, it also provides this type of assistance to external groups and agencies. (author)

  10. Characterisation and application of WO3 films for electrochromic devices

    Science.gov (United States)

    Stapinski, Thomas; Marszalek, Konstanty; Swatowska, Barbara; Stanco, Agnieszka

    2013-07-01

    Electrochromic system is the one of the most popular devices using color memory effect under the influence of an applied voltage. The electrochromic system was produced based on the thin WO3 electrochromic films. Films were prepared by RF magnetron sputtering from tungsten targets in a reactive Ar+O2 gas atmosphere of various Ar/O2 ratios. The technological gas mixture pressure was 3 Pa and process temperature 30°C. Structural and optical properties of WO3 films were investigated for as-deposited and heat treated samples at temperature range from 350°C to 450°C in air. The material revealed the dependence of properties on preparation conditions and on post-deposition heat treatment. Main parameters of thin WO3 films: thickness d, refractive index n, extinction coefficient k and energy gap Eg were determined and optimized for application in electrochromic system. The main components of the system were glass plate with transparent conducting oxides, electrolyte, and glass plate with transparent conducting oxides and WO3 layer. The optical properties of the system were investigated when a voltage was applied across it. The electrochromic cell revealed the controllable transmittance depended on the operation voltage.

  11. Electrospinning of Nanofibers and Their Applications for Energy Devices

    Directory of Open Access Journals (Sweden)

    Xiaomin Shi

    2015-01-01

    Full Text Available With the depletion of fossil fuels and the increasing demand of energy for economic development, it is urgent to develop renewable energy technologies to sustain the economic growth. Electrospinning is a versatile and efficient fabrication method for one-dimensional (1D nanostructured fibers of metals, metal oxides, hydrocarbons, composites, and so forth. The resulting nanofibers (NFs with controllable diameters ranging from nanometer to micrometer scale possess unique properties such as a high surface-area-to-volume and aspect ratio, low density, and high pore volume. These properties make 1D nanomaterials more advantageous than conventional materials in energy harvesting, conversion, and storage devices. In this review, the key parameters for e-spinning are discussed and the properties of electrospun NFs and applications in solar cells, fuel cells, nanogenerators, hydrogen energy harvesting and storage, lithium-ion batteries, and supercapacitors are reviewed. The advantages and disadvantages of electrospinning and an outlook on the possible future directions are also discussed.

  12. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  13. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Abanades, A.; Garcia, C.; Garcia, L.; Escriva, A.; Perez-Navarro, A.; Rosales, J.

    2011-01-01

    Highlights: → Utilization of Accelerator Driven System (ADS) for Hydrogen production. → Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. → Application of the Sulfur-Iodine thermochemical process to subcritical systems. → Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  14. Value-based procurement of medical devices: Application to devices for mechanical thrombectomy in ischemic stroke.

    Science.gov (United States)

    Trippoli, Sabrina; Caccese, Erminia; Marinai, Claudio; Messori, Andrea

    2018-03-01

    In the acute ischemic stroke, endovascular devices have shown promising clinical results and are also likely to represent value for money, as several modeling studies have shown. Pharmacoeconomic evaluations in this field, however, have little impact on the procurement of these devices. The present study explored how complex pharmacoeconomic models that evaluate effectiveness and cost can be incorporated into the in-hospital procurement of thrombectomy devices. As regards clinical modeling, we extracted outcomes at three months from randomized trials conducted for four thrombectomy devices, and we projected long-term results using standard Markov modeling. In estimating QALYs, the same model was run for the four devices. As regards economic modeling, we firstly estimated for each device the net monetary benefit (NMB) per patient (threshold = $60,000 per QALY); then, we simulated a competitive tender across the four products by determining the tender-based score (on a 0-to-100 scale). Prices of individual devices were obtained from manufacturers. Extensive sensitivity testing was applied to our analyses. For the four devices (Solitaire, Trevo, Penumbra, Solumbra), QALYs were 1.86, 1.52, 1,79, 1.35, NMB was $101,824, $83,546, $101,923, $69,440, and tender-based scores were 99.70, 43.43, 100, 0, respectively. Sensitivity analysis confirmed findings from base-case. Our results indicate that, in the field of thrombectomy devices, incorporating the typical tools of cost-effectiveness into the processes of tenders and procurement is feasible. Bridging the methodology of cost-effectiveness with the every-day practice of in-hospital procurement can contribute to maximizing the health returns that are generated by in-hospital expenditures for medical devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Low-Cost Small Reentry Devices to Enhance Space Commerce and ISS Utilization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Terminal Velocity Aerospace, LLC (TVA) proposes to enable commercial space activity and improve utilization of the International Space Station (ISS) through use of...

  16. Real-time graphic display utility for nuclear safety applications

    International Nuclear Information System (INIS)

    Yang, S.; Huang, X.; Taylor, J.; Stevens, J.; Gerardis, T.; Hsu, A.; McCreary, T.

    2006-01-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long history of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data

  17. Plasmonic Devices for Near and Far-Field Applications

    KAUST Repository

    Alrasheed, Salma

    2017-11-30

    Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the

  18. Utilization of YouTube as a Tool to Assess Patient Perception Regarding Implanted Cardiac Devices.

    Science.gov (United States)

    Hayes, Kevin; Mainali, Prajeena; Deshmukh, Abhishek; Pant, Sadip; Badheka, Apurva O; Paydak, Hakan

    2014-07-01

    The outreach of YouTube may have a dramatic role in the widespread dissemination of knowledge on implantable cardioverter devices (ICD). This study was designed to review and analyze the information available on YouTube pertaining to implantable cardiac devices such as implantable cardioverter defibrillators (ICDs) and pacemakers. YouTube was queried for the terms "ICD", "Implantable Cardioverter Defibrillator", and "Pacemaker". The videos were reviewed and categorized as according to content; number of views and "likes" or "dislikes" was recorded by two separate observers. Of the 55 videos reviewed, 18 of the videos were categorized as patient education, 12 were advertisements, 8 were intraoperative videos documenting the device implantation procedures, 7 of the videos were produced to document personal patient experiences, and 4 were categorized as documentation of a public event. 3 were intended to educate health care workers. The remaining 3 were intended to raise public awareness about sudden cardiac death. The videos portraying intraoperative procedures generated the most "likes" or "dislikes" per view. While YouTube provides a logical platform for delivery of health information, the information on this platform is not regulated. Initiative by reputed authorities and posting accurate information in such platform can be a great aid in public education regarding device therapy.

  19. A 500 A device characterizer utilizing a pulsed-linear amplifier.

    Science.gov (United States)

    Lacouture, Shelby; Bayne, Stephen

    2016-02-01

    With the advent of modern power semiconductor switching elements, the envelope defining "high power" is an ever increasing quantity. Characterization of these semiconductor power devices generally falls into two categories: switching, or transient characteristics, and static, or DC characteristics. With the increasing native voltage and current levels that modern power devices are capable of handling, characterization equipment meant to extract quasi-static IV curves has not kept pace, often leaving researchers with no other option than to construct ad hoc curve tracers from disparate pieces of equipment. In this paper, a dedicated 10 V, 500 A curve tracer was designed and constructed for use with state of the art high power semiconductor switching and control elements. The characterizer is a physically small, pulsed power system at the heart of which is a relatively high power linear amplifier operating in a switched manner in order to deliver well defined square voltage pulses. These actively shaped pulses are used to obtain device's quasi-static DC characteristics accurately without causing any damage to the device tested. Voltage and current waveforms from each pulse are recorded simultaneously by two separate high-speed analog to digital converters and averaged over a specified interval to obtain points in the reconstructed IV graph.

  20. Application of energy storage devices in power systems | Gupta ...

    African Journals Online (AJOL)

    Some of the major disadvantages in electric power supply system have been flickering and deviations in power supply which make some of the electronic equipments and domestic devices highly sensitive to it. To avoid such problems we need to find out devices that can provide a backup during the time of voltage sags ...

  1. 77 FR 39733 - Certain Ink Application Devices and Components Thereof and Methods of Using the Same...

    Science.gov (United States)

    2012-07-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-832] Certain Ink Application Devices and Components Thereof and Methods of Using the Same Determination To Review in Part an Initial Determination... the United States after importation of certain ink application devices and components thereof and...

  2. Topics in high voltage pulsed power plasma devices and applications

    Science.gov (United States)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  3. Energy Renovation of Buildings Utilizing the U-value Meter, a New Heat Loss Measuring Device

    Directory of Open Access Journals (Sweden)

    Lars Schiøtt Sørensen

    2010-01-01

    Full Text Available A new device with the ability to measure heat loss from building facades is proposed. Yet to be commercially developed, the U-value Meter can be used as stand-alone apparatus, or in combination with thermographic-equipment. The U-value meter complements thermographs, which only reproduce surface temperature and not the heat loss distribution. There is need for a device that measures the heat loss in a quantitative manner. Convective as well as radiative heat losses are captured and measured with a five-layer thermal system. Heat losses are measured in the SI-unit W/m2K. The aim is to achieve more cost-effective building renovation, and provide a means to check the fulfillment of Building Regulation requirements with respect to stated U-values (heat transmission coefficients. In this way it should be possible to greatly reduce energy consumption of buildings.

  4. Developing a reproducible non-line-of-sight experimental setup for testing wireless medical device coexistence utilizing ZigBee.

    Science.gov (United States)

    LaSorte, Nickolas J; Rajab, Samer A; Refai, Hazem H

    2012-11-01

    The integration of heterogeneous wireless technologies is believed to aid revolutionary healthcare delivery in hospitals and residential care. Wireless medical device coexistence is a growing concern given the ubiquity of wireless technology. In spite of this, a consensus standard that addresses risks associated with wireless heterogeneous networks has not been adopted. This paper serves as a starting point by recommending a practice for assessing the coexistence of a wireless medical device in a non-line-of-sight environment utilizing 802.15.4 in a practical, versatile, and reproducible test setup. This paper provides an extensive survey of other coexistence studies concerning 802.15.4 and 802.11 and reports on the authors' coexistence testing inside and outside an anechoic chamber. Results are compared against a non-line-of-sight test setup. Findings relative to co-channel and adjacent channel interference were consistent with results reported in the literature.

  5. Brain Computer Interface-Controlling Devices Utilizing The Alpha Brain Waves

    Directory of Open Access Journals (Sweden)

    Rohan Hundia

    2015-01-01

    Full Text Available Abstract This paper describes the development and testing of an interface system whereby one can control external devices by voluntarily controlling alpha waves that is through eye movement. Such a system may be used for the control of prosthetics robotic arms and external devices like wheelchairs using the alpha brain waves and the Mu rhythm. The response generated through the movement of the eye detecting and controlling the amplitude of the alpha brain waves is interfaced and processed to control Robotic systems and smart home control. In order to measure the response of alpha waves over different lobes of the brain initially I measured these signals over 32 regions using silver chloride plated electrodes. By the opening and the closure of the eyes and the movement in the up-down left-right directions and processing these movements measuring them over the occipital region I was able to differentiate the amplitude of the alpha waves generated due to these several movements. In the First session testing period subjects were asked to close and open their eyes and they were able to control limited movements of a Robot and a prosthetic arm. In the Second 2session the movement of the eyes was also considered left-right up-down along with the opening and closure during this time span they were able to control more dimensions of the robot several devices at the same time using different eye movements.

  6. Utilizing national and international registries to enhance pre-market medical device regulatory evaluation.

    Science.gov (United States)

    Yue, Lilly Q; Campbell, Gregory; Lu, Nelson; Xu, Yunling; Zuckerman, Bram

    2016-01-01

    Regulatory decisions are made based on the assessment of risk and benefit of medical devices at the time of pre-market approval and subsequently, when post-market risk-benefit balance needs reevaluation. Such assessments depend on scientific evidence obtained from pre-market studies, post-approval studies, post-market surveillance studies, patient perspective information, as well as other real world data such as national and international registries. Such registries provide real world evidence and are playing a more and more important role in enhancing the safety and effectiveness evaluation of medical devices. While these registries provide large quantities of data reflecting real world practice and can potentially reduce the cost of clinical trials, challenges arise concerning (1) data quality adequate for regulatory decision-making, (2) bias introduced at every stage and aspect of study, (3) scientific validity of study designs, and (4) reliability and interpretability of study results. This article will discuss related statistical and regulatory challenges and opportunities with examples encountered in medical device regulatory reviews.

  7. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    Science.gov (United States)

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P

    2018-03-01

    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p remote automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote automated system in the apical 10 electrodes (standard 185.4 μV, SD 11

  8. Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles

    Science.gov (United States)

    Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai

    2016-05-01

    In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.

  9. Miniaturized tools and devices for bioanalytical applications: an overview

    DEFF Research Database (Denmark)

    Chudy, M.; Grabowska, I.; Ciosek, P.

    2009-01-01

    This article presents an overview of various miniaturized devices and technologies developed by our group. Innovative, fast and cheap procedures for the fabrication of laboratory microsystems based on commercially available materials are reported and compared with well-established microfabricatio...

  10. The Health Utilities Index (HUI®: concepts, measurement properties and applications

    Directory of Open Access Journals (Sweden)

    Horsman John

    2003-10-01

    Full Text Available Abstract This is a review of the Health Utilities Index (HUI® multi-attribute health-status classification systems, and single- and multi-attribute utility scoring systems. HUI refers to both HUI Mark 2 (HUI2 and HUI Mark 3 (HUI3 instruments. The classification systems provide compact but comprehensive frameworks within which to describe health status. The multi-attribute utility functions provide all the information required to calculate single-summary scores of health-related quality of life (HRQL for each health state defined by the classification systems. The use of HUI in clinical studies for a wide variety of conditions in a large number of countries is illustrated. HUI provides comprehensive, reliable, responsive and valid measures of health status and HRQL for subjects in clinical studies. Utility scores of overall HRQL for patients are also used in cost-utility and cost-effectiveness analyses. Population norm data are available from numerous large general population surveys. The widespread use of HUI facilitates the interpretation of results and permits comparisons of disease and treatment outcomes, and comparisons of long-term sequelae at the local, national and international levels.

  11. 75 FR 28597 - Public Utility District No. 1 of Snohomish County; Notice of Preliminary Permit Application...

    Science.gov (United States)

    2010-05-21

    ... Energy Regulatory Commission Public Utility District No. 1 of Snohomish County; Notice of Preliminary... by the Snohomish PUD. Applicant Contact: Steven J. Klein, General Manager, Public Utility District No... Applications May 14, 2010. On March 2, 2010, and supplemented on April 29, 2010, and May 4, 2010, Public...

  12. Interchangeable opening and closing clapper device notably for ventilation ducts utilizing an aggressive or polluting fluid

    International Nuclear Information System (INIS)

    1980-01-01

    This opening and closing device is of the type which employs a casing inside the duct along the fluid path. It is provided with an opening through which the fluid flows and a joint with a closing clapper controlled from the outside enabling the fluid flow to be regulated. It is characterized by the fact that the casing is provided with a lateral opening with respect to the fluid flow direction, the size of this opening being sufficiently large to allow the assembly with its closing clapper to be introduced and withdrawn [fr

  13. Energy storage devices having anodes containing Mg and electrolytes utilized therein

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun

    2015-08-18

    For a metal anode in a battery, the capacity fade is a significant consideration. In energy storage devices having an anode that includes Mg, the cycling stability can be improved by an electrolyte having a first salt, a second salt, and an organic solvent. Examples of the organic solvent include diglyme, triglyme, tetraglyme, or a combination thereof. The first salt can have a magnesium cation and be substantially soluble in the organic solvent. The second salt can enhance the solubility of the first salt and can have a magnesium cation or a lithium cation. The first salt, the second salt, or both have a BH.sub.4 anion.

  14. Utility function under decision theory: A construction arbitration application

    Science.gov (United States)

    Alozn, Ahmad E.; Galadari, Abdulla

    2017-08-01

    While a wide range of dispute resolution mechanisms exist, practitioners favor legally binding ones such as litigation and arbitration. Since initiating a litigation or arbitration case against a business partner may dissolve the business relationship between them, predicting the arbitrator's decision becomes valuable to the arbitrating parties. This paper proposes a construction-specific utility framework for the arbitrating party through decision theory, and based on expected utility theory. The proposed framework preserves the industry practicality and most importantly, considers direct short-term factors and indirect long-term factors as well. It is suggested that the arbitrating parties' utility functions could be then used to identify equilibrium points among them when interact via game theory principles, which would serve the purpose of predicting the arbitration outcome.

  15. Utilization of assistive devices for students with disabilities in the public schools

    Directory of Open Access Journals (Sweden)

    Carolina Bastos Plotegher

    2013-04-01

    Full Text Available Introduction: Assistive technology is an area of expanding knowledge in Brazil. Its use in school can help students with disabilities in performing important tasks to participate in different activities. Objectives: to report the experience of using assistive devices in the academic achievement of students with disabilities included in the regular school system of the municipality of Sao Carlos, state of Sao Paulo. Method: it was developed from an extension project conducted in 2010. Thirteen students with various types of disabilities participated in the project. The interventions were based on the School Function Assessment with the teachers to know the students’ difficulties. The students were also observed performing school tasks. Results: Forty-seven adaptations were made: thickeners, rings for zippers, slants, communication boards, non-slip mats, among others. Besides the adjustments, orientation regarding use of the devices was provided for teachers and persons responsible for the students. Conclusion: we believe that the project benefited the students, because it produced higher academic achievement and provided better school conditions for their school inclusion. For the undergraduate students of Occupational Therapy, the project enabled the dealing with real issues of inclusion and school interventions, thus approaching theory to practice.

  16. GaN power devices for automotive applications

    Science.gov (United States)

    Uesugi, T.; Kachi, Tetsu

    2013-03-01

    GaN is an attractive material for high performance power devices. Vertical GaN power devices are suitable for high current operation, on the other hand, lateral GaN power devices, namely GaN lateral HEMTs have both low on-resistance and low parasitic capacitance. In addition, the GaN lateral HEMTs can be fabricated on Si substrate. We can get low conduction loss and low switching loss devices with low cost. So the GaN lateral HEMTs are suitable for subsystems like an air conditioner and an electric power steering. Serious technical issues about GaN power devices are a normally-off operation, a current collapse, and a high quality gate insulator. Several normally-off operation techniques have been proposed but there is no decisive method. An NH3 surface treatment and a SiO2 passivation are useful to suppress the current collapse. An Al2O3 deposited by ALD is excellent for gate insulator in breakdown and it has enough TDDB reliability under room temperature and 150°C.

  17. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  18. Vacuum nanoelectronic devices novel electron sources and applications

    CERN Document Server

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  19. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    CERN Document Server

    Meinhardt, G

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. ...

  20. An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens.

    Science.gov (United States)

    Cai, Dongyang; Xiao, Meng; Xu, Peng; Xu, Ying-Chun; Du, Wenbin

    2014-10-21

    The early identification of causative pathogens in clinical specimens that require no cultivation is essential for directing evidence-based antimicrobial treatments in resource limited settings. Here, we describe an integrated microfluidic device for the rapid identification of pathogens in complex physiological matrices such as blood. The device was designed and fabricated using SlipChip technologies, which integrated four channels processing independent samples and identifying up to twenty different pathogens. Briefly, diluted whole human blood samples were directly injected into the device for analysis. The pathogens were extracted from the blood by dielectrophoresis, retained in an array of grooves, and identified by multiplex array PCR in nanoliter volumes with end-point fluorescence detection. The universality of the dielectrophoretic separation of pathogens from physiological fluids was evaluated with a panel of clinical isolates covering predominant bacterial and fungal species. Using this system, we simultaneously identified Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli O157:H7 within 3 h. In addition to the prompt diagnosis of bloodstream infections, this method may also be utilized for differentiating microorganisms in contaminated water and environmental samples.

  1. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.

    Science.gov (United States)

    Hong, F T

    1995-01-01

    This tutorial lecture focuses on the fundamental mechanistic aspects of light-induced charge movements in pigment-containing membranes. The topic is relevant to molecular electronics because many prototypes optoelectronic devices are configured as pigment-containing thin films. We use reconstituted bacteriorhodopsin membranes as an example to illustrate the underlying principle of measurements and data interpretation. Bacteriorhodopsin, a light-driven proton pump, is the only protein component in the purple membrane of Halobacterium halobium. It resembles the visual pigment rhodopsin chemically but performs the function of photosynthesis. Bacteriorhodopsin thus offers an unprecedented opportunity for us to compare the visual photoreceptor and the photosynthetic apparatus from a mechanistic point of view. Bacteriorhodopsin, well known for its exceptional chemical and mechanical stability, is also a popular advanced biomaterial for molecular device construction. The tutorial approaches the subject from two angles. First, the fundamental photoelectric properties are exploited for device construction. Second, basic design principles for photosensors and photon energy converters can be elucidated via 'reverse engineering'. The concept of molecular intelligence and the principle of biomimetic science are discussed.

  2. Bright ways to utilize the sun : towards solar-to-fuel devices

    NARCIS (Netherlands)

    Vijselaar, Wouter Jan Cornelis

    2018-01-01

    Silicon (Si) is an attractive semiconductor material for a wide range of applications. Particular advantages result from the larger surface area of silicon microwires, and from surface functionalization with different materials that can be employed to tune the functionality of the substrate towards

  3. Unified first wall - blanket structure for plasma device applications

    Science.gov (United States)

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  4. The Application of Mobile Devices in the Translation Classroom

    Science.gov (United States)

    Bahri, Hossein; Mahadi, Tengku Sepora Tengku

    2016-01-01

    While the presence of mobile electronic devices in the classroom has posed real challenges to instructors, a growing number of teachers believe they should seize the chance to improve the quality of instruction. The advent of new mobile technologies (laptops, smartphones, tablets, etc.) in the translation classroom has opened up new opportunities…

  5. Device Realization, Characterization and Modeling for Linear RF Applications

    NARCIS (Netherlands)

    Buisman, K.

    2011-01-01

    This thesis work addresses semiconductor device technology, characterization and modeling solutions that support the development of future generations of mobile phones, which are able to handle various wireless services in flexible manner. Today’s plurality of high data-rate communication signals

  6. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... to optimize the energy performance. This paper presents a method for measuring the heat loss by utilizing a U-value meter. The U-value meter measures the heat transfer in the unit W/Km2 and has been used in several projects to upgrade the energy performance in temperate regions. The U-value meter was also......Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...

  7. Proposed advanced satellite applications utilizing space nuclear power systems

    Science.gov (United States)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  8. Craniospinal versus whole brain irradiation in Medulloblastoma patients, with introduction of utilizing a simple immobilization device

    Directory of Open Access Journals (Sweden)

    Haddad P

    2001-05-01

    Full Text Available Craniospinal irradiation plus posterior fossa boost (CS1 is the standard modality of post-operative treatment of patient with medulloblastoma, but considering the technical difficulties and limited facilities, often whole- brain irradiation plus posterior fossa boost (WBI had been used in our institution until 1991. Tust a retrospective study was undertaken to compare the patients treated by By WBI and CSI for recurrences and disease-free survival (DFS. Files of all medullobalstoma patients treated post-operatively in our department in the 10 – year period of 1986-1996 were reviewed. To obtain the best possible follow- up, a formal inquiry letter was mailed to all patients’ addresses.Total of 72 patients had been treated, with a mean age of 14.7 years and male-to-female ratio of 1.5:1 Thirty –seven patients had been treated by WBI and 35 by CS. A simple wooden device designed and made in our department was used for CSI patients’ set-up and immobilization. Mean radiation dose to posterior fossa was 4, 765 cGy in WBT and 5, 071 cGY in CSI (180-200 cGy fractions. Sixty-two patients (85% came back for follow-up, with 24 recurrences. Only 24% of CSI patients had recurrences, versus 51% in WBI Nearly all Wbi recurrences versus half of the CSI recurrences were spinal. DFS was 39 months in CSI and 26 months in WBI (P<0.001 . in multi-factorial analysis, only the extent of radiation (CSI versus WBI, P<0.001 was statistically significant. Mean age in our patients was higher than what is commonly reported in literature. The immobilization device introduce was a simple and useful accessory to CSI. Considering DFS, CSI in our department was acceptabley comparable to literature results and significantly superior to WBI. With regard to relatively high spinal recurrence rate even in CSI, the importance of suitable spinal cytological and imaging evaluation is again emphasized.

  9. Analysis of multi cloud storage applications for resource constrained mobile devices

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bedi

    2016-09-01

    Full Text Available Cloud storage, which can be a surrogate for all physical hardware storage devices, is a term which gives a reflection of an enormous advancement in engineering (Hung et al., 2012. However, there are many issues that need to be handled when accessing cloud storage on resource constrained mobile devices due to inherent limitations of mobile devices as limited storage capacity, processing power and battery backup (Yeo et al., 2014. There are many multi cloud storage applications available, which handle issues faced by single cloud storage applications. In this paper, we are providing analysis of different multi cloud storage applications developed for resource constrained mobile devices to check their performance on the basis of parameters as battery consumption, CPU usage, data usage and time consumed by using mobile phone device Sony Xperia ZL (smart phone on WiFi network. Lastly, conclusion and open research challenges in these multi cloud storage apps are discussed.

  10. Structural characterisations of AlN/diamond structures used for surface acoustic wave device applications

    OpenAIRE

    MORTET, Vincent; Elmazria, O; NESLADEK, Milos; Elhakiki, M; VANHOYLAND, Geert; D'HAEN, Jan; D'OLIESLAEGER, Marc; Alnot, P

    2003-01-01

    Diamond based surface acoustic wave (SAW) devices are extremely versatile devices that are just beginning to realize their commercial potential for use from sensors till high frequency (HF) filters for wireless telecommunications. One of the most promising piezoelectric materials for diamond based HF-SAW devices is aluminium nitride (AlN) thin film. The ability of AlN and diamond to be used for SAW applications depends both on the piezoelectric AlN layer properties and the diamond substrate p...

  11. Medical devices utilizing optical fibers for simultaneous power, communications and control

    Science.gov (United States)

    Fitch, Joseph P.; Matthews, Dennis L.; Hagans, Karla G.; Lee, Abraham P.; Krulevitch, Peter; Benett, William J.; Clough, Robert E.; DaSilva, Luiz B.; Celliers, Peter M.

    2003-06-10

    A medical device is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a proximal end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a proximal end for external coupling of laser light energy. A laser-light-to-mechanical-power converter is connected to receive light from the distal end of the fiber optic cable and may include a photo-voltaic cell and an electromechanical motor or a heat-sensitive photo-thermal material. An electronic sensor is connected to receive electrical power from said distal end of the fiberoptic cable and is connected to provide signal information about a particular physical environment and communicated externally through the fiberoptic cable to the proximal end thereof. A mechanical sensor is attached to the distal end of the fiberoptic cable and connected to provide light signal information about a particular physical environment and communicated externally through the fiberoptic cable.

  12. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    International Nuclear Information System (INIS)

    Han, Young-Min; Choi, Seung-Bok

    2014-01-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated. (paper)

  13. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    Science.gov (United States)

    Han, Young-Min; Choi, Seung-Bok

    2014-10-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.

  14. Application range of micro focus radiographic devices associated to image processors

    International Nuclear Information System (INIS)

    Cappabianca, C.; Ferriani, S.; Verre, F.

    1987-01-01

    X-ray devices having a focus area less than 100 μ are called micro focus X-ray equipment. Here the range of application and the characteristics of these devices including the possibility of employing the coupling with real time image enhancement computers are defined

  15. Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications

    CERN Document Server

    Okuyama, Masanori

    2005-01-01

    Ferroelectric thin films continue to attract much attention due to their developing, diverse applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. All authors are acknowledged experts in the field.

  16. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  17. Structural evolution of utility systems and its implications for photovoltaic applications

    International Nuclear Information System (INIS)

    Iannucci, J.J.; Shugar, D.S.

    1993-01-01

    Photovoltaics (PV) differ substantially from the central generating stations traditionally employed by utilities. PV utilizes a fuel which disappears nightly, operating only while the sun shines. It has the potential of being highly reliable while requiring low levels of operating and maintenance attention, and it can be deployed in a highly modular fashion close to load. It is precisely these differences that give rise to PV's greatest opportunities in successfully entering the utility market. The purpose of this paper is to explore an emerging utility paradigm, the Distributed Utility concept, and how utilities might change their current planning and resource selection processes to take advantage of it, both to the betterment of the PV industry and the utility's customers. Out of this exploration emerges the photovoltaics Diffusion Model strategy that bridges the gap from currently economic stand-alone special applications of PV in utility operations to bulk power production. (author). 12 refs, 5 figs

  18. Appdaptivity: An Internet of Things Device-Decoupled System for Portable Applications in Changing Contexts

    Directory of Open Access Journals (Sweden)

    Cristian Martín

    2018-04-01

    Full Text Available Currently, applications in the Internet of Things (IoT are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.

  19. Utilization of an electronic portal imaging device for measurement of dynamic wedge data

    International Nuclear Information System (INIS)

    Elder, Eric S.; Miner, Marc S.; Butker, Elizabeth K.; Sutton, Danny S.; Davis, Lawrence W.

    1996-01-01

    Purpose/Objective: Due to the motion of the collimator during dynamic wedge treatments, the conventional method of collecting comprehensive wedge data with a water tank and a scanning ionization chamber is obsolete. It is the objective of this work to demonstrate the use of an electronic portal imaging device (EPID) and software to accomplish this task. Materials and Methods: A Varian Clinac[reg] 2300 C/D, equipped with a PortalVision TM EPID and Dosimetry Research Mode experimental software, was used to produce the radiation field. The Dosimetry Research Mode experimental software allows for a band of 10 of 256 high voltage electrodes to be continuously read and averaged by the 256 electrometer electrodes. The file that is produced contains data relating to the integrated ionization at each of the 256 points, essentially the cross plane beam profile. Software was developed using Microsoft C ++ to reformat the data for import into a Microsoft Excel spreadsheet allowing for easy mathematical manipulation and graphical display. Beam profiles were measured by the EPID with a 100 cm TSD for various field sizes. Each field size was measured open, steel wedged, and dynamically wedged. Scanning ionization chamber measurements performed in a water tank were compared to the open and steel wedged fields. Ionization chamber measurements taken in a water tank were compared with the dynamically wedged measurements. For the EPID measurements the depth was varied using Gammex RMI Solid Water TM placed directly above the EPID sensitive volume. Bolus material was placed between the Solid Water TM and the EPID to avoid an air gap. Results: Comparison of EPID measurements with those from an ion chamber in a water tank showed a discrepancy of ∼5%. Scans were successfully obtained for open, steel wedged and dynamically wedged beams. Software has been developed to allow for easy graphical display of beam profiles. Conclusions: Measurement of dynamic wedge data proves to be easily

  20. Application of cyclic fluorocarbon/argon discharges to device patterning

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Dominik, E-mail: dmetzler@umd.edu [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 and Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Uppireddi, Kishore; Bruce, Robert L.; Miyazoe, Hiroyuki; Zhu, Yu; Price, William; Sikorski, Ed S.; Engelmann, Sebastian U.; Joseph, Eric A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Li, Chen [Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Oehrlein, Gottlieb S. [Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with this work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.

  1. Signal processing applications of massively parallel charge domain computing devices

    Science.gov (United States)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  2. Is strategic asset management applicable to small and medium utilities?

    Science.gov (United States)

    Alegre, Helena

    2010-01-01

    Urban water infrastructures provide essential services to modern societies and represent a major portion of the value of municipal physical assets. Managing these assets rationally is therefore fundamental for the sustainability of the services and to the economy of societies. "Asset Management" (AM) is a modern term for an old practice--assets have always been managed. In recent years, significant evolution occurred in terms of the AM formal approaches, of the monitoring and decision support tools and of the implementation success cases. However, most tools developed are too sophisticated and data seek for small utilities. The European R&D network COST Action C18 ( E-mail: www.costc18.org) identified key research problems related to the management of urban water infrastructures, currently not covered by on-going projects of the European Framework Program. The top 1 topic is "Efficient management of small community". This paper addresses challenges and opportunities for small and medium utilities with regard to infrastructure AM (IAM). To put this into context, the first sections discuss the need for IAM, highlight key recent developments, and present IAM drivers, as well as research and development gaps, priorities and products needed.

  3. Marine Applications of Power Supply and Conditioning Interfaces for High Power Pulse Devices

    National Research Council Canada - National Science Library

    Rutan, Ronald

    2002-01-01

    ...), Capacitors, Compulsators, and Batteries as energy storage devices and graphically illustrates pertinent data (weight, volume, etc) per pulse power application for the ship designer to determine suitability for marine vessels.

  4. Application of methods of discrete mathematics at modular synthesis of mechatronic devices

    OpenAIRE

    Nikiforov, S.; Nikiforov, B.; Mandarov, E.; Rabdanova, N.

    2010-01-01

    The article is devoted to application of methods of discrete mathematics (the theory of counts, the method of matrix code and others) and synthesis of executive mechanisms of mechatronic handling devices

  5. Love-Mode MEMS Devices for Sensing Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2016-01-01

    Full Text Available Love-wave-based MEMS devices are theoretically investigated in their potential role as a promising technological platform for the development of acoustic-wave-based sensors for liquid environments. Both single- and bi-layered structures have been investigated and the velocity dispersion curves were calculated for different layer thicknesses, crystallographic orientations, material types and electrical boundary conditions. High velocity materials have been investigated too, enabling device miniaturization, power consumption reduction and integration with the conditioning electronic circuits. The electroacoustic coupling coefficient dispersion curves of the first four Love modes are calculated for four dispersive coupling configurations based on a c-axis tilted ZnO layer on wz-BN substrate. The gravimetric sensitivity of four Love modes travelling at a common velocity of 9318 m/s along different layer thicknesses, and of three Love modes travelling at different velocity along a fixed ZnO layer thickness, are calculated in order to design enhanced-performance sensors. The phase velocity shift and attenuation due to the presence of a viscous liquid contacting the device surface are calculated for different thicknesses of a c-axis inclined ZnO layer onto BN half-space.

  6. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  7. 78 FR 64534 - Certain Ink Application Devices and Components Thereof and Methods of Using the Same Commission...

    Science.gov (United States)

    2013-10-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-832] Certain Ink Application Devices and..., and the sale within the United States after importation of certain ink application devices and... certain ink application devices and components thereof that are manufactured abroad by or on behalf of, or...

  8. Forensic analysis of social networking application on iOS devices

    Science.gov (United States)

    Zhang, Shuhui; Wang, Lianhai

    2013-12-01

    The increased use of social networking application on iPhone and iPad make these devices a goldmine for forensic investigators. Besides, QQ, Wechat, Sina Weibo and skype applications are very popular in China and didn't draw attention to researchers. These social networking applications are used not only on computers, but also mobile phones and tablets. This paper focuses on conducting forensic analysis on these four social networking applications on iPhone and iPad devices. The tests consisted of installing the social networking applications on each device, conducting common user activities through each application and correlation analysis with other activities. Advices to the forensic investigators are also given. It could help the investigators to describe the crime behavior and reconstruct the crime venue.

  9. mobile phone applications and the utilization of library services in ...

    African Journals Online (AJOL)

    Global Journal

    thing of the past. Library services in the contemporary world can be rendered without the user visiting the library physically. This is courtesy of Information and communication. Technology facilities of which the mobile phone is an example. The mobile phone applications have simplified the learning process and learning can.

  10. Application and Utilization of Electrochemistry in Organic Chemistry

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš

    2011-01-01

    Roč. 15, č. 17 (2011), s. 2921-2922 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * organic chemistry * applications Subject RIV: CG - Electrochemistry Impact factor: 3.064, year: 2011

  11. Establishment and application of a large calibration device of artificial radionuclide plane source

    International Nuclear Information System (INIS)

    Hu Mingkao; Zhang Jiyun; Wang Xinxing; Zhang Sheng

    2010-01-01

    With the expansion of the application fields of nuclear techniques and the development of economy, more and more airborne/vehicle and other large γ spectrometers are applied in the environment radiation monitoring of artificial radioactive nuclides. In order to ensure the reliability of the monitoring results, a large calibration device of artificial radionuclide plane source is established. The paper introduces the device's built history and the results of application. (authors)

  12. The Paleobiosphere: a novel device for the in vivo testing of hydrocarbon producing-utilizing microorganisms.

    Science.gov (United States)

    Strobel, Gary; Booth, Eric; Schaible, George; Mends, Morgan Tess; Sears, Joe; Geary, Brad

    2013-04-01

    The construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can degrade biological materials to produce fuel-like hydrocarbons in a relatively short time frame that become trapped by the shale. The conditions selected for testing included a particulate Montana shale (serving as the "Trap Shale"), plant materials (leaves and stems of three extant species whose origins are in the late Cretaceous), a water-circulating system, sterile air, and a specially designed Carbotrap through which all air was passed as exhaust and volatile were hydrocarbons trapped. The fungus for initial testing was Annulohypoxylon sp., isolated as an endophyte of Citrus aurantifolia. It produces, in solid and liquid media, a series of hydrocarbon-like molecules. Some of these including 1,8-cineole, 2-butanone, propanoic acid, 2-methyl-, methyl ester, benzene (1-methylethyl)-, phenylethyl alcohol, benzophenone and azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl), [1S-(1α,7α,8aβ)]. These were the key signature compounds used in an initial Paleobiosphere test. After 3 weeks, incubation, the volatiles associated with the harvested "Trap Shale" included each of the signature substances as well as other fungal-associated products: some indanes, benzene derivatives, some cyclohexanes, 3-octanone, naphthalenes and others. The fungus thus produced a series of "Trap Shale" products that were representative of each of the major classes of hydrocarbons in diesel fuel (Mycodiesel). Initial tests with the Paleobiosphere offer some evidence for a possible origin of hydrocarbons trapped in bentonite shale. Thus, with modifications, numerous other tests can also be designed for utilization in the Paleobiosphere.

  13. Principles and applications of superconducting quantum interference devices

    CERN Document Server

    1992-01-01

    Principles and applications of SQUIDs serves as a textbook and a multi-author collection of critical reviews. Providing both basic aspects and recent progress in SQUIDs technology, it offers a realistic and stimulating picture of the state of the art. It can also contribute to a further development of the field for commercial applications.

  14. Basic criteria and application examples of German utility PLIM concept

    International Nuclear Information System (INIS)

    Sgarz, G.; Metzner, K.J.

    2002-01-01

    As a consequence of the consensus negotiations between the present Federal German Government and the German utilities the new Atomic Energy Law was set into force in April 2002. The main issues are: 1. Phase out of NPP-operation after a maximum lifetime of 32 years without any claims for compensation. 2. Termination of spent fuel reprocessing and switching over to direct final storage. Stop of spent fuel casks shipment in 2005. 3. Intermediate storage facilities are to be provided on each power plant site. 4. The promotion clause for nuclear energy is cancelled, the construction of new NPP's is prohibited. 5. The NPP safety status has to be kept on a high level standard. A periodic safety assessment must be performed 'according to the state of the art' based on up-to-date codes and standards in a 10-year interval. As a consequence, the future German policies and strategies are based on this law

  15. Device-independent point estimation from finite data and its application to device-independent property estimation

    Science.gov (United States)

    Lin, Pei-Sheng; Rosset, Denis; Zhang, Yanbao; Bancal, Jean-Daniel; Liang, Yeong-Cherng

    2018-03-01

    The device-independent approach to physics is one where conclusions are drawn directly from the observed correlations between measurement outcomes. In quantum information, this approach allows one to make strong statements about the properties of the underlying systems or devices solely via the observation of Bell-inequality-violating correlations. However, since one can only perform a finite number of experimental trials, statistical fluctuations necessarily accompany any estimation of these correlations. Consequently, an important gap remains between the many theoretical tools developed for the asymptotic scenario and the experimentally obtained raw data. In particular, a physical and concurrently practical way to estimate the underlying quantum distribution has so far remained elusive. Here, we show that the natural analogs of the maximum-likelihood estimation technique and the least-square-error estimation technique in the device-independent context result in point estimates of the true distribution that are physical, unique, computationally tractable, and consistent. They thus serve as sound algorithmic tools allowing one to bridge the aforementioned gap. As an application, we demonstrate how such estimates of the underlying quantum distribution can be used to provide, in certain cases, trustworthy estimates of the amount of entanglement present in the measured system. In stark contrast to existing approaches to device-independent parameter estimations, our estimation does not require the prior knowledge of any Bell inequality tailored for the specific property and the specific distribution of interest.

  16. A Signature Comparing Android Mobile Application Utilizing Feature Extracting Algorithms

    Directory of Open Access Journals (Sweden)

    Paul Grafilon

    2017-08-01

    Full Text Available The paper presented one of the application that can be done using smartphones camera. Nowadays forgery is one of the most undetected crimes. With the forensic technology used today it is still difficult for authorities to compare and define what a real signature is and what a forged signature is. A signature is a legal representation of a person. All transactions are based on a signature. Forgers may use a signature to sign illegal contracts and withdraw from bank accounts undetected. A signature can also be forged during election periods for repeated voting. Addressing the issues a signature should always be secure. Signature verification is a reduced problem that still poses a real challenge for researchers. The literature on signature verification is quite extensive and shows two main areas of research off-line and on-line systems. Off-line systems deal with a static image of the signature i.e. the result of the action of signing while on-line systems work on the dynamic process of generating the signature i.e. the action of signing itself. The researchers have found a way to resolve the concerns. A mobile application that integrates the camera to take a picture of a signature analyzes it and compares it to other signatures for verification. It will exist to help citizens to be more cautious and aware with issues regarding the signatures. This might also be relevant to help organizations and institutions such as banks and insurance companies in verifying signatures that may avoid unwanted transactions and identity theft. Furthermore this might help the authorities in the never ending battle against crime especially against forgers and thieves. The project aimed to design and develop a mobile application that integrates the smartphone camera for verifying and comparing signatures for security using the best algorithm possible. As the result of the development the said smartphone camera application is functional and reliable.

  17. Utilizing Mobile Applications In Smart E-Government In Jordan

    Directory of Open Access Journals (Sweden)

    Yousef Hashem Salameh Ali

    2015-08-01

    Full Text Available now days more and more services are provided to citizens through web sites. These services are improving from the be-ginning of the application submission to get the product right up to the stage of electronic payment and receipt of the product by delivery companies to homes. Electronic services led to a growing and high satisfaction from citizens about e-government services.

  18. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  19. Ophthalmic applications of the digital micromirror device (DMD)

    Science.gov (United States)

    Reiley, Daniel J.; Sandstedt, Chris

    2009-02-01

    Cataract surgery with IOL implantation is performed on millions of patients every year. Despite 25 years of technological innovation, post-surgical refractive errors have remained a problem. Now these errors can be corrected using Calhoun Vision, Inc's light adjustable lens (LAL). The correction is accomplished by implanting a light-sensitive lens, then illuminating it with a spatially varying irradiance profile during a postoperative treatment. This irradiance profile is provided by a Light Delivery Device (LDD), which projects an image of a Texas Instruments DMD onto the implanted lens. Commercial sales of this system began in the summer of 2008 in Europe; US clinical trials began in January 2009.

  20. Essential elements for assessment of persons with severe neurological impairments for computer access utilizing assistive technology devices: a Delphi study.

    Science.gov (United States)

    Hoppestad, Brian Scott

    2006-01-01

    The objective of this study was to determine prospective elements that should comprise a comprehensive and valid assessment of persons with severe disabilities for access to computers utilizing assistive technology (AT). Currently, there is a lack of guidelines regarding areas that permit a satisfactory measure of a person's need for AT devices to enable computer access, resulting in substandard services. A list of criteria for elements that should be incorporated into an instrument for determining AT for computer access was compiled from a literature review in the areas of neuroscience, rehabilitation, and education; and a Delphi study using an electronic survey form that was e-mailed to a panel of experts in the field of AT. Only those areas rated as essential to the assessment process ('very important' or 'important' by 80% of the respondents) were chosen as important criteria for an assessment instrument. The initial Delphi survey contained 22 categories (54 subcategories or elements) for incorporation into an assessment for computer access. The second round of the survey completed the Delphi process resulting in a consensus for inclusion of 39 of the elements in an assessment instrument. There are inherent obstacles to prescribing the proper AT device to assist disabled persons with computer access due to the complexity of his/her condition, and the multitude of technological devices available to aid persons in accomplishing diverse tasks. This study reveals the intricacy of the assessment process, especially in persons with severe disabilities associated with neurological conditions. An assessment instrument should be broad ranging, integrating both intrinsic and extrinsic factors, considering the multidimensional nature of AT prescription for computer access.

  1. Utilization of Self-Healing Materials in Thermal Protection System Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the Utilization of Self-Healing Materials for Thermal Protection System (TPS) Applications. Currently, the technology for repairing TPS from...

  2. Case-study application of venture analysis: the integrated energy utility. Volume 3. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fein, E; Gordon, T J; King, R; Kropp, F G; Shuchman, H L; Stover, J; Hausz, W; Meyer, C

    1978-11-01

    The appendices for a case-study application of venture analysis for an integrated energy utility for commercialization are presented. The following are included and discussed: utility interviews; net social benefits - quantitative calculations; the financial analysis model; market penetration decision model; international district heating systems; political and regulatory environment; institutional impacts.

  3. Transduction mechanisms and their applications in micromechanical devices

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt; Blom, F.R.; Bouwstra, S.; Lammerink, Theodorus S.J.; van de Pol, F.C.M.; Tilmans, H.A.C.; Popma, T.J.A.; Fluitman, J.H.J.

    1989-01-01

    Transduction mechanisms and their applications in micromechanical actuators and resonating sensors are presented. They include piezoelectric, dielectric, electro-thermo-mechanic, opto-thermo-mechanic, and thermo-pneumatic mechanisms. Advantages and disadvantages with respect to technology and

  4. Integrated graphene-based devices for optoelectronic applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. Here I present novel integrated grapheneplasmonic waveguide modulator showing high modulation depth, thus giving a promising way...

  5. Boronization study for application to large helical device

    Science.gov (United States)

    Noda, N.; Sagara, A.; Yamada, H.; Kubota, Y.; Inoue, N.; Akaishi, K.; Motojima, O.; Iwamoto, K.; Hashiba, M.; Fujita, I.; Hino, T.; Yamashina, T.; Okazaki, K.; Rice, J.; Yamage, M.; Toyoda, H.; Sugai, H.

    1995-04-01

    An experimental device named SUT ( SUrface modification Teststand) was constructed for a boronization study. An ultra high vacuum (UHV) condition, a changeable high temperature liner and in situ AES are three distinctive feature of the SUT device. Saturation density of oxygen atoms was as large as 1.2 × 10 17/cm 2 on a boronized surface, whereas 1.5 × 10 16/cm 2 on a bare stainless steel surface. It is found by AES analysis that the oxygen-contained layer was as thick as 50 nm from the top surface of the boron film. From such a large oxygen-saturation density, we expect that the oxygen-gettering ability of the boronized surface is likely to be maintained during one-day experiment of LHD. The oxygen-saturation behavior was quite similar between the boronized surfaces obtained with decaborane and diborane, which indicates that, as a working gas of the boronization, the decaborane works well compared with diborane, as far as oxygen gettering is concerned.

  6. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  7. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  8. Clinical utility of neurostimulation devices in the treatment of overactive bladder: current perspectives

    Directory of Open Access Journals (Sweden)

    Janssen DAW

    2017-06-01

    Full Text Available Dick AW Janssen,1 Frank MJ Martens,1 Liesbeth L de Wall,1 Hendrikje MK van Breda,2 John PFA Heesakkers1 1Department of Urology, Radboud University Nijmegen Medical Center, Nijmegen, 2Department of Urology, University Medical Center Utrecht, Utrecht, the Netherlands Objectives: This review describes the evidence from established and experimental therapies that use electrical nerve stimulation to treat lower urinary tract dysfunction.Methods: Clinical studies on established treatments such as percutaneous posterior tibial nerve stimulation (P-PTNS, transcutaneous electrical nerve stimulation (TENS, sacral nerve stimulation (SNS and sacral anterior root stimulation (SARS are evaluated. In addition, clinical evidence from experimental therapies such as dorsal genital nerve (DGN stimulation, pudendal nerve stimulation, magnetic nerve stimulation and ankle implants for tibial nerve stimulation are evaluated.Results: SNS and P-PTNS have been investigated with high-quality studies that have shown proven efficacy for the treatment for overactive bladder (OAB. SARS has proven evidence-based efficacy in spinal cord patients and increases the quality of life. TENS seems inferior to other OAB treatments such as SNS and P-PTNS but is noninvasive and applicable for ambulant therapy. Results from studies on experimental therapies such as pudendal nerve stimulation seem promising but need larger study cohorts to prove efficacy.Conclusion: Neurostimulation therapies have proven efficacy for bladder dysfunction in patients who are refractory to other therapies.Significance: Refinement of neurostimulation therapies is possible. The aim should be to make the treatments less invasive, more durable and more effective for the treatment of lower urinary tract dysfunction. Keywords: neuromodulation, overactive bladder syndrome, sacral nerve stimulation, sacral anterior root stimulation, PTNS, implant

  9. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  10. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  11. Utilization of cyclotrons for industrial and materials science applications

    International Nuclear Information System (INIS)

    Abdel-Azim, M.S.

    1998-01-01

    The Egyptian cyclotron complex which is under construction in NRC at Inshas, shall contain provisions for radioisotopes production and fast neutrons research and applications. The current use of cyclotrons to solve problems of materials research, including those that arise during the design and manufacture of a product or hi the behavior of the product in service e.g. TLA are, reviewed. Neutron radiography in NDT of welds in metals and. alloys, crystallographic phase determination, single-crystal quality control, and internal stress measurement by neutron diffraction technique, to be used in materials science research and industry are presented too in this paper

  12. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  13. Survey of cost-effective photovoltaic applications at US electric utilities

    International Nuclear Information System (INIS)

    Eastwood, C.D.

    1993-08-01

    A survey of 2909 electric utilities throughout the United States was conducted to determine the number of cost-effective photovoltaic (PV) systems currently owned and operated by electric utilities. In addition, information regarding the performance and reliability of these systems was collected and a list of utility contacts with PV experience was compiled. A total of 374 (13%) survey questionnaires were returned. The results revealed that over 1850 PV installations with an installed capacity of over 87 kW are owned and operated by 74 utilities across the country. Cost-effective PV systems are in use in virtually every state in the US and have been used by electric utilities since the late 1970's. The systems range in size from a few watts to 7.2 kW and typically service small, and frequently remote loads. Investor-owned utilities own over 1500 of the cost-effective PV systems in use, with an installed capacity of 56.5 kW; municipal utilities own over 170 systems, with an installed capacity of 7 kW; federally or state-owned agencies own over 100 systems, with an installed capacity of 8.7 kW; and rural electric cooperatives own over 80 systems, with an installed capacity of 14.8 kW. The devices were found to be highly reliable, with 97% of the utilities that operate PV reporting that they were either satisfied or very satisfied with the performance of their systems. Nearly 38% of these utilities reported that their PV devices required no preventive maintenance. 42.4% of the utilities with PV systems in use perform regularly scheduled maintenance; however, the level of maintenance required is minimal. The remainder of the utilities with PV devices perform unscheduled maintenance as required. Over 37% of the utilities operating cost-effective PV had experienced no downtime with their systems. Those that had experienced downtime cited component failure, vandalism, design problems, or improper installation as the cause

  14. Device and Circuit Design Challenges in the Digital Subthreshold Region for Ultralow-Power Applications

    Directory of Open Access Journals (Sweden)

    Ramesh Vaddi

    2009-01-01

    Full Text Available In recent years, subthreshold operation has gained a lot of attention due to ultra low-power consumption in applications requiring low to medium performance. It has also been shown that by optimizing the device structure, power consumption of digital subthreshold logic can be further minimized while improving its performance. Therefore, subthreshold circuit design is very promising for future ultra low-energy sensor applications as well as high-performance parallel processing. This paper deals with various device and circuit design challenges associated with the state of the art in optimal digital subthreshold circuit design and reviews device design methodologies and circuit topologies for optimal digital subthreshold operation. This paper identifies the suitable candidates for subthreshold operation at device and circuit levels for optimal subthreshold circuit design and provides an effective roadmap for digital designers interested to work with ultra low-power applications.

  15. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    Science.gov (United States)

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  16. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  17. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  18. Factors influencing the design of aiming devices for intraoral radiography and their practical application

    NARCIS (Netherlands)

    Aken, J. van; Verhoeven, J.W.

    Intraoral roentgenograms can be made according to the long-tube paralleling technique utilizing aiming devices. These instruments consist of a bite block, an indicator rod, and a collimator plate. For the position of the film in relation to the bite block surface, the following data are decisive and

  19. Knowledge and utilization of contraceptive devices among unmarried undergraduate students of a tertiary institution in Kano State, Nigeria 2016.

    Science.gov (United States)

    Ahmed, Zainab Datti; Sule, Ibrahim Baffa; Abolaji, Mohammed Lukman; Mohammed, Yahaya; Nguku, Patrick

    2017-01-01

    Students in the universities mostly live independently from their parents or guardians, some of them for the first time. This gives them freedom and opportunity for high risk behavior such as unplanned and unprotected sex. The results of such sexual experimentation may include unplanned and or unwanted pregnancies that may lead to unsafe abortions and sexually transmitted infections (STIs) including HIV/AIDS. Contraception has the potential to prevent unwanted pregnancies, abortion, and STIs. This study aimed at assessing the general knowledge on contraceptives, sexual practices, and level of utilization of contraceptives devices among unmarried students of the Bayero University Kano. We did an institutional based cross-sectional descriptive study. We administered a pretested, self-administered, structured questionnaire to randomly selected unmarried undergraduate students of the institution. We analyzed data using Microsoft Excel 2016 and Epi-info7. A total of 300 students were interviewed. The median age for respondents was 23 years with an age range of 16-25 years. Male respondents made up 61.3% (184) while the females made up the remaining 38.7% (116). Also, 158(47.33%) of respondents lived outside the school campus, while 158(52.67%) lived in the school hostels. Knowledge on contraception was 87.7% among respondents with internet (91%) and media (89.3%) as the commonest sources of knowledge. Proportion of sexually active students was 10.67%, while prevalence of contraceptive utilization among sexually active students was 15.63%. About 8(25%) had their sexual debut at contraceptive used was high among the respondents, utilization of contraceptives among sexually active students was low, thus creating a window for possible unintended and unwanted pregnancies among these group of students.

  20. Application of a microfluidic device for counting of bacteria.

    Science.gov (United States)

    Inatomi, K-I; Izuo, S-I; Lee, S-S

    2006-09-01

    To develop a miniaturized analytical system for counting of bacteria. Escherichia coli cells were used throughout the experiments. The system consists of a microfluidic chamber, a fluorescence microscope with a charge-coupled device (CCD) camera and syringe pumps. The chamber was made of a silicone rubber (30 x 30 mm and 4 mm high). The E. coli cells were flowed from a micro-nozzle fabricated in the chamber and detected with the CCD camera. The individual cells were indicated as signal peaks on a computer. The cell counts showed a good correlation compared with that of a conventional plate counting method, and results of the simultaneous detection of live and dead cells were also presented. The system having a small disposable nozzle has the advantages for low cost and safe medical or environmental analysis, when compared with a conventional flow cytometer. This is the first step of the development of a one-chip microbe analyzer.

  1. Establishment and application of Competitive Intelligence System in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Anass El Haddadi

    2011-12-01

    Full Text Available The strategy concept has changed dramatically: from a long range planning to strategic planning then to strategic responsiveness. This response implies moving from a concept of change to a concept of continuous evolution. In our context, the competitive intelligence system presented aims to improve decision‐making in all aspects of business life, particularly for offensive and innovative decisions. In the paper we present XPlor EveryWhere, our competitive intelligence system based on a multidimensional analysis model for mobile devices. The objective of this system is to capture the information environment in all dimensions of a decision problem, with the exploitation of information by analyzing the evolution of their interactions

  2. Utilization of research reactors in universities and their medical applications

    International Nuclear Information System (INIS)

    Kanda, Keiji.

    1983-01-01

    In Japan, five research reactors and a critical assembly are operated by the universities. They are opened to all university researchers, the system of which is financially supported by the Ministry of Education, Culture and Science of the Japanese government. Usually KUR is operated eight cycles per year. One cycle consists of the following four week operation: 1. Mainly for researchers from other universities; 2. Mainly for researchers in the institute; 3. Mainly for beam experiment; 4. Sort time experiment. In the weeks of 1 ∼ 3 the KUR is operated continously from Tuesday morning to Friday evening. The experiment include studies on physics, chemistry, biology, medicine, engineering etc. Recently the medical application of research reactors has become popular in Japan. The new technique of the boron neutron capture thereby has been successfully applied to brain tumors and will be to melanoma (skin cancer) in near future. (author)

  3. Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices

    Science.gov (United States)

    Antunez, Priscilla D.; Bishop, Douglas M.; Luo, Yu; Haight, Richard

    2017-11-01

    Simultaneously achieving high voltage and high efficiency in thin-film solar cells is of paramount importance for real-world applications. While solar cells fabricated from the Earth-abundant kesterite absorber Cu2ZnSn(SxSe1-x)4 provide an attractive, non-toxic, energy harvesting solution, their utilization has been constrained by relatively low open-circuit voltages that limit efficiency. Increasing the sulfur content to widen the bandgap boosts the voltage, but usually at the expense of efficiency. Here, we report important progress on this fundamental problem by fabricating solar cells with high sulfur content that exhibit efficiencies up to 11.89% with open-circuit voltages as high as 670 mV. In a multistep process, fully functional solar cells are separated from their growth substrate, and a high-work-function back contact is subsequently deposited. With this approach, we fabricated a series-connected device that produces 5.7 V under 1 Sun illumination and 2 V under low lighting conditions, below 10-3 Suns.

  4. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  5. Topology optimization of metallic devices for microwave applications

    DEFF Research Database (Denmark)

    Aage, Niels; Mortensen, Asger; Sigmund, Ole

    2010-01-01

    is the skin depth, which calls for highly refined meshing in order to capture the physics. The skin depth problem has therefore prohibited the application of topology optimization to this class of problem. We present a design parameterization that remedies these numerical issues, by the interpolation...

  6. Micro and nanofluidic devices for environmental and biomedical applications

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; van den Berg, Albert

    2004-01-01

    During the last decade, an increasing amount of pocket-size chemistry equipment based on the so-called 'lab-on-a-chip'approach has become available. Besides the popular application in the analysis of biological macromolecules, such chips in combination with portable electronic equipment are

  7. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Institute (EPRI)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  8. 77 FR 25157 - Public Utility District No. 1 of Snohomish County, WA; Notice of Application Accepted for Filing...

    Science.gov (United States)

    2012-04-27

    ... Energy Regulatory Commission Public Utility District No. 1 of Snohomish County, WA; Notice of Application.... Applicant: Public Utility District No. 1 of Snohomish County, Washington (Snohomish PUD). e. Name of Project.... Applicant Contact: Steven J. Klein, Public Utility District No. 1 of Snohomish County, Washington, P.O. Box...

  9. 75 FR 29334 - Public Utility District No. 2 of Grant County, WA; Notice of Application for Amendment of License...

    Science.gov (United States)

    2010-05-25

    ... Energy Regulatory Commission Public Utility District No. 2 of Grant County, WA; Notice of Application for...: February 26, 2010. d. Applicant: Public Utility District No. 2 of Grant County, Washington. e. Name of.... Applicant Contact: Kelly Larimer, Lands and Recreation Resources Manager, Public Utility District No. 2 of...

  10. 76 FR 25318 - Public Utility District No. 1 Chelan County; Notice of Application for Amendment of License and...

    Science.gov (United States)

    2011-05-04

    ... Energy Regulatory Commission Public Utility District No. 1 Chelan County; Notice of Application for.... Date Filed: April 15, 2011. d. Applicant: Public Utility District No. 1 Chelan County. e. Name of...(a)-825(r). h. Applicant Contact: Michelle Smith, Licensing and Compliance Manager, Public Utility...

  11. 76 FR 9768 - Public Utility District No. 1 Chelan County; Notice of Application for Amendment of License and...

    Science.gov (United States)

    2011-02-22

    ... Energy Regulatory Commission Public Utility District No. 1 Chelan County; Notice of Application for... 21, 2011. d. Applicant: Public Utility District No. 1 Chelan County. e. Name of Project: Lake Chelan...) on any comments, motions, or recommendations filed. k. Description of the Application: Public Utility...

  12. 78 FR 6317 - Public Utility District No. 1 Chelan County; Notice of Application for Amendment of License and...

    Science.gov (United States)

    2013-01-30

    ... Energy Regulatory Commission Public Utility District No. 1 Chelan County; Notice of Application for.... Date Filed: July 25, 2012. d. Applicant: Public Utility District No. 1 Chelan County. e. Name of...(a)-825(r). h. Applicant Contact: Michelle Smith, Licensing and Compliance Manager, Public Utility...

  13. TIDE: Lightweight Device Composition for Enhancing Tabletop Environments with Smartphone Applications

    DEFF Research Database (Denmark)

    Sicard, Leo; Tabard, Aurelien; Ramos, Juan David Hincapie

    2013-01-01

    platforms have to be re-developed. At the same time, smartphones are pervasive computers that users carry around and with a large pool of applications. This paper presents TIDE, a lightweight device composition middleware to bring existing smartphone applica- tions onto the tabletop. Through TIDE......, applications running on the smartphone are displayed on the tabletop computer, and users can interact with them through the tabletop’s interactive surface. TIDE contributes to the areas of device compo- sition and tabletops by providing an OS-level middleware that is transparent to the smartphone applications...

  14. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  15. AR-KIO: Augmented Reality-based Application as Instructional Media on Input and Output Device Component.

    Directory of Open Access Journals (Sweden)

    Nur Hidayattur Rohmah

    2017-12-01

    Full Text Available The rapid technology development can be utilized in various fields, especially in education. For example, is augmented reality-based learning media. The learning media can be applied to all the subject matter, including the subject of input and output component devices. Based on the observations that already made, there are some problems such as there is no interactive learning media and limited props in the laboratory. Though the subject of input and output component devices require three-dimensional visualization, especially input output components that are difficult to find in the school environment. The purpose of this study is to determine the feasibility of instructional media applications that have been developed. The research method used is research development method. The tests conducted by media experts, content experts, users and smartphone devices with different specifications. Media expert testing using instruments that refer to aspects of the functionality of ISO 9126 with the percentage acquisition of 100%. Content expert testing using the instrument that refers aspects of learning design with the acquisition percentage of 88%. Meanwhile, user testing uses an instrument that refers to the usability aspect of ISO 9126 with a percentage gain of 83.4%. In addition, there are testing the software with android smartphone platform that has different specifications. The advantages of this application can run on a smartphone with minimum 512 MB RAM specs, Android OS Jelly Bean 4.3 and qHD screen resolution.

  16. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  17. Aircrew Training Devices: Utilization.

    Science.gov (United States)

    1981-01-01

    to express their gratitude to the hundred of people in the United States Air Force, Navy, Army, Coast Guard, NASA , FAA and industry who contributed to...Langley, VA ATD research NASA Langley Research Center St. Louis, MO ATD design and research McDonnel Douglas Corp. Binghamton, NY ATD design, procurement...Ially, the instructor observes ATD instructional techniques as a,,e, , Iewed by a student and becomes familia , with the content and :o of instruction

  18. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Science.gov (United States)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  19. Agile application development for mobile devices. Case study: Mobile taximeter

    Directory of Open Access Journals (Sweden)

    Angélica María Babativa Goyeneche

    2016-10-01

    Full Text Available Context: Globalization has affected all productive sectors and in particular the software industry, which has required the development of new methodologies to suit the speed of the changes and allow quickly build products that meet the requirements of the customers. On the other hand, the GPS technology, 4G connectivity and integration of social networks that have the most current mobile phones have opened a large field of application, particularly in the area of the transport, mobility and citizen complaint, whose development can be successfully addressed through an agile methodology. Method: Agile methodology Scrum was used for the development of a mobile application on the Android operating system and GPS technology, which allows a Bogota taxi user to monitor the route and send a complaint to the social network Twitter in case of nonconformity. Some UML models were used for analysis and design of the application, and a confidence interval was used to validate the results. Results: Prototype of a mobile taximeter developed with an agile methodology that meets quality characteristics, extensibility and maintainability. T-student distribution was used to validate the measurement of the prototype on 50 samples, concluding that the difference between the measurement of a real taximeter and our mobile taximeter is on average 2 units with a standard deviation of 1,39 units. Conclusions: It is shown that with the agile development can be combined with UML modeling tools and statistical validation techniques for quality products that do not violate, but on the contrary, that reaffirm the agile development principles.

  20. Disposal regulations and techniques applicable to devices using ionising radiation

    International Nuclear Information System (INIS)

    Vidal, J.P.

    1998-01-01

    L'office de Protection contre les rayonnement ionisants, being a government body under the supervision of Ministry of Health and Labour, among other different missions controls the compliance of radiation protection laws with the aim to guarantee the safe operation of equipment using ionising radiation sources. These regulations concerning competence of personnel, especially in the field of medicine or application of ionising radiation on humans, are restricted only to medical doctors (or dentists in their domain) by technical constraints dealing with design of equipment and its exploitation. At the same time regulations define conditions of permanent control in order to verify compliance of radiation protection laws

  1. Application of complex programmable logic devices in memory radiation effects test system

    International Nuclear Information System (INIS)

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  2. MEMS monocrystalline-silicon based thermal devices for chemical and microfluidic applications

    OpenAIRE

    Mihailovic, M.

    2011-01-01

    This thesis explores the employment of monocrystalline silicon in microsystems as an active material for different thermal functions, such as heat generation and heat transfer by conduction. In chapter 1 applications that need thermal micro devices, micro heaters and micro heat exchangers, are briefly introduced. The shortcomings of commonly used materials are listed, and monocrystalline silicon is identified as an appropriate choice for several thermal micro devices. Chapter 2 briefly presen...

  3. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  4. Nano/micro-scale magnetophoretic devices for biomedical applications

    International Nuclear Information System (INIS)

    Lim, Byeonghwa; Kim, CheolGi; Vavassori, Paolo; Sooryakumar, R

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. (topical review)

  5. Nano/micro-scale magnetophoretic devices for biomedical applications

    Science.gov (United States)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  6. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  7. A Systematic Evaluation of Mobile Applications for Instant Messaging on iOS Devices

    Directory of Open Access Journals (Sweden)

    Sergio Caro-Alvaro

    2017-01-01

    Full Text Available Nowadays, instant messaging applications (apps are one of the most popular applications for mobile devices with millions of active users. However, mobile devices present hardware and software characteristics and limitations compared with personal computers. Hence, to address the usability issues of mobile apps, a specific methodology must be conducted. This paper shows the findings from a systematic analysis of these applications on iOS mobile platform that was conducted to identify some usability issues in mobile applications for instant messaging. The overall process includes a Keystroke-Level Modeling and a Mobile Heuristic Evaluation. In the same trend, we propose a set of guidelines for improving the usability of these apps. Based on our findings, this analysis will help in the future to create more effective mobile applications for instant messaging.

  8. Cryotribology: Development of cryotribological theories and application to cryogenic devices

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y.; Michael, P. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Rabinowicz, E. (Massachusetts Inst. of Tech., Cambridge, MA (United States) Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.)

    1992-09-15

    High-performance superconducting solenoids are susceptible to premature quenches, or superconducting to normal state transitions, due to abrupt conductor movements within the winding. Abrupt motions involving 5{approximately}10{mu}m conductor displacements dissipate sufficient energy to trigger a quench. Sliding and mechanical behaviors of materials at cryogenic temperatures have been experimentally examined. After accounting for changes in the sliding materials' low-temperature strength properties, we have found that the adhesion theory of friction and wear remains applicable at cryogenic temperatures. The adhesion friction theory suggests two methods for controlling unsteady sliding motions. The first involves the selection of sliding materials whose friction coefficients increase with increasing sliding speed. A number of material pairs have been examined for positive friction-velocity characteristics. This materials-based approach to frictional stabilization does not seem a viable option at 4.2 K. The second altemative is to preprogram the force conditions within high-risk regions of the winding to regulate the occurrence of unsteady sliding motions. Structural models are proposed to account for unsteady conductor motions on a variety of dimensional scales. The models are used to design a small superconducting solenoid. Performance of this solenoid suggests that force-based motion control is a potentially viable design approach for achieving successful dry-wound magnets.

  9. Application of nanomaterials in two-terminal resistive-switching memory devices

    Directory of Open Access Journals (Sweden)

    Jianyong Ouyang

    2010-05-01

    Full Text Available Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs, nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. Dr. Jianyong Ouyang received his bachelor degree from the Tsinghua University in Beijing, China, and MSc from the Institute of Chemistry, Chinese Academy of Science. He received his PhD from the Institute for Molecular

  10. Telehealth, Mobile Applications, and Wearable Devices are Expanding Cancer Care Beyond Walls.

    Science.gov (United States)

    Cannon, Carol

    2018-04-04

    To review telehealth solutions, mobile applications, and wearable devices that are currently impacting patients, caregivers, and providers who work in the oncology setting. A literature search was conducted using the terms (Telehealth, Mobile Health, mHealth, Wearable Devices) + (Oncology, Cancer Care). There are many current applications of telehealth and mobile health in the oncology setting. Nurses who care for patients with cancer should be aware of the pervasiveness and impact of telehealth and mobile health to this unique population. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Measuring the power consumption of social media applications on a mobile device

    Science.gov (United States)

    Dunia, A. I. M.; Suherman; Rambe, A. H.; Fauzi, R.

    2018-03-01

    As fully connected social media applications become popular and require all time connection, the power consumption on mobile device battery increases significantly. As power supplied by a battery is limited, social media application should be designed to be less power consuming. This paper reports the power consumption measurement of social media running on a mobile device. Experimental circuit was developed by using a microcontroller measuring an android smartphone on a 802.11 controlled network. The experiment results show that whatsapp consumes the power less than others in stand by and chat. While other states are dominated by line. The blackberry consumes the power the worst.

  12. Introducing a device to assist in the application of anti-embolism stockings.

    Science.gov (United States)

    Thomas, Nicola; Bennett, Neomi

    2017-05-11

    Using a device to help with the application and removal of anti-embolism stockings, often called thromboembolic deterrent stockings (TEDS), can potentially facilitate greater adherence to the use of stockings, and potentially reduce the risk of deep-vein thrombosis (DVT). This article describes a quality improvement project which used the Plan, Do, Study, Act (PDSA) cycle to facilitate the introduction of a device to aid in the application of thromboembolic deterrent stockings in an orthopaedic ward. The project findings showed that Neo-slip®, a product designed to facilitate the use of compression stockings, can be effectively introduced into an orthopaedic ward, with positive feedback from both staff and patients.

  13. A comparison of laparoscopic energy devices on charges in thermal power after application to porcine mesentery.

    Science.gov (United States)

    Eto, Ken; Omura, Nobuo; Haruki, Koichiro; Uno, Yoshiko; Ohkuma, Masahisa; Nakajima, Shintaro; Anan, Tadashi; Kosuge, Makoto; Fujita, Tetsuji; Yanaga, Katsuhiko

    2015-02-01

    Advances in energy devices have played a major role in the rapid expansion of laparoscopic surgery. However, complications due to these energy devices are occasionally reported, and if the characteristics of these devices are not well understood, serious complications may occur. This study evaluated various typical energy devices and measured temperature rises in the adjacent tissue and in the devices themselves. We used the following 7 types of energy devices: AutoSonix (AU), SonoSurg (SS), Harmonic Scalpel (HS), LigaSure Atlas (LA), LigaSure Dolphin Tip (LD), monopolar diathermy (Mono), and bipolar scissors (Bi). Laparoscopy was performed under general anesthesia in pigs, and the mesentery was dissected using each energy device. Tissue temperature at a distance of 1 mm from the energy device blade before and after dissection was measured. Temperature of the device blade both before and after dissection, time required for dissection, and interval until the temperature fell to 100°C, 75°C, and 50°C were documented. Temperature of the surrounding tissue using each device rose the most with the Mono (50.5±8.0°C) and the least with the HS in full mode (6.2±0.7°C). Device temperature itself rose the highest with the AU in full mode (318.2±49.6°C), and the least with the Bi (61.9±4.8°C). All ultrasonic coagulation and cutting devices (AU, SS, and HS) had device temperatures increase up to ≥100°C, and even at 8 seconds after completing dissection, temperatures remained at ≥100°C. Because the adjacent tissue temperature peaked with the Mono, cautious use near the intestine and blood vessels is necessary. In addition, the active blades of all ultrasonic coagulation and cutting devices, regardless of model, developed high temperatures exceeding 100°C. Therefore, an adequate cooling period after using these devices is therefore necessary between applications.

  14. The application of utility analysis processes to estimate the impact of training for nuclear maintenance personnel

    International Nuclear Information System (INIS)

    Groppel, C.F.

    1991-01-01

    The primary objectives of this study were to test two utility analysis models, the Cascio-Ramos Estimate of Performance in Dollars (CREPID) model and Godkewitsch financial utility analysis model and to determine their appropriateness as tools for evaluating training. This study was conducted in conjunction with Philadelphia Electric Company's Nuclear Training Group. Job performance of nuclear maintenance workers was assessed to document the impact of the training program. Assessment of job performance covered six job performance themes. Additionally, front-line nuclear maintenance supervisors were interviewed to determine their perceptions of the nuclear maintenance training. A comparison of supervisor's perceptions and outcomes of the utility analysis models was made to determine the appropriateness of utility analysis as quantitative tools for evaluating the nuclear maintenance training program. Application of the CREPID utility analysis model indicated the dollar value of the benefits of training through utility analysis was $5,843,750 which represented only four of the job performance themes. Application of the Godkewitsch utility analysis model indicated the dollar value of the benefits of training was $3,083,845 which represented all six performance themes. A comparison of the outcomes indicated a sizeable difference between the dollar values produced by the models. Supervisors indicated training resulted in improved productivity, i.e., improved efficiency and effectiveness. Additionally, supervisors believed training was valuable because it provided nonmonetary benefits, e.g., improved self-esteem and confidence. The application of utility analysis addressed only monetary benefits of training. The variation evidenced by the difference in the outcome of the two models suggests that utility analysis open-quotes estimatesclose quotes may not accurately reflect the impact of training

  15. Energy technologies for distributed utility applications: Cost and performance trends, and implications for photovoltaics

    International Nuclear Information System (INIS)

    Eyer, J.M.

    1994-01-01

    Utilities are evaluating several electric generation and storage (G ampersand S) technologies for distributed utility (DU) applications. Attributes of leading DU technologies and implications for photovoltaics (PV) are described. Included is a survey of present and projected cost and performance for: (1) small, advanced combustion turbines (CTs); (2) advanced, natural gas-fired, diesel engines (diesel engines); and (3) advanced lead-acid battery systems (batteries). Technology drivers and relative qualitative benefits are described. A levelized energy cost-based cost target for PV for DU applications is provided. The analysis addresses only relative cost, for PV and for three selected alternative DU technologies. Comparable size, utility, and benefits are assumed, although relative value is application-specific and often technology- and site-specific

  16. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  17. A WiFi Tracking Device Printed Directly on Textile for Wearable Electronics Applications

    KAUST Repository

    Krykpayev, Bauyrzhan

    2015-12-01

    reported which utilize an interface layer [1{13]. No sophisticated circuit or a system level design involving integration of components on textile has been demonstrated in this medium before. This work, for the first time, demonstrates a complete system printed on a polyester/cotton T-shirt, that helps in tracking the person who is wearing that T-shirt through a smart phone or any Internet enabled device. A low cost dielectric material (Creative Materials 116-20 Dielectric ink) is used to print the interface layer through manual screen printing method. The circuit layout and antenna have been ink-jet printed with silver nano-particles based conductive ink. Utilizing WiFi technology, this wearable tracking system can locate the position of lost children, senior citizens, patients or people in uniforms, lab coats, hospital gowns, etc. The device is small enough (55 mm x 45 mm) and light weight (10.5g w/o battery) for people to comfortably wear it and can be easily concealed in case discretion is required. Field tests have revealed that a person can be localized with up to 8 meters accuracy and the device can wirelessly communicate with a hand-held receiver placed 55 meters away. Future development of the method with techniques such as automated screen printing, pick and place components, and digital ink-jet printing can pave the way for mass production.

  18. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport.

    Science.gov (United States)

    Malone, James J; Lovell, Ric; Varley, Matthew C; Coutts, Aaron J

    2017-04-01

    Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) components are now commonplace in sport research and practice. These devices provide large amounts of data that are used to inform decision making on athlete training and performance. However, the data obtained from these devices are often provided without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from their data, which will improve the understanding and impact these devices can have on athlete performance.

  19. Nano devices and circuit techniques for low-energy applications and energy harvesting

    CERN Document Server

    2016-01-01

    This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications.    This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering signific...

  20. Paper as a platform for sensing applications and other devices: a review.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  1. 75 FR 40800 - Public Utility District No. 1 of Pend Orielle County; Notice of Application for Surrender of...

    Science.gov (United States)

    2010-07-14

    ... Federal Energy Regulatory Commission Public Utility District No. 1 of Pend Orielle County; Notice of.... Applicant: Public Utility District No. 1 of Pend Oreille County (Pend Oreille PUD). e. Location: The...: Federal Power Act 16 U.S.C. 791(a)-825(r). g. Applicant Contact: Mark J Cauchy, Public Utility District No...

  2. 77 FR 58821 - Public Utility District No. 1 of Chelan County; Notice of Application Accepted for Filing...

    Science.gov (United States)

    2012-09-24

    ... Energy Regulatory Commission Public Utility District No. 1 of Chelan County; Notice of Application.... Applicant: Public Utility District No. 1 of Chelan County. e. Name of Project: Lake Chelan Project No. 637..., Licensing & Compliance Manager, Public Utility District No. 1 of Chelan County, 327 N. Wenatchee Ave...

  3. 78 FR 52520 - Public Utility District No. 1 of Snohomish County; Notice of Application Tendered for Filing with...

    Science.gov (United States)

    2013-08-23

    ... Energy Regulatory Commission Public Utility District No. 1 of Snohomish County; Notice of Application...: August 1, 2013. d. Applicant: Public Utility District No. 1 of Snohomish County. e. Name of Project... Manager of Generation, Water and Corporate Services; Public Utility District No. 1 of Snohomish County...

  4. 75 FR 30807 - Public Utility District No. 2 of Grant County, WA; Notice of Application for Amendment of License...

    Science.gov (United States)

    2010-06-02

    ... Energy Regulatory Commission Public Utility District No. 2 of Grant County, WA; Notice of Application for... Filed: March 2, 2010, supplemented April 20, 2010. d. Applicant: Public Utility District No. 2 of Grant..., Lands and Recreation Resources Manager, Public Utility District No. 2 of Grant County, P.O. Box 878...

  5. 78 FR 52521 - Public Utility District No. 1 of Snohomish County; Notice of Application Tendered For Filing With...

    Science.gov (United States)

    2013-08-23

    ... Energy Regulatory Commission Public Utility District No. 1 of Snohomish County; Notice of Application...: August 1, 2013. d. Applicant: Public Utility District No. 1 of Snohomish County. e. Name of Project... Manager of Generation, Water and Corporate Services; Public Utility District No. 1 of Snohomish County...

  6. Improving Utility of GPU in Accelerating Industrial Applications with User-centred Automatic Code Translation

    DEFF Research Database (Denmark)

    Yang, Po; Dong, Feng; Codreanu, Valeriu

    2018-01-01

    to the lack of specialist GPU (Graphics processing units) programming skills, the explosion of GPU power has not been fully utilized in general SME applications by inexperienced users. Also, existing automatic CPU-to-GPU code translators are mainly designed for research purposes with poor user interface...... design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general...

  7. Efficient Protection of Android Applications through User Authentication Using Peripheral Devices

    Directory of Open Access Journals (Sweden)

    Jinseong Kim

    2018-04-01

    Full Text Available Android applications store large amounts of sensitive information that may be exposed and exploited. To prevent this security risk, some applications such as Syrup and KakaoTalk use physical device values to authenticate or encrypt application data. However, by manipulating these physical device values, an attacker can circumvent the authentication by executing a Same Identifier Attack and obtain the same application privileges as the user. In our work, WhatsApp, KakaoTalk, Facebook, Amazon, and Syrup were subjected to the Same Identifier Attack, and it was found that an attacker could gain the same privileges as the user, in all five applications. To solve such a problem, we propose a technical scheme—User Authentication using Peripheral Devices. We applied the proposed scheme to a Nexus 5X smartphone running Android version 7.1 and confirmed that the average execution time was 0.005 s, which does not affect the other applications’ execution significantly. We also describe the security aspects of the proposed scheme and its compatibility with the Android platform and other applications. The proposed scheme is practical and efficient in terms of resource usage; therefore, it will be useful for Android users to improve Android application security.

  8. Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism

    DEFF Research Database (Denmark)

    Castrillon, Eduardo

    characteristics make it complicated to assess bruxism using portable EMG devices. The possibility to assess bruxism like EMG activity on a portable device made it possible to use biofeedback and CES approaches in order to treat / manage bruxism. The available scientific information about CES effects on bruxism......Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism Eduardo Enrique, Castrillon Watanabe, DDS, MSc, PhD Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neuroscience...... Summary: Bruxism is a parafunctional activity, which involves the masticatory muscles and probably it is as old as human mankind. Different methods such as portable EMG devices have been proposed to diagnose and understand the pathophysiology of bruxism. Biofeedback / contingent electrical stimulation...

  9. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  10. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    International Nuclear Information System (INIS)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  11. Defining brain-machine interface applications by matching interface performance with device requirements.

    Science.gov (United States)

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

  12. Surface micromachined fabrication of piezoelectric ain unimorph suspension devices for rf resonator applications

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    We report a surface micromachining process for aluminum nitride (AlN) thin films to fabricate piezoelectric unimorph suspension devices for actuator applications. Polysilicon is used as a structural layer. Highly c-axis oriented AlN thin films 1 /spl mu/m thick are deposited by rf reactive

  13. THE DEISGN AND USE OF DIFFUSION FILL DEVICES IN ULTRA-HIGH VACUUM APPLICATIONS,

    Science.gov (United States)

    The properties of a helium fill device (influx rate, purification factor, intrinsic gas load, and switchnig times) and its application in ultra- high ... vacuum work are discussed in detail. Several limitations and their remedies are considered and experimental results are given. (Author)

  14. MEMS monocrystalline-silicon based thermal devices for chemical and microfluidic applications

    NARCIS (Netherlands)

    Mihailovic, M.

    2011-01-01

    This thesis explores the employment of monocrystalline silicon in microsystems as an active material for different thermal functions, such as heat generation and heat transfer by conduction. In chapter 1 applications that need thermal micro devices, micro heaters and micro heat exchangers, are

  15. Development and applications of diffractive optical security devices for banknotes and high value documents

    Science.gov (United States)

    Drinkwater, John K.; Holmes, Brian W.; Jones, Keith A.

    2000-04-01

    Embossed holograms and othe rdiffractive optically variable devices are increasingly familiar security items on plastic cards, banknotes, securyt documetns and on branded gods and media to protect against counterfeit, protect copyright and to evidence tamper. This paper outlines some of the diffractive optical seuryt and printed security develoepd for this rapidly growing field and provides examles of some current security applications.

  16. Virtual reality for mobility devices: training applications and clinical research: a review

    NARCIS (Netherlands)

    Erren-Wolters, Cathelijne V.; van Dijk, Henk; de Kort, Alexander C.; IJzerman, Maarten Joost; Jannink, M.J.A.

    2007-01-01

    Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for

  17. Evaluation of a charged coupled device camera for streamer chamber applications

    International Nuclear Information System (INIS)

    Holmgren, D.; Wallick, W.; Kenyon, R.; Lubatti, H.J.

    1978-01-01

    The response of a charged coupled device to a Ne light source is studied and compared to the Kodak SO-143 film commonly used for streamer chamber applications. It is found that the CCD-202 cooled to -10 0 C is considerably more sensitive than the film. A test of a CCD-based measurement system observing a streamer chamber is described. 3 refs

  18. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    Science.gov (United States)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  19. [Application of synthetic biology to sustainable utilization of Chinese materia medica resources].

    Science.gov (United States)

    Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin

    2014-01-01

    Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.

  20. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    Science.gov (United States)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  1. 75 FR 69426 - Public Utility District No. 1 of Chelan County, WA; Notice of Application for Amendment of...

    Science.gov (United States)

    2010-11-12

    ... Energy Regulatory Commission Public Utility District No. 1 of Chelan County, WA; Notice of Application... available for public inspection: a. Application Type: Non-project use of project lands and waters. b. Project No. 2145-109. c. Date Filed: September 3, 2010. d. Applicant: Public Utility District No. 1 of...

  2. 77 FR 17466 - Public Utility District No. 1 of Snohomish County, WA; Notice of Application Tendered for Filing...

    Science.gov (United States)

    2012-03-26

    ... Energy Regulatory Commission Public Utility District No. 1 of Snohomish County, WA; Notice of Application.... Applicant Contact: Steven J. Klein, Public Utility District of Snohomish County, Washington, P.O. Box 1107... has been filed with the Commission and is available for public inspection. a. Type of Application...

  3. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  4. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  5. A new device for vein localization and effect of application of disinfectant spray on its efficiency

    Directory of Open Access Journals (Sweden)

    Dreyer Jan

    2017-09-01

    Full Text Available A functional device was developed to immediately show the localization of veins by detecting a temperature increase on the skin directly above them. Our new idea, compared to other developments, is the comparison of temperatures between a small, ideally punctiform, skin area, and a larger circularly surrounding area. This is realized by two infrared temperature sensors, one with a small field of view, and the other one with a larger field of view. The position of the vein is indicated by two laser modules, which beams cross in one spot, when the device is held in a defined distance to the skin. If the device is held over a vein, the laser spot lightens up. The device was tested in ten study participants. Cooling of the skin by disinfectant spray prior to the measurements increases the temperature gradient and thereby improves the efficiency of the device. Temperature profiles of four skin areas of each study participant were measured before and one minute after application of disinfectant spray. After application of disinfectant spray, a temperature difference of more than 0.3 K between a measuring point above a vein and points 15 mm next to this could be found in 36 out of 40 measurements (90%, compared to 26 out of 40 (65% before disinfection. The mean temperature gradient could be increased from 0.476 K to 1.03 K (p < 0.001.

  6. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  7. A web-application that extends functionality of medical device for tumor treatment by means of electrochemotherapy

    International Nuclear Information System (INIS)

    Pavlovic, I.; Kramar, P.; Corovic, S.; Cukjati, D.; Miklavcic, D.

    2004-01-01

    Electrochemotherapy (ECT) is a novel method for efficient tumor treatment in clinical environment. It combines local drug delivery and application of short high voltage pulses, which permeabilize the plasma membrane by electroporation. Drug can enter only the cells with permeabilzed membrane. Recently, medical device Cliniporator TM for controlled electroporation was developed. Here, we present a web-application that extends the functionality of this medical device. The aim of the application is to collect, store and to allow the analysis of every ECT application using this medical device. The application helps transferring data collected by device during the electroporation process to the central database, and enables filling of medical records through the web-forms. The application is based on technologies ASP, HTML, Flash, JavaScript, XML and others. The application main advantages are easy and rapid data access, scalability and independence of client computer operating system as well as easy application debugging and upgrading. (author)

  8. Investigation of the medical applications of the unique biocarbons developed by NASA. [compatibility of percutaneous prosthetic carbon devices

    Science.gov (United States)

    Mooney, V.

    1973-01-01

    The biocompatibility of percutaneous endoskeletal fixation devices made from carbon compounds, and their applications are considered. The clinical application of these carbons to solve human problems is demonstrated and the nature of myoelectric simulation by carbon implants is studied.

  9. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development and evaluation of a novel smart device-based application for burn assessment and management.

    Science.gov (United States)

    Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K

    2015-06-01

    We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, pburn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  11. Advancement in Nanoscale CMOS Device Design En Route to Ultra-Low-Power Applications

    Directory of Open Access Journals (Sweden)

    Subhra Dhar

    2011-01-01

    Full Text Available In recent years, the demand for power sensitive designs has grown significantly due to the fast growth of battery-operated portable applications. As the technology scaling continues unabated, subthreshold device design has gained a lot of attention due to the low-power and ultra-low-power consumption in various applications. Design of low-power high-performance submicron and deep submicron CMOS devices and circuits is a big challenge. Short-channel effect is a major challenge for scaling the gate length down and below 0.1 μm. Detailed review and potential solutions for prolonging CMOS as the leading information technology proposed by various researchers in the past two decades are presented in this paper. This paper attempts to categorize the challenges and solutions for low-power and low-voltage application and thus provides a roadmap for device designers working in the submicron and deep submicron region of CMOS devices separately.

  12. Innovative architecture of switching device for expanding the applications in fiber to the home (FTTH)

    Science.gov (United States)

    Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.

    2011-08-01

    A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.

  13. Conductivity based on selective etch for GaN devices and applications thereof

    Science.gov (United States)

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  14. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  15. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  16. Utilization and Clinical Feasibility of a Handheld Remote Electrocardiography Recording Device in Cardiac Arrhythmias and Atrial Fibrillation: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Wen-Ling Chang

    2015-12-01

    Conclusion: The handheld ECG device shows clinical feasibility with high rate for AF detection with a similar trend toward a higher prevalence with aging from different settings. These data suggested that portable ECG device via remote care system may aid in clinical diagnosis, therapeutic interventions, or patient referral for cardiac arrhythmias.

  17. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C60 molecules embedded in a polymethyl methacrylate layer

    International Nuclear Information System (INIS)

    Cho, Sung Hwan; Lee, Dong Ik; Jung, Jae Hun; Kim, Tae Whan

    2009-01-01

    Current-voltage (I-V) measurements on Al/fullerene (C 60 ) molecules embedded in polymethyl methacrylate/Al devices at 300 K showed a current bistability due to the existence of the C 60 molecules. The on/off ratio of the current bistability for the memory devices was as large as 10 3 . The retention time of the devices was above 2.5 x 10 4 s at room temperature, and cycling endurance tests on these devices indicated that the ON and OFF currents showed no degradation until 50 000 cycles. Carrier transport mechanisms for the nonvolatile bistable devices are described on the basis of the I-V experimental and fitting results.

  18. 78 FR 52212 - Certain Certain Ink Application Devices and Components Thereof and Methods of Using the Same...

    Science.gov (United States)

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-832] Certain Certain Ink Application Devices and Components Thereof and Methods of Using the Same; Commission Determination Not to Review an... certain ink application devices and components thereof and methods of using the same by reason of...

  19. 77 FR 5275 - Certain Ink Application Devices and Components Thereof and Methods of Using the Same; Receipt of...

    Science.gov (United States)

    2012-02-02

    ... INTERNATIONAL TRADE COMMISSION [DN 2874] Certain Ink Application Devices and Components Thereof... the U.S. International Trade Commission has received a complaint entitled In Re Certain Ink... United States after importation of certain ink application devices and components thereof and methods of...

  20. Performance evaluation of Grain family and Espresso ciphers for applications on resource constrained devices

    Directory of Open Access Journals (Sweden)

    Subhrajyoti Deb

    2018-03-01

    Full Text Available A secure stream cipher is an effective security solution for applications running on resource-constrained devices. The Grain family of stream ciphers (Grain v1, Grain-128, and Grain-128a is a family of stream ciphers designed for low-end devices. Similarly, Espresso is a lightweight stream cipher that was developed recently for 5G wireless mobile communication. The randomness of the keystream produced by a stream cipher is a good indicator of its security strength. In this study, we have analyzed the randomness properties of the keystreams produced by both the Grain Family and Espresso ciphers using the statistical packages DieHarder and NIST STS. We also analyzed their performances in two constrained devices (ATmega328P and ESP8266 based on three attainable parameters, namely computation time, memory, and power consumption.

  1. Application of microwave spectroscopy to monitoring of discharge cleaning for fusion devices

    International Nuclear Information System (INIS)

    Mushiaki, Motoi; Miyahara, Akira.

    1997-01-01

    Microwave spectra of water were observed for measuring the partial pressure of water in residual gases of a plasma device during discharge cleaning. Water is a main constituent of residual gases in a vacuum vessel, and hence changes in the partial pressure indicate progress of the conditioning. Three main subjects were investigated with a Stark modulated microwave spectrometer: proportionality between the spectrum intensity and the partial pressure, discriminating power of the spectrometer for isotopic waters and usefulness of an experimental system for the radioactive substance HTO. Rotational spectra of the normal water H 2 O(22.235 GHz) and the hydrogen isotopic waters HDO(22.307 GHz) and HTO(16.563 GHz) were observed in several devices under different conditions. Applicability of this method to a fusion device is discussed on the results of these experiments. (author)

  2. A mobile-device based applications software for industrial gamma radiography

    International Nuclear Information System (INIS)

    Acharya, Rajesh V.; Mitra, Anant; Kumar, Saroj; Lakshminarayana, Y.; Walinjkar, Parag; Kumar, Umesh

    2013-12-01

    The paper discusses a mobile device based application software for performing calculations required in industrial film radiography using radioisotope sources. The application enables the user to find residual life of a radioactive source, saving multiple source details in the phone memory, exposure time calculation required in gamma radiography and running multiple countdown clocks for accurate and convenient counting of exposure time. The application is also able to provide vibrating and audio alarms when the countdown finishes, automatic SMS facility to multiple users informing details of low activity sources in custody and cordon-off distances for open-source radiography. The application has been developed to work under Android, I-phone (Apple), Blackberry (RIM), Windows, Symbian operating systems and J2ME enabled feature phones. A simplified version of this application with limited features runs on java enabled low-cost mobile phones and tablets. (author)

  3. Thin film diamond. Electronic devices for high temperature, high power and high radiation applications

    International Nuclear Information System (INIS)

    Pang, L.Y.S.

    2000-01-01

    In the ideal form diamond displays extreme physical, optical and electronic properties, making this material interesting for many device applications. However, natural or high pressure, high temperature synthesised forms of diamond are not useful since they are only available as small irregular crystallites and are expensive. The emergence of commercially accessible techniques for the formation of thin films of diamond over relatively large areas has changed this situation, enabling the prospects for the use of diamond as an electronic material to be truly evaluated. Thin film diamond is a defective polycrystalline material. It is difficult to dope n- and p-type and resists conventional chemical etching. Thus, despite the superlative properties of ideal diamond, the realisation of useful devices from this material is far from simple. This thesis considers how the problems may be overcome such that high performance diamond devices can be realised for use in high temperature, high power and high radiation environments. Following a review of the current state-of-the-art in diamond device technology the experimental techniques used throughout this study are summarised. Field effect transistors (FETs) have been designed for operation at high (>300 deg. C) temperatures. Boron-doped (p-type) diamond was used to form the active channel, with insulating diamond acting as the gate to the FET structure. Polycrystalline diamond devices with the highest yet reported transconductance values, which display full turn-off characteristics have been produced. To enable room temperature operation, where boron is an ineffective dopant, a novel doping approach has been established using hydrogen; devices with transconductance, power handling and full pinch-off characteristic have been realised for the first time with this approach. More complex devices require patterning of the diamond substrate material; reactive ion etching using oxygen and chlorinated fluorocarbons have been studied

  4. Development and Application of the Downhole Drilling String Shock-Absorption and Hydraulic Supercharging Device

    Directory of Open Access Journals (Sweden)

    Yongwang Liu

    2016-01-01

    Full Text Available It is a hot topic for deep/ultradeep wells to improve rock-breaking efficiency and drilling speed by available downhole energy. Based on different downhole energies and working conditions, specialized plunger pump is proposed to convert longitudinal vibration of drilling string into rock-breaking energy. Technical design is developed to generate high-pressure water jet. And then a simulation model is built to verify feasibility of the technical design. Through simulation, the influence law of key factors is obtained. On this basis, this device is tested in several wells. The result indicates this device can increase drilling speed as much as 136%. Meanwhile the harmful vibration can be absorbed. The energy from drilling string vibration is of high frequency and increases as well depth and formation anisotropy increase. By reducing adverse vibration, this device is able to increase the drilling speed and the service life also meets the demand of field application. The longest working time lasts for more than 130 hours. The performance of this device demonstrates great application prospect in deep/ultradeep resources exploration. To provide more equipment support for deep/ultradeep wells, more effort should be put into fundamental study on downhole drill string vibration and related equipment.

  5. Development, characterization, and analytical applications of microfluidic devices and nanostructured materials

    Science.gov (United States)

    Bhakta, Samir A.

    Compared to conventional benchtop instruments, microfluidic devices possess advantageous characteristics including portability, reduced analysis time, and relatively inexpensive production, making them attractive analytical devices. The goals of our research lab include the design, operation, and application of microfluidic techniques and the rational design of biosensors. In line with these goals, the objectives of my research are to develop and characterize novel microfluidic platforms and to improve their overall efficiency towards the analysis of a wide range of biologically active and environmentally-relevant compounds. Specifically, the research projects discussed herein are based on the development of novel strategies enabling the miniaturization of traditional analytical protocols using microfluidic devices. In addition, the development and characterization of novel biosensors incorporating thin-films of nanoporous materials that can be potentially used in series with the microfluidic platforms is discussed. A critical review of the field involving adsorption of proteins to nanomaterials for the use of biosensors is also discussed. Results related to the design, characterization, and applications of the devices and biosensors are discussed along with the advantages of these technologies.

  6. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    Science.gov (United States)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  7. MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of

  8. MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators

    International Nuclear Information System (INIS)

    2016-01-01

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of

  9. Application of head-mounted devices with eye-tracking in virtual reality therapy

    Directory of Open Access Journals (Sweden)

    Lutz Otto Hans-Martin

    2017-03-01

    Full Text Available Using eye-tracking to assess visual attention in head-mounted devices (HMD opens up many possibilities for virtual reality (VR-based therapy. Existing therapy concepts where attention plays a major role can be transferred to VR. Furthermore, they can be expanded to a precise real-time attention assessment, which can serve as a foundation for new therapy approaches. Utilizing HMDs and eye-tracking in a clinical environment is challenging because of hygiene issues and requirements of patients with heterogeneous cognitive and motor impairments. In this paper, we provide an overview of those challenges, discuss possible solutions and present preliminary results of a study with patients.

  10. Utilization of smart phones related medical applications among medical students at King Abdulaziz University, Jeddah: A cross-sectional study.

    Science.gov (United States)

    Sayedalamin, Zaid; Alshuaibi, Abdulaziz; Almutairi, Osama; Baghaffar, Mariam; Jameel, Tahir; Baig, Mukhtiar

    The present study explored the utility, attitude, and trends regarding Smartphone related Medical Applications (Apps) among medical students of King Abdulaziz University (KAU) Jeddah, Saudi Arabia (SA) and their perceptions of the impact of Medical Apps in their training activities. This survey was conducted at the Faculty of Medicine, Jeddah, and Rabigh campuses, KAU, Jeddah, SA. All participants were medical students of 2nd to 6th year. The data was collected by using an anonymous questionnaire regarding the perception of medical students about Medical Apps on the smart devices and the purpose of installation of the Apps. Additionally examined was the use of different Medical Apps by the students to investigate the impact of Medical Apps on the clinical training/practice. Data was analyzed on SPSS 21. The opinion of 330/460 medical students from all academic years was included in the study with a response rate of 72%. There were 170 (51.5%) males and 160 (48.5%) females with a mean age of 21.26±1.86 years. Almost all participating students 320 (97%) were well aware of Medical Apps for smart devices and 89.1% had installed different applications on their smart devices. The main usage was for either revision of courses (62.4%) or for looking up of medical information (67.3%), followed by preparing for a presentation (34.5%) and getting the medical news (32.1%). Regarding the impact of Medical Apps, most of the students considered these helpful in clinical decision-making, assisting in differential diagnosis, allowing faster access to Evidence-Based Medical practice, saving time and others. The practical use of these Apps was found to be minimal in medical students. Around 73% were occasional users of Medical Apps, and only 27% were using Medical Apps at least once a day. The regular use of Medical Apps on mobile devices is not common among medical students of KAU. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd

  11. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  12. Evaluation of 600V Superjunction Devices in Single Phase PFC Applications under CCM Operation

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper pr esents a power density/efficiency evaluation in single phase power factor correction (PFC) applications operating in continuous conduction mode (CCM). The comparison is based on semiconductor dynamic characterization and a mathematical model for prediction of the conducted electroma......This paper pr esents a power density/efficiency evaluation in single phase power factor correction (PFC) applications operating in continuous conduction mode (CCM). The comparison is based on semiconductor dynamic characterization and a mathematical model for prediction of the conducted...... electromagnetic interference (EMI). The dynamic characterization is based on a low inductive double pulse tester (DPT). The measured switching energy is used in order to evaluate the devices performance in a conventional PFC. This data is used together with the mathematical model for prediction of the conducted...... electromagnetic interference. The method allows comparing different devices and evaluating the performance as a function of the PFC power density and efficiency....

  13. Application and use of spinal immobilization devices in zero-gravity flight

    Science.gov (United States)

    Krupa, Debra T.; Gosbee, John; Billica, Roger; Boyce, Joey B.

    1991-01-01

    A KC-135 parabolic flight was performed for the purpose of evaluation of spinal immobilization techniques in microgravity. The flight followed the standard 40 parabola profile with four NASA/KRUG experimenters involved. One performed as coordinator/recorder, one as test subject, and two as the Crew Medical Officers (CMO). The flight was to evaluate the application of spinal immobilization devices and techniques in microgravity as are performed during initial stabilization or patient transport scenarios. The sequence of detail for examination of the following objectives included: attempted cervical spine immobilization with all free floating, the patient restrained to the floor, various hand positioning techniques; c-collar placement; Kendrick Extrication Device (KED) application with various restraints for patient and CMO; patient immobilization and transport using the KED; patient transported on KED and spine board. Observations for each task are included. Major conclusions and issues are also included.

  14. Standard review plan for applications for sealed source and device evaluations and registrations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide the reviewer of a request for a sealed source or device safety evaluation with the information and materials necessary to make a determination that the product is acceptable for licensing purposes. It provides the reviewer with a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, certain administrative procedures to be followed, and information on how to perform the evaluation and write the registration certificate. Standard review plans are prepared for the guidance of the Office of Nuclear Material Safety and Safeguards staff responsible for the review of a sealed source or device application. This document is made available to the public as part of the Commission`s policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission`s regulations and compliance with them is not required.

  15. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    The term biomimetic membrane denotes membrane that mimics biological cell membrane. Artificially made membranes are powerful tools for the fundamental biophysical studies of membrane proteins. Moreover, they may be used in biomedicine, serving as biosensors in high-throughput screening of potential...... drug candidates and in separation technologies, where an exciting example is water purification device based on biomimetic membranes containing aquaporins (highly water selective proteins). However, there are many challenges that must be overcome in order to build biomimetic membrane-based devices...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  16. Standard review plan for applications for sealed source and device evaluations and registrations

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to provide the reviewer of a request for a sealed source or device safety evaluation with the information and materials necessary to make a determination that the product is acceptable for licensing purposes. It provides the reviewer with a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, certain administrative procedures to be followed, and information on how to perform the evaluation and write the registration certificate. Standard review plans are prepared for the guidance of the Office of Nuclear Material Safety and Safeguards staff responsible for the review of a sealed source or device application. This document is made available to the public as part of the Commission's policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission's regulations and compliance with them is not required

  17. 76 FR 4099 - Public Utility No. 1 of Snohomish County; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-01-24

    ... Energy Regulatory Commission Public Utility No. 1 of Snohomish County; Notice of Preliminary Permit... January 14, 2011. On December 20, 2010, the Public Utility No. 1 of Snohomish County, filed an application... Resources; Public Utility No. 1 of Snohomish County; 2320 California Street; Everett, WA 98201; phone: 425...

  18. 75 FR 5069 - Public Utility District No. 1 of Snohomish County, WA; City of Everett, WA; Notice of Application...

    Science.gov (United States)

    2010-02-01

    ... Federal Energy Regulatory Commission Public Utility District No. 1 of Snohomish County, WA; City of.... b. Project No: 2157-190. c. Date Filed: December 7, 2009. d. Applicant: Public Utility District No... Spangler, Public Utility District No. 1 of Snohomish County, Washington, 2320 California Street, P.O. Box...

  19. 76 FR 12102 - Public Utility No. 1 of Snohomish County, WA; Notice of Preliminary Permit Application Accepted...

    Science.gov (United States)

    2011-03-04

    ... Energy Regulatory Commission Public Utility No. 1 of Snohomish County, WA; Notice of Preliminary Permit... January 4, 2011, the Public Utility No. 1 of Snohomish County, Washington filed an application for a...; Public Utility No. 1 of Snohomish County; 2320 California Street; Everett, WA 98201; phone: 425-783-8606...

  20. Nuclear energy policy analysis under uncertainties : applications of new utility theoretic approaches

    International Nuclear Information System (INIS)

    Ra, Ki Yong

    1992-02-01

    For the purpose of analyzing the nuclear energy policy under uncertainties, new utility theoretic approaches were applied. The main discoveries of new utility theories are that, firstly, the consequences can affect the perceived probabilities, secondly, the utilities are not fixed but can change, and finally, utilities and probabilities thus should be combined dependently to determine the overall worth of risky option. These conclusions were applied to develop the modified expected utility model and to establish the probabilistic nuclear safety criterion. The modified expected utility model was developed in order to resolve the inconsistencies between the expected utility model and the actual decision behaviors. Based on information theory and Bayesian inference, the modified probabilities were obtained as the stated probabilities times substitutional factors. The model theoretically predicts that the extreme value outcomes are perceived as to be more likely to occur than medium value outcomes. This prediction is consistent with the first finding of new utility theories that the consequences can after the perceived probabilities. And further with this theoretical prediction, the decision behavior of buying lottery ticket, of paying for insurance and of nuclear catastrophic risk aversion can well be explained. Through the numerical application, it is shown that the developed model can well explain the common consequence effect, common ratio effect and reflection effect. The probabilistic nuclear safety criterion for core melt frequency was established: Firstly, the distribution of the public's safety goal (DPSG) was proposed for representing the public's group preference under risk. Secondly, a new probabilistic safety criterion (PSC) was established, in which the DPSG was used as a benchmark for evaluating the results of probabilistic safety assessment. Thirdly, a log-normal distribution was proposed as the appropriate DPSG for core melt frequency using the

  1. Synthetic diamond devices for radiotherapy applications: Thermoluminescent dosimeter and ionisation chamber

    International Nuclear Information System (INIS)

    Descamps, C.; Tromson, D.; Mer, C.; Nesladek, M.; Bergonzo, P.

    2006-01-01

    In radiotherapy field, the major usage of dosimeters is in the measurement of the dose received by the patient during radiotherapy (in-vivo measurements) and in beam calibration and uniformity checks. Diamond exhibits several interesting characteristics that make it a good candidate for radiation detection. It is indeed soft-tissue equivalent (Z=6 compared to Z=7.42 for human tissue), mechanically robust and relatively insensitive to radiation damage, chemically stable and non toxic. Moreover, the recent availability of synthetic samples, grown under controlled conditions using the chemical vapour deposition (C.V.D.) technique, allowed decreasing the high cost and the long delivery time of diamond devices. Diamond can be use for off-line dosimetry as thermoluminescent dosimeters or for on-line dosimetry as ionisation chamber [2,3]. These both applications are reported here. For this study, samples were grown in the laboratory and devices were then tested under X-ray irradiations and in clinical environment under medical cobalt source. The work described in this paper was performed in the framework of the European Integrated Project M.A.E.S.T.R.O., Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology, (6. FP) which is granted by the European Commission.The first results of this study clearly show that C.V.D. diamond detectors are suitable for dosimetry in radiotherapy applications. Moreover, for both T.L. dosimeters and ionisation chambers applications, and even though the sensitivity is subsequently reduced, nitrogen incorporation in films seems to significantly improve the dosimetric characteristics of the devices. Therefore, the optimisation of the material quality appears as a very important issue in order to increase the dosimetric characteristics of devices and more particularly, for use as thermoluminescent dosimeters, other impurities (Nickel, Phosphorus) will be tested. For ionisation chamber applications, experiments with

  2. Synthesis of graphene-conjugated polymer nanocomposites for electronic device applications.

    Science.gov (United States)

    Qi, Xiaoying; Tan, Chaoliang; Wei, Jun; Zhang, Hua

    2013-02-21

    Graphene-based polymer nanocomposites have attracted increasing interest because of their superior physicochemical properties over polymers. Semiconductor conjugated polymers (CPs) with excellent dispersibility and stability, and efficient electronic and optical properties have been recently integrated with graphene to form a new class of functional nanomaterials. In this minireview, we will summarize the recent advances in the development of graphene-CP nanocomposites for electronic device applications.

  3. A novel 2-T structure memory device using a Si nanodot for embedded application

    Science.gov (United States)

    Xiaonan, Yang; Yong, Wang; Manhong, Zhang; Zongliang, Huo; Jing, Liu; Bo, Zhang; Ming, Liu

    2011-12-01

    Performance and reliability of a 2 transistor Si nanocrystal nonvolatile memory (NVM) are investigated. A good performance of the memory cell has been achieved, including a fast program/erase (P/E) speed under low voltages, an excellent data retention (maintaining for 10 years) and good endurance with a less threshold voltage shift of less than 10% after 104 P/E cycles. The data show that the device has strong potential for future embedded NVM applications.

  4. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  5. Electronic Properties and Device Applications of van-der-Waals Thin Films

    Science.gov (United States)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  6. A time-gated near-infrared spectroscopic imaging device for clinical applications.

    Science.gov (United States)

    Poulet, Patrick; Uhring, Wilfried; Hanselmann, Walter; Glazenborg, René; Nouizi, Farouk; Zint, Virginie; Hirschi, Werner

    2013-03-01

    A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.

  7. ZnO nanostructures for optoelectronics: Material properties and device applications

    Science.gov (United States)

    Djurišić, A. B.; Ng, A. M. C.; Chen, X. Y.

    2010-07-01

    In recent years, there has been increasing interest in ZnO nanostructures due to their variety of morphologies and availability of simple and low cost processing. While there are still unanswered questions concerning fundamental properties of this material, in particular those related to defects and visible luminescence lines, great progress has been made in synthesis methods and device applications of ZnO nanostructures. In this review, we will provide a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications. Then, we will provide an overview of material properties of ZnO nanostructures, issues related to doping with various elements to achieve either p- or n-type conductivity. Doping to alter optical or magnetic properties will also be discussed. Then, issues related to practical problems in achieving good electrical contacts to nanostructures will be presented. Finally, we will provide an overview of applications of ZnO nanostructures to light-emitting devices, photodetectors and solar cells.

  8. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    Science.gov (United States)

    2013-07-01

    approximately 140 kW of energy from burning syngas generated from the pyrolysis of medical waste • The PAV reactor generates a significant amount of fine...AFRL-RX-WP-TR-2013-00213 PLASMA ARC/SCWO SYSTEMS FOR WASTE -TO- ENERGY APPLICATIONS UTILIZING MILWASTE FUELS Ralph H. Yates General...DATES COVERED (From - To) July 2013 Final 30 April 2004 – 3 June 2013 4. TITLE AND SUBTITLE PLASMA ARC/SCWO SYSTEMS FOR WASTE -TO-ENERGY

  9. A passive opto-electronic lightning sensor based on electromagnetic field detection for utilities applications

    International Nuclear Information System (INIS)

    Rosolem, J B; Barbosa, C F; Floridia, C; Bezerra, E W

    2010-01-01

    This paper presents the results of a passive optical lightning sensor for utilities applications. The main sensor application is for the location of lightning strikes in overhead power lines, but it can also be used in substations or in power generation plants. The proposed sensor detects lightning indirectly by means of detecting lightning electromagnetic pulses, which are used to modulate directly a semiconductor laser coupled to a fibre optic pigtail. No solar panels, batteries or electronic control circuits are necessary to implement this sensing technique. This paper shows the results of the sensor characterization made only in laboratory and the possibilities of its use in an optical WDM sensor network

  10. Lithium and lithium ion batteries for applications in microelectronic devices: A review

    Science.gov (United States)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel; Ferrara, Seth; Deng, Zhiqun Daniel; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  11. 78 FR 34360 - Public Utility District No. 2 of Grant County, Washington; Notice of Application Accepted for...

    Science.gov (United States)

    2013-06-07

    ... Energy Regulatory Commission Public Utility District No. 2 of Grant County, Washington; Notice of.... Date Filed: November 27, 2013. d. Applicant: Public Utility District No. 2 of Grant County, Washington... the following hydroelectric application has been filed with the Commission and is available for public...

  12. 11th International Symposium on superconductivity(ISS98). Application for devices; Debaisu oyo

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Ken [Tohoku University, Miyagi (Japan)

    1999-01-25

    The research on the applications for superconductive devices became active in the world, and the attractive reports were announced regarding applications for the SQUID, the high frequency waves and the digital equipment. Seidel and others reported the results of the biomagnetism measurement using the plane type gradiometer. Tukamoto reported making of the DC-SQUID using thin films of mercury group having higher critical temperature. Sumitomo Denko announced few reports on the reduction of cost for making of the systems and on the improvement method of S/N ratio etc. In the field of the application for high frequency waves, Chen and others studied realization of wide band spectroscopy, and Kashiwagi and others studied phase characteristics of output signals from Josephson array mixers. In the field of the application for digital equipment, Hattori demonstrated the memory of the superconductive delay line, and Asahi proposed new SQF logical devices. Handai group demonstrated the secondary dimensional mapping of superconductive current and the control of the quantum of magnetic flux and described about the new application fields. (NEDO)

  13. Low-maintenance, valve-regulated, lead/acid batteries in utility applications

    Science.gov (United States)

    Cook, G. M.; Spindler, W. C.

    Electric power utility companies have various needs for lead/acid batteries, and also are beginning to promote customer-side-of-the meter applications for mutual benefits. Increasing use of lead/acid batteries in the future will depend heavily on improving performance and reliability of sealed, recombination designs, and on their versatility for many applications. Classifying various utility uses could be by cycling requirements, depth-of-discharge, power or energy (ratio of watts to hours), or by site (utility or customer). Deep-cycling examples are energy storage, peak-shaving and electric vehicles. Shallow-cycling examples are frequency regulation and reactive power control. Infrequent discharge examples are stationary service and spinning reserve. (Float service for telecommunications and uninterruptible power sources (UPS) applications are not addressed.) Some present and planned installations of valve-regulated lead/acid batteries are surveyed. Performance characteristics will be discussed, including recent results of testing both gel and absorptive glass mat (AGM) types of deep-cycling batteries. Recommendations for future research and development of valve-regulated cell technology are outlined, based on a recent conference organized by the United States Department of Energy (USDOE) and the Electric Power Research Institute (EPRI).

  14. Applications of direct-to-consumer hearing devices for adults with hearing loss: a review

    Directory of Open Access Journals (Sweden)

    Manchaiah V

    2017-05-01

    Full Text Available Vinaya Manchaiah,1–4 Brian Taylor,5 Ashley L Dockens,1 Nicole R Tran,1 Kayla Lane,1 Mariana Castle,1 Vibhu Grover1 1Department of Speech and Hearing Sciences, Lamar University, Beaumont, TX, USA; 2The Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden; 3Audiology India, Mysore, 4Department of Speech and Hearing, School of Allied Health Sciences, Manipal University, Manipal, India; 5Taylor Audio LLC, Minneapolis, MN, USA Background: This systematic literature review is aimed at investigating applications of direct-to-consumer hearing devices for adults with hearing loss. This review discusses three categories of direct-to-consumer hearing devices: 1 personal sound amplification products (PSAPs, 2 direct-mail hearing aids, and 3 over-the-counter (OTC hearing aids.Method: A literature review was conducted using EBSCOhost and included the databases CINAHL, MEDLINE, and PsycINFO. After applying prior agreed inclusion and exclusion criteria, 13 reports were included in the review.Results: Included studies fell into three domains: 1 electroacoustic characteristics, 2 consumer surveys, and 3 outcome evaluations. Electroacoustic characteristics of these devices vary significantly with some meeting the stringent acoustic criteria used for hearing aids, while others producing dangerous output levels (ie, over 120-dB sound pressure level. Low-end (or low-cost devices were typically poor in acoustic quality and did not meet gain levels necessary for most adult and elderly hearing loss patterns (eg, presbycusis, especially in high frequencies. Despite direct-mail hearing aids and PSAPs being associated with lower satisfaction when compared to hearing aids purchased through hearing health care professionals, consumer surveys suggest that 5%–19% of people with hearing loss purchase hearing aids through direct-mail or online. Studies on outcome evaluation suggest positive

  15. Flame based growth of ZnO nano- and microstructures for advanced optical, multifunctional devices, and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Mishra, Yogendra K.; Gröttrup, Jorit; Smazna, Daria; Hölken, Iris; Hoppe, Mathias; Sindushree, Sindushree; Kaps, Sören; Lupan, Oleg; Seidel, Jan; Monteiro, Teresa; Tiginyanu, Ion M.; Kienle, Lorenz; Ronning, Carsten; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    The recent flame based growth strategy offers a simple and versatile fabrication of various (one, two, and three-dimensional) nano- and microstructures from different metal oxides (ZnO, SnO2, Fe2O3, etc.) in a desired manner.[1] ZnO structures ranging from nanoscales wires to macroscopic and highly porous 3D interconnected tetrapod networks have been successfully synthesized, characterized and utilized for various applications. The ZnO micro- and nanoneedles grown at walls in silicon trenches showed excellent whispering gallery mode resonances and photocatalytic properties.[2] Using the same strategy, large polycrystalline micro- and nanostructured ZnO platelets can be grown with grains interconnected together via grain boundaries and these grain boundaries exhibit a higher conductivity as compared to individual grains.[3] This flame transport synthesis (FTS) approach offers the growth of a large amount of ZnO tetrapods which have shown interesting applications because of their 3D spatial shape and micro-and nanoscale size, for example, interconnected tetrapods based devices for UV-detection and gas sensing.[4-5] Because of their complex 3D shape, ZnO tetrapods can be used as efficient filler particles for designing self-reporting,[6] and other interesting composites. The nanostructured materials exhibit an important role with respect to advanced biomedical applications as grown ZnO structures have shown strong potentials for antiviral applications.[7] Being mechanically strong and micro-and nanoscale in dimensions, these ZnO tetrapods can be easily doped with other elements or hybridized with various nanoparticles in form of hybrid ZnO tetrapods which are suitable for various multifunctional applications, for example, these hybrid tetrapods showed improved gas sensing properties.[8] The sacrificial nature of ZnO allows the for growth of new tetrapods and 3D network materials for various advanced applications, for example, highly porous and ultra light carbon based

  16. Application of Circumferential Compression Device (Binder in Pelvic Injuries: Room for Improvement

    Directory of Open Access Journals (Sweden)

    Matthew Roth

    2016-11-01

    Full Text Available Introduction The use of a noninvasive pelvic circumferential compression device (PCCD to achieve pelvic stabilization by both decreasing pelvic volume and limiting inter-fragmentary motion has become commonplace, and is a well-established component of Advanced Trauma Life Support (ATLS protocol in the treatment of pelvic ring injuries. The purpose of this study was to evaluate the following: 1 how consistently a PCCD was placed on patients who arrived at our hospital with unstable pelvic ring injuries; 2 if they were placed in a timely manner; and 3 if hemodynamic instability influenced their use. Methods We performed an institutional review board-approved retrospective study on 112 consecutive unstable pelvic ring injuries, managed over a two-year period at our Level I trauma center. Our hospital electronic medical records were used to review EMT, physician, nurses’, operative notes and radiographic images, to obtain information on the injury and PCCD application. The injuries were classified by an orthopaedic trauma surgeon and a senior orthopaedic resident. Proper application of a pelvic binder using a sheet is demonstrated. Results Only 47% of unstable pelvic fractures received PCCD placement, despite being the standard of care according to ATLS. Lateral compression mechanism pelvic injuries received PCCDs in 33% of cases, while anterior posterior compression (APC and vertical shear (VS injuries had applications in 63% of cases. Most of these PCCD devices were applied after imaging (72%. Hemodynamic instability did not influence PCCD application. Conclusion PCCD placement was missed in many (37% of APC and VS mechanism injuries, where their application could have been critical to providing stability. Furthermore, to provide rapid stability, pelvic circumferential compression devices should be applied after secondary examination, rather than after receiving imaging results. Better education on timing and technique of PCCD placement at our

  17. A Secure and Robust Connectivity Architecture for Smart Devices and Applications

    Directory of Open Access Journals (Sweden)

    Lee YangSun

    2011-01-01

    Full Text Available Convergence environments and technologies are urgently coming close to our life with various wireless communications and smart devices in order to provide many benefits such as connectivity, usability, mobility, portability, and flexibility as well as lower installation and maintenance costs. Convergence has brought important change not only in the way we live but also in the way we think. It is the progress towards the attempt to create and to evolve new valuable services through the device convergence and fusion of in-home, office, and various environments around the personal mobile apparatus. Based on the dynamic trends of convergence, it is widely argued that the increased requirements on secure and robust connectivity between a variety of mobile devices and their applications provide us the era of real pervasive computing environment. Thus, in this paper, we present a novel connectivity architecture using RF4CE-(Radio Frequency for Consumer Electronics- based wireless zero-configuration and enhanced key agreement approach. We analyze the security and performance of our proposed approach by the development of the prototype H/W and the construction of a testbed with CE and mobile devices.

  18. Effect of charge exchange on ion guns and an application to inertial- electrostatic confinement devices

    International Nuclear Information System (INIS)

    Baxter, D.C.; Stuart, G.W.

    1982-01-01

    In 1967, R. L. Hirsch [J. Appl. Phys. 38, 4522 (1967)] reported neutron production rates of 10 10 neutrons per second from an electrostatic inertial confinement device. The device consisted of six ion guns injecting deuterium or a mixture of deuterium and tritium ions into an evacuated cathode chamber at 30--150 keV. No previous theoretical model for this experiment has adequately explained the observed neutron fluxes. A new model that includes the effects of charge exchange and ionization in the ion guns is analyzed. This model predicts three main features of the observed neutron flux: Neutron output proportional to gun current, neutron production localized at the center of the evacuated chamber, and neutron production decreasing with increasing neutral background gas density. Previous analysis modelled the ion guns as being monoenergetic. In this study, the ion gun output is modelled as a mixture of ions and fast neutrals with energies ranging from zero to the maximum gun energy. Using this theoretical model, a survey of the possible operating parameters indicates that the device was probably operated at or near the most efficient combined values of voltage and background pressure. Applications of the theory to other devices are discussed

  19. Self-contained in-the-ear device to deliver altered auditory feedback: applications for stuttering.

    Science.gov (United States)

    Stuart, Andrew; Xia, Shixiong; Jiang, Yining; Jiang, Tao; Kalinowski, Joseph; Rastatter, Michael P

    2003-02-01

    The design and operating characteristics of the first self-contained in-the-ear device to deliver altered auditory feedback is described for applications with those who stutter. The device incorporates a microdigital signal processor core that reproduces the high fidelity of unaided listening and auditory self-monitoring while at the same time delivering altered auditory feedback. Delayed auditory feedback and frequency-altered feedback signals in combination or isolation can be generated to the user in a cosmetically appealing custom in-the-canal and completely-in-the-canal design. Programming of the device is achieved through a personal computer, interface, and fitting software. Researchers and clinicians interested in evaluating persons who stutter outside laboratory settings in a natural environment and persons who stutter looking for an alternative or adjunct to traditional therapy options are ideal candidates for this technology. In both instances an inconspicuous ear level alternative to traditional body worn devices with external microphones and earphones is offered.

  20. A device for training and computer-assisted application of panretinal photocoagulation

    Science.gov (United States)

    Barriga, Eduardo S.; Russell, Stephen; Abramoff, Michael; Brittain, Robert; Nguyen, Phong; Soliz, Peter

    2007-02-01

    To become highly proficient at a given surgical procedure and to reduce risk to patients, physicians must gain experience through a number means. Today optical training devices based on the actual surgical device coupled with computer models can provide the required realism to provide highly effective training. This paper presents a optical system that will be used for training residents to perform panretinal photocoagulation (PRP), a laser surgical procedure for treating the retina. The system will naturally evolve into a computer-assisted device for performing PRP. With the system described herein, simulations are created in the Umbra modeling and simulation framework. The simulation is composed of four building blocks: Pre-operation planning, multi-modality image registration, tracking the patient's eye movement, and positioning the laser according to the pre-planned aim points. A prototype simulation was developed to demonstrate a realistic depiction of the PRP the procedure. The ultimate goal of this project is to integrate the software into an existing ophthalmic device to increase the accuracy of the laser application procedure by providing computer-assisted surgery.

  1. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    Science.gov (United States)

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  2. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    Science.gov (United States)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  3. Hydrogen doped thin film diamond. Properties and application for electronic devices

    International Nuclear Information System (INIS)

    Looi, H.J.

    2000-01-01

    The face centered cubic allotrope of carbon, diamond, is a semiconducting material which possesses a valuable combination of extreme properties such as super-hardness, highest thermal conductivity, chemical hardness, radiation hardness, wide bandgap and others. Advances in chemical vapour deposition (CVD) technology have lead to diamond becoming available in previously unattainable forms for example over large areas and with controllable purity. This has generated much research interest towards developing the knowledge and processing technology that would be necessary to fully exploit these extreme properties. Electronic devices fabricated on oxidised boron doped polycrystalline CVD diamond (PCD) displayed very poor and inconsistent characteristic. As a result, many electronic applications of polycrystalline diamond films were confined to ultra-violet (UV) and other forms of device which relied on the high intrinsic resistivity on undoped diamond films. If commercially accessible PCD films are to advance in areas which involve sophisticated electronic applications or to compete with existing semiconductors, the need for a more reliable and fully ionised dopant is paramount. This thesis describes a unique dopant discovered within the growth surface of PCD films. This dopant is related to hydrogen which arises during the growth of diamond films. The aim of this study is to characterise and identify possible applications for this form of dopant. The mechanism for carrier generation remains unknown and based on the experimental results in this work, a model is proposed. The Hall measurements conducted on this conductive layer revealed a p-type nature with promising properties for electronic device application. A more detail study based on electrical and surface science methods were carried out to identify the stability and operating conditions for this dopant. The properties of metal-semiconductor contacts on these surfaces were investigated. The fundamental knowledge

  4. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents).

    Science.gov (United States)

    Malviya, Rishabha; Sharma, Pramod Kumar; Dubey, Susheel Kumar

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Getting high utilization of peak GFLOPS in real applications in the Cray X1

    International Nuclear Information System (INIS)

    Levesque, J.M.

    2003-01-01

    This paper will show the advanced characteristics of the Cray X1 and discuss how they are used to achieve high-utilized GFLOPS on many real world applications. On most MPP systems, other than the Earth Simulator and the Cray Inc. X1, advanced scientific applications do not obtain a high percentage of peak performance, in some cases less than 2%. When this small percentage of peak is attained on the processor, one needs to have more individual processors to achieve a TFLOP of sustained performance. Larger numbers of processors result in a tremendous burden on the interconnect. Here again MPPs other than the Earth Simulator and the X1 do not have the interconnect to support the increased number of processors. Combining low processor performance with insufficient scaling results in less than desired performance for many applications. (author)

  6. The Application of Minimally Invasive Devices with Nanostructured Surface Functionalization: Antisticking Behavior on Devices and Liver Tissue Interface in Rat

    Directory of Open Access Journals (Sweden)

    Li-Hsiang Lin

    2015-01-01

    Full Text Available This study investigated the thermal injury and adhesion property of a novel electrosurgery of liver using copper-doped diamond-like carbon (DLC-Cu surface treatment. It is necessary to reduce the thermal damage of surrounding tissues for clinical electrosurgeries. The surface morphologies of stainless steel (SS coated with DLC (DLC-Cu-SS films were characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. Bionic liver models were reconstructed using magnetic resonance imaging (MRI to simulate electrosurgery. Cell cytotoxicity assays showed that the DLC-Cu thin film was nontoxic. The temperature of tissue decreased significantly with use of the electrosurgical device with nanostructured DLC-Cu films and increased with increasing thickness of the films. Thermography revealed that the surgical temperature in the DLC-Cu-SS electrosurgical device was significantly lower than that in the untreated device in the animal model. Moreover, compared to the SS electrosurgical device, the DLC-Cu-SS electrosurgical device caused a relatively small injury area and lateral thermal effect. The results indicate that the DLC-Cu-SS electrosurgical device decreases excessive thermal injury and ensures homogeneous temperature transformation in the tissues.

  7. Energy Conservation in Mobile Devices and Applications: A Case for Context Parsing, Processing and Distribution in Clouds

    Directory of Open Access Journals (Sweden)

    Saad Liaquat Kiani

    2013-01-01

    Full Text Available Context information consumed and produced by the applications on mobile devices needs to be represented, disseminated, processed and consumed by numerous components in a context-aware system. Significant amounts of context consumption, production and processing takes place on mobile devices and there is limited or no support for collaborative modelling, persistence and processing between device-Cloud ecosystems. In this paper we propose an environment for context processing in a Cloud-based distributed infrastructure that offloads complex context processing from the applications on mobile devices. An experimental analysis of complexity based context-processing categories has been carried out to establish the processing-load boundary. The results demonstrate that the proposed collaborative infrastructure provides significant performance and energy conservation benefits for mobile devices and applications.

  8. Developing trends in aptamer-based biosensor devices and their applications.

    Science.gov (United States)

    MacKay, Scott; Wishart, David; Xing, James Z; Chen, Jie

    2014-02-01

    Aptamers are, in general, easier to produce, easier to store and are able to bind to a wider variety of targets than antibodies. For these reasons, aptamers are gaining increasing popularity in environmental monitoring as well as disease detection and disease management applications. This review article examines the research and design of RNA and DNA aptamer based biosensor systems and applications as well as their potential for integration in effective biosensor devices. As single stranded DNA or RNA molecules that can bind to specific targets, aptamers are well suited for biomolecular recognition and sensing applications. Beyond being able to be designed for a near endless number of specific targets, aptamers can also be made which change their conformation in a predictable and consistent way upon binding. This can lead to many unique and effective detection methods using a variety of optical and electrochemical means.

  9. Computer application in a nondestructive testing device for determining 235U enrichment

    International Nuclear Information System (INIS)

    Liu Yun

    1997-01-01

    The hardware multichannel is replaced by a computer multichannel analyzer in the second generation of nondestructive testing device for determining 235 U enrichment of fuel element in nuclear power plant. The spectrometric analyzer system consists of the spectrometric analysis board and the multichannel emulator software (PHA). The multichannel scaling system is composed of eight-channel multichannel scaling board and the multichannel scaling software (MCS). The digital discrimination, self-tracing and self-adjusting of threshold energy, and two-peak and two-window techniques are used to increase the measuring accuracy and testing speed. The automatic loading and unloading and classification of fuel rods are realized by using computer, therefore, the level of automation is upgraded. The method of on-line inspection of rods enrichment with passive gamma-ray can play its role fully due to the application of computer in the second generation of nondestructive testing device. (4 figs., 1 tab.)

  10. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    Energy Technology Data Exchange (ETDEWEB)

    Vinante, A., E-mail: anvinante@fbk.eu; Falferi, P. [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy); Mezzena, R. [Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento (Italy)

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  11. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.

    Science.gov (United States)

    Wu, Wei; Tassi, Nancy G; Zhu, Hongli; Fang, Zhiqiang; Hu, Liangbing

    2015-12-09

    Nanocellulose is a biogenerated and biorenewable organic material. Using a process based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaClO/NaBr system, a highly translucent and light-diffusive film consisting of many layers of nanocellulose fibers and wood pulp microfibers was made. The film demonstrates a combination of large optical transmittance of ∼90% and tunable diffuse transmission of up to ∼78% across the visible and near-infrared spectra. The detailed characterizations of the film indicate the combination of high optical transmittance and haze is due to the film's large packing density and microstructured surface. The superior optical properties make the film a translucent light diffuser and applicable for improving the efficiencies of optoelectronic devices such as thin-film silicon solar cells and organic light-emitting devices.

  12. Graphene-Nanodiamond Heterostructures and their application to High Current Devices

    Science.gov (United States)

    Zhao, Fang; Vrajitoarea, Andrei; Jiang, Qi; Han, Xiaoyu; Chaudhary, Aysha; Welch, Joseph O.; Jackman, Richard B.

    2015-01-01

    Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applications. The use of ND monolayers is also a compatible technology for the support of large area graphene films. The nature of the C-H bonds between graphene and H-terminated NDs strongly influences the electronic character of the heterostructure, creating effective charge redistribution within the system. Field effect transistors (FETs) have been fabricated based on this novel herterostructure to demonstrate device characteristics and the potential of this approach. PMID:26350107

  13. Supporting Local Mobility in Healthcare by Application Roaming among Heterogeneous Devices

    DEFF Research Database (Denmark)

    Bardram, Jacob Eyvind; Kjær, Thomas A.K.; Nielsen, Christina

    2003-01-01

    This paper presents results from a research project aiming at developing an architecture supporting local mobility within hospitals. The architecture is based on fieldwork and design workshops within a large Danish hospital and it has been implemented and evaluated after a pilot phase. Our...... fieldwork has emphasised the differences between remote mobility, where users travel over long distances, and local mobility, where users walk around within a fixed set of buildings and/or places. Based on our field studies and our design work, we conclude that local mobility puts up three requirements...... for computer support; (i) it should integrate into the existing infrastructure, (ii) it should support the use of various heterogeneous devices, and (iii) it should enable seamless application roaming between these devices. The paper describes how these requirements were realized in an architecture for local...

  14. Design of anisotropic pneumatic artificial muscles and their applications to soft wearable devices for text neck symptoms.

    Science.gov (United States)

    Hojoong Kim; Hyuntai Park; Jongwoo Kim; Kyu-Jin Cho; Yong-Lae Park

    2017-07-01

    Pneumatic artificial muscles (PAMs) are frequently used actuators in soft robotics due to their structural flexibility. They are generally characterized by the tensile force due to the axial contraction and the radial force with volume expansion. To date, most applications of P AMs have utilized axial contractions. In contrast, we propose a novel way to control radial expansions of particular P AMs using anisotropic behaviors. P AMs generally consist of a cylindrical rubber bladder that expands with injection of air and multiple flexible but inextensible strings or mesh that surround the bladder to generate axial contraction force. We propose methods of generating radial expansion force in two ways. One is to control the spatial density of the strings that hold the bladder, and the other is to give asymmetric patterns directly to the bladder for geometrical anisotropy. To evaluate the performance of the actuators, soft sensors made of a hyperelastic material and a liquid conductor were attached to the P AMs for measuring local strains and pressures of the PAMs. We also suggest use of the proposed PAMs to a wearable therapeutic device for treating text neck symptoms as an application. The P AMs were used to exert a pressure to the back of the neck to recover the original spinal alignment from the deformed shape.

  15. Use and utility of Web-based residency program information: a survey of residency applicants.

    Science.gov (United States)

    Embi, Peter J; Desai, Sima; Cooney, Thomas G

    2003-01-01

    The Internet has become essential to the residency application process. In recent years, applicants and residency programs have used the Internet-based tools of the National Residency Matching Program (NRMP, the Match) and the Electronic Residency Application Service (ERAS) to process and manage application and Match information. In addition, many residency programs have moved their recruitment information from printed brochures to Web sites. Despite this change, little is known about how applicants use residency program Web sites and what constitutes optimal residency Web site content, information that is critical to developing and maintaining such sites. To study the use and perceived utility of Web-based residency program information by surveying applicants to an internal medicine program. Our sample population was the applicants to the Oregon Health & Science University Internal Medicine Residency Program who were invited for an interview. We solicited participation using the group e-mail feature available through the Electronic Residency Application Service Post-Office application. To minimize the possibility for biased responses, the study was confined to the period between submission of National Residency Matching Program rank-order lists and release of Match results. Applicants could respond using an anonymous Web-based form or by reply to the e-mail solicitation. We tabulated responses, calculated percentages for each, and performed a qualitative analysis of comments. Of the 431 potential participants, 218 responded (51%) during the study period. Ninety-nine percent reported comfort browsing the Web; 52% accessed the Web primarily from home. Sixty-nine percent learned about residency Web sites primarily from residency-specific directories while 19% relied on general directories. Eighty percent found these sites helpful when deciding where to apply, 69% when deciding where to interview, and 36% when deciding how to rank order programs for the Match. Forty

  16. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    International Nuclear Information System (INIS)

    Lee, ChaBum; Tarbutton, Joshua A

    2014-01-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step. (paper)

  17. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  18. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds

    OpenAIRE

    Opalińska, Teresa; Wnęk, Bartłomiej; Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata; Bartusek, Stanilav

    2016-01-01

    This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and...

  19. A real time ECG signal processing application for arrhythmia detection on portable devices

    Science.gov (United States)

    Georganis, A.; Doulgeraki, N.; Asvestas, P.

    2017-11-01

    Arrhythmia describes the disorders of normal heart rate, which, depending on the case, can even be fatal for a patient with severe history of heart disease. The purpose of this work is to develop an application for heart signal visualization, processing and analysis in Android portable devices e.g. Mobile phones, tablets, etc. The application is able to retrieve the signal initially from a file and at a later stage this signal is processed and analysed within the device so that it can be classified according to the features of the arrhythmia. In the processing and analysing stage, different algorithms are included among them the Moving Average and Pan Tompkins algorithm as well as the use of wavelets, in order to extract features and characteristics. At the final stage, testing is performed by simulating our application in real-time records, using the TCP network protocol for communicating the mobile with a simulated signal source. The classification of ECG beat to be processed is performed by neural networks.

  20. Rich internet application system for patient-centric healthcare data management using handheld devices.

    Science.gov (United States)

    Constantinescu, L; Pradana, R; Kim, J; Gong, P; Fulham, Michael; Feng, D

    2009-01-01

    Rich Internet Applications (RIAs) are an emerging software platform that blurs the line between web service and native application, and is a powerful tool for handheld device deployment. By democratizing health data management and widening its availability, this software platform has the potential to revolutionize telemedicine, clinical practice, medical education and information distribution, particularly in rural areas, and to make patient-centric medical computing a reality. In this paper, we propose a telemedicine application that leverages the ability of a mobile RIA platform to transcode, organise and present textual and multimedia data, which are sourced from medical database software. We adopted a web-based approach to communicate, in real-time, with an established hospital information system via a custom RIA. The proposed solution allows communication between handheld devices and a hospital information system for media streaming with support for real-time encryption, on any RIA enabled platform. We demonstrate our prototype's ability to securely and rapidly access, without installation requirements, medical data ranging from simple textual records to multi-slice PET-CT images and maximum intensity (MIP) projections.

  1. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds.

    Science.gov (United States)

    Opalińska, Teresa; Wnęk, Bartłomiej; Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata; Bartusek, Stanilav

    2016-11-15

    This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Perceptions of the risk of child abduction or loss and the utility of child electronic security devices.

    Science.gov (United States)

    Dixon, R M; Pasnak, R

    1997-09-01

    Perceptions of the susceptibility of young children to becoming lost or being abducted, and of the potential usefulness of child electronic security devices, were examined via a questionnaire. Data were provided by 41 volunteers, most of them from a local government office centre. The questionnaire asked for demographic data, and then for the risk of a child being abducted or lost when under the supervision of different caregivers and in different situations. The probable effectiveness of three common abductor ploys was also addressed. The questionnaire concluded with 10 questions about child electronic security devices. Respondents viewed mothers, fathers, and grandparents as equally responsible caregivers and young adults/babysitters as the least responsible. These effects diminished as the age of the children increased. The garden at home was judged to be the most secure environment for children of all ages, while an amusement park was judged the least secure environment. Children were perceived to be more at risk of an abduction when a stranger asked for physical assistance or to take them to the hospital because their parents were hurt, than when asked for directions. Furthermore, the respondents expressed a moderately strong need for child electronic security devices, and viewed parents who use them as more responsible than those who do not.

  3. Application of the gas-discharge surge arresters in X-ray devices and low voltage instrumentation

    Science.gov (United States)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Lisenkov, A. A.; Selivanov, L. M.; Uhov, A. A.

    2018-02-01

    Usage of the gas discharge in science and engineering is discussed. Application examples of the compact gas-discharge tubes in the X-ray devices and low voltage instrumentation appliances for the surge protection are presented.

  4. Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication

    Directory of Open Access Journals (Sweden)

    Miro Antonijević

    2018-03-01

    Full Text Available Most electrical substations are remotely monitored and controlled by using Supervisory Control and Data Acquisition (SCADA applications. Current SCADA systems have been significantly enhanced by utilizing standardized communication protocols and the most prominent is the IEC 61850 international standard. These enhancements enable improvements in different domains of SCADA systems such as communication engineering, data management and visualization of automation process data in SCADA applications. Process data visualization is usually achieved through Human Machine Interface (HMI screens in substation control centres. However, this visualization method sometimes makes supervision, control and maintenance procedures executed by engineers slow and error-prone because it separates equipment from its automation data. Augmented reality (AR and mixed reality (MR visualization techniques have matured enough to provide new possibilities of displaying relevant data wherever needed. This paper presents a novel methodology for visualizing process related SCADA data to enhance and facilitate human-centric activities in substations such as regular equipment maintenance. The proposed solution utilizes AR visualization techniques together with standards-based communication protocols used in substations. The developed proof-of-concept AR application that enables displaying SCADA data on the corresponding substation equipment with the help of AR markers demonstrates originality and benefits of the proposed visualization method. Additionally, the application enables displaying widgets and 3D models of substation equipment to make the visualization more user-friendly and intuitive. The visualized SCADA data needs to be refreshed considering soft real-time data delivery restrictions. Therefore, the proposed solution is thoroughly tested to demonstrate the applicability of proposed methodology in real substations.

  5. Nanotechnology: MEMS and NEMS and their applications to smart systems and devices

    Science.gov (United States)

    Varadan, Vijay K.

    2003-10-01

    civil strutures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5 - 40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended coventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.

  6. Biometric fingerprinting for visa application: device and procedure are risk factors for infection transmission.

    Science.gov (United States)

    Jacobs, Jan A; Van Ranst, Marc

    2008-01-01

    Biometric fingerprint identity verification is currently introduced in visa application and entry screening at border control. The system implies physical contact between the skin and the surface of the fingerprint-capturing and reading devices. To assess the risk of infection transmission through fingerprinting. The medical literature was reviewed for the potential of microorganisms to be carried on the skin of hands in the community, to be transferred from hands to inanimate surfaces, to survive on surfaces, and to be transferred in doses exceeding the infectious dose. The fingerprinting procedures as currently applied were reviewed. Factors that favor transfer of microorganisms are large skin-surface contact between flat fingers (2 x 20 cm(2)) and fingerprint-capturing device, nonporous contact surface, large overlap of contact surface and short turnaround time between successive applicants, high contact pressure, and difficulties to disinfect devices. Transmission risk exists for enteric viruses (rotavirus, norovirus, and hepatitis A virus), respiratory viruses (respiratory syncytial virus, rhinovirus, influenza virus, etc.), and enteropathogenic bacteria with low infectious doses (Shigella dysenteriae, Enterohemorrhagic Escherichia coli, etc.). Using Monte Carlo risk analysis on US data, transmission of human rotavirus is estimated at 191 [95% credible intervals (CI) 0-289] per million fingerprint-capturing procedures. Application of 70% isopropyl hand rub and 85% ethanol hand gel reduces the risk to 77 (95% CI 0-118) and 0.3 (95% CI 0-0.3) transmissions per million procedures, respectively. The fingerprinting procedure as currently used is associated with a risk of infection transmission. Simple hygienic measures can considerably reduce this transmission risk.

  7. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  8. An Embedded Database Application for the Aggregation of Farming Device Data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    In order to store massive amounts of data produced by the farming devices and to keep data that spans long intervals of time for analysis, reporting and maintenance purposes; it is desirable to reduce the size of the data by maintaining the data at different aggregate levels. The older data can...... be made coarse-grained while keeping the newest data fine-grained. Considering the availability of a limited amount of storage capacity on the farm machinery, an application written in C was developed to collect the data from a CAN-BUS, store it into the embedded database efficiently and perform gradual...

  9. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Directory of Open Access Journals (Sweden)

    Sofia Paulo

    2016-08-01

    Full Text Available Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV. Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  10. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications.

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-08-25

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  11. Printed wireless devices for low-cost, connected sensors for point-of-care applications

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2017-11-01

    Full Text Available stream_source_info Smith_19467_2017.pdf.txt stream_content_type text/plain stream_size 25760 Content-Encoding UTF-8 stream_name Smith_19467_2017.pdf.txt Content-Type text/plain; charset=UTF-8 PRINTED WIRELESS DEVICES... FOR LOW-COST, CONNECTED SENSORS FOR POINT-OF-CARE APPLICATIONS S. Smith1,2*, P. Bezuidenhout1, K. Land1, J.G. Korvink2 & D. Mager2 1Department of Materials Science and Manufacturing Council for Scientific and Industrial Research (CSIR), South Africa...

  12. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  13. 75 FR 33289 - Public Utility District No. 1 of Douglas County (Douglas PUD); Notice of Application Tendered for...

    Science.gov (United States)

    2010-06-11

    ... Federal Energy Regulatory Commission Public Utility District No. 1 of Douglas County (Douglas PUD); Notice... hydroelectric application has been filed with the Commission and is available for public inspection. a. Type of Application: New Major License. b. Project No.: 2149-131. c. Date Filed: May 27, 2010. d. Applicant: Public...

  14. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails

    DEFF Research Database (Denmark)

    Di Giminiani, Pierpaolo; Sandercock, Dale A.; Malcolm, Emma M.

    2016-01-01

    The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury......, such as tail docking or tail biting. The Pressure Application Measurement (PAM) device is used here for the first time on the tail of pigs to determine the reliability of the methods and to provide novel data on mechanical nociceptive thresholds (MNT) associated with four different age groups (9, 17, 24 and 32......) was significantly higher (P tail regions 2 and 3 (more distal). Age had a significant effect (P tail region...

  15. Fabrication and properties of nanoscale multiferroic heterostructures for application in magneto-electric random access memory (MERAM) devices

    Science.gov (United States)

    Kim, Gunwoo

    Magnetoelectric random access memory (MERAM) has emerged as a promising new class of non-volatile solid-state memory device. It offers nondestructive reading along with low power consumption during the write operation. A common implementation of MERAM involves use of multiferroic tunneling junctions (MFTJs), which besides offering non-volatility are both electrically and magnetically tunable. Fundamentally, a MFTJ consists of a heterostructure of an ultrathin multiferroic or ferroelectric material as the active tunneling barrier sandwiched between ferromagnetic electrodes. Thereby, the MFTJ exhibits both tunnel electroresistance (TER) and tunnel magnetoresistance (TMR) effects with application of an electric and magnetic field, respectively. In this thesis work, we have developed two-dimensional (2D) thin-film multiferroic heterostructure METJ prototypes consisting of ultrathin ferroelectric BaTiO3 (BTO) layer and a conducting ferromagnetic La0.67Sr 0.33MnO3 (LSMO) electrode. The heteroepitaxial films are grown using the pulsed laser deposition (PLD) technique. This oxide heterostructure offers the opportunity to study the nano-scale details of the tunnel electroresistance (TER) effect using scanning probe microscopy techniques. We performed the measurements using the MFP-3D (Asylum Research) scanning probe microscope. The ultrathin BTO films (1.2-2.0 nm) grown on LSMO electrodes display both ferro- and piezo-electric properties and exhibit large tunnel resistance effect. We have explored the growth and properties of one-dimensional (1D) heterostructures, referred to as multiferoric nanowire (NW) heterostructures. The ferromagnetic/ferroelectric composite heterostructures are grown as sheath layers using PLD on lattice-matched template NWs, e.g. MgO, that are deposited by chemical vapor deposition utilizing the vapor-liquid-solid (VLS) mechanism. The one-dimensional geometry can substantially overcome the clamping effect of the substrate present in two

  16. Development of a hybrid-anvil type high-pressure device and its application to magnetic neutron scattering studies

    International Nuclear Information System (INIS)

    Osakabe, T.; Kakurai, K.; Kawana, D.; Kuwahara, K.

    2007-01-01

    A new hybrid-type anvil device for high-pressure single-crystal neutron diffraction experiments is described. The device is composed of a large sapphire anvil and a tungsten carbide (WC) anvil which has a hollow in the center of the culet. In a feasibility test of the device, we could generate the pressure up to 5GPa with high stability. As an example of the application of the hybrid-anvil device, we show some results of magnetic neutron diffraction experiments on filled skutterudite compound PrFe 4 P 12

  17. Fabrication and Performance of Zirconia Electrolysis Cells for Cabon Dioxide Reduction for Mars In Situ Resource Utilization Applications

    Science.gov (United States)

    Minh, N. Q.; Chung, B. W.; Doshi, R.; Lear, G. R.; Montgomery, K.; Ong, E. T.

    1999-01-01

    Use of the Martian atmosphere (95% CO2) to produce oxygen (for propellant and life support) can significantly lower the required launch mass and dramatically reduce the total cost for Mars missions. Zirconia electrolysis cells are one of the technologies being considered for oxygen generation from carbon dioxide in Mars In Situ Resource Utilization (ISRU) production plants. The attractive features of the zirconia cell for this application include simple operation and lightweight, low volume system. A zirconia electrolysis cell is an all-solid state device, based on oxygen-ion conducting zirconia electrolytes, that electrochemically reduces carbon dioxide to oxygen and carbon monoxide. The cell consists of two porous electrodes (the anode and cathode) separated by a dense zirconia electrolyte. Typical zirconia cells contain an electrolyte layer which is 200 to 400 micrometer thick. The electrical conductivity requirement for the electrolyte necessitates an operating temperature of 9000 to 10000C. Recently, the fabrication of zirconia cells by the tape calendering has been evaluated. This fabrication process provides a simple means of making cells having very thin electrolytes (5 to 30 micrometers). Thin zirconia electrolytes reduce cell ohmic losses, permitting efficient operation at lower temperatures (8000C or below). Thus, tape-calendered cells provides not only the potential of low temperature operation but also the flexibility in operating temperatures. This paper describes the fabrication of zirconia cells by the tape calendering method and discusses the performance results obtained to date.

  18. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application

    Science.gov (United States)

    Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul

    2017-08-01

    We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.

  19. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  20. Virtual reality for mobility devices: training applications and clinical results: a review.

    Science.gov (United States)

    Erren-Wolters, Catelijne Victorien; van Dijk, Henk; de Kort, Alexander C; Ijzerman, Maarten J; Jannink, Michiel J

    2007-06-01

    Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for patients with mobility problems. Computerized literature searches were performed using the MEDLINE, Cochrane, CIRRIE and REHABDATA databases. This resulted in eight peer reviewed journal articles. The included studies could be divided into three categories, on the basis of their study objective. Five studies were related to training driving skills, two to physical exercise training and one to leisure activity. This review suggests that virtual reality is a potentially useful means to improve the use of a mobility device, in training one's driving skills, for keeping up the physical condition and also in a way of leisure time activity. Although this field of research appears to be in its early stages, the included studies pointed out a promising transfer of training in a virtual environment to the real-life use of mobility devices.

  1. Germanium nanoparticles grown at different deposition times for memory device applications

    International Nuclear Information System (INIS)

    Mederos, M.; Mestanza, S.N.M.; Lang, R.; Doi, I.; Diniz, J.A.

    2016-01-01

    In the present work, circular Metal-Oxide-Semiconductor capacitors with 200 μm of diameter and germanium (Ge) nanoparticles (NPs) embedded in the gate oxide are studied for memory applications. Optimal process parameters are investigated for Ge NPs growing by low pressure chemical vapor deposition at different deposition times. Photoluminescence measurements showed room-temperature size-dependent green-red region bands attributed to quantum confinement effects present in the NPs. High-frequency capacitance versus voltage measurements demonstrated the memory effects on the MOS structures due to the presence of Ge NPs in the gate oxide acting as discrete floating gates. Current versus voltage measurements confirmed the Fowler-Nordheim tunneling as the programming mechanism of the devices. - Highlights: • Ge nanoparticles with high density and uniforms sizes were obtained by LPCVD. • Room-temperature size-dependent bands of photoluminescence were observed. • MOS capacitors with Ge nanoparticles embedded in the oxide were fabricated. • Ge nanoparticles are the main responsible for the memory properties in the devices. • Fowler-Nordheim tunneling is the conduction mechanism observed on the devices.

  2. Germanium nanoparticles grown at different deposition times for memory device applications

    Energy Technology Data Exchange (ETDEWEB)

    Mederos, M., E-mail: melissa.mederos@gmail.com [Center for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (Unicamp), Rua João Pandia Calógeras 90, Campinas, CEP: 13083-870, São Paulo (Brazil); Mestanza, S.N.M. [Federal University of ABC (UFABC), Rua Santa Adélia 166, Bangu, Santo André, CEP: 09210-170, São Paulo (Brazil); Lang, R. [Institute of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, São José dos Campos, CEP: 12231-280, São Paulo (Brazil); Doi, I.; Diniz, J.A. [Center for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (Unicamp), Rua João Pandia Calógeras 90, Campinas, CEP: 13083-870, São Paulo (Brazil); School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas, CEP: 13083-852, São Paulo (Brazil)

    2016-07-29

    In the present work, circular Metal-Oxide-Semiconductor capacitors with 200 μm of diameter and germanium (Ge) nanoparticles (NPs) embedded in the gate oxide are studied for memory applications. Optimal process parameters are investigated for Ge NPs growing by low pressure chemical vapor deposition at different deposition times. Photoluminescence measurements showed room-temperature size-dependent green-red region bands attributed to quantum confinement effects present in the NPs. High-frequency capacitance versus voltage measurements demonstrated the memory effects on the MOS structures due to the presence of Ge NPs in the gate oxide acting as discrete floating gates. Current versus voltage measurements confirmed the Fowler-Nordheim tunneling as the programming mechanism of the devices. - Highlights: • Ge nanoparticles with high density and uniforms sizes were obtained by LPCVD. • Room-temperature size-dependent bands of photoluminescence were observed. • MOS capacitors with Ge nanoparticles embedded in the oxide were fabricated. • Ge nanoparticles are the main responsible for the memory properties in the devices. • Fowler-Nordheim tunneling is the conduction mechanism observed on the devices.

  3. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.

    Science.gov (United States)

    Hu, Wei; Qin, Ni; Wu, Guangheng; Lin, Yanting; Li, Shuwei; Bao, Dinghua

    2012-09-12

    The opportunity of spinel ferrites in nonvolatile memory device applications has been demonstrated by the resistive switching performance characteristics of a Pt/NiFe(2)O(4)/Pt structure, such as low operating voltage, high device yield, long retention time (up to 10(5) s), and good endurance (up to 2.2 × 10(4) cycles). The dominant conduction mechanisms are Ohmic conduction in the low-resistance state and in the lower-voltage region of the high-resistance state and Schottky emission in the higher-voltage region of the high-resistance state. On the basis of measurements of the temperature dependence of the resistances and magnetic properties in different resistance states, we explain the physical mechanism of resistive switching of Pt/NiFe(2)O(4)/Pt devices using the model of formation and rupture of conducting filaments by considering the thermal effect of oxygen vacancies and changes in the valences of cations due to the redox effect.

  4. Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip

    Science.gov (United States)

    Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar

    2018-04-01

    Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.

  5. The application of high voltage digital and analogue unit protections to utility telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, H. [SNC Group, Montreal, PQ (Canada); Verzosa, Q.R.; Care, J.M. [SNC Group, Montreal, PQ (Canada)

    1996-08-01

    The use of fibre optic and digital microwave systems, both within and without utility communications networks was discussed. Their availability has led to the development of phase comparison and differential current relaying systems which provide enhanced protective features for transmission circuits. The application of fibre optic cable or microwave radio data links overcomes problems caused by ground potential rise and transferred potential damage in metallic pilot wire schemes. Some problems were encountered when installing digital differential current and analogue phase comparison relaying systems to a 220 kV power transmission system where a mix of analog microwave, digital microwave radio and multiplexed fibre optic channels were available. However, the relays were successfully installed with the application of digital pilot differential relays to the power system which enabled fast fault clearance to be achieved. 7 refs., 1 tab., 1 fig.

  6. Development of an E-mail Application Seemit and its Utilization in an Information Literacy Course

    Science.gov (United States)

    Kita, Toshihiro; Miyazaki, Makoto; Nakano, Hiroshi; Sugitani, Kenichi; Akiyama, Hidenori

    We have developed a simple e-mail application named Seemit which is designed for being used in information literacy courses. It has necessary and sufficient functionality of an e-mail application, and it has been developed for the purpose of learning basic operations and mechanisms of e-mail transfer easily. It is equipped with the function to automatically set the configuration of user's SMTP/POP servers and e-mail address, etc. The process of transferring e-mail via SMTP and POP can be demonstrated step by step showing actual messages passed during the client-server interaction. We have utilized Seemit in a university-wide information literacy course which holds about 1800 students.

  7. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  8. Small turbines in distributed utility application: Natural gas pressure supply requirements

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, H.L.

    1996-05-01

    Implementing distributed utility can strengthen the local distribution system and help avoid or delay the expense of upgrading transformers and feeders. The gas turbine-generator set is an attractive option based on its low front-end capital cost, reliable performance at unmanned stations, and environmental performance characteristics. This report assesses gas turbine utilization issues from a perspective of fuel supply pressure requirements and discusses both cost and operational factors. A primary operational consideration for siting gas turbines on the electric distribution system is whether the local gas distribution company can supply gas at the required pressure. Currently available gas turbine engines require gas supply pressures of at least 150 pounds per square inch gauge, more typically, 250 to 350 psig. Few LDCs maintain line pressure in excess of 125 psig. One option for meeting the gas pressure requirements is to upgrade or extend an existing pipeline and connect that pipeline to a high-pressure supply source, such as an interstate transmission line. However, constructing new pipeline is expensive, and the small volume of gas required by the turbine for the application offers little incentive for the LDC to provide this service. Another way to meet gas pressure requirements is to boost the compression of the fuel gas at the gas turbine site. Fuel gas booster compressors are readily available as stand-alone units and can satisfactorily increase the supply pressure to meet the turbine engine requirement. However, the life-cycle costs of this equipment are not inconsequential, and maintenance and reliability issues for boosters in this application are questionable and require further study. These factors may make the gas turbine option a less attractive solution in DU applications than first indicated by just the $/kW capital cost. On the other hand, for some applications other DU technologies, such as photovoltaics, may be the more attractive option.

  9. Symposium on applications of superconducting quantum interference devices (SQUIDS). [Abstracts of 13 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The abstracts are given of thirteen papers presented at a ''SQUID Symposium'' organized by the Division of Materials Sciences of the U.S. Department of Energy and held March 23--25, 1978, at the University of Virginia. Since SQUID systems have already been utilized in feasibility demonstration in geothermal reservoir exploration, it was recognized that these devices also hold great potential for many other important scientific measurements. Many of these are energy-related, and others include forefront investigations in a diverse group of scientific areas, from biomedical to earthquake monitoring. Research in SQUIDs has advanced so rapidly in recent years that it was felt that a symposium to review the current status and future prospects of the devices would be timely. The abstracts given present an overview of work in this area and hopefully provide an opportunity to increase awareness among basic and applied scientists of the inherent implications of the extreme measurement sensitivity in advanced SQUID systems.

  10. Preliminary performance assessment of biotoxin detection for UWS applications using a MicroChemLab device.

    Energy Technology Data Exchange (ETDEWEB)

    VanderNoot, Victoria A.; Haroldsen, Brent L.; Renzi, Ronald F.; Shokair, Isaac R.

    2010-03-01

    In a multiyear research agreement with Tenix Investments Pty. Ltd., Sandia has been developing field deployable technologies for detection of biotoxins in water supply systems. The unattended water sensor or UWS employs microfluidic chip based gel electrophoresis for monitoring biological analytes in a small integrated sensor platform. This instrument collects, prepares, and analyzes water samples in an automated manner. Sample analysis is done using the {mu}ChemLab{trademark} analysis module. This report uses analysis results of two datasets collected using the UWS to estimate performance of the device. The first dataset is made up of samples containing ricin at varying concentrations and is used for assessing instrument response and detection probability. The second dataset is comprised of analyses of water samples collected at a water utility which are used to assess the false positive probability. The analyses of the two sets are used to estimate the Receiver Operating Characteristic or ROC curves for the device at one set of operational and detection algorithm parameters. For these parameters and based on a statistical estimate, the ricin probability of detection is about 0.9 at a concentration of 5 nM for a false positive probability of 1 x 10{sup -6}.

  11. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training

    Science.gov (United States)

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.

    2018-01-01

    holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074

  12. DLC nano-dot surfaces for tribological applications in MEMS devices

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Na, Kyounghwan; Yi, Jin Woo; Lee, Kwang-Ryeol; Yoon, Eui-Sung

    2011-01-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  13. Multi-electrode circular position-sensitive device (PSD) and its application to angular measurement

    Science.gov (United States)

    Nakajima, Hajime; Shikai, Masahiro; Takashima, Kazuo; Usami, Teruo

    1995-01-01

    Semiconductor position sensitive devices (PSD) enable to measure the position of a light spot using simple construction. A circular PSD, which has a circular photosensitive region, can be used for angular measurement. This paper presents a new type of circular PSD called Multi Electrode Circular PSD (ME-CPSD) and demonstrates its application for angular measurement. This device, constructed on Si substrate, has a photosensitive region, a resistor line and 16 output electrodes. The photosensitive region has the shape of a ring which is formed by a radial arrangement of long and narrow photodiodes. The outer end of the photodiodes are connected to the continuous resistor line. Photoexcited carriers which are generated in the photodiode by the incident light flow to the resistor line and are extracted by the multioutput electrode which divides the resistor into 16 equal parts. To measure the position of the light spot, a pair of electrodes is selected by switches connected to every electrode and the position of the light spot is calculated from the output current of the selected electrodes. Compared to conventional circular PSDs, the reliability of the angular measurement is improved, because the ME-CPSD does not have an undetectable region caused by the unavoidable discontinuity in the structure of conventional circular PSDs. This device can change its measuring range by selecting the pair of electrodes, making it not only capable of measuring any absolute angular position, but allows also a more precise angular measurement by selecting narrower electrode intervals. This device has the capability to realize a high precision noncontact angular measurement system with simple construction.

  14. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training

    Directory of Open Access Journals (Sweden)

    Leo Kobayashi

    2017-12-01

    access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.

  15. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training.

    Science.gov (United States)

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L

    2018-01-01

    applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.

  16. Experimental Investigation on the Behavior of Bracing Damper Systems by Utilizing Metallic Yielding and Recentering Material Devices

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2018-01-01

    Full Text Available With the aim of effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. These bracing dampers, however, have been recognized as expendable supplies for easily replacing the damaged ones after a strong earthquake because they are commonly designed to undergo concentrated force and deformation for the purpose of protecting the main structural members such as the columns and beams. In this paper, the use of new superelastic shape memory alloy (SMA dampers that can partially recover their original configuration is proposed to decrease the repair cost. In addition, the conventional steel dampers used for improving the energy dissipation arising due to metallic yielding are additionally integrated into the bracing member. The behaviors of such bracing systems with the damper devices were reproduced in experimental tests with the cyclic loading history, and then their strength capacity and recentering capability were estimated based on the experiment results. Finally, additional experimental tests were performed by imposing cyclic loading histories with different loading speeds on the superelastic SMA and steel plate damper specimens.

  17. Numerical Study of the Generic Sports Utility Vehicle Design with a Drag Reduction Add-On Device

    Directory of Open Access Journals (Sweden)

    Shubham Singh

    2014-01-01

    Full Text Available CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.

  18. Noninvasive treatment of cellulite utilizing an expedited treatment protocol with a dual wavelength laser-suction and massage device.

    Science.gov (United States)

    Hexsel, Doris; Siega, Carolina; Schilling-Souza, Juliana; De Oliveira, Daiane Hehn

    2013-04-01

    Over the past few years, noninvasive devices based on radiofrequency and/or lasers and light sources technologies are being used for the treatment of cellulite. To evaluate the effects of an expedited treatment for cellulite and body measures. Fifteen female subjects aged from 20 to 42 years were enrolled. All the subjects underwent three treatment sessions of 30 minutes for each area in three consecutive days. Subjects were evaluated at 7, 30, and 60 post treatment. Outcome measurements included Cellulite Severity Scale (CSS) grading, body mass index (BMI), and thigh circumferences were recorded. Celluqol(®) and a satisfaction questionnaire were also applied. At 2 months, improvements in at least one of the four CSS categories were found in 14 of the 15 subjects (93%) while 60% of patients showed improvement in both the number and depth of depressions at follow-up visits. Most of patients (93%) reported that they would get the treatment again. This was the first study to examine the effects of this device on cellulite performed over a shortened treatment period. The treatment proved to be safe and effective, representing a new treatment modality that is also time and cost-effective for physicians and patients.

  19. Application of microgrids in providing ancillary services to the utility grid

    International Nuclear Information System (INIS)

    Majzoobi, Alireza; Khodaei, Amin

    2017-01-01

    A microgrid optimal scheduling model is developed in this paper to demonstrate microgrid's capability in offering ancillary services to the utility grid. The application of localized ancillary services is of significant importance to grid operators as the growing proliferation of distributed renewable energy resources, mainly solar generation, is causing major technical challenges in supply-load balance. The proposed microgrid optimal scheduling model coordinates the microgrid net load with the aggregated consumers/prosumers net load in its connected distribution feeder to capture both inter-hour and intra-hour net load variations. In particular, net load variations for three various time resolutions are considered, including hourly ramping, 10-min based load following, and 1-min based frequency regulation. Numerical simulations on a test distribution feeder with one microgrid and several consumers/prosumers indicate the effectiveness of the proposed model and the viability of the microgrid application in supporting grid operation. - Highlights: • Microgrid optimal scheduling for providing ancillary services to the utility grid. • Local management and mitigation of distribution net load variations. • Offering various support services: ramping, load following, frequency regulation. • Proven effectiveness and accuracy in capturing net load variations.

  20. The applicability of knowledge-based scheduling to the utilities industry

    International Nuclear Information System (INIS)

    Yoshimoto, G.; Gargan, R. Jr.; Duggan, P.

    1992-01-01

    The Electric Power Research Institute (EPRI), Nuclear Power Division, has identified the three major goals of high technology applications for nuclear power plants. These goals are to enhance power production through increasing power generation efficiency, to increase productivity of the operations, and to reduce the threats to the safety of the plant. Our project responds to the second goal by demonstrating that significant productivity increases can be achieved for outage maintenance operations based on existing knowledge-based scheduling technology. Its use can also mitigate threats to potential safety problems by means of the integration of risk assessment features into the scheduler. The scheduling approach uses advanced techniques enabling the automation of the routine scheduling decision process that previously was handled by people. The process of removing conflicts in scheduling is automated. This is achieved by providing activity representations that allow schedulers to express a variety of different scheduling constraints and by implementing scheduling mechanisms that simulate kinds of processes that humans use to find better solutions from a large number of possible solutions. This approach allows schedulers to express detailed constraints between activities and other activities, resources (material and personnel), and requirements that certain states exist for their execution. Our scheduler has already demonstrated its benefit to improving the shuttle processing flow management at Kennedy Space Center. Knowledge-based scheduling techniques should be examined by utilities industry researchers, developers, operators and management for application to utilities planning problems because of its great cost benefit potential. 4 refs., 4 figs

  1. 75 FR 17402 - Public Utility District No. 1 of Snohomish County, WA; Notice of Preliminary Permit Application...

    Science.gov (United States)

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Public Utility District No. 1 of Snohomish County, WA; Notice of... Competing Applications March 31, 2010. On March 2, 2010, the Public Utility District No. 1 of Snohomish...

  2. Validity and Reliability of 2 Goniometric Mobile Apps: Device, Application, and Examiner Factors.

    Science.gov (United States)

    Wellmon, Robert H; Gulick, Dawn T; Paterson, Mark L; Gulick, Colleen N

    2016-12-01

    Smartphones are being used in a variety of practice settings to measure joint range of motion (ROM). A number of factors can affect the validity of the measurements generated. However, there are no studies examining smartphone-based goniometer applications focusing on measurement variability and error arising from the electromechanical properties of the device being used. To examine the concurrent validity and interrater reliability of 2 goniometric mobile applications (Goniometer Records, Goniometer Pro), an inclinometer, and a universal goniometer (UG). Nonexperimental, descriptive validation study. University laboratory. 3 physical therapists having an average of 25 y of experience. Three standardized angles (acute, right, obtuse) were constructed to replicate the movement of a hinge joint in the human body. Angular changes were measured and compared across 3 raters who used 3 different devices (UG, inclinometer, and 2 goniometric apps installed on 3 different smartphones: Apple iPhone 5, LG Android, and Samsung SIII Android). Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to examine interrater reliability and concurrent validity. Interrater reliability for each of the smartphone apps, inclinometer and UG were excellent (ICC = .995-1.000). Concurrent validity was also good (ICC = .998-.999). Based on the Bland-Altman plots, the means of the differences between the devices were low (range = -0.4° to 1.2°). This study identifies the error inherent in measurement that is independent of patient factors and due to the smartphone, the installed apps, and examiner skill. Less than 2° of measurement variability was attributable to those factors alone. The data suggest that 3 smartphones with the 2 installed apps are a viable substitute for using a UG or an inclinometer when measuring angular changes that typically occur when examining ROM and demonstrate the capacity of multiple examiners to accurately use smartphone-based goniometers.

  3. Dense transient pinches and pulsed power technology: research and applications using medium and small devices

    International Nuclear Information System (INIS)

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Cardenas, Miguel; Zambra, Marcelo; Tarifeno, Ariel; Huerta, Luis; Tenreiro, Claudio; Giordano, Jose Luis; Lagos, Miguel; Escobar, Rodrigo; Ramos, Jorge; Altamirano, Luis; Retamal, Cesar; Silva, Patricio

    2008-01-01

    The Plasma Physics and Plasma Technology Group of the Chilean Nuclear Energy Commission (CCHEN) has, since about ten years ago, used plasma production devices to study dense hot plasmas, particularly Z-pinches and plasma foci (PFs). In the case of Z-pinches, the studies include studies on the dynamics and stability of gas-embedded Z-pinches at currents of thermonuclear interest, and preliminary studies on wire arrays. For PF research, the aim of the work has been to characterize the physics of these plasmas and also to carry out the design and construction of smaller devices-in terms of both input energy and size-capable of providing dense hot plasmas. In addition, taking advantage of the experience in pulsed power technology obtained from experimental researches in dense transient plasmas, an exploratory line of pulsed power applications is being developed. In this paper, a brief review listing the most important results achieved by the Plasma Physics and Plasma Technology Group of the CCHEN is presented, including the scaling studies, PF miniaturization and diagnostics and research on Z-pinches at currents of thermonuclear interest. Then, exploratory applications of pulsed power are presented, including nanoflashes of radiation for radiography and substances detection, high pulsed magnetic fields generation and rock fragmentation.

  4. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  5. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.

    Science.gov (United States)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-07-05

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples.

  6. Organic infrared and near-infrared light-emitting materials and devices for optical communication applications

    Science.gov (United States)

    Suzuki, Hiroyuki

    2004-06-01

    The luminescent properties of organic infrared (IR) and near-infrared (NIR) light-emitting materials were investigated for optical communication applications. These materials consisted of two organic ionic dyes, (2-[6-(4-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl]-3-methyl-benzothiazonium perchlorate) (LDS821) and [C41H33Cl2N2]+×BF4- (IR1051), and an organic rare-earth complex, erbium (III) tris(8-hydroxyquinoline) (ErQ). The three materials are both photoluminescent and electroluminescent in the 0.8-, 1.1- and 1.5-μm wavelength regions, respectively, and so can be used as optically active species in devices operated by either optical or current excitation. Three device forms were fabricated with these light-emitting materials as optically active species, namely vacuum-deposited or spin-coated polymer thin-films, monodispersed polymer microparticles and embedded polymeric optical waveguides. Their luminescent processes are discussed and possible optical communication applications are proposed.

  7. Utility of the iPhone 4 Gyroscope Application in the Measurement of Wrist Motion.

    Science.gov (United States)

    Lendner, Nuphar; Wells, Erik; Lavi, Idit; Kwok, Yan Yan; Ho, Pak-Cheong; Wollstein, Ronit

    2017-09-01

    Measurement of wrist range of motion (ROM) is important to all aspects of treatment and rehabilitation of upper extremity conditions. Recently, gyroscopes have been used to measure ROM and may be more precise than manual evaluations. The purpose of this study was to evaluate the use of the iPhone gyroscope application and compare it with use of a goniometer, specifically evaluating its accuracy and ease of use. A cross-sectional study evaluated adult Caucasian participants, with no evidence of wrist pathology. Wrist ROM measurements in 306 wrists using the 2 methods were compared. Demographic information was collected including age, sex, and occupation. Analysis included mixed models and Bland-Altman plots. Wrist motion was similar between the 2 methods. Technical difficulties were encountered with gyroscope use. Age was an independent predictor of ROM. Correct measurement of ROM is critical to guide, compare, and evaluate treatment and rehabilitation of the upper extremity. Inaccurate measurements could mislead the surgeon and harm patient adherence with therapy or surgeon instruction. An application used by the patient could improve adherence but needs to be reliable and easy to use. Evaluation is necessary before utilization of such an application. This study supports revision of the application on the iPhone to improve ease of use.

  8. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  9. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  10. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    Science.gov (United States)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  11. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  12. COMPETITION BEETWEN DYNAMIC RECUPERATION AND RECRYSTALLIZATION OF ASTM F 138 AUSTENITIC STAINLESS STEEL UTILIZED IN MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    Fabio Henrique Casarini Geronimo

    2013-06-01

    Full Text Available ASTM F 138 austenitic stainless steel has being used in the manufacture of orthopedical devices by hot forging. In this work, the flow stress curves are determined by hot torsion tests in a wide range of temperatures and strain rates. With the observed microestrutural evolution by optical microscopy in different hot forming conditions in addiction with EBSD (Electron Backscatter Diffraction techniques it is possible to obtained the recrystallized volume fraction and the misorientation angles of the samples. Due to the intermediate level of stacking fault energy of this material, during the dynamic softening occurs a competition between recrystallization and recovery. The aim of this work is to identify the softening mechanisms in this stainless steel, as well as in which hot work conditions they become more active.

  13. Effect of soil type and application method on nutrients absorption and utilization by grape plants 1-Absorption and utilization of manganese using Mn-54

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Sharaf, A.N.M.; Khamis, M.A.; Sharaf, M.M.

    2000-01-01

    This work was conducted to study effect of soil type and application method on absorption, translocation and utilization of Mn by grape plants. One year old rooted cuttings of grape (Cv. Ruby seedless) were transplanted in plastic containers filled with 15 kg of three different soils, i.e. clay loam soil, sandy soil and calcareous soil. Fertilization treatments were as follows: Tap water (control) (T1); soil application of N, P,K and Mg (T2); T2 plus soil application of Fe, Mn and Zn (T4). Also, pot experiment was carried out using Mn SO4 at 5ppm for soil application and at 0.5% for foliar application and Mn-54 was used for labelling both solutions. Manganese contents in different organs of grape plant were significantly increased by the three fertilization treatments as compared to those of control. Moreover, highest Mn level was obtained due to foliar application of micro elements and soil application of macro elements T 4 . followed by soil application of both macro-and micro elements T 3 , soil application of macro elements only T2 and control T1

  14. Application of digital micromirror devices for spectral-response characterization of solar cells and photovoltaics

    Science.gov (United States)

    Fong, Alexandre Y.

    2010-02-01

    A key parameter in evaluating the performance of photovoltaic (PV) solar cells is characterization of electrical response to various incident source spectra. Conventional techniques utilize monochromators that emit single band-passes across a spectral region of interest. Since many solar cells respond differently at different broadband source light levels, a white bias light source that raises the overall light level to simulate the sun's broadband emission is typically introduced. However, such sources cannot render realistic solar continua. We present some initial results demonstrating how a spectrally-dispersed broadband source modulated with Texas Instruments' Digital Light Projection (DLP®) technology can be used to more faithfully synthesize solar spectra for this application.

  15. UTBB FDSOI suitability for IoT applications: Investigations at device, design and architectural levels

    Science.gov (United States)

    Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier

    2016-11-01

    In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.

  16. Developing sensor-based robots with utility to waste management applications

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Abidi, M.A.; Gonzalez, R.C.

    1990-01-01

    There are several Environmental Restoration and Waste Management (ER and WM) application areas where autonomous or teleoperated robotic systems can be utilized to improve personnel safety and reduce operation costs. In this paper the authors describe continuing research undertaken by their group in intelligent robotics area which should have a direct relevance to a number of ER and WM applications. The authors' current research is sponsored by the advanced technology division of the U.S. Department of Energy. It is part of a program undertaken at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak ridge National Laboratory directed towards the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic (autonomous and/or teleoperated) technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance and repair. The main focus of the authors' research a the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. The authors' experimental research effort is directed towards design and evaluation of new methodologies using a laboratory based robotic testbed. A unique feature of this testbed is a multisensor module useful in the characterization of the robot workspace. In this paper, the authors describe the development of a robot vision system for automatic spill detection, localization and clean-up verification; and the development of efficient techniques for analyzing range images using a parallel computer. The 'simulated spill cleanup' scenario allows us to show the applicability of robotic systems to problems encountered in nuclear environments

  17. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  18. [Application of a microvascular anastomotic coupling device in solitary upper extremity artery injury repairs].

    Science.gov (United States)

    Wu, J H; Chen, S L; Tian, G L; Li, W J; Li, P C

    2016-04-18

    procedures are quick, effective and safe. The clinical application of this microvascular anastomotic coupling device in artery injures is promising, however, additional evidences through further clinical investigation with more cases are warranted.

  19. Utilization of a biomedical device (VeinViewer® ) to assist with peripheral intravenous catheter (PIV) insertion for pediatric nurses.

    Science.gov (United States)

    McNeely, Heidi L; Ream, Theresa L; Thrasher, Jodi M; Dziadkowiec, Oliwier; Callahan, Tiffany J

    2018-04-01

    Vascular access in pediatric patients can be challenging even with the currently available technological resources. This nurse-driven research study explored time, cost, and resources for intravenous access to determine if a biomedical device, VeinViewer ® Vision, would facilitate improvements in pediatric access. In addition, this study looked at nurse perceptions of skills and confidence around intravenous insertion and if the use of the VeinViewer ® impacted these perceptions. Literature examining pediatric intravenous access success rates compared with nurse perceived skills and confidence is lacking. Nonblinded randomized control trial of pediatric nurses working in an acute care hospital setting. A preliminary needs assessment solicited feedback from nurses regarding their practice, perceived skills, and confidence with placing peripheral intravenous catheters (PIVs). Due to the results of the preliminary needs assessment, a research study was designed and 40 nurses were recruited to participate. The nurses were randomized into either a VeinViewer ® or standard practice group. Nurse participants placed intravenous catheters on hospitalized pediatric patients using established procedures while tracking data for the study. Needs assessment showed a majority of nurses felt a biomedical device would be helpful in building their intravenous insertion skills and their confidence. The study results did not demonstrate any clinically significant differences between VeinViewer ® use and standard practice for intravenous catheter insertion in pediatric patients for success of placement, number of attempts, or overall cost. In addition, no difference was noted between nurses in either group on perceived skills or confidence with insertion of PIVs. The ongoing need for resources focused on building nurse skills and confidence for PIV insertion was highlighted and organizations should continue to direct efforts toward developing skills and competency for staff that

  20. Applicability and clinical utility of the Client-Centred Strategies Framework.

    Science.gov (United States)

    Restall, Gayle; Ripat, Jacquie

    2008-12-01

    The Client-centred Strategies Framework consists of strategies for facilitating therapists' application of client-centred approaches. The purpose of this study was to explore the application of the strategies and the utility of the framework to implement client-centred approaches. The study used a sequential mixed-methods procedure. The quantitative phase consisted of a survey of 230 Canadian occupational therapists. The qualitative phase consisted of telephone focus groups with a sample of 14 Canadian respondents to the initial survey. Results indicated that occupational therapists experience challenges in implementing strategies, particularly related to community organizing, coalition advocacy, and political action. Therapists identified multiple factors that influenced the implementation of strategies and ways of incorporating strategies into daily practice. The Client-centred Strategies Framework was viewed as a useful tool for increasing dialogue about occupational therapists' role in client-centred practice. The results of this study encourage an expanded view of client-centred strategies and the application of strategies to daily practice.

  1. Development of a real time activity monitoring Android application utilizing SmartStep.

    Science.gov (United States)

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  2. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Choo, D.C.; Ahn, S.D.; Jung, H.S.; Kim, T.W.; Lee, J.Y.; Park, J.H.; Kwon, M.S.

    2010-01-01

    Zn 2 SiO 4 :Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn 2 SiO 4 :Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn 2 SiO 4 :Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn 2 SiO 4 :Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4 T 1 - 6 A 1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn color-conversion layer are described on the basis of the EL and PL spectra.

  3. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  4. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    International Nuclear Information System (INIS)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-01-01

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m 2 SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  5. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  6. One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application

    Science.gov (United States)

    Luo, Lin-Bao; Wang, Xian-He; Xie, Chao; Li, Zhong-Jun; Lu, Rui; Yang, Xiao-Bao; Lu, Jian

    2014-11-01

    In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 [InlineEquation not available: see fulltext.] 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.

  7. One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application

    Science.gov (United States)

    2014-01-01

    In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices. PMID:25489288

  8. One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application.

    Science.gov (United States)

    Luo, Lin-Bao; Wang, Xian-He; Xie, Chao; Li, Zhong-Jun; Lu, Rui; Yang, Xiao-Bao; Lu, Jian

    2014-01-01

    In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 [Formula: see text] 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm(2)V(-1) s(-1) and hole concentration of 1.34 × 10(18) cm(-3), respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 10(2) A W(-1), 3.95 × 10(2) and 6.38 × 10(11) cm Hz(1/2) W(-1), respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.

  9. Growth of III-V nitride materials by MOCVD for device applications

    Science.gov (United States)

    Eiting, Christopher James

    This dissertation describes an investigation of the growth of gallium nitride (GaN) and aluminum gallium nitride (AlxGa1-x N) semiconductor materials by metalorganic chemical vapor deposition (MOCVD) for heterojunction field-effect transistor (HFET) and photodetector device applications. In Chapter I, the III-V nitride material system is discussed, and the current status of growth and device research in this material system is reviewed. Chapter 2 presents a detailed discussion of two important tensor properties of the wurtzite III-V nitrides: elasticity and piezoelectricity. In this discussion, a series of equations are developed that are used throughout this work to calculate properties such as strain, composition, and piezoelectric charge. In Chapter 3, the characterization techniques used to gather data for this dissertation are described. Particular attention is given to x-ray diffraction because of the usefulness and versatility of this technique. Chapter 4 is a description of the MOCVD reactor used to grow all of the films in this work. Chapter 5 presents a complete discussion of the growth and doping of GaN epitaxial layers. This chapter is divided into five sections: buffer layer optimization, GaN:ud growth, GaN:Si growth, Si-implantation of GaN, and GaN:Mg growth. In Chapter 6, the focus shifts to AlGaN epitaxial growth. The first part of the chapter is devoted to the growth and doping of AlGaN layers, while the second part deals with the characteristics of AlGaN/GaN heterostructures. Chapter 7 displays some of the device data from HFETs and photodetectors fabricated from the material described in Chapter 5 and Chapter 6. Finally, this dissertation concludes with Chapter 8, a summary of results and a discussion of potential research for the future.

  10. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    FAYEK, M.K.

    2000-01-01

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  11. Biological applications of biosynthesized silver nanoparticles through the utilization of plant extracts

    Directory of Open Access Journals (Sweden)

    Rouhollah Heydari *

    2017-06-01

    Full Text Available Widespread uses of metallic nanoparticles, especially silver nanoparticles (AgNPs in biology, pharmaceuticals, and medicine lead to the development of biosynthesis methods that are in turn utilized to prepare these nanoparticles. Among the biosynthesis methods, which are used to prepare nanoparticles, the plant-mediated methods have gained great attention due to several advantages such as cost-effectiveness, availability, eco-friendliness and nontoxicity of plants. Moreover, plant extracts are rich in different compounds which act as inhibitory and capping agents. For these reasons, plant-mediated methods can be potentially used for large-scale production of nanoparticles with different properties. The present article focuses on plant-mediated AgNPs using various plants and their biological applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, hepatoprotective and antilarvicidic properties.

  12. Utilization of low temperature geothermal water in traditional and advanced agricultural applications

    International Nuclear Information System (INIS)

    Rossi, L.; Pacciaroni, F.

    1992-01-01

    The locations of large amounts of low temperature geothermal sources (30 to 80 degrees C) have been identified in Italy and in many European countries; one of the most interesting utilization of these sources is greenhouse heating. Surplus investment in comparison with conventional heating systems is justified only by the application of low cost technologies for well completion, heating distribution and waste heat treatment. In the last few years, many efforts have been made in the development of these technologies and selection of more profitable crops. Since 1984, ENEA (Italian Agency for Energy, New Technologies and the Environment) has carried out experimental work in two geothermal stations located in Canino (VT) and in Gorgo di Latisana (UD). In these plants, a number of greenhouses enveloped with plastic film are provided with different heating systems; the combination of soil and forced air heating is preferred. Plastic pipes, buried in the soil, are used as soil heating for horticulture and fruit production. For plot plant cultivation, soil heating is obtained by plastic pipes half-buried in a concrete floor. Asparagus cultivation is carried out with buried pipes. No additional heating with conventional fuel is provided in any greenhouse. During these years, ENEA has developed heating and water distribution technologies: current industrial components are generally utilized. Moreover, ENEA has recently completed an advanced automatic control system able to control geothermal greenhouses, manage water distribution, save energy and optimize environmental conditions

  13. Making the grid the backup: Utility applications for fuel cell power

    Energy Technology Data Exchange (ETDEWEB)

    Eklof, S.L. [Sacramento Municipal Utility District (SMUD), Sacramento, CA (United States)

    1996-12-31

    Fuel cells are recognized as a versatile power generation option and accepted component of SMUD`s ART Program. SMUD has received wide support and recognition for promoting and implementing fuel cell power plants, as well as other innovative generation, based primarily on technological factors. Current economic and technical realities in the electric generation market highlight other important factors, such as the cost involved to develop a slate of such resources. The goal now is to develop only those select quality resources most likely to become commercially viable in the near future. The challenge becomes the identification of candidate technologies with the greatest potential, and then matching the technologies with the applications that will help to make them successful. Utility participation in this development is critical so as to provide the industry with case examples of advanced technologies that can be applied in a way beneficial to both the utility and its customers. The ART resource acquisitions provide the experience base upon which to guide this selection process, and should bring about the cost reductions and reliability improvements sought.

  14. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.; Fritz, I. J.; Howard, A. J.; Vawter, G. A.; Wendt, J. R.; Corless, R

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way to construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.

  15. Advances in crystal growth, device fabrication and characterization of thallium bromide detectors for room temperature applications

    Science.gov (United States)

    Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar

    2016-10-01

    Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.

  16. Latest results and developments from the Hybrid Illinois Device for Research and Applications

    Science.gov (United States)

    Rizkallah, Rabel; Andruczyk, Daniel; Jeckell, Zachary Jon; Shone, Andrew John; Johnson, Daniel Scott; Allain, Jean Paul; Curreli, Davide; Ruzic, David N.; The Hidra Team

    2017-10-01

    The Hybrid Illinois Device for Research and Applications (HIDRA) is a five-period, l = 2, m = 5, toroidal fusion device operated at the University of Illinois at Urbana-Champaign (UIUC). It has a major radius R0 = 0.72 m and minor radius a = 0.19 m. Initial heating is achieved with 2.45 GHz electron cyclotron resonance heating (ECRH) at an on-axis magnetic field of B0 = 0.087 T which can go as high as B0 = 0.5 T. HIDRA will mainly be used as a classical stellarator, but can also run as a tokamak. This allows for both steady-state and transient regime operations. Experiments on HIDRA will primarily tackle the issue of plasma-material interactions (PMI) in fusion, and focus on developing innovative plasma facing component (PFC) technologies. Currently, research on flowing liquid lithium PFCs meant to be tested inside the machine in real-time operation, is being carried on. The first experiments run on HIDRA started in early 2016 in the low field region. Now, HIDRA is also capable of running in the high field zone, allowing for more interesting experiments and meaningful outcomes. Here, we present some of the initial results coming from the machine.

  17. Cell-phone-based platform for biomedical device development and education applications.

    Directory of Open Access Journals (Sweden)

    Zachary J Smith

    Full Text Available In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350x microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150 x 50 with no image processing, and approximately 350 x 350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field.

  18. Marine current energy devices: Current status and possible future applications in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Rourke, Fergal O.; Boyle, Fergal; Reynolds, Anthony [Department of Mechanical Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1 (Ireland)

    2010-04-15

    There is a growing demand for the use of renewable energy technologies to generate electricity due to concerns over climate change. The oceans provide a huge potential resource of energy. Energy extraction using marine current energy devices (MCEDs) offers a sustainable alternative to conventional sources and a predictable alternative to other renewable energy technologies. A MCED utilises the kinetic energy of the tides as opposed to the potential energy which is utilised by a tidal barrage. Over the past decade MCEDs have become an increasingly popular method of energy extraction. However, marine current energy technology is still not economically viable on a large scale due to its current stage of development. Ireland has an excellent marine current energy resource as it is an island nation and experiences excellent marine current flows. This paper reviews marine current energy devices, including a detailed up-to-date description of the current status of development. Issues such as network integration, economics, and environmental implications are addressed as well as the application and costs of MCEDs in Ireland. (author)

  19. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    International Nuclear Information System (INIS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul; Osman, Mohd Nizam

    2011-01-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  20. Recent progress in p-type doping and optical properties of SnO2 nanostructures for optoelectronic device applications.

    Science.gov (United States)

    Pan, Shusheng; Li, Guanghai

    2011-06-01

    SnO(2) semiconductor is a host material for ultraviolet optoelectronic devices applications because of its wide band gap (3.6 eV), large exciton binding energy (130 meV) and exotic electrical properties and has attracted great interests. The renewed interest is fueled by the availability of exciton emission in nanostructures, high quality epitaxial films, p-type conductivity, and heterojunction light emitting devices. This review begins with a survey of the patents and reports on the recent developments on SnO2 films. We focus on the epitaxial growth, p-type doping and photoluminescence properties of SnO(2) films and nanostructures, including the achievements in our group. Finally, the applications of SnO(2) nanostructures to optoelectronic devices including heterojunction light emitting devices, photodetectors and photovoltaic cells will be discussed.