WorldWideScience

Sample records for developmentally-regulated promoters distinguish

  1. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  2. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  3. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation.

    Science.gov (United States)

    Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas

    2013-12-05

    The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously

  4. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  5. DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

    Science.gov (United States)

    Mueller, Michael M; Castells-Roca, Laia; Babu, Vipin; Ermolaeva, Maria A; Müller, Roman-Ulrich; Frommolt, Peter; Williams, Ashley B; Greiss, Sebastian; Schneider, Jennifer I; Benzing, Thomas; Schermer, Bernhard; Schumacher, Björn

    2014-12-01

    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

  6. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    Science.gov (United States)

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  7. Promoting Healthy Aging in Adults with Developmental Disabilities

    Science.gov (United States)

    Heller, Tamar; Sorensen, Amy

    2013-01-01

    This article reviews the research on health promotion for adults aging with developmental disabilities. First, it examines barriers to healthy aging, including health behaviors and access to health screenings and services. Second, it reviews the research on health promotion interventions, including physical activity interventions, health education…

  8. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    Science.gov (United States)

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life

  9. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis.

    Science.gov (United States)

    Rankin, Scott A; McCracken, Kyle W; Luedeke, David M; Han, Lu; Wells, James M; Shannon, John M; Zorn, Aaron M

    2018-02-01

    A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Promoting Healthy Weight among Children with Developmental Delays

    Science.gov (United States)

    Natale, Ruby R.; Camejo, Stephanie T.; Asfour, Lila; Uhlhorn, Susan B.; Delamater, Alan; Messiah, Sarah E.

    2017-01-01

    An extensive body of research demonstrates a higher prevalence of obesity among children with developmental delays (DD) versus children without delays. This analysis examined the effectiveness of a randomized controlled trial to promote healthy weight in a subsample of preschool-age children with DD (n = 71) on the adoption of quality nutrition…

  11. Contextual emotion regulation therapy: a developmentally based intervention for pediatric depression.

    Science.gov (United States)

    Kovacs, Maria; Lopez-Duran, Nestor L

    2012-04-01

    For this special issue about child and adolescent depression, the authors were asked to describe contextual emotion regulation therapy as an example of a developmentally informed psychosocial intervention. The article begins with the authors' definition of the elements that should comprise such an intervention. A succinct summary of this contextual emotion regulation therapy is then provided, including its explanatory paradigm of depression, followed by an exposition of how it addresses the various definitional criteria of a developmentally informed intervention. The article concludes with a brief overview of the challenges of implementing a developmentally sensitive psychotherapy for depressed children and adolescents.

  12. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-01-01

    elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish

  13. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  14. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  15. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    Science.gov (United States)

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  16. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.

    Science.gov (United States)

    Blume, B; Grierson, D

    1997-10-01

    The enzyme ACC oxidase, catalysing the last step in the biosynthesis of the plant hormone ethylene, is encoded by a small multigene family in tomato, comprising three members, LEACO1, LEACO2 and LEACO3. LEACO1 is the major gene expressed during ripening, leaf senescence, and wounding (Barry et al., 1996). To investigate the transcriptional regulation of ACC oxidase gene expression, chimeric fusions between the beta-glucuronidase reporter gene and 97 bp of 5' UTR plus 124, 396 and 1825 bp, respectively, of 5' untranscribed LEACO1 sequence were constructed and introduced into Lycopersicon esculentum (Mill cv. Ailsa Craig) and Nicotiana plumbaginifolia. Analysis of transgenic tomatoes indicated that the region containing nucleotides -124 to +97 of the LEACO1 gene is sufficient to confer a marked increase in GUS activity during fruit ripening, albeit at very low levels. Fusion of 396 and 1825 bp of LEACO1 upstream sequence resulted in strong and specific induction of GUS expression in situations known to be accompanied by enhanced ethylene production. Reporter gene expression was similar to that of the endogenous LEACO1 gene, with major increases especially during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers. Analysis of transgenic N. plumbaginifolia plants confirmed the pattern of LEACO1 promoter activity detected in tomato leaves and flowers. Reporter gene expression was also induced following wounding, treatment with ethylene, and pathogen infection. Histochemical analysis illustrated localized GUS activity in the pericarp of ripening fruit, abscission zones of senescent petioles and unfertilized flowers, and at wound sites. These results demonstrate that ACC oxidase is regulated at the transcriptional level in a wide range of cell types at different developmental stages and in response to several external stimuli.

  17. Developmental Regulation across the Life Span: Toward a New Synthesis

    Science.gov (United States)

    Haase, Claudia M.; Heckhausen, Jutta; Wrosch, Carsten

    2013-01-01

    How can individuals regulate their own development to live happy, healthy, and productive lives? Major theories of developmental regulation across the life span have been proposed (e.g., dual-process model of assimilation and accommodation; motivational theory of life-span development; model of selection, optimization, and compensation), but they…

  18. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    Science.gov (United States)

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  19. A single cis element maintains repression of the key developmental regulator Gata2.

    Directory of Open Access Journals (Sweden)

    Jonathan W Snow

    2010-09-01

    Full Text Available In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element -1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the -1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the -1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.

  20. Promoting positive human development and social justice: Integrating theory, research and application in contemporary developmental science.

    Science.gov (United States)

    Lerner, Richard M

    2015-06-01

    The bold claim that developmental science can contribute to both enhancing positive development among diverse individuals across the life span and promoting social justice in their communities, nations and regions is supported by decades of theoretical, methodological and research contributions. To explain the basis of this claim, I describe the relational developmental systems (RDS) metamodel that frames contemporary developmental science, and I present an example of a programme of research within the adolescent portion of the life span that is associated with this metamodel and is pertinent to promoting positive human development. I then discuss methodological issues associated with using RDS-based models as frames for research and application. Finally, I explain how the theoretical and methodological ideas associated with RDS thinking may provide the scholarly tools needed by developmental scientists seeking to contribute to human thriving and to advance social justice in the Global South. © 2015 International Union of Psychological Science.

  1. Structural developmental psychology and health promotion in the third age.

    Science.gov (United States)

    Bauger, Lars; Bongaardt, Rob

    2017-01-12

    In response to the ever-increasing longevity in Western societies, old age has been divided into two different periods, labelled the third and fourth age. Where the third age, with its onset at retirement, mostly involves positive aspects of growing old, the fourth age involves functional decline and increased morbidity. This article focuses on the entry to the third age and its potential for health promotion initiatives. Well-being is an important factor to emphasize in such health promotion, and this article views the lifestyle of third agers as essential for their well-being. The structural developmental theory of Robert Kegan delineates how a person's way of knowing develops throughout the life course. This theory is an untapped and salient perspective for health promotion initiatives in the third age. This article outlines Kegan's approach as a tool for developing psychologically spacious health promotion, and suggests future directions for research on the topic. © The Author 2017. Published by Oxford University Press.

  2. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Chao Yu

    2017-08-01

    Full Text Available Trimethylation of histone H3 at lysine-4 (H3K4me3 is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1, the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.

  3. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  4. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene

    Directory of Open Access Journals (Sweden)

    Michael Hadjiargyrou

    2018-01-01

    Full Text Available The Mustn1 gene encodes a small nuclear protein (~9.6 kDa that does not belong to any known family. Its genomic organization consists of three exons interspersed by two introns and it is highly homologous across vertebrate species. Promoter analyses revealed that its expression is regulated by the AP family of transcription factors, especially c-Fos, Fra-2 and JunD. Mustn1 is predominantly expressed in the major tissues of the musculoskeletal system: bone, cartilage, skeletal muscle and tendon. Its expression has been associated with normal embryonic development, postnatal growth, exercise, and regeneration of bone and skeletal muscle. Moreover, its expression has also been detected in various musculoskeletal pathologies, including arthritis, Duchenne muscular dystrophy, other skeletal muscle myopathies, clubfoot and diabetes associated muscle pathology. In vitro and in vivo functional perturbation revealed that Mustn1 is a key regulatory molecule in myogenic and chondrogenic lineages. This comprehensive review summarizes our current knowledge of Mustn1 and proposes that it is a new developmentally regulated pan-musculoskeletal marker as well as a key regulatory protein for cell differentiation and tissue growth.

  5. Characterization of upstream sequences of the LIM2 gene that bind developmentally regulated and lens-specific proteins

    Institute of Scientific and Technical Information of China (English)

    HSU Heng; Robert L. CHURCH

    2004-01-01

    During lens development, lens epithelial cells differentiate into fiber cells. To date, four major lens fiber cell intrinsic membrane proteins (MIP) ranging in size from 70 kD to 19 kD have been characterized. The second most abundant lens fiber cell intrinsic membrane protein is MP19. This protein probably is involved with lens cell communication and relates with cataractogenesis. The aim of this research is to characterize upstream sequences of the MP19 (also called LIM2) gene that bind developmentally regulated and lens-specific proteins. We have used the gel mobility assays and corresponding competition experiments to identify and characterize cis elements within approximately 500 bases of LIM2 upstream sequences. Our studies locate the positions of some cis elements, including a "CA" repeat, a methylation Hha I island, an FnuD II site, an Ap1 and an Ap2 consensus sequences, and identify some specific cis elements which relate to lens-specific transcription of LIM2. Our experiments also preliminarily identify trans factors which bind to specific cis elements of the LIM2 promoter and/or regulate transcription of LIM2. We conclude that developmental regulation and coordination of the MP 19 gene in ocular lens fiber cells is controlled by the presence of specific cis elements that bind regulatory trans factors that affect LIM2 gene expression. DNA methylation is one mechanism of controlling LIM2 gene expression during lens development.

  6. cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis.

    Directory of Open Access Journals (Sweden)

    Jonathan D Stoltzfus

    2014-07-01

    Full Text Available The infectious form of the parasitic nematode Strongyloides stercoralis is a developmentally arrested third-stage larva (L3i, which is morphologically similar to the developmentally arrested dauer larva in the free-living nematode Caenorhabditis elegans. We hypothesize that the molecular pathways regulating C. elegans dauer development also control L3i arrest and activation in S. stercoralis. This study aimed to determine the factors that regulate L3i activation, with a focus on G protein-coupled receptor-mediated regulation of cyclic guanosine monophosphate (cGMP pathway signaling, including its modulation of the insulin/IGF-1-like signaling (IIS pathway. We found that application of the membrane-permeable cGMP analog 8-bromo-cGMP potently activated development of S. stercoralis L3i, as measured by resumption of feeding, with 85.1 ± 2.2% of L3i feeding in 200 µM 8-bromo-cGMP in comparison to 0.6 ± 0.3% in the buffer diluent. Utilizing RNAseq, we examined L3i stimulated with DMEM, 8-bromo-cGMP, or the DAF-12 nuclear hormone receptor (NHR ligand Δ7-dafachronic acid (DA--a signaling pathway downstream of IIS in C. elegans. L3i stimulated with 8-bromo-cGMP up-regulated transcripts of the putative agonistic insulin-like peptide (ILP -encoding genes Ss-ilp-1 (20-fold and Ss-ilp-6 (11-fold in comparison to controls without stimulation. Surprisingly, we found that Δ7-DA similarly modulated transcript levels of ILP-encoding genes. Using the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002, we demonstrated that 400 nM Δ7-DA-mediated activation (93.3 ± 1.1% L3i feeding can be blocked using this IIS inhibitor at 100 µM (7.6 ± 1.6% L3i feeding. To determine the tissues where promoters of ILP-encoding genes are active, we expressed promoter::egfp reporter constructs in transgenic S. stercoralis post-free-living larvae. Ss-ilp-1 and Ss-ilp-6 promoters are active in the hypodermis and neurons and the Ss-ilp-7 promoter is active in the

  7. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  8. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  9. Intellectual developmental disorders in Mexico: a call for programmes promoting independence and inclusion.

    Science.gov (United States)

    Katz, Gregorio; Corona, Edgar; Lazcano-Ponce, Eduardo

    2016-08-01

    This paper describes an innovative institution, Capacitación y Desarrollo Integral AC (CADI - Comprehensive Training and Development), created in Mexico to develop evidence-based interventions grounded in the principles of inclusion, independence, social and health equity that promote the well-being of persons with intellectual developmental disorder older than 14 years.

  10. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    Science.gov (United States)

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the

  11. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  12. Promoting Student Learning and Productive Persistence in Developmental Mathematics: Research Frameworks Informing the Carnegie Pathways

    Science.gov (United States)

    Edwards, Ann R.; Beattie, Rachel L.

    2016-01-01

    This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…

  13. Michael Tomasello: Award for Distinguished Scientific Contributions.

    Science.gov (United States)

    2015-11-01

    The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Michael Tomasello, who received this award for "outstanding empirical and theoretical contributions to understanding what makes the human mind unique. Michael Tomasello's pioneering research on the origins of social cognition has led to revolutionary insights in both developmental psychology and primate cognition." Tomasello's award citation, biography, and a selected bibliography are presented here. (c) 2015 APA, all rights reserved).

  14. Direct and indirect effects in the regulation of overlapping promoters

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt

    2011-01-01

    promoter database we found that ~14% of the identified 'forward' promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find...... that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used......Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion...

  15. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  16. Mas-allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides.

    Science.gov (United States)

    Utz, Sandra; Huetteroth, Wolf; Vömel, Matthias; Schachtner, Joachim

    2008-01-01

    The paired antennal lobes (ALs) of the sphinx moth Manduca sexta serve as a well-established model for studying development of the primary integration centers for odor information in the brain. To further reveal the role of neuropeptides during AL development, we have analyzed cellular distribution, developmental time course, and regulation of the neuropeptide M. sexta allatotropin (Mas-AT). On the basis of morphology and appearance during AL formation, seven major types of Mas-AT-immunoreactive (ir) cells could be distinguished. Mas-AT-ir cells are identified as local, projection, and centrifugal neurons, which are either persisting larval or newly added adult-specific neurons. Complementary immunostaining with antisera against two other neuropeptide families (A-type allatostatins, RFamides) revealed colocalization within three of the Mas-AT-ir cell types. On the basis of this neurochemistry, the most prominent type of Mas-AT-ir neurons, the local AT neurons (LATn), could be divided in three subpopulations. The appearance of the Mas-AT-ir cell types occurring during metamorphosis parallels the rising titer of the developmental hormone 20-hydroxyecdysone (20E). Artificially shifting the 20E titer to an earlier developmental time point resulted in the precocious occurrence of Mas-AT immunostaining. This result supports the hypothesis that the pupal rise of 20E is causative for Mas-AT expression during AL development. Comparing localization and developmental time course of Mas-AT and other neuropeptides with the time course of AL formation suggests various functions for these neuropeptides during development, including an involvement in the formation of the olfactory glomeruli.

  17. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  18. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    Science.gov (United States)

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  19. Assessing Preschool Teachers' Practices to Promote Self-Regulated Learning

    Science.gov (United States)

    Adagideli, Fahretdin Hasan; Saraç, Seda; Ader, Engin

    2015-01-01

    Recent research reveals that in preschool years, through pedagogical interventions, preschool teachers can and should promote self-regulated learning. The main aim of this study is to develop a self-report instrument to assess preschool teachers' practices to promote self-regulated learning. A pool of 50 items was recruited through literature…

  20. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    Science.gov (United States)

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  1. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  2. Let-7 microRNAs are developmentally regulated in circulating human erythroid cells

    Directory of Open Access Journals (Sweden)

    Reed Christopher

    2009-11-01

    Full Text Available Abstract Background MicroRNAs are ~22nt-long small non-coding RNAs that negatively regulate protein expression through mRNA degradation or translational repression in eukaryotic cells. Based upon their importance in regulating development and terminal differentiation in model systems, erythrocyte microRNA profiles were examined at birth and in adults to determine if changes in their abundance coincide with the developmental phenomenon of hemoglobin switching. Methods Expression profiling of microRNA was performed using total RNA from four adult peripheral blood samples compared to four cord blood samples after depletion of plasma, platelets, and nucleated cells. Labeled RNAs were hybridized to custom spotted arrays containing 474 human microRNA species (miRBase release 9.1. Total RNA from Epstein-Barr virus (EBV-transformed lymphoblastoid cell lines provided a hybridization reference for all samples to generate microRNA abundance profile for each sample. Results Among 206 detected miRNAs, 79% of the microRNAs were present at equivalent levels in both cord and adult cells. By comparison, 37 microRNAs were up-regulated and 4 microRNAs were down-regulated in adult erythroid cells (fold change > 2; p let-7 miRNA family consistently demonstrated increased abundance in the adult samples by array-based analyses that were confirmed by quantitative PCR (4.5 to 18.4 fold increases in 6 of 8 let-7 miRNA. Profiling studies of messenger RNA (mRNA in these cells additionally demonstrated down-regulation of ten let-7 target genes in the adult cells. Conclusion These data suggest that a consistent pattern of up-regulation among let-7 miRNA in circulating erythroid cells occurs in association with hemoglobin switching during the fetal-to-adult developmental transition in humans.

  3. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Science.gov (United States)

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  4. The ribonuclease Dis3 is an essential regulator of the developmental transcriptome

    Directory of Open Access Journals (Sweden)

    Hou Dezhi

    2012-08-01

    Full Text Available Abstract Background Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly. Results Using transgenic flies, we show that Dis3 knock down (Dis3KD retards growth, induces melanotic tumor formation, and ultimately results in 2nd instar larval lethality. In order to determine whether Dis3KD fly phenotypes were a consequence of disrupting developmentally regulated RNA turnover, we performed RNA deep sequencing analysis on total RNA isolated from developmentally staged animals. Bioinformatic analysis of transcripts from Dis3KD flies reveals substantial transcriptomic changes, most notably down-regulation in early expressed RNAs. Finally, gene ontology analysis of this early stage shows that Dis3 regulates transcripts related to extracellular structure and remodelling, neurogenesis, and nucleotide metabolism. Conclusions We conclude that Dis3 is essential for early Drosophila melanogaster development and has specific and important stage-specific roles in regulating RNA metabolism. In showing for the first time that Dis3 is required for the development of a multicellular organism, our work provides mechanistic insight into how Dis3—either independent of or associated with the RNA processing exosome—participates in cell type-specific RNA turnover in metazoan development.

  5. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    Directory of Open Access Journals (Sweden)

    Theresa L. B. Edelman

    2016-12-01

    Full Text Available The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  6. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    NARCIS (Netherlands)

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript

  7. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships.

    Science.gov (United States)

    Pucci, Ferdinando; Venneri, Mary Anna; Biziato, Daniela; Nonis, Alessandro; Moi, Davide; Sica, Antonio; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele

    2009-07-23

    We previously showed that Tie2-expressing monocytes (TEMs) have nonredundant proangiogenic activity in tumors. Here, we compared the gene expression profile of tumor-infiltrating TEMs with that of tumor-associated macrophages (TAMs), spleen-derived Gr1(+)Cd11b(+) neutrophils/myeloid-derived suppressor cells, circulating "inflammatory" and "resident" monocytes, and tumor-derived endothelial cells (ECs) by quantitative polymerase chain reaction-based gene arrays. TEMs sharply differed from ECs and Gr1(+)Cd11b(+) cells but were highly related to TAMs. Nevertheless, several genes were differentially expressed between TEMs and TAMs, highlighting a TEM signature consistent with enhanced proangiogenic/tissue-remodeling activity and lower proinflammatory activity. We validated these findings in models of oncogenesis and transgenic mice expressing a microRNA-regulated Tie2-GFP reporter. Remarkably, resident monocytes and TEMs on one hand, and inflammatory monocytes and TAMs on the other hand, expressed coordinated gene expression profiles, suggesting that the 2 blood monocyte subsets are committed to distinct extravascular fates in the tumor microenvironment. We further showed that a prominent proportion of embryonic/fetal macrophages, which participate in tissue morphogenesis, expressed distinguishing TEM genes. It is tempting to speculate that Tie2(+) embryonic/fetal macrophages, resident blood monocytes, and tumor-infiltrating TEMs represent distinct developmental stages of a TEM lineage committed to execute physiologic proangiogenic and tissue-remodeling programs, which can be co-opted by tumors.

  8. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  9. Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp.

    Science.gov (United States)

    Tian, Xue; Pang, Xiaolei; Wang, Liangyan; Li, Mengrong; Dong, Chuanju; Ma, Xiao; Wang, Lei; Song, Dongying; Feng, Jianxin; Xu, Peng; Li, Xuejun

    2018-04-20

    The Japanese ornamental carp (Cyprinus carpio var. Koi) is famous for multifarious colors and patterns, making it commonly culture and trade across the world. Although functional genes and inheritance of color traits have been commonly studied, seldom attentions were focused on the genetic regulation during the developmental process of pigmentation. To better understand the mechanism of skin color development, we observed the morphogenesis of pigment cells during the post-embryonic stages and analysed the temporal expression pattern of mRNAs/miRNAs profiles in four distinct developmental stages. 59 and 103 differentially expressed genes/miRNAs (DEGs/DEMs) associated with pigmentation and skin were identified, including pax7, mitf, tyr, tyrp1, etc., and the highest DEGs were detected at 11 days post hatching (dph). In addition, the functional characteristics of mRNAs/miRNAs associated with pteridine and carotenoid pathway were also examined. Furthermore, 65 miRNA-mRNA interaction pairs related to pigmentation, pteridines and carotenoids metabolism were detected between different stages. Interestingly, the largest pairs appeared in the transition from 11 dph to 48 dph, which had the similar trend with DEGs further manifesting the importance of 11 dph. This study produced a comprehensive programme of DEGs/DEMs during color development, which will provide resources to understand the regulation mechanism in color formation. The understanding of genetic basis in color formation might promote the production and breeding of the Koi carp. Copyright © 2017. Published by Elsevier B.V.

  10. Intersystem Implications of the Developmental Origins of Health and Disease: Advancing Health Promotion in the 21st Century

    OpenAIRE

    Barnes, Michael D.; Heaton, Thomas L.; Goates, Michael C.; Packer, Justin M.

    2016-01-01

    The developmental origins of health and disease (DOHaD) theory and life course theory (LCT) are emerging fields of research that have significant implications for the public health and health promotion professions. Using a DOHaD/LCT perspective, social determinants of health (SDH) take on new critical meaning by which health promotion professionals can implement DOHaD/LCT guided interventions, including recommended policies. Through these interventions, public health could further address the...

  11. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    Science.gov (United States)

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Isolation and functional characterization of Lycopene β-cyclase (CYC-B promoter from Solanum habrochaites

    Directory of Open Access Journals (Sweden)

    Chinnusamy Viswanathan

    2010-04-01

    Full Text Available Abstract Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908

  13. Developmental Regulation with Progressive Vision Loss: Use of Control Strategies and Affective Well-Being

    Science.gov (United States)

    Schilling, Oliver K.; Wahl, Hans-Werner; Boerner, Kathrin; Horowitz, Amy; Reinhardt, Joann P.; Cimarolli, Verena R.; Brennan-Ing, Mark; Heckhausen, Jutta

    2016-01-01

    The present study addresses older adults' developmental regulation when faced with progressive and irreversible vision loss. We used the motivational theory of life span development as a conceptual framework and examined changes in older adults' striving for control over everyday goal achievement, and their association with affective well-being,…

  14. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  15. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  16. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation.

    Directory of Open Access Journals (Sweden)

    Vanessa C McFadden

    2017-02-01

    Full Text Available The FoxA family of pioneer transcription factors regulates hepatitis B virus (HBV transcription, and hence viral replication. Hepatocyte-specific FoxA-deficiency in the HBV transgenic mouse model of chronic infection prevents the transcription of the viral DNA genome as a result of the failure of the developmentally controlled conversion of 5-methylcytosine residues to cytosine during postnatal hepatic maturation. These observations suggest that pioneer transcription factors such as FoxA, which mark genes for expression at subsequent developmental steps in the cellular differentiation program, mediate their effects by reversing the DNA methylation status of their target genes to permit their ensuing expression when the appropriate tissue-specific transcription factor combinations arise during development. Furthermore, as the FoxA-deficient HBV transgenic mice are viable, the specific developmental timing, abundance and isoform type of pioneer factor expression must permit all essential liver gene expression to occur at a level sufficient to support adequate liver function. This implies that pioneer transcription factors can recognize and mark their target genes in distinct developmental manners dependent upon, at least in part, the concentration and affinity of FoxA for its binding sites within enhancer and promoter regulatory sequence elements. This selective marking of cellular genes for expression by the FoxA pioneer factor compared to HBV may offer the opportunity for the specific silencing of HBV gene expression and hence the resolution of chronic HBV infections which are responsible for approximately one million deaths worldwide annually due to liver cirrhosis and hepatocellular carcinoma.

  17. Award for Distinguished Contributions to Education and Training in psychology.

    Science.gov (United States)

    2017-12-01

    This award is given by the Board of Educational Affairs in recognition of the efforts of psychologists who have made distinguished contributions to education and training, who have produced imaginative innovations, or who have been involved in the developmental phases of programs in education and training in psychology. These contributions might include important research on education and training; the development of effective materials for instruction; the establishment of workshops, conferences, or networks of communication for education and training; achievement and leadership in administration that facilitates education and training; or activity in professional organizations that promote excellence. The Award for Distinguished Contributions to Education and Training in psychology recognizes a specific contribution to education and training. The Career designation is added to the award at the discretion of the Education and Training Awards Committee to recognize continuous significant contributions made over a lifelong career in psychology. This year the Education and Training Awards Committee selected a psychologist for the Career designation. The 2017 recipients of the APA Education and Training Contributions Awards were selected by the 2016 Education and Training Awards Committee appointed by the Board of Educational Affairs (BEA). Members of the 2016 Education and Training Awards Committee were Erica Wise, PhD (Chair); Ron Rozensky, PhD; Jane D. Halonen, PhD; Sharon Berry, PhD (Chair Elect); Emil Rodolfa, PhD; and Sylvia A. Rosenfield, PhD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2013-03-01

    Full Text Available Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures. Most of the putative stage-specific transcription factor binding sites (TFBSs thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.

  19. Seminar for Master's Thesis Projects: Promoting Students' Self-Regulation

    Science.gov (United States)

    Miedijensky, Shirley; Lichtinger, Einat

    2016-01-01

    This study presents a thesis seminar model aimed at promoting students' self-regulation. Students' perceptions regarding the contribution of the seminar to their learning process were characterized and the seminar's effect upon their self-regulation expressions was examined. Data was collected using questionnaires and analyzed thematically. The…

  20. An Evaluation of the Self-Regulation of Promotional Competitions in South Africa

    Directory of Open Access Journals (Sweden)

    Daniel Strachan

    2016-06-01

    Full Text Available Promotional competitions are competitions in which prizes are awarded by lot or chance in order to promote goods or services. In order to protect participants and consumers against abuse, these competitions are usually regulated by gambling or consumer protection legislation. However, the relevant legislation is often complemented by self-regulation, which is the focus of this contribution. Self-regulation entails the regulation or governing of an industry by the role players in that industry. This article commences by explaining the relevant terminology and exploring self-regulation in general, including the various forms of self-regulation and the binding force thereof. The nature of self-regulation is discussed together with the advantages and challenges associated with this form of regulation. This is followed by some examples of self-regulation on a global level in order to provide a comparative perspective on the topic. The provisions of the International Chamber of Commerce's Consolidated Code of Advertising and Marketing Communications Practice are summarised and the European Advertising Standards Alliance's role in self-regulation is considered. Attention is also given to the relevant industry codes in the United Kingdom in view of the comprehensive way in which promotional competitions are covered by self-regulation in that country. The main part of the article centres on the self-regulatory position in South Africa. A brief overview of the role and function of the Advertising Standards Authority of South Africa (ASASA is provided. The provisions of the ASASA's Code of Advertising Practice are then examined and some ASASA rulings are discussed in order to illustrate the relevant principles. Thereafter, the focus shifts to the Code of Conduct of the Wireless Application Service Providers' Association, which contains detailed provisions relating to promotional competitions. Some relevant rulings are also considered. In conclusion

  1. Developmental control of hypoxia during bud burst in grapevine.

    Science.gov (United States)

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  2. Health promotion and disease prevention strategies in older adults with Intellectual and Developmental Disabilities

    Directory of Open Access Journals (Sweden)

    Eli eCarmeli

    2014-04-01

    Full Text Available The rapid growth in the number of individuals living with Intellectual and Developmental Disabilities (IDD along with their increased longevity present challenges to those concerned about health and well-being of this unique population. While much is known about health promotion and disease prevention in the general geriatric population, far less is known about those in older adults with IDD. Effective and efficient health promotion and disease prevention strategies need to be developed and implemented for improving the health and quality of life of older adults living with IDD. This is considered to be challenging given the continued shrinkage in the overall health care and welfare system services due to the cut in the governmental budget in some of the western countries. The ideal health promotion and disease prevention strategies for older adults with IDD should be tailored to the individuals’ health risks, address primary and secondary disease prevention and prevent avoidable impairments that cause premature institutionalization. Domains of intervention should include cognitive, mental and physical health, accommodations, workplace considerations, assistive technology, recreational activities and nutrition.

  3. Developmental Science: Past, Present, and Future

    Science.gov (United States)

    Lerner, Richard M.

    2012-01-01

    The goal of developmental science is to describe, explain, and optimize intraindividual changes in adaptive developmental regulations and, as well, interindividual differences in such relations, across life. The history of developmental science is reviewed and its current foci, which are framed by relational developmental systems models that…

  4. An evaluation of the self-regulation of promotional competitions in ...

    African Journals Online (AJOL)

    Promotional competitions are competitions in which prizes are awarded by lot or chance in order to promote goods or services. ... Commerce's Consolidated Code of Advertising and Marketing Communications Practice are summarised and the European Advertising Standards Alliance's role in self-regulation is considered.

  5. Reflexive regulation of CSR to promote sustainability

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2011-01-01

    and the EU CSR Alliance. Focusing on human rights based in international law, it analyses the patterns of negotiation in the MSF and the background for the launch of the CSR Alliance. It shows that analysing public-private regulation of CSR from the perspective of reflexive law theory assists us......This article discusses Corporate Social Responsibility (CSR) from the perspective of governmental regulation as a measure to promote public policy interests through public-private regulation intended to influence firms’ self-regulation. Presenting a ‘government case’ for CSR, the connection between...... climate change and environmental sustainability, and social, economic and other human rights lend human rights as part of CSR a potential for meeting some environmental and climate concerns and handling adverse side-effects. The article analyses two EU initiatives: The EU Multi-Stakeholder (MSF) on CSR...

  6. Reflexive regulation of CSR to promote sustainablility

    DEFF Research Database (Denmark)

    Buhmann, Karin

    and the EU CSR Alliance. Focusing on human rights based in international law, it analyses the patterns of negotiation in the MSF and the background for the launch of the CSR Alliance. It shows that analysing public-private regulation of CSR from the perspective of reflexive law theory assists us......This article discusses Corporate Social Responsibility (CSR) from the perspective of governmental regulation as a measure to promote public policy interests through public-private regulation intended to influence firms’ self-regulation. Presenting a ‘government case’ for CSR, the connection between...... climate change and environmental sustainability, and social, economic and other human rights lend human rights as part of CSR a potential for meeting some environmental and climate concerns and handling adverse side-effects. The article analyses two EU initiatives: The EU Multi-Stakeholder (MSF) on CSR...

  7. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Science.gov (United States)

    He, Reqing; Li, Xinmei; Zhong, Ming; Yan, Jindong; Ji, Ronghuan; Li, Xu; Wang, Qin; Wu, Dan; Sun, Mengsi; Tang, Dongying; Lin, Jianzhong; Li, Hongyu; Liu, Bin; Liu, Hongtao; Liu, Xuanming; Zhao, Xiaoying; Lin, Chentao

    2017-09-01

    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. An Age-Related Mechanism of Emotion Regulation: Regulating Sadness Promotes Children's Learning by Broadening Information Processing

    Science.gov (United States)

    Davis, Elizabeth L.

    2016-01-01

    Emotion regulation predicts positive academic outcomes like learning, but little is known about "why". Effective emotion regulation likely promotes learning by broadening the scope of what may be attended to after an emotional event. One hundred twenty-six 6- to 13-year-olds' (54% boys) regulation of sadness was examined for changes in…

  10. A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast.

    Directory of Open Access Journals (Sweden)

    Vyacheslav Gurevich

    Full Text Available Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80. Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode.

  11. Developmental and transcriptional consequences of mutations in Drosophila TAF(II)60.

    Science.gov (United States)

    Aoyagi, N; Wassarman, D A

    2001-10-01

    In vitro, the TAF(II)60 component of the TFIID complex contributes to RNA polymerase II transcription initiation by serving as a coactivator that interacts with specific activator proteins and possibly as a promoter selectivity factor that interacts with the downstream promoter element. In vivo roles for TAF(II)60 in metazoan transcription are not as clear. Here we have investigated the developmental and transcriptional requirements for TAF(II)60 by analyzing four independent Drosophila melanogaster TAF(II)60 mutants. Loss-of-function mutations in Drosophila TAF(II)60 result in lethality, indicating that TAF(II)60 provides a nonredundant function in vivo. Molecular analysis of TAF(II)60 alleles revealed that essential TAF(II)60 functions are provided by two evolutionarily conserved regions located in the N-terminal half of the protein. TAF(II)60 is required at all stages of Drosophila development, in both germ cells and somatic cells. Expression of TAF(II)60 from a transgene rescued the lethality of TAF(II)60 mutants and exposed requirements for TAF(II)60 during imaginal development, spermatogenesis, and oogenesis. Phenotypes of rescued TAF(II)60 mutant flies implicate TAF(II)60 in transcriptional mechanisms that regulate cell growth and cell fate specification and suggest that TAF(II)60 is a limiting component of the machinery that regulates the transcription of dosage-sensitive genes. Finally, TAF(II)60 plays roles in developmental regulation of gene expression that are distinct from those of other TAF(II) proteins.

  12. Developmental consequences of early parenting experiences: self-recognition and self-regulation in three cultural communities.

    Science.gov (United States)

    Keller, Heidi; Yovsi, Relindis; Borke, Joern; Kärtner, Joscha; Jensen, Henning; Papaligoura, Zaira

    2004-01-01

    This study relates parenting of 3-month-old children to children's self-recognition and self-regulation at 18 to 20 months. As hypothesized, observational data revealed differences in the sociocultural orientations of the 3 cultural samples' parenting styles and in toddlers' development of self-recognition and self-regulation. Children of Cameroonian Nso farmers who experience a proximal parenting style develop self-regulation earlier, children of Greek urban middle-class families who experience a distal parenting style develop self-recognition earlier, and children of Costa Rican middle-class families who experience aspects of both distal and proximal parenting styles fall between the other 2 groups on both self-regulation and self-recognition. Results are discussed with respect to their implications for culturally informed developmental pathways.

  13. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  14. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  15. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  16. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  17. Personality and self-regulation: trait and information-processing perspectives.

    Science.gov (United States)

    Hoyle, Rick H

    2006-12-01

    This article introduces the special issue of Journal of Personality on personality and self-regulation. The goal of the issue is to illustrate and inspire research that integrates personality and process-oriented accounts of self-regulation. The article begins by discussing the trait perspective on self-regulation--distinguishing between temperament and personality accounts--and the information-processing perspective. Three approaches to integrating these perspectives are then presented. These range from methodological approaches, in which constructs representing the two perspectives are examined in integrated statistical models, to conceptual approaches, in which the two perspectives are unified in a holistic theoretical model of self-regulation. The article concludes with an overview of the special issue contributions, which are organized in four sections: broad, integrative models of personality and self-regulation; models that examine the developmental origins of self-regulation and self-regulatory styles; focused programs of research that concern specific aspects or applications of self-regulation; and strategies for increasing the efficiency and effectiveness of self-regulation.

  18. Promotion of self-regulated learning in classrooms : investigating frequency, quality, and consequences for student performance

    NARCIS (Netherlands)

    Kistner, Saskia; Rakoczy, Katrin; Otto, Barbara; Dignath -van Ewijk, Charlotte; Buettner, Gerhard; Klieme, Eckhard

    An implication of the current research on self-regulation is to implement the promotion of self-regulated learning in schools. Teachers can promote self-regulated learning either directly by teaching learning strategies or indirectly by arranging a learning environment that enables students to

  19. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    Science.gov (United States)

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  20. Medicines Information and the Regulation of the Promotion of Pharmaceuticals.

    Science.gov (United States)

    Leonardo Alves, Teresa; Lexchin, Joel; Mintzes, Barbara

    2018-05-02

    Many factors contribute to the inappropriate use of medicines, including not only a lack of information but also inaccurate and misleading promotional information. This review examines how the promotion of pharmaceuticals directly affects the prescribing and use of medicines. We define promotion broadly as all actions taken directly by pharmaceutical companies with the aim of enhancing product sales. We look in greater detail at promotion techniques aimed at prescribers, such as sales representatives, pharmaceutical advertisements in medical journals and use of key opinion leaders, along with the quality of information provided and the effects thereof. We also discuss promotion to the public, through direct-to-consumer advertising, and its effects. Finally, we consider initiatives to regulate promotion that come from industry, government and nongovernmental organizations.

  1. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    Science.gov (United States)

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  2. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  3. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    Science.gov (United States)

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.

  4. The Adaptation of a School-Based Health Promotion Programme for Youth with Intellectual and Developmental Disabilities: A Community-Engaged Research Process

    Science.gov (United States)

    Hubbard, Kristie L.; Bandini, Linda G.; Folta, Sara C.; Wansink, Brian; Must, Aviva

    2014-01-01

    Background: Evidenced-based health promotion programmes for youth with intellectual and developmental disabilities (I/DD) are notably absent. Barriers include a lack of understanding of how to adapt existing evidence-based programmes to their needs, maximize inclusion and support mutual goals of health and autonomy. Methods: We undertook a…

  5. Developmental delays in emotion regulation strategies in preschoolers with autism.

    Science.gov (United States)

    Nuske, Heather J; Hedley, Darren; Woollacott, Alexandra; Thomson, Phoebe; Macari, Suzanne; Dissanayake, Cheryl

    2017-11-01

    Children with autism spectrum disorder (ASD) commonly present with difficulty regulating negative emotions, which has been found to impact their behavioral and mental health. Little research has documented the strategies that children with ASD use to regulate their emotion to understand whether they use qualitatively different strategies to children without ASD, whether these are developmentally delayed, or both. Forty-four children with ASD and 29 typically-developing children (2-4 years) were given tasks designed to mimic everyday life experiences requiring children to manage low-level stress (e.g., waiting for a snack) and children's emotion regulation strategies were coded. Parents reported on their child's mental health, wellbeing, and self-development. The results suggest differences in using emotion regulation strategies in children with ASD, reflecting a delay, rather than a deviance when compared to those used by children without ASD. Only children with ASD relied on their family members for physical and communicative soothing; the typically developing children relied on people outside of their family for help regulating their emotion. More frequent approach/less frequent avoidance was related to a higher self-evaluation in both groups, but was only additionally related to higher self-recognition and autonomy in the ASD group. These findings help to identify important emotion regulation intervention targets for this population, including supporting communication with people outside of the family and independence. Autism Res 2017, 10: 1808-1822. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Results suggest that children with autism had more difficulty using communication strategies to manage stress only with people outside the family; they used these strategies with family members as often as children without autism. For all children, more task approach/less avoidance was related to children's higher self-evaluation. These

  6. Down-regulation of serum/glucocorticoid regulated kinase 1 in colorectal tumours is largely independent of promoter hypermethylation.

    Directory of Open Access Journals (Sweden)

    Francesca Lessi

    2010-11-01

    Full Text Available We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1 is down-regulated in colorectal cancers (CRC with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963 which affects methylation of the corresponding CpG.Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.

  7. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription.

    Science.gov (United States)

    Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L

    1996-12-01

    The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.

  8. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    Science.gov (United States)

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  9. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... glucosinolate metabolites in Arabidopsis (Arabidopsis thaliana). A systematic yeast one-hybrid study was used to identify hundreds of unique potential regulatory interactions with a nearly complete complement of 21 promoters for the aliphatic glucosinolate pathway. Conducting high-throughput phenotypic...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...

  10. ALARA/ALARP distinguished

    International Nuclear Information System (INIS)

    Riley, P.

    1992-01-01

    In the United Kingdom the term ALARA, ''as low as reasonably achievable'' and the term ALARP ''as low as reasonably practicable'' are used in regulations, in conditions in licenses, in assessment principles and in guidance notes used in the nuclear industry. In fact the ALARA principle is a cornerstone on which much of radiation protection regulation is based. The words ''reasonably practicable'' in ALARP have an established meaning in UK law and are used extensively in statutes and regulations, in particular The Health and Safety Act 1974. The Select Committee of the House of Lords on the European Communities in 1986 concluded that public opinion will play a much larger part in deciding the future of nuclear power than is usual with questions of science and technology. Under the circumstances it is important to industry and the general public for the terms used in legislation to be clear and unambiguous. This paper by distinguishing the terms ALARA/ALARP, sets the scene for a more disciplined use of the terms. (author)

  11. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Aluru, Neelakanteswar; Kuo, Elaine; Helfrich, Lily W.; Karchner, Sibel I.; Linney, Elwood A.; Pais, June E.; Franks, Diana G.

    2015-01-01

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  12. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  13. Hemodynamic forces regulate developmental patterning of atrial conduction.

    Directory of Open Access Journals (Sweden)

    Michael C Bressan

    Full Text Available Anomalous action potential conduction through the atrial chambers of the heart can lead to severe cardiac arrhythmia. To date, however, little is known regarding the mechanisms that pattern proper atrial conduction during development. Here we demonstrate that atrial muscle functionally diversifies into at least two heterogeneous subtypes, thin-walled myocardium and rapidly conducting muscle bundles, during a developmental window just following cardiac looping. During this process, atrial muscle bundles become enriched for the fast conduction markers Cx40 and Nav1.5, similar to the precursors of the fast conduction Purkinje fiber network located within the trabeculae of the ventricles. In contrast to the ventricular trabeculae, however, atrial muscle bundles display an increased proliferation rate when compared to the surrounding myocardium. Interestingly, mechanical loading of the embryonic atrial muscle resulted in an induction of Cx40, Nav1.5 and the cell cycle marker Cyclin D1, while decreasing atrial pressure via in vivo ligation of the vitelline blood vessels results in decreased atrial conduction velocity. Taken together, these data establish a novel model for atrial conduction patterning, whereby hemodynamic stretch coordinately induces proliferation and fast conduction marker expression, which in turn promotes the formation of large diameter muscle bundles to serve as preferential routes of conduction.

  14. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Science.gov (United States)

    Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène

    2013-01-01

    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy

  15. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Directory of Open Access Journals (Sweden)

    David Cohen

    Full Text Available Aquaporins (AQPs are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants. The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of

  16. Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora.

    Science.gov (United States)

    Traeger, Stefanie; Nowrousian, Minou

    2015-04-14

    During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. Copyright © 2015 Traeger and Nowrousian.

  17. An Experimental Decision-Making Paradigm to Distinguish Guilt and Regret and Their Self-Regulating Function via Loss Averse Choice Behavior

    OpenAIRE

    Wagner, Ullrich; Handke, Lisa; Dörfel, Denise; Walter, Henrik

    2012-01-01

    Both guilt and regret typically result from counterfactual evaluations of personal choices that caused a negative outcome and are thought to regulate human decisions by people’s motivation to avoid these emotions. Despite these similarities, studies asking people to describe typical situations of guilt and regret identified the social dimension as a fundamental distinguishing factor, showing that guilt but not regret specifically occurs for choices in interpersonal (social) contexts. However,...

  18. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts

    NARCIS (Netherlands)

    M. Nethe (Micha); B.J. de Kreuk (Bart-Jan); D.V.F. Tauriello (Daniele); E.C. Anthony (Eloise); B. Snoek (Barbara); T. Stumpel (Thomas); M. Salinas; K. Maurice (Karelle); D. Geerts (Dirk); A.M. Deelder (André); P. Hensbergen (Paul); P.L. Hordijk (Peter )

    2012-01-01

    textabstractThe Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4

  19. Developmental disorders: what can be learned from cognitive neuropsychology?

    Science.gov (United States)

    Castles, Anne; Kohnen, Saskia; Nickels, Lyndsey; Brock, Jon

    2014-01-01

    The discipline of cognitive neuropsychology has been important for informing theories of cognition and describing the nature of acquired cognitive disorders, but its applicability in a developmental context has been questioned. Here, we revisit this issue, asking whether the cognitive neuropsychological approach can be helpful for exploring the nature and causes of developmental disorders and, if so, how. We outline the key features of the cognitive neuropsychological approach, and then consider how some of the major challenges to this approach from a developmental perspective might be met. In doing so, we distinguish between challenges to the methods of cognitive neuropsychology and those facing its deeper conceptual underpinnings. We conclude that the detailed investigation of patterns of both associations and dissociations, and across both developmental and acquired cases, can assist in describing the cognitive deficits within developmental disorders and in delineating possible causal pathways to their acquisition.

  20. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  1. Intersystem Implications of the Developmental Origins of Health and Disease: Advancing Health Promotion in the 21st Century.

    Science.gov (United States)

    Barnes, Michael D; Heaton, Thomas L; Goates, Michael C; Packer, Justin M

    2016-07-15

    The developmental origins of health and disease (DOHaD) theory and life course theory (LCT) are emerging fields of research that have significant implications for the public health and health promotion professions. Using a DOHaD/LCT perspective, social determinants of health (SDH) take on new critical meaning by which health promotion professionals can implement DOHaD/LCT guided interventions, including recommended policies. Through these interventions, public health could further address the sources of worldwide chronic disease epidemics and reduce such disease rates substantially if related policy, programs, and interdisciplinary and multi-sector collaboration are emphasized. Additional characteristics of the most effective interventions involve context-specific adaptation and societal structures that impact upstream, early life environments on a broad scale, influencing multiple locations and/or diseases.

  2. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    Science.gov (United States)

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    Science.gov (United States)

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  4. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Science.gov (United States)

    Blount, Benjamin A.; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions. PMID:22442681

  5. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.

    Science.gov (United States)

    Blount, Benjamin A; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex "multi-wire" logic functions.

  6. Theodore P. Beauchaine: award for distinguished scientific early career contributions to psychology.

    Science.gov (United States)

    2006-11-01

    Presents the citation for Theodore P. Beauchaine, who received the Award for Distinguished Scientific Early Career Contributions to Psychology (psychopathology) "for core contributions in developmental psychopathology, especially related to the biological underpinnings of various mental disorders among children, sophisticated and elegant quantitative approaches to these issues, and exemplary work on the prevention of such conditions." A brief profile and a selected bibliography accompany the citation. ((c) 2006 APA, all rights reserved).

  7. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  8. [Drug advertising and promotion: regulations and extent of compliance in five Latin American countries].

    Science.gov (United States)

    Vacca, Claudia; Vargas, Claudia; Cañás, Martín; Reveiz, Ludovic

    2011-02-01

    To analyze differing regulations regarding drug promotion, and the extent of compliance as seen in samples of advertising directed to the public in Argentina, Colombia, Ecuador, Nicaragua, and Peru. A total of 683 pieces of promotional material on display in health facilities, pharmacies, and on the street were collected, 132 of which were randomly selected for analysis. The regulations governing pharmaceutical advertising, taken from official websites and interviews with regulatory officials and Ministry of Health staff in the five countries covered, were reviewed, along with their adherence to the ethical criteria of the World Health Organization (WHO). The contents of the materials in the sample were evaluated to determine their degree of compliance with national regulations and WHO recommendations on drug promotion. The countries have regulations incorporating WHO ethical criteria. Over 80% of the material analyzed included the indications for the drug, while over 70% omitted information on adverse effects. Fifty percent of the advertisements for over-the-counter (OTC) drugs on display in pharmacies listed indications not approved by the relevant health authority. In advertising in pharmacies, the risks from inadequate information were not found to differ significantly for OTC or prescription medications. Compared with materials provided in health facilities, the relative risk of the absence of information on dosage in the material distributed in pharmacies was 2.08 (confidence interval 95% 1.32-3.39). Although regulations on drug promotion and advertising in the five countries studied generally incorporate the WHO recommendations, promotional materials often fail to reflect the fact.

  9. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    Science.gov (United States)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  10. Identification and Transcription Profiling of NDUFS8 in Aedes taeniorhynchus (Diptera: Culicidae): Developmental Regulation and Environmental Response

    Science.gov (United States)

    2014-12-18

    Identification and transcription profiling of NDUFS8 in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation and environmental response...7205 Email lmzhao@ufl.edu Abstract: The cDNA of a NADH dehydrogenase-ubiquinone Fe-S protein 8 subunit (NDUFS8) gene from Aedes (Ochlerotatus...information useful for developing dsRNA pesticide for mosquito control. Keywords: Aedes taeniorhynchus, AetNDUFS8, mRNA expression, development

  11. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  12. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  13. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  14. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages.

    Science.gov (United States)

    Jockusch, Elizabeth L

    2017-09-01

    Jointed, segmented appendages are a key innovation of arthropods. The subsequent diversification of these appendages, both along the body axis and across taxa, has contributed to the evolutionary success of arthropods. Both developmental and fossil data are informative for understanding how these transitions occurred. Comparative analyses help to pinpoint the developmental novelties that distinguish arthropod appendages from the lobopodous appendages of other panarthropods, and that distinguish different appendage types. The fossil record of stem group arthropods is diverse and preserves intermediate steps in these evolutionary transitions, including some that cannot be directly inferred based on extant taxa. These lead to hypotheses that can be tested with comparative developmental data, as well as to reinterpretations of developmental results. One developmental novelty of arthropods is the reiterated deployment of the joint formation network, which divides the appendages into segments. The fossil record raises questions about how this joint formation network was first deployed, given the contrasting morphologies of appendages in stem group versus extant arthropods. The fossil record supports a character tree for appendage diversification showing progressive individuation of appendages in an anterior-to-posterior sequence. However, to date, developmental evidence provides at best limited support for this character tree. Recent interpretations of the fossil record suggest that the labrum of extant arthropods is a greatly reduced protocerebral appendage pair; this hypothesis is consistent with the extensive shared developmental patterning of the labrum and jointed appendages. Reciprocal illumination from fossils and developmental patterning in a phylogenetic context both makes sense of some results and helps motivates questions for future research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative

  15. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.

    Directory of Open Access Journals (Sweden)

    Violetta Pilorz

    2016-06-01

    Full Text Available Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4-expressing photosensitive retinal ganglion cells (pRGCs in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-, resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO, whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.

  16. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  17. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression.

    Science.gov (United States)

    Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-05-01

    Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.

  18. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  19. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  20. Activins and inhibins: Novel regulators of thymocyte development

    International Nuclear Information System (INIS)

    Licona-Limon, Paula; Aleman-Muench, German; Chimal-Monroy, Jesus; Macias-Silva, Marina; Garcia-Zepeda, Eduardo A.; Matzuk, Martin M.; Fortoul, Teresa I.; Soldevila, Gloria

    2009-01-01

    Activins and inhibins are members of the transforming growth factor-β superfamily that act on different cell types and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis. Here, we provide the first evidence that activins and inhibins regulate specific checkpoints during thymocyte development. We demonstrate that both activin A and inhibin A promote the DN3-DN4 transition in vitro, although they differentially control the transition to the DP stage. Whereas activin A induces the accumulation of a CD8 + CD24 hi TCRβ lo intermediate subpopulation, inhibin A promotes the differentiation of DN4 to DP. In addition, both activin A and inhibin A appear to promote CD8 + SP differentiation. Moreover, inhibin α null mice have delayed in vitro T cell development, showing both a decrease in the DN-DP transition and reduced thymocyte numbers, further supporting a role for inhibins in the control of developmental signals taking place during T cell differentiation in vivo.

  1. Interpersonal Stress Regulation and the Development of Anxiety Disorders: An Attachment-Based Developmental Framework

    Science.gov (United States)

    Nolte, Tobias; Guiney, Jo; Fonagy, Peter; Mayes, Linda C.; Luyten, Patrick

    2011-01-01

    Anxiety disorders represent a common but often debilitating form of psychopathology in both children and adults. While there is a growing understanding of the etiology and maintenance of these disorders across various research domains, only recently have integrative accounts been proposed. While classical attachment history has been a traditional core construct in psychological models of anxiety, contemporary attachment theory has the potential to integrate neurobiological and behavioral findings within a multidisciplinary developmental framework. The current paper proposes a modern attachment theory-based developmental model grounded in relevant literature from multiple disciplines including social neuroscience, genetics, neuroendocrinology, and the study of family factors involved in the development of anxiety disorders. Recent accounts of stress regulation have highlighted the interplay between stress, anxiety, and activation of the attachment system. This interplay directly affects the development of social–cognitive and mentalizing capacities that are acquired in the interpersonal context of early attachment relationships. Early attachment experiences are conceptualized as the key organizer of a complex interplay between genetic, environmental, and epigenetic contributions to the development of anxiety disorders – a multifactorial etiology resulting from dysfunctional co-regulation of fear and stress states. These risk-conferring processes are characterized by hyperactivation strategies in the face of anxiety. The cumulative allostatic load and subsequent “wear and tear” effects associated with hyperactivation strategies converge on the neural pathways of anxiety and stress. Attachment experiences further influence the development of anxiety as potential moderators of risk factors, differentially impacting on genetic vulnerability and relevant neurobiological pathways. Implications for further research and potential treatments are outlined. PMID

  2. Effective self-regulation change techniques to promote mental wellbeing among adolescents: a meta-analysis

    NARCIS (Netherlands)

    Genugten, L. van; Dusseldorp, E.; Massey, E.K.; Empelen, P. van

    2017-01-01

    Mental wellbeing is influenced by self-regulation processes. However, little is known on the efficacy of change techniques based on self-regulation to promote mental wellbeing. The aim of this meta-analysis is to identify effective self-regulation techniques (SRTs) in primary and secondary

  3. DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions

    Science.gov (United States)

    Stuckenholz, Carsten; Labhart, Paul; Alexiadis, Vassili; Martin, René; Knölker, Hans-Joachim; Fisher, Alfred L.

    2011-01-01

    The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions. PMID:21814518

  4. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors

    Directory of Open Access Journals (Sweden)

    Altenbuchner Josef

    2011-10-01

    Full Text Available Abstract Background Several vector systems have been developed to express any gene desired to be studied in Bacillus subtilis. Among them, the transcriptionally regulated promoters involved in carbohydrate utilization are a research priority. Expression systems based on Bacillus promoters for xylose, maltose, and mannose utilization, as well as on the heterologous E. coli lactose promoter, have been successfully constructed. The promoter of the mtlAFD operon for utilization of mannitol is another promising candidate for its use in expression vectors. In this study, we investigated the regulation of the mtl genes in order to identify the elements needed to construct a strong mannitol inducible expression system in B. subtilis. Results Regulation of the promoters of mtlAFD operon (PmtlA and mtlR (PmtlR encoding the activator were investigated by fusion to lacZ. Identification of the PmtlA and PmtlR transcription start sites revealed the σA like promoter structures. Also, the operator of PmtlA was determined by shortening, nucleotide exchange, and alignment of PmtlA and PmtlR operator regions. Deletion of the mannitol-specific PTS genes (mtlAF resulted in PmtlA constitutive expression demonstrating the inhibitory effect of EIICBMtl and EIIAMtl on MtlR in the absence of mannitol. Disruption of mtlD made the cells sensitive to mannitol and glucitol. Both PmtlA and PmtlR were influenced by carbon catabolite repression (CCR. However, a CcpA deficient mutant showed only a slight reduction in PmtlR catabolite repression. Similarly, using PgroE as a constitutive promoter, putative cre sites of PmtlA and PmtlR slightly reduced the promoter activity in the presence of glucose. In contrast, glucose repression of PmtlA and PmtlR was completely abolished in a ΔptsG mutant and significantly reduced in a MtlR (H342D mutant. Conclusions The mtl operon promoter (PmtlA is a strong promoter that reached a maximum of 13,000 Miller units with lacZ as a reporter on

  5. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor.

    Science.gov (United States)

    Yoo, B C; Aoki, K; Xiang, Y; Campbell, L R; Hull, R J; Xoconostle-Cázares, B; Monzer, J; Lee, J Y; Ullman, D E; Lucas, W J

    2000-11-10

    We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed.

  6. Phosphorylation of Nanog is Essential to Regulate Bmi1 and Promote Tumorigenesis

    Science.gov (United States)

    Xie, Xiujie; Piao, Longzhu; Cavey, Greg S.; Old, Matthew; Teknos, Theodoros N.; Mapp, Anna K; Pan, Quintin

    2014-01-01

    Emerging evidence indicates that Nanog is intimately involved in tumorigenesis in part through regulation of the cancer initiating cell population. However, the regulation and role of Nanog in tumorigenesis are still poorly understood. In this study, human Nanog was identified to be phosphorylated by human PKCε at multiple residues including T200 and T280. Our work indicated that phosphorylation at T200 and T280 modulates Nanog function through several regulatory mechanisms. Results with phosphorylation-insensitive and phosphorylation-mimetic mutant Nanog revealed that phosphorylation at T200 and T280 enhance Nanog protein stability. Moreover, phosphorylation-insensitive T200A and T280A mutant Nanog had a dominant-negative function to inhibit endogenous Nanog transcriptional activity. Inactivation of Nanog was due to impaired homodimerization, DNA binding, promoter occupancy, and p300, a transcriptional co-activator, recruitment resulting in a defect in target gene promoter activation. Ectopic expression of phosphorylation-insensitive T200A or T280A mutant Nanog reduced cell proliferation, colony formation, invasion, migration, and the cancer initiating cell population in head and neck squamous cell carcinoma (HNSCC) cells. The in vivo cancer initiating ability was severely compromised in HNSCC cells expressing phosphorylation-insensitive T200A or T280A mutant Nanog; 87.5% (14/16), 12.5% (1/8), and 0% (0/8) for control, T200A, and T280A, respectively. Nanog occupied the Bmi1 promoter to directly transactivate and regulate Bmi1. Genetic ablation and rescue experiments demonstrated that Bmi1 is a critical downstream signaling node for the pleiotropic, pro-oncogenic effects of Nanog. Taken together, our study revealed, for the first time, that post-translational phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. PMID:23708658

  7. Use of the Lactococcal nisA Promoter To Regulate Gene Expression in Gram-Positive Bacteria : Comparison of Induction Level and Promoter Strength

    NARCIS (Netherlands)

    Eichenbaum, Zehava; Federle, Michael J.; Marra, Diana; Vos, Willem M. de; Kuipers, Oscar P.; Kleerebezem, Michiel; Scott, June R.

    1998-01-01

    We characterized the regulated activity of the lactococcal nisA promoter in strains of the gram-positive species Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Enterococcus faecalis, and Bacillus subtilis. nisA promoter activity was dependent on the proteins NisR and

  8. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules.

    Science.gov (United States)

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Yoon, Eun Hye; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2017-11-04

    Previously we have reported that developmentally regulated GTP-binding protein 2 (DRG2) localizes on Rab5 endosomes and plays an important role in transferrin (Tfn) recycling. We here identified DRG2 as a key regulator of membrane tubule stability. At 30 min after Tfn treatment, DRG2 localized to membrane tubules which were enriched with phosphatidylinositol 4-monophosphate [PI(4)P] and did not contain Rab5. DRG2 interacted with Rac1 more strongly with GTP-bound Rac1 and tubular localization of DRG2 depended on Rac1 activity. DRG2 depletion led to destabilization of membrane tubules, while ectopic expression of DRG2 rescued the stability of the membrane tubules in DRG2-depleted cells. Our results reveal a novel mechanism for regulation of membrane tubule stability mediated by DRG2. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An Experimental Decision-Making Paradigm to Distinguish Guilt and Regret and Their Self-Regulating Function via Loss Averse Choice Behavior.

    Science.gov (United States)

    Wagner, Ullrich; Handke, Lisa; Dörfel, Denise; Walter, Henrik

    2012-01-01

    Both guilt and regret typically result from counterfactual evaluations of personal choices that caused a negative outcome and are thought to regulate human decisions by people's motivation to avoid these emotions. Despite these similarities, studies asking people to describe typical situations of guilt and regret identified the social dimension as a fundamental distinguishing factor, showing that guilt but not regret specifically occurs for choices in interpersonal (social) contexts. However, an experimental paradigm to investigate this distinction systematically by inducing emotions of guilt and regret online is still missing. Here, extending existing procedures, we introduce such a paradigm, in which participants choose in each trial between two lotteries, with the outcome of the chosen lottery (gain or loss) being either assigned to themselves (intrapersonal trials) or to another person (interpersonal trials). After results of both the chosen and the unchosen lottery were shown, subjects rated how they felt about the outcome, including ratings of guilt and regret. Trait Guilt (TG) was determined for all participants in order to take their general inclination to experience guilt into account. Results confirmed that guilt but not regret specifically occurred in an interpersonal context. Percentages of loss averse choices (choosing the lottery with the lower possible monetary loss) were determined as indicators of regulation via guilt and regret avoidance. High TG scorers generally made more loss averse choices than low TG scorers, while trial-by-trial analyses showed that low TG scorers used their feelings of guilt more specifically to avoid the same emotional experience in subsequent choices. Our results confirm the social dimension as the critical factor distinguishing guilt from regret and identify TG as an important moderator determining the way in which guilt vs. regret can regulate their own occurrence by influencing choice strategies.

  10. An experimental decision-making paradigm to distinguish guilt and regret and their self-regulating function via loss-averse choice behavior

    Directory of Open Access Journals (Sweden)

    Ullrich eWagner

    2012-10-01

    Full Text Available Both guilt and regret typically result from counterfactual evaluations of personal choices that caused a negative outcome and are thought to regulate human decisions by people’s motivation to avoid these emotions. Despite these similarities, studies asking people to describe typical situations of guilt and regret identified the social dimension as a fundamental distinguishing factor, showing that guilt but not regret specifically occurs for choices in interpersonal (social contexts. However, an experimental paradigm to investigate this distinction systematically by inducing emotions of guilt and regret online is still missing. Here, extending existing procedures, we introduce such a paradigm, in which participants choose in each trial between two lotteries, with the outcome of the chosen lottery (gain or loss being either assigned to themselves (intrapersonal trials or to another person (interpersonal trials. After results of both the chosen and the unchosen lottery were shown, subjects rated how they felt about the outcome, including ratings of guilt and regret. Trait Guilt (TG was determined for all participants in order to take their general inclination to experience guilt into account. Results confirmed that guilt but not regret specifically occurred in an interpersonal context. Percentages of loss averse choices (choosing the lottery with the lower possible monetary loss were determined as indicators of regulation via guilt and regret avoidance. High TG scorers generally made more loss averse choices than low TG scorers, while trial-by-trial analyses showed that low TG scorers used their feelings of guilt more specifically to avoid the same emotional experience in subsequent choices. Our results confirm the social dimension as the critical factor distinguishing guilt from regret and identify TG as an important moderator determining the way in which guilt vs. regret can regulate their own occurrence by influencing choice strategies.

  11. An Experimental Decision-Making Paradigm to Distinguish Guilt and Regret and Their Self-Regulating Function via Loss Averse Choice Behavior

    Science.gov (United States)

    Wagner, Ullrich; Handke, Lisa; Dörfel, Denise; Walter, Henrik

    2012-01-01

    Both guilt and regret typically result from counterfactual evaluations of personal choices that caused a negative outcome and are thought to regulate human decisions by people’s motivation to avoid these emotions. Despite these similarities, studies asking people to describe typical situations of guilt and regret identified the social dimension as a fundamental distinguishing factor, showing that guilt but not regret specifically occurs for choices in interpersonal (social) contexts. However, an experimental paradigm to investigate this distinction systematically by inducing emotions of guilt and regret online is still missing. Here, extending existing procedures, we introduce such a paradigm, in which participants choose in each trial between two lotteries, with the outcome of the chosen lottery (gain or loss) being either assigned to themselves (intrapersonal trials) or to another person (interpersonal trials). After results of both the chosen and the unchosen lottery were shown, subjects rated how they felt about the outcome, including ratings of guilt and regret. Trait Guilt (TG) was determined for all participants in order to take their general inclination to experience guilt into account. Results confirmed that guilt but not regret specifically occurred in an interpersonal context. Percentages of loss averse choices (choosing the lottery with the lower possible monetary loss) were determined as indicators of regulation via guilt and regret avoidance. High TG scorers generally made more loss averse choices than low TG scorers, while trial-by-trial analyses showed that low TG scorers used their feelings of guilt more specifically to avoid the same emotional experience in subsequent choices. Our results confirm the social dimension as the critical factor distinguishing guilt from regret and identify TG as an important moderator determining the way in which guilt vs. regret can regulate their own occurrence by influencing choice strategies. PMID:23133433

  12. Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter

    International Nuclear Information System (INIS)

    Keating, Aileen F.; Kennelly, John J.; Zhao Fengqi

    2006-01-01

    The bovine stearoyl-CoA desaturase (Scd) gene plays an important role in the bovine mammary gland where substrates such as stearic and vaccenic acids are converted to oleic acid and conjugated linoleic acid (CLA), respectively. Up to 90% of the CLA in bovine milk is formed due to the action of this enzyme in the mammary gland. The areas of the bovine promoter of importance in regulating this key enzyme were examined and an area of 36 bp in length was identified as having a critical role in transcriptional activation and is designated the Scd transcriptional enhancer element (STE). Electrophoretic mobility shift assay detected three binding complexes on this area in Mac-T cell nuclear extracts. Treatment of cells with CLA caused a significant reduction in transcriptional activity, with this effect being mediated through the STE region. The bovine Scd gene promoter was up-regulated by insulin and down-regulated by oleic acid

  13. Interpersonal stress regulation and the development of anxiety disorders: an attachment-based developmental framework

    Directory of Open Access Journals (Sweden)

    Tobias eNolte

    2011-09-01

    Full Text Available Anxiety disorders represent a common but often debilitating form of psychopathology in both children and adults. While there is a growing understanding of the aetiology and maintainance of these disorders across various research domains, only recently have integrative accounts been proposed. While classical attachment history has been a traditional core construct in psychological models of anxiety, contemporary attachment theory has the potential to integrate neurobiological and behavioral findings within a multidisciplinary developmental framework.The current paper proposes a modern attachment theory-based developmental model grounded in relevant literature from multiple disciplines including social neuroscience, genetics, neuroendocrinology, and the study of family factors involved in the development of anxiety disorders. Recent accounts of stress regulation have highlighted the interplay between stress, anxiety and activation of the attachment system. This interplay directly affects the development of social cognitive and mentalizing capacities that are acquired in the interpersonal context of early attachment relationships. Early attachment experiences are conceptualised as the key organiser of a complex interplay between genetic, environmental and epigentic contributions to the development of anxiety disorders – a multifactorial aetiology resulting from dysfunctional co-regulation of fear and stress states. These risk-conferring processes are characterised by hyperactivation strategies in the face of anxiety.In the model, the cumulative allostatic load and subsequent wear and tear effects associated with hyperactivation strategies converge on the neural pathways of anxiety and stress. Attachment experiences further influence the development of anxiety as potential moderators of risk factors, differentially impacting on genetic vulnerability and relevant neurobiological pathways. Implications for further research and potential treatments

  14. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    International Nuclear Information System (INIS)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-01-01

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFα, interferon-γ, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-β is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFα had the ability to activate the ERVWE1 promoter through an NF-κB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFα enhances the binding of the p65 subunit of NF-κB, to its cognate site within the promoter. The effect of TNFα is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFα-mediated induction of syncytin-1 in multiple sclerosis

  15. Developmental programming: impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep.

    Science.gov (United States)

    Manikkam, Mohan; Thompson, Robert C; Herkimer, Carol; Welch, Kathleen B; Flak, Jonathan; Karsch, Fred J; Padmanabhan, Vasantha

    2008-04-01

    The goal of this study was to explore mechanisms that mediate hypersecretion of LH and progressive loss of cyclicity in female sheep exposed during fetal life to excess testosterone. Our working hypothesis was that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH (but not FSH) secretion and, thus, hypersecretion of LH in adulthood, and that this results from altered developmental gene expression of GnRH and estradiol (E2) receptors, gonadotropin subunits, and paracrine factors that differentially regulate LH and FSH synthesis. We observed that, relative to controls, females exposed during fetal life to excess testosterone, as well as the nor-aromatizable androgen dihydrotestosterone, exhibited enhanced LH but not FSH responses to intermittent delivery of GnRH boluses under conditions in which endogenous LH (GnRH) pulses were suppressed. Luteinizing hormone hypersecretion was more evident in adults than in prepubertal females, and it was associated with development of acyclicity. Measurement of pituitary mRNA concentrations revealed that prenatal testosterone excess induced developmental changes in gene expression of pituitary GnRH and E2 receptors and paracrine modulators of LH and FSH synthesis in a manner consistent with subsequent amplification of LH release. Together, this series of studies suggests that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH response, leading to LH hypersecretion and acyclicity in adulthood, and that this programming involves developmental changes in expression of pituitary genes involved in LH and FSH release.

  16. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    Science.gov (United States)

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  17. Award for Distinguished Career Contributions to Education and Training in Psychology: Nancy S. Elman.

    Science.gov (United States)

    2017-12-01

    The Award for Distinguished Career Contributions to Education and Training in Psychology is given in recognition of the efforts of psychologists who have made distinguished contributions to education and training, who have produced imaginative innovations, or who have been involved in the developmental phases of programs in education and training in psychology. The Career designation is added to the award at the discretion of the Education and Training Awards Committee to recognize continuous significant contributions made over a lifelong career in psychology. The 2017 recipient of this award is Nancy S. Elman, whose leadership roles have brought significant advancements for the education and training of psychologists. Her award citation, biography, and a selected bibliography are presented here. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Functional analysis of the OCA-B promoter.

    Science.gov (United States)

    Stevens, S; Wang, L; Roeder, R G

    2000-06-15

    OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.

  19. Developmentally regulated expression and complex processing of barley pri-microRNAs

    Directory of Open Access Journals (Sweden)

    Kruszka Katarzyna

    2013-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19. However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. Results To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. Conclusions Seven of the

  20. Student Development and Developmental Studies.

    Science.gov (United States)

    Champaigne, John

    1982-01-01

    Reviews the nine-stage Perry Scheme of Intellectual and Ethical Development, detailing three major student orientations--dualism, multiplicity, and commitments in relativism. Suggests techniques developmental educators can use to communicate with, support, and challenge students to promote intellectual development. Underscores the importance of…

  1. Promoting adaptive emotion regulation and coping in adolescence: a school-based programme.

    Science.gov (United States)

    Horn, Andrea B; Pössel, Patrick; Hautzinger, Martin

    2011-03-01

    Particularly in adolescence, fostering adaptive emotion regulation is an important aim in health promotion. Expressive writing in combination with psycho-education on emotion regulation seems especially appropriate to serve this aim. In this study, school classes were randomly assigned either to a prevention (N = 208) or to a non-treatment control group (N = 151). The prevention group showed significant improvements regarding negative affect, grades, and days absent compared to the control-group. A combination of expressive writing with elements of psycho-education of emotion regulation might be an effective preventive tool, as it seems to improve psychosocial adjustment by establishing functional emotion regulation strategies.

  2. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R

    2014-03-26

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  3. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, John Kenneth; De Hoon, Michiel Jl L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha Madhusudan; Jurman, Giuseppe; Kaczkowski, Bogumił; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Mungall, Christopher J.; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Meehan, Terrence F.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, Svend Peter; Knox, Alan; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Schmeier, Sebastian; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Bertin, Nicolas; Lipovich, Leonard; MacKay-Sim, Alan; Manabe, Riichiroh; Mar, Jessica; Marchand, Benoî t; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison M.; Mizuno, Yosuke; De Morais, David A Lima; Jø rgensen, Mette Christine; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Dimont, Emmanuel; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; Van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Arner, Erik; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert C J J; Patrikakis, Margaret; Schmidl, Christian; Persson, Helena A.; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Schaefer, Ulf; Rye, Morten Beck; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Medvedeva, Yulia; Schneider, Claudio H.; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Chris M.; Plessy, Charles; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K.; 't Hoen, Peter Ac Chr; Tagami, Michihira; Tagami, Naokotakahashi; Takai, Jun; Tanaka, Hiroshi; Vitezic, Morana; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; Van De Wetering, Marc L.; Van Den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Severin, Jessica M.; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise Natalie; Wolvetang, Ernst Jurgen; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Semple, Colin Am M; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E.; Zhang, Peter; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten Olivier; Kawai, Jun; Ishizu, Yuri; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Young, Robert S.; Hayashizaki, Yoshihide Yoshihide; Francescatto, Margherita; Altschuler, Intikhab Alam; Albanese, Davide; Altschule, Gabriel M.; Arakawa, Takahiro; Archer, John A.C.; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James A.; Brombacher, Frank; Burroughs, Alexander Maxwell; Califano, Andrea C.; Cannistraci, Carlo; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie Anne; Detmar, Michael J.; Diehl, Alexander D.; Dohi, Taeko; Drablø s, Finn; Edge, Albert SB B; Edinger, Matthias G.; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey R.; Fang, Hai; Farach-Carson, Mary Cindy; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Junichi; Geijtenbeek, Teunis Bh H; Gibson, Andrew P.; Gingeras, Thomas R.; Goldowitz, Dan; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard F.; Hitchens, Kelly J.; Sui, Shannan J Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Łukasz B.

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  4. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Directory of Open Access Journals (Sweden)

    Erica M Hildebrand

    2016-03-01

    Full Text Available The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4 for degradation. To identify additional mechanisms that prevent CENP-A(Cse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4 is enriched at promoters that contain histone H2A.Z(Htz1 nucleosomes, but that H2A.Z(Htz1 is not required for CENP-A(Cse4 mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1 from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4. The down-regulated genes are enriched for CENP-A(Cse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  5. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  6. Developmental and visual input-dependent regulation of the CB1 cannabinoid receptor in the mouse visual cortex.

    Directory of Open Access Journals (Sweden)

    Taisuke Yoneda

    Full Text Available The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1 to developmental plasticity in the primary visual cortex (V1, it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.

  7. A composite method based on formal grammar and DNA structural features in detecting human polymerase II promoter region.

    Directory of Open Access Journals (Sweden)

    Sutapa Datta

    Full Text Available An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques.

  8. A Composite Method Based on Formal Grammar and DNA Structural Features in Detecting Human Polymerase II Promoter Region

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2013-01-01

    An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG) can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques. PMID:23437045

  9. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  11. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo.

    Science.gov (United States)

    Venkatesh, Ishwariya; Simpson, Matthew T; Coley, Denise M; Blackmore, Murray G

    2016-12-01

    Axon regeneration in adult central nervous system (CNS) is limited in part by a developmental decline in the ability of injured neurons to re-express needed regeneration associated genes (RAGs). Adult CNS neurons may lack appropriate pro-regenerative transcription factors, or may display chromatin structure that restricts transcriptional access to RAGs. Here we performed epigenetic profiling around the promoter regions of key RAGs, and found progressive restriction across a time course of cortical maturation. These data identify a potential intrinsic constraint to axon growth in adult CNS neurons. Neurite outgrowth from cultured postnatal cortical neurons, however, proved insensitive to treatments that improve axon growth in other cell types, including combinatorial overexpression of AP1 factors, overexpression of histone acetyltransferases, and pharmacological inhibitors of histone deacetylases. This insensitivity could be due to intermediate chromatin closure at the time of culture, and highlights important differences in cell culture models used to test potential pro-regenerative interventions.

  12. Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae)

    OpenAIRE

    Kapheim, Karen M.; Bernal, Sandra P.; Smith, Adam R.; Nonacs, Peter; Wcislo, William T.

    2011-01-01

    Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition...

  13. The developmental state in Brazil: comparative and historical perspectives

    Directory of Open Access Journals (Sweden)

    BEN ROSS SCHNEIDER

    2015-03-01

    Full Text Available The record of successful developmental states in East Asia and the partial successes of developmental states in Latin America suggest several common preconditions for effective state intervention including a Weberian bureaucracy, monitoring of implementation, reciprocity (subsidies in exchange for performance, and collaborative relations between government and business. Although Brazil failed to develop the high technology manufacturing industry and exports that have fueled sustained growth in East Asia, its developmental state had a number of important, and often neglected, successes, especially in steel, automobiles, mining, ethanol, and aircraft manufacturing. Where Brazil's developmental state was less successful was in promoting sectors like information technology and nuclear energy, as well as overall social and regional equality. In addition, some isolated initiatives by state governments were also effective in promoting particular local segments of industry and agriculture. Comparisons with East Asia, highlight the central role of state enterprises in Brazil that in effect internalized monitoring and reciprocity and bypassed collaboration between business and government (that was overall rarer in Brazil.

  14. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries

    Directory of Open Access Journals (Sweden)

    Katja eKarppinen

    2016-05-01

    Full Text Available Secondary metabolites have important defense and signaling roles, and they contribute to the overall quality of developing and ripening fruits. Blueberries, bilberries, cranberries and other Vaccinium berries are fleshy berry fruits recognized for the high levels of bioactive compounds, especially anthocyanin pigments. Besides anthocyanins and other products of the phenylpropanoid and flavonoid pathways, these berries also contain other metabolites of interest, such as carotenoid derivatives, vitamins and flavor compounds. Recently, new information has been achieved on the mechanisms related with developmental, environmental and genetic factors involved in the regulation of secondary metabolism in Vaccinium fruits. Especially light conditions and temperature are demonstrated to have a prominent role on the composition of phenolic compounds. The present review focuses on the studies on mechanisms associated with the regulation of key secondary metabolites, mainly phenolic compounds, in Vaccinium berries. The advances in the research concerning biosynthesis of phenolic compounds in Vaccinium species, including specific studies with mutant genotypes in addition to controlled and field experiments on the genotype x environment (GxE interaction, are discussed. The recently published Vaccinium transcriptome and genome databases provide new tools for the studies on the metabolic routes.

  15. Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation.

    Directory of Open Access Journals (Sweden)

    Stephanie Dumon

    Full Text Available Product of the Itga2b gene, CD41 contributes to hematopoietic stem cell (HSC and megakaryocyte/platelet functions. CD41 expression marks the onset of definitive hematopoiesis in the embryo where it participates in regulating the numbers of multipotential progenitors. Key to platelet aggregation, CD41 expression also characterises their precursor, the megakaryocyte, and is specifically up regulated during megakaryopoiesis. Though phenotypically unique, megakaryocytes and HSC share numerous features, including key transcription factors, which could indicate common sub-regulatory networks. In these respects, Itga2b can serve as a paradigm to study features of both developmental-stage and HSC- versus megakaryocyte-specific regulations. By comparing different cellular contexts, we highlight a mechanism by which internal promoters participate in Itga2b regulation. A developmental process connects epigenetic regulation and promoter switching leading to CD41 expression in HSC. Interestingly, a similar process can be observed at the Mpl locus, which codes for another receptor that defines both HSC and megakaryocyte identities. Our study shows that Itga2b expression is controlled by lineage-specific networks and associates with H4K8ac in megakaryocyte or H3K27me3 in the multipotential hematopoietic cell line HPC7. Correlating with the decrease in H3K27me3 at the Itga2b Iocus, we find that following commitment to megakaryocyte differentiation, the H3K27 demethylase Jmjd3 up-regulation influences both Itga2b and Mpl expression.

  16. Applied Developmental Science, Social Justice, and Socio-Political Well-Being

    Science.gov (United States)

    Fisher, Celia B.; Busch-Rossnagel, Nancy A.; Jopp, Daniela S.; Brown, Joshua L.

    2012-01-01

    In this article we present a vision of applied developmental science (ADS) as a means of promoting social justice and socio-political well-being. This vision draws upon the field's significant accomplishments in identifying and strengthening developmental assets in marginalized youth communities, understanding the effects of poverty and racial…

  17. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  18. Conservation and co-option in developmental programmes: the importance of homology relationships

    Directory of Open Access Journals (Sweden)

    Becker May-Britt

    2005-10-01

    Full Text Available Abstract One of the surprising insights gained from research in evolutionary developmental biology (evo-devo is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option, and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.

  19. Ecdysone Control of Developmental Transitions

    DEFF Research Database (Denmark)

    Rewitz, Kim; Yamanaka, Naoki; O'Connor, Michael B.

    2013-01-01

    The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus...... on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling....

  20. Developmental model of static allometry in holometabolous insects.

    Science.gov (United States)

    Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W

    2008-08-22

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

  1. The glnAntrBC operon of Herbaspirillum seropedicae is transcribed by two oppositely regulated promoters upstream of glnA.

    Science.gov (United States)

    Schwab, Stefan; Souza, Emanuel M; Yates, Marshall G; Persuhn, Darlene C; Steffens, M Berenice R; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2007-01-01

    Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.

  2. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  3. A design-based approach with vocational teachers to promote self-regulated learning

    NARCIS (Netherlands)

    Jossberger, Helen; Brand-Gruwel, Saskia; Van de Wiel, Margje; Boshuizen, Els

    2011-01-01

    Jossberger, H., Brand-Gruwel, S., Van de Wiel, M., & Boshuizen, H. P. A. (2011, August). A design-based approach with vocational teachers to promote self-regulated learning. Presentation at the 14th European Conference for Research on Learning and Instruction (EARLI), Exeter, England.

  4. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  5. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  6. Abscisic acid induction of vacuolar H+-ATPase activity in mesembryanthemum crystallinum is developmentally regulated

    Science.gov (United States)

    Barkla; Vera-Estrella; Maldonado-Gama; Pantoja

    1999-07-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.

  7. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    Directory of Open Access Journals (Sweden)

    Kamila Maliszewska-Olejniczak

    2015-07-01

    Full Text Available Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs. Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium

  8. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families.

    Science.gov (United States)

    Givens, Marjory L; Rave-Harel, Naama; Goonewardena, Vinodha D; Kurotani, Reiko; Berdy, Sara E; Swan, Christo H; Rubenstein, John L R; Robert, Benoit; Mellon, Pamela L

    2005-05-13

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.

  9. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  10. Elucidation of functional markers from Aspergillus nidulans developmental regulator FlbB and their phylogenetic distribution.

    Directory of Open Access Journals (Sweden)

    Marc S Cortese

    Full Text Available Aspergillus nidulans is a filamentous fungus widely used as a model for biotechnological and clinical research. It is also used as a platform for the study of basic eukaryotic developmental processes. Previous studies identified and partially characterized a set of proteins controlling cellular transformations in this ascomycete. Among these proteins, the bZip type transcription factor FlbB is a key regulator of reproduction, stress responses and cell-death. Our aim here was the prediction, through various bioinformatic methods, of key functional residues and motifs within FlbB in order to inform the design of future laboratory experiments and further the understanding of the molecular mechanisms that control fungal development. A dataset of FlbB orthologs and those of its key interaction partner FlbE was assembled from 40 members of the Pezizomycotina. Unique features were identified in each of the three structural domains of FlbB. The N-terminal region encoded a bZip transcription factor domain with a novel histidine-containing DNA binding motif while the dimerization determinants exhibited two distinct profiles that segregated by class. The C-terminal region of FlbB showed high similarity with the AP-1 family of stress response regulators but with variable patterns of conserved cysteines that segregated by class and order. Motif conservation analysis revealed that nine FlbB orthologs belonging to the Eurotiales order contained a motif in the central region that could mediate interaction with FlbE. The key residues and motifs identified here provide a basis for the design of follow-up experimental investigations. Additionally, the presence or absence of these residues and motifs among the FlbB orthologs could help explain the differences in the developmental programs among fungal species as well as define putative complementation groups that could serve to extend known functional characterizations to other species.

  11. Discriminative identification of transcriptional responses of promoters and enhancers after stimulus

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-10-17

    Promoters and enhancers regulate the initiation of gene expression and maintenance of expression levels in spatial and temporal manner. Recent findings stemming from the Cap Analysis of Gene Expression (CAGE) demonstrate that promoters and enhancers, based on their expression profiles after stimulus, belong to different transcription response subclasses. One of the most promising biological features that might explain the difference in transcriptional response between subclasses is the local chromatin environment. We introduce a novel computational framework, PEDAL, for distinguishing effectively transcriptional profiles of promoters and enhancers using solely histone modification marks, chromatin accessibility and binding sites of transcription factors and co-activators. A case study on data from MCF-7 cell-line reveals that PEDAL can identify successfully the transcription response subclasses of promoters and enhancers from two different stimulations. Moreover, we report subsets of input markers that discriminate with minimized classification error MCF-7 promoter and enhancer transcription response subclasses. Our work provides a general computational approach for identifying effectively cell-specific and stimulation-specific promoter and enhancer transcriptional profiles, and thus, contributes to improve our understanding of transcriptional activation in human.

  12. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  13. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  14. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.

    Science.gov (United States)

    London, Sarah E

    2017-11-20

    Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.

  15. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.

    Science.gov (United States)

    Ariel, Federico; Diet, Anouck; Verdenaud, Marion; Gruber, Véronique; Frugier, Florian; Chan, Raquel; Crespi, Martin

    2010-07-01

    The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.

  16. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  17. Proteomic Analysis of Fetal Ovary Reveals That Ovarian Developmental Potential Is Greater in Meishan Pigs than in Yorkshire Pigs.

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    Full Text Available Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins and molecular functions (enzyme regulator activity. We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be

  18. Proteomic Analysis of Fetal Ovary Reveals That Ovarian Developmental Potential Is Greater in Meishan Pigs than in Yorkshire Pigs.

    Science.gov (United States)

    Xu, Mengmeng; Che, Long; Wang, Dingyue; Yang, Zhenguo; Zhang, Pan; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Chen, Daiwen; Wu, De; Xu, Shengyu

    2015-01-01

    Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for

  19. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  20. Blueprint for Incorporating Service Learning: A Basic, Developmental, K-12 Service Learning Typology

    Science.gov (United States)

    Terry, Alice W.; Bohnenberger, Jann E.

    2004-01-01

    Citing the need for a basic, K-12 developmental framework for service learning, this article describes such a model. This model, an inclusive typology of service learning, distinguishes three levels of service learning: Community Service, Community Exploration, and Community Action. The authors correlate this typology to Piaget's cognitive…

  1. The regulation of transactivator of transcription on the activity of DNA-PKcs promoter

    International Nuclear Information System (INIS)

    Yang Tianyi; Zhang Shimeng; Qin Xia; Li Bing; Liu Xiaodan; Zhou Pingkun

    2012-01-01

    Objective: To explore the influence of human immunodeficiency virus transactivator of transcription (TAT) on the promoter activity of DNA dependent protein kinase catalytic subunit (DNA-PKcs). Methods: The truncated promoters of DNA-PKcs were cloned by PCR from the template DNA from HeLa genomic DNA, and the pGL3-basic-DNA-PKcs promoter reporter plasmids were constructed. The activity of DNA-PKcs promoters was detected by dual-luciferase reporter assay system. A Lac-repressor and Lacoperator based green fluorescent protein imaging system was used to assay the chromatin remodeling activity. Results: A series of reporter plasmids harboring the truncated promoters of DNA-PKcs from -939 bp to -1 bp were constructed. The sequence of -64 bp to-1 bp was identified as a critical element for the activity of DNA-PKes promoter. TAT can suppress the activity of DNA-PKcs promoter. TAT participates in the regulation of the large scale chromatin relaxation. Ionizing radiation attenuates the activity of TAT played in the chromatin remodeling. Conclusion: TAT represses the promoter activity of DNA repair protein DNA-PKcs, and also play a role of large scale chromatin remodeling which can te attenuated by ionizing radiation. (authors)

  2. Effective self-regulation change techniques to promote mental wellbeing among adolescents: a meta-analysis.

    Science.gov (United States)

    van Genugten, Lenneke; Dusseldorp, Elise; Massey, Emma K; van Empelen, Pepijn

    2017-03-01

    Mental wellbeing is influenced by self-regulation processes. However, little is known on the efficacy of change techniques based on self-regulation to promote mental wellbeing. The aim of this meta-analysis is to identify effective self-regulation techniques (SRTs) in primary and secondary prevention interventions on mental wellbeing in adolescents. Forty interventions were included in the analyses. Techniques were coded into nine categories of SRTs. Meta-analyses were conducted to identify the effectiveness of SRTs, examining three different outcomes: internalising behaviour, externalising behaviour, and self-esteem. Primary interventions had a small-to-medium ([Formula: see text] = 0.16-0.29) on self-esteem and internalising behaviour. Secondary interventions had a medium-to-large short-term effect (average [Formula: see text] = 0.56) on internalising behaviour and self-esteem. In secondary interventions, interventions including asking for social support [Formula: see text] 95% confidence interval, CI = 1.11-1.98) had a great effect on internalising behaviour. Interventions including monitoring and evaluation had a greater effect on self-esteem [Formula: see text] 95% CI = 0.21-0.57). For primary interventions, there was not a single SRT that was associated with a greater intervention effect on internalising behaviour or self-esteem. No effects were found for externalising behaviours. Self-regulation interventions are moderately effective at improving mental wellbeing among adolescents. Secondary interventions promoting 'asking for social support' and promoting 'monitoring and evaluation' were associated with improved outcomes. More research is needed to identify other SRTs or combinations of SRTs that could improve understanding or optimise mental wellbeing interventions.

  3. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  4. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

    Science.gov (United States)

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-01-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  5. Developmental Regulation of Gonadotropin-releasing Hormone Gene Expression by the MSX and DLX Homeodomain Protein Families*

    Science.gov (United States)

    Givens, Marjory L.; Rave-Harel, Naama; Goonewardena, Vinodha D.; Kurotani, Reiko; Berdy, Sara E.; Swan, Christo H.; Rubenstein, John L. R.; Robert, Benoit; Mellon, Pamela L.

    2010-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development. PMID:15743757

  6. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  7. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  8. Developmental regulation and complex organization of the promoter ...

    Indian Academy of Sciences (India)

    Unknown

    melanogaster binds to a variety of RNA-binding proteins involved in nuclear RNA ... lopmental stage and environmental conditions. ... for healthy growth. .... for an hour at 22°C to allow synthesis of the heat shock .... system with very low .... magnification to show the presence of hsrω transcripts in the rows of muscle nuclei.

  9. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  10. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Directory of Open Access Journals (Sweden)

    Rebecca E W Kaplan

    2015-12-01

    Full Text Available Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause" is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall

  12. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Science.gov (United States)

    Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan

    2015-12-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows

  13. A relational framework for understanding bullying: Developmental antecedents and outcomes.

    Science.gov (United States)

    Rodkin, Philip C; Espelage, Dorothy L; Hanish, Laura D

    2015-01-01

    This article reviews current research on the relational processes involved in peer bullying, considering developmental antecedents and long-term consequences. The following themes are highlighted: (a) aggression can be both adaptive and maladaptive, and this distinction has implications for bullies' functioning within peer social ecologies; (b) developmental antecedents and long-term consequences of bullying have not been well-distinguished from the extant research on aggressive behavior; (c) bullying is aggression that operates within relationships of power and abuse. Power asymmetry and repetition elements of traditional bullying definitions have been hard to operationalize, but without these specifications and more dyadic measurement approaches there may be little rationale for a distinct literature on bullying--separate from aggression. Applications of a relational approach to bullying are provided using gender as an example. Implications for future research are drawn from the study of relationships and interpersonal theories of developmental psychopathology. (c) 2015 APA, all rights reserved).

  14. Role of developmental factors in hypothalamic function

    Directory of Open Access Journals (Sweden)

    Jakob eBiran

    2015-04-01

    Full Text Available The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors, secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.

  15. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.; Jé gu, Teddy; Latrasse, David; Romero-Barrios, Natali; Christ, Auré lie; Benhamed, Moussa; Crespi, Martí n D.

    2014-01-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  16. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  17. 8-methoxypsoralen and ultraviolet A radiation activate the human elastin promoter in transgenic mice: in vivo and in vitro evidence for gene induction

    International Nuclear Information System (INIS)

    Bernstein, E.F.; Brown, D.B.; Takeuchi, Tsunemichi; Kong, S.K.; Uitto, Jouni; Gasparro, F.P.

    1996-01-01

    Treatment of skin diseases with the combination of 8-methoxypsoralen and ultraviolet A radiation (PUVA) results in clinical alterations in treated skin that resemble those observed in chronically photodamaged skin. The PUVA-treated patients develop nonmelanoma skin cancers, pigmentary alterations and wrinkling characteristic of sun-induced changes. The major alteration in the dermis of sun-damaged skin is the deposition of abnormal elastic fibers, termed solar elastosis. Up-regulation of elastin promoter activity in dermal fibroblasts explains the excess elastic tissue but not the reason for the aberrant morphology of the elastotic material. In order to study photoaging in an experimental system we utilized a transgenic mouse line that expresses the human elastin promoter/chloramphenicol acetyltransferase construct in a tissue-specific and developmentally regulated manner. Although UVB radiation has been demonstrated to increase promoter activity in vitro, UVA fails to demonstrate a similar effect at the doses utilized. In this study, we demonstrate the ability of PUVA treatment to up regulate elastin promoter activity both in vitro and in vivo. These data help to explain the development of photoaging in sun-protected PUVA-treated skin. We attribute the up-regulation of elastin promoter activity in response to PUVA to the formation of DNA photoadducts, which do not occur in response to UVA radiation alone. (UK)

  18. Replication and robustness in developmental research.

    Science.gov (United States)

    Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J

    2014-11-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  19. Conceptualizing Parental Autonomy Support: Adolescent Perceptions of Promotion of Independence versus Promotion of Volitional Functioning

    Science.gov (United States)

    Soenens, Bart; Vansteenkiste, Maarten; Lens, Willy; Luyckx, Koen; Goossens, Luc; Beyers, Wim; Ryan, Richard M.

    2007-01-01

    In current research on parenting, 2 ways of conceptualizing perceived parental autonomy support can be distinguished. Parental autonomy support can be defined in terms of promotion of independence (PI) or in terms of promotion of volitional functioning (PVF). This study aimed to establish the empirical distinctiveness of both conceptualizations…

  20. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    Science.gov (United States)

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  1. The Relationship between the Severity of Eating Problems and Intellectual Developmental Deficit Level

    Science.gov (United States)

    Gal, Eynat; Hardal-Nasser, Reem; Engel-Yeger, Batya

    2011-01-01

    Nutrition, essential in the daily living functions promoting life quality of persons with intellectual developmental deficits (IDD), is adversely affected by the highly prevalent eating problems in these persons. The current study explores the characteristics of eating problems in population of children with intellectual developmental disorders.…

  2. The human luteinizing hormone receptor gene promoter: activation by Sp1 and Sp3 and inhibitory regulation.

    Science.gov (United States)

    Geng, Y; Tsai-Morris, C H; Zhang, Y; Dufau, M L

    1999-09-24

    To understand the transcriptional mechanism(s) of human LH receptor (LHR) gene expression, we have identified the dominant functional cis-elements that regulate the activity of the promoter domain (-1 to -176 bp from ATG). Mutagenesis demonstrated that the promoter activity was dependent on two Sp1 domains (-79 bp, -120 bp) in a transformed normal placental cell (PLC) and the choriocarcinoma JAR cell. Both elements interacted with endogenous Sp1 and Sp3 factors but not with Sp2 or Sp4. In Drosophila SL2 cells, the promoter was activated by either Sp1 or Sp3. An ERE half-site (EREhs) at -174 bp was inhibitory (by 100%), but was unresponsive to estradiol and did not bind the estrogen receptor or orphan receptors ERR1 and SF-1. The 5' upstream sequence (-177 to -2056 bp) inhibited promoter activity in PLC by 60%, but only minimally in JAR cells. Activation of the human LHR promoter through Sp1/3 factors is negatively regulated through EREhs and upstream sequences to exert control of gene expression. Copyright 1999 Academic Press.

  3. Julio J. Ramirez: Award for Distinguished Career Contributions to Education and Training in Psychology.

    Science.gov (United States)

    2014-11-01

    The Award for Distinguished Career Contributions to Education and Training in Psychology is given in recognition of the efforts of psychologists who have made distinguished contributions to education and training, who have produced imaginative innovations, or who have been involved in the developmental phases of programs in education and training in psychology. The Career designation is added to the award at the discretion of the Education and Training Awards Committee to recognize continuous significant contributions made over a lifelong career in psychology. The 2014 recipient of this award is Julio J. Ramirez, for "creating a national infrastructure to support education and training in behavioral neuroscience and biological psychology, for playing a seminal role in creating an undergraduate neuroscience education journal, and for creating a nationally recognized mentoring program for junior faculty in the neurosciences, particularly with underrepresented groups." Ramirez's award citation, biography, and a selected bibliography are presented here. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  5. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    Directory of Open Access Journals (Sweden)

    Runko Suzan J

    2005-10-01

    Full Text Available Abstract Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate, female (megasporangiate, and vegetative organs (leaves of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and

  6. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  7. Mural granulosa cell gene expression associated with oocyte developmental competence

    Directory of Open Access Journals (Sweden)

    Jiang Jin-Yi

    2010-03-01

    Full Text Available Abstract Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC. Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox and nerve growth factor receptor associated protein 1 (Ngfrap1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2, which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and

  8. RNAi Screen in Drosophila melanogastor Identifies Regulators of Steroidogenesis and Developmental Maturation

    DEFF Research Database (Denmark)

    Danielsen, Erik Thomas

    and duration required for juvenile-adult transition. This PhD project demonstrates the power of Drosophila genetics by taking an in vivo genome-wide RNAi screening approach to uncover genes required for the function of steroid producing tissue and developmental maturation. In total, 1909 genes were found...... to be required for the prothoracic gland function and affected the developmental timing for the juvenile-adult transition. Among the screen hits, we focused on an uncharacterized gene, sit (CG5278), which is highly expressed in the gland and is required for ecdysone production. Sit is a homolog of mammalian very...... flux of cholesterol uptake in the gland cells and affected the endosomal trafficking. Therefore this gene was suggested to be named stuck in traffic (sit). Sit’s role in cholesterol uptake was also supported by the observation that the developmental delayed phenotype from loss of sit expression...

  9. Developmental regulation of ecdysone receptor (EcR and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Tathyana Rachel Palo Mello

    2014-12-01

    Full Text Available Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH, control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1. EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g. miR-133 and miR-375, as well honeybee-specific ones (e.g. miR-3745 and miR-3761. Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  10. Religious and Non-religious Activity Engagement as Assets in Promoting Social Ties Throughout University: The Role of Emotion Regulation.

    Science.gov (United States)

    Semplonius, Thalia; Good, Marie; Willoughby, Teena

    2015-08-01

    Emerging adulthood is a time of many changes. For example, one change that occurs for a subset of emerging adults is leaving home and starting university. Importantly, the creation of social ties can aid in promoting positive adjustment during university. This study investigated whether involvement in religious activities promotes social ties among university students directly and/or indirectly through emotion regulation. Importantly, involvement in religious activities may promote self-regulatory skills, and the ability to effectively regulate emotions can aid in navigating social interactions. To rule out potentially important confounding variables, spirituality and involvement in non-religious clubs were statistically controlled in all analyses. The participants included 1,132 university students (70.5 % female) from a university in Ontario, Canada who were surveyed each year over a period of 3 years. The results indicated that involvement in religious activities indirectly predicted more social ties over time through emotion regulation. Spirituality did not predict social ties or emotion regulation. Furthermore, non-religious clubs directly predicted more social ties over time. Thus, although involvement in religious and non-religious activities both predicted more social ties in a university setting over time, the mechanism by which these activities promote social ties differed.

  11. Molecular cloning and characterization of the light-regulation and circadian-rhythm of the VDE gene promoter from Zingiber officinale.

    Science.gov (United States)

    Zhao, Wenchao; Wang, Shaohui; Li, Xin; Huang, Hongyu; Sui, Xiaolei; Zhang, Zhenxian

    2012-08-01

    Ginger (Zingiber officinale Rosc.) is prone to photoinhibition under intense sunlight. Excessive light can be dissipated by the xanthophyll cycle, where violaxanthin de-epoxidase (VDE) plays a critical role in protecting the photosynthesis apparatus from the damage of excessive light. We isolated ~2.0 kb of ginger VDE (GVDE) gene promoter, which contained the circadian box, I-box, G-box and GT-1 motif. Histochemical staining of Arabidopsis indicated the GVDE promoter was active in almost all organs, especially green tissues. β-glucuronidase (GUS) activity driven by GVDE promoter was repressed rather than activated by high light. GUS activity was altered by hormones, growth regulators and abiotic stresses, which increased with 2,4-dichlorophenoxyacetic acid and decreased with abscisic acid, salicylic acid, zeatin, salt (sodium chloride) and polyethylene glycol. Interestingly, GUS activities with gibberellin or indole-3-acetic acid increased in the short-term (24 h) and decreased in the long-term (48 and 72 h). Analysis of 5' flank deletion found two crucial functional regions residing in -679 to -833 and -63 to -210. Northern blotting analysis found transcription to be regulated by the endogenous circadian clock. Finally, we found a region necessary for regulating the circadian rhythm and another for the basic promoter activity. Key message A novel promoter, named GVDE promoter, was first isolated and analyzed in this study. We have determined one region crucial for promoter activity and another responsible for keeping circadian rhythms.

  12. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2016-08-01

    levels, and in some cases be useful in early stage disease or watchful waiting, and in other cases castration resistant prostate cancer (CRPC...dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Molecular endocrinology 13, 376 (Mar, 1999). 9...analyses and in mouse xenograft experiments, as planned. We will also continue to probe the molecular mechanism by which dox elicits these differential

  13. Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated1

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Maldonado-Gama, Minerva; Pantoja, Omar

    1999-01-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. PMID:10398716

  14. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid.

    Directory of Open Access Journals (Sweden)

    Mennatallah M Y Albarqi

    2016-01-01

    Full Text Available The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3 or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs, a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for

  15. Developmental regulation of human truncated nerve growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. (Abbott Laboratories, Abbott Park, IL (USA))

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  16. Developmental regulation of human truncated nerve growth factor receptor

    International Nuclear Information System (INIS)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R.

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system

  17. Distinguishing community benefits: tax exemption versus organizational legitimacy.

    Science.gov (United States)

    Byrd, James D; Landry, Amy

    2012-01-01

    US policymakers continue to call into question the tax-exempt status of hospitals. As nonprofit tax-exempt entities, hospitals are required by the Internal Revenue Service (IRS) to report the type and cost of community benefits they provide. Institutional theory indicates that organizations derive organizational legitimacy from conforming to the expectations of their environment. Expectations from the state and federal regulators (the IRS, state and local taxing authorities in particular) and the community require hospitals to provide community benefits to achieve legitimacy. This article examines community benefit through an institutional theory framework, which includes regulative (laws and regulation), normative (certification and accreditation), and cultural-cognitive (relationship with the community including the provision of community benefits) pillars. Considering a review of the results of a 2006 IRS study of tax-exempt hospitals, the authors propose a model of hospital community benefit behaviors that distinguishes community benefits between cost-quantifiable activities appropriate for justifying tax exemption and unquantifiable activities that only contribute to hospitals' legitimacy.

  18. Insulin promotes cell migration by regulating PSA-NCAM

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Hector J.; Coppieters, Natacha [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Park, Thomas I.H. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dieriks, Birger V.; Faull, Richard L.M. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dragunow, Mike [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Curtis, Maurice A., E-mail: m.curtis@auckland.ac.nz [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand)

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  19. Insulin promotes cell migration by regulating PSA-NCAM

    International Nuclear Information System (INIS)

    Monzo, Hector J.; Coppieters, Natacha; Park, Thomas I.H.; Dieriks, Birger V.; Faull, Richard L.M.; Dragunow, Mike; Curtis, Maurice A.

    2017-01-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  20. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  1. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    Science.gov (United States)

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  2. Empirically Based Phenotypic Profiles of Children with Pervasive Developmental Disorders : Interpretation in the Light of the DSM-5

    NARCIS (Netherlands)

    Greaves-Lord, Kirstin; Eussen, Mart L. J. M.; Verhulst, Frank C.; Minderaa, Ruud B.; Mandy, William; Hudziak, James J.; Steenhuis, Mark Peter; de Nijs, Pieter F.; Hartman, Catharina A.

    This study aimed to contribute to the Diagnostic and Statistical Manual (DSM) debates on the conceptualization of autism by investigating (1) whether empirically based distinct phenotypic profiles could be distinguished within a sample of mainly cognitively able children with pervasive developmental

  3. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng

    2018-05-01

    Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. 29 CFR 1952.221 - Developmental schedule.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Developmental schedule. 1952.221 Section 1952.221 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Management data system operational July 1, 1973. Automated Management data system operational January 1, 1974...

  5. 29 CFR 1952.341 - Developmental schedule.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Developmental schedule. 1952.341 Section 1952.341 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... State Legislature January 1975 and to become effective by May 1, 1975. (d) Management Information System...

  6. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  7. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  8. Insulin and IGF receptors are developmentally regulated in the chick embry eye lens

    International Nuclear Information System (INIS)

    Bassas, L.; Zelenka, P.S.; Serrano, J.; de Pablo, F.

    1987-01-01

    The authors have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [ 125 I]IGF and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study they used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyze whether changes of insulin and IGFI binding are correlated with changes in growth rate and differentiation state of the cells. They show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IFG-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age

  9. Regulation of calretinin in malignant mesothelioma is mediated by septin 7 binding to the CALB2 promoter.

    Science.gov (United States)

    Blum, Walter; Pecze, László; Rodriguez, Janine Wörthmüller; Steinauer, Martine; Schwaller, Beat

    2018-04-27

    The calcium-binding protein calretinin (gene name: CALB2) is currently considered as the most sensitive and specific marker for the diagnosis of malignant mesothelioma (MM). MM is a very aggressive tumor strongly linked to asbestos exposure and with no existing cure so far. The mechanisms of calretinin regulation, as well as its distinct function in MM are still poorly understood. We searched for transcription factors binding to the CALB2 promoter and modulating calretinin expression. For this, DNA-binding assays followed by peptide shotgun-mass spectroscopy analyses were used. CALB2 promoter activity was assessed by dual-luciferase reporter assays. Furthermore, we analyzed the effects of CALB2 promoter-binding proteins by lentiviral-mediated overexpression or down-regulation of identified proteins in MM cells. The modulation of expression of such proteins by butyrate was determined by subsequent Western blot analysis. Immunohistochemical analysis of embryonic mouse lung tissue served to verify the simultaneous co-expression of calretinin and proteins interacting with the CALB2 promoter during early development. Finally, direct interactions of calretinin with target proteins were evidenced by co-immunoprecipitation experiments. Septin 7 was identified as a butyrate-dependent transcription factor binding to a CALB2 promoter region containing butyrate-responsive elements (BRE) resulting in decreased calretinin expression. Accordingly, septin 7 overexpression decreased calretinin expression levels in MM cells. The regulation was found to operate bi-directionally, i.e. calretinin overexpression also decreased septin 7 levels. During murine embryonic development calretinin and septin 7 were found to be co-expressed in embryonic mesenchyme and undifferentiated mesothelial cells. In MM cells, calretinin and septin 7 colocalized during cytokinesis in distinct regions of the cleavage furrow and in the midbody region of mitotic cells. Co-immunoprecipitation experiments

  10. The Competence Promoting by NNSA for Keeping High Level Nuclear Safety: The Corner Stone of the Nuclear Safety Regulation Edifice

    International Nuclear Information System (INIS)

    Hu, L.

    2016-01-01

    Facing the fast development of the nuclear power industry and the application of radioactive sources, The MEP(NNSA) is endeavoured to promoting its competency, including: complementing the law system, training and recruiting staff to keep a capable team, constructing the R&D base to keep the basic capability, promoting safety culture both for the industry and the regulator. After the Fukushima nuclear accident, the MEP(NNSA) planned to construct R&D base, in which the Platform Nuclear Safety Monitoring and Emergency Responding, the Platform of Safety Technology of PWR Testing, the Laboratory of Safety Management Technology of Nuclear Waste Verification, the Laboratory of Environmental Radiation Monitoring and the Center of International Cooperation are included. On the other hand, the MEP(NNSA) issued Chinese nuclear safety culture policy declaration in 2014, and carried out a large scale Specialized Action for Nuclear Safety Promotion to promote the nuclear safety culture both for the industry and herself. For the nuclear regulator, It is essential to conduct the competence promoting by both “hardware” and “software”, the former is the material foundation of regulation authority, which will be effectively functioning under the facilitating of the latter. (author)

  11. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  12. The regulation of CD5 expression in murine T cells

    Directory of Open Access Journals (Sweden)

    Herzenberg Leonard A

    2001-05-01

    Full Text Available Abstract Background CD5 is a pan-T cell surface marker that is also present on a subset of B cells, B-1a cells.Functional and developmental subsets of T cells express characteristic CD5 levels that vary over roughly a 30-fold range. Previous investigators have cloned a 1.7 Kb fragment containing the CD5 promoter and showed that it can confer similar lymphocyte-specific expression pattern as observed for endogenous CD5 expression. Results We further characterize the CD5 promoter and identify minimal and regulatory regions on the CD5 promoter. Using a luciferase reporter system, we show that a 43 bp region on the CD5 promoter regulates CD5 expression in resting mouse thymoma EL4 T cells and that an Ets binding site within the 43 bp region mediates the CD5 expression. In addition, we show that Ets-1, a member of the Ets family of transcription factors, recognizes the Ets binding site in the electrophoretic mobility shift assay (EMSA. This Ets binding site is directly responsible for the increase in reporter activity when co-transfected with increasing amounts of Ets-1 expression plasmid. We also identify two additional evolutionarily-conserved regions in the CD5 promoter (CD5X and CD5Y and demonstrate the respective roles of the each region in the regulation of CD5 transcription. Conclusion Our studies define a minimal and regulatory promoter for CD5 and show that the CD5 expression level in T cells is at least partially dependent on the level of Ets-1 protein. Based on the findings in this report, we propose a model of CD5 transcriptional regulation in T cells.

  13. Developmental checkpoints and feedback circuits time insect maturation

    DEFF Research Database (Denmark)

    Rewitz, Kim Furbo; Yamanaka, Naoki; O'Connor, Michael B.

    2013-01-01

    as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize...... a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms...... that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans....

  14. Assessing Variations in Developmental Outcomes Among Teenage Offspring of Teen Mothers: Maternal Life Course Correlates.

    Science.gov (United States)

    Lee, Jungeun Olivia; Gilchrist, Lewayne D; Beadnell, Blair A; Lohr, Mary Jane; Yuan, Chaoyue; Hartigan, Lacey A; Morrison, Diane M

    2017-09-01

    This study investigated potential heterogeneity in development among offspring (age 17) of teen mothers and maternal life course as correlates of variation. Using latent class analysis, subgroups of developmental outcomes were identified. Maternal standing in two life course realms (i.e., socioeconomic and domestic) was considered as a potential explanation for heterogeneity in offspring's development. Offspring reported on measures assessing their psychological, academic, and behavioral development. Teen mothers reported on measures of life course realms. Three subgroups of developmental outcomes were identified: on track (52%), at risk (37%), and troubled (11%). Findings suggest that economic hardship and number of pregnancies among teen mothers distinguish developmental patterns among teenage offspring, whereas teen mothers' educational attainment and marital status do not. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.

  15. Transcription regulation by the Mediator complex.

    Science.gov (United States)

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  16. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  18. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    International Nuclear Information System (INIS)

    Li, Zhi; Li, Youjun; Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong

    2016-01-01

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  19. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Directory of Open Access Journals (Sweden)

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  20. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  1. How do developmental and accommodative HRM enhance employee engagement and commitment? : The role of psychological contract and SOC-strategies

    NARCIS (Netherlands)

    Bal, P.M.; Kooij, T.A.M.; de Jong, S.B.

    2013-01-01

    In the context of the changing workforce, this study introduced two perspectives on HRM and distinguished universalistic developmental HRM from contingent accommodative HRM. We predicted two separate pathways for the effects on two employee outcomes: work engagement and affective commitment. We

  2. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs.

    Science.gov (United States)

    Soheilypour, M; Mofrad, M R K

    2016-11-02

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

  3. The two forms of capitalism: developmentalism and economic liberalism

    Directory of Open Access Journals (Sweden)

    LUIZ CARLOS BRESSER-PEREIRA

    Full Text Available ABSTRACT This paper argues that the state and the market are the main institutions regulating capitalism, and, correspondingly, that the form of the economic and political coordination of capitalism will be either developmental or liberal. It defines the developmental state, relates it to the formation of a developmental class coalition, and notes that capitalism was born developmental in its mercantilist phase, turned liberal in the nineteenth century, and, after 1929, became once again developmental, but, now, democratic and progressive. All industrial and capitalist revolutions took place within the framework of developmentalism, whereby the state coordinates the non-competitive sector of the economy and the five macroeconomic prices (which the market is unable to make “right”, while the market coordinates the competitive sector. In the 1970s, a crisis opened the way for a short-lived and reactionary form of capitalism, neoliberalism or rentier-financier capitalism. Since the 2008 Global Financial Crisis, the neoliberal hegemony has come to an end, and we are now experiencing a period of transition.

  4. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  5. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Eunsohl Lee

    2016-09-01

    Full Text Available Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT and cancer stem cells (CSCs. Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1 plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated–PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.

  6. 29 CFR 1952.151 - Developmental schedule.

    Science.gov (United States)

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... developmental plan for a “Management Information System” on the date of Plan approval. This program is to be... years after grant award. (p) A State “Safety and Health” poster will be prepared within ninety (90) days...

  7. Allostatic load in parents of children with developmental disorders: moderating influence of positive affect.

    Science.gov (United States)

    Song, Jieun; Mailick, Marsha R; Ryff, Carol D; Coe, Christopher L; Greenberg, Jan S; Hong, Jinkuk

    2014-02-01

    This study examines whether parents of children with developmental disorders are at risk of elevated allostatic load relative to control parents and whether positive affect moderates difference in risk. In all, 38 parents of children with developmental disorders and 38 matched comparison parents were analyzed. Regression analyses revealed a significant interaction between parent status and positive affect: parents of children with developmental disorders had lower allostatic load when they had higher positive affect, whereas no such association was evident for comparison parents. The findings suggest that promoting greater positive affect may lower health risks among parents of children with developmental disorders.

  8. Regulating the advertising and promotion of stem cell therapies.

    Science.gov (United States)

    von Tigerstrom, Barbara

    2017-10-01

    There are widespread concerns with the ways in which 'unproven' stem cell therapies are advertised to patients. This article explores the potential and limits of using laws that regulate advertising and promotion as a tool to address these concerns. It examines general consumer protection laws and laws and policies on advertising medical products and services, focusing on the USA, Canada and Australia. The content of existing laws and policies covers most of the marketing practices that cause concern, but several systemic factors are likely to limit enforcement efforts. Potential reforms in Australia that would prevent direct-to-consumer advertising of autologous cell therapies are justified in principle and should be considered by other jurisdictions, but again face important practical limits to their effectiveness.

  9. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-05-15

    The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is

  10. 75 FR 55292 - Amendment to Egg Research and Promotion Order and Regulations To Increase the Rate of Assessment...

    Science.gov (United States)

    2010-09-10

    ...] Amendment to Egg Research and Promotion Order and Regulations To Increase the Rate of Assessment and.... SUMMARY: This proposed rule would amend the Egg Research and Promotion Order (Order) to increase the assessment rate on egg producers paying assessments to the American Egg Board (AEB) from 10 cents to 15 cents...

  11. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    Science.gov (United States)

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  12. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  13. Developmental Social Cognitive Neuroscience: Insights from Deafness

    Science.gov (United States)

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  14. Social Influence on Positive Youth Development: A Developmental Neuroscience Perspective.

    Science.gov (United States)

    Telzer, Eva H; van Hoorn, Jorien; Rogers, Christina R; Do, Kathy T

    2018-01-01

    Susceptibility to social influence is associated with a host of negative outcomes during adolescence. However, emerging evidence implicates the role of peers and parents in adolescents' positive and adaptive adjustment. Hence, in this chapter we highlight social influence as an opportunity for promoting social adjustment, which can redirect negative trajectories and help adolescents thrive. We discuss influential models about the processes underlying social influence, with a particular emphasis on internalizing social norms, embedded in social learning and social identity theory. We link this behavioral work to developmental social neuroscience research, rooted in neurobiological models of decision making and social cognition. Work from this perspective suggests that the adolescent brain is highly malleable and particularly oriented toward the social world, which may account for heightened susceptibility to social influences during this developmental period. This chapter underscores the need to leverage social influences during adolescence, even beyond the family and peer context, to promote positive developmental outcomes. By further probing the underlying neural mechanisms as an additional layer to examining social influence on positive youth development, we will be able to gain traction on our understanding of this complex phenomenon. © 2018 Elsevier Inc. All rights reserved.

  15. Children's Self-Regulation and School Achievement in Cultural Contexts: The Role of Maternal Restrictive Control

    Science.gov (United States)

    Weis, Mirjam; Trommsdorff, Gisela; Muñoz, Lorena

    2016-01-01

    Self-regulation can be developed through parent-child interactions and has been related to developmental outcomes, e.g., such as educational achievement. This study examined cross-cultural differences and similarities in maternal restrictive control, self-regulation (i.e., behavior and emotion regulation) and school achievement and relations among these variables in Germany and Chile. Seventy-six German and 167 Chilean fourth graders, their mothers, and their teachers participated. Mothers and teachers rated children's behavior regulation with a subscale of the Strengths and Difficulties Questionnaire. Children reported their use of emotion regulation strategies on the Questionnaire for the Measurement of Stress and Coping. Mothers rated maternal restrictive control by answering the Parenting Practice Questionnaire. School achievement was assessed by grades for language and mathematics. Results showed higher behavior regulation of German children in comparison to Chilean children and a higher preference of restrictive parental control in Chilean mothers than in German mothers. Regression analyses revealed positive relations between children's behavior regulation and school achievement in Germany and in Chile. Further, in both cultural contexts, maternal restrictive control was related negatively to behavior regulation and positively to anger-oriented emotion regulation. In sum, the study showed the central function of behavior regulation for school achievement underlining negative relations of maternal restrictive control with children's self-regulation and school achievement in diverse cultural contexts. Culturally adapted interventions related to parenting practices to promote children's behavior regulation may assist in also promoting children's school achievement. PMID:27303318

  16. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  17. Identification and transcription profiling of trypsin in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation, blood feeding, and permethrin exposure.

    Science.gov (United States)

    Zhao, Liming; Chen, Jian; Becnel, James J; Kline, Daniel L; Clark, Gary G; Linthicum, Kenneth J

    2011-05-01

    The cDNA of a trypsin gene from Aedes (Ochlerotatus) taeniorhynchus (Weidemann) was cloned and sequenced. The full-length mRNA sequence (890 bp) for trypsin from Ae. taeniorhynchus (AetTryp1) was obtained, which encodes an open reading frame of 765 bp (i.e., 255 amino acids). To detect whether AetTryp is developmentally regulated, a quantitative real-time polymerase chain reaction was used to examine AetTrypl mRNA expression levels in different developmental stages of Ae. taeniorhynchus. AetTryp1 was expressed at low levels in egg, larval, and pupal stages, but was differentially expressed in adult Ae. taeniorhynchus, with highest levels found in 5-d-old female adults when compared with teneral adults. In addition, AetTryp1 mRNA expression differed between sexes, with expression levels much lower in males. However, in both males and females, there was a significant increase in AetTryp1 transcription levels as age increased and peaked in 5-d-old adults. AetTrypl expressed in 5-d-old female Ae. taeniorhynchus significantly increased after 30 min postblood feeding compared with the control. The AetTryp1 mRNA expression in 5-d-old female Ae. taeniorhynchus was affected by different concentrations of permethrin.

  18. The role of the regulator in promoting and evaluating safety culture. Operating experience feedback programme approach

    International Nuclear Information System (INIS)

    Perez, S.

    2002-01-01

    Promoting and Evaluating Safety Culture (S.C.) in Operating Organizations must be one of the main Nuclear Regulator goals to achieve. This can be possible only if each and every one of the regulatory activities inherently involves S.C. It can be seen throughout attitudes, values, uses and practices in both individuals and the whole regulatory organization. One among all the regulatory tools commonly used by regulators to promote and evaluate the commitment of the licensees with safety culture as a whole involves organizational factors and particular attention is directed to the operating organization. This entailed a wide range of activities, including all those related with management of safety performance. Operating Experience Feedback Programme as a tool to enhance safety operation is particularly useful for regulators in the evaluation of the role of S.C. in operating organization. Safety Culture is recognized as a subset of the wider Organizational Culture. Practices that improve organizational effectiveness can also contribute to enhance safety. An effective event investigation methodology is a specific practice, which contributes to a healthy Safety Culture. (author)

  19. Neuroendocrine Regulation of Maternal Behavior

    Science.gov (United States)

    Bridges, Robert S.

    2015-01-01

    The expression of maternal behavior in mammals is regulated by the developmental and experiential events over a female’s lifetime. In this review the relationships between the endocrine and neural systems that play key roles in these developmental and experiential that affect both the establishment and maintenance of maternal care are presented. The involvement of the hormones estrogen, progesterone, and lactogens are discussed in the context of ligand, receptor, and gene activity in rodents and to a lesser extent in higher mammals. The roles of neuroendocrine factors, including oxytocin, vasopressin, classical neurotransmitters, and other neural gene products that regulate aspects of maternal care are set forth, and the interactions of hormones with central nervous system mediators of maternal behavior are discussed. The impact of prior developmental factors, including epigenetic events, and maternal experience on subsequent maternal care are assessed over the course of the female’s lifespan. It is proposed that common neuroendocrine mechanisms underlie the regulation of maternal care in mammals. PMID:25500107

  20. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    Science.gov (United States)

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also

  1. Epigenetics and the Developmental Origins of Health and ...

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  2. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  3. SUMOylation of Blimp-1 promotes its proteasomal degradation.

    Science.gov (United States)

    Shimshon, Livnat; Michaeli, Avital; Hadar, Rivka; Nutt, Stephen L; David, Yael; Navon, Ami; Waisman, Ari; Tirosh, Boaz

    2011-08-04

    B lymphocyte induced maturation protein-1 (Blimp-1) is a transcription repressor of the Krueppel-like family. Blimp-1 plays important roles in developmental processes, such as of germ cells and hair follicle stem cells. In B lymphocytes Blimp-1 orchestrates the terminal differentiation into plasma cells. We discovered that Blimp-1 undergoes SUMOylation by SUMO-1. This SUMOylation is modulated by the SUMO protease SENP1. While Blimp-1 is relatively stable in 293T cells, a fusion with SUMO1 rendered it to rapid proteasomal degradation. Increase in SENP1 activity stabilized Blimp-1, while a decrease promoted its degradation. Our data indicate that SUMOylation of Blimp-1 regulates its intracellular stability. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Targeting developmental regulators of zebrafish exocrine pancreas as a therapeutic approach in human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-02-01

    Histone deacetylases (HDACs and RNA polymerase III (POLR3 play vital roles in fundamental cellular processes, and deregulation of these enzymes has been implicated in malignant transformation. Hdacs and Polr3 are required for exocrine pancreatic epithelial proliferation during morphogenesis in zebrafish. We aim to test the hypothesis that Hdacs and Polr3 cooperatively control exocrine pancreatic growth, and combined inhibition of HDACs and POLR3 produces enhanced growth suppression in pancreatic cancer. In zebrafish larvae, combination of a Hdac inhibitor (Trichostatin A and an inhibitor of Polr3 (ML-60218 synergistically prohibited the expansion of exocrine pancreas. In human pancreatic adenocarcinoma cells, combination of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA and ML-60218 produced augmented suppression of colony formation and proliferation, and induction of cell cycle arrest and apoptotic cell death. The enhanced cytotoxicity was associated with supra-additive upregulation of the pro-apoptotic regulator BAX and the cyclin-dependent kinase inhibitor p21CDKN1A. tRNAs have been shown to have pro-proliferative and anti-apoptotic roles, and SAHA-stimulated expression of tRNAs was reversed by ML-60218. These findings demonstrate that chemically targeting developmental regulators of exocrine pancreas can be translated into an approach with potential impact on therapeutic response in pancreatic cancer, and suggest that counteracting the pro-malignant side effect of HDAC inhibitors can enhance their anti-tumor activity.

  5. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis.

    Science.gov (United States)

    Wen, Luan; Shibata, Yuki; Su, Dan; Fu, Liezhen; Luu, Nga; Shi, Yun-Bo

    2017-06-01

    Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.

  6. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  7. Guided Autobiography's Developmental Exchange: What's in It for Me?

    Science.gov (United States)

    Thornton, James E.; Collins, John B.; Birren, James E.; Svensson, Cheryl

    2011-01-01

    The developmental exchange is a central feature of social development, interpersonal dynamics, situated learning, and personal transformation. It is the enabling process in Guided Autobiography (GAB) settings that promotes the achievement of personal goals and group accomplishments. Nevertheless, these exchanges are embedded in the GAB structures…

  8. Empirically Based Phenotypic Profiles of Children with Pervasive Developmental Disorders: Interpretation in the Light of the DSM-5

    Science.gov (United States)

    Greaves-Lord, Kirstin; Eussen, Mart L. J. M.; Verhulst, Frank C.; Minderaa, Ruud B.; Mandy, William; Hudziak, James J.; Steenhuis, Mark Peter; de Nijs, Pieter F.; Hartman, Catharina A.

    2013-01-01

    This study aimed to contribute to the Diagnostic and Statistical Manual (DSM) debates on the conceptualization of autism by investigating (1) whether empirically based distinct phenotypic profiles could be distinguished within a sample of mainly cognitively able children with pervasive developmental disorder (PDD), and (2) how profiles related to…

  9. Developmental instability: measures of resistance and resilience using pumpkin (Cucurbita pepo L.)

    Science.gov (United States)

    Freeman, D. Carl; Brown, Michelle L.; Dobson, Melissa; Jordan, Yolanda; Kizy, Anne; Micallef, Chris; Hancock, Leandria C.; Graham, John H.; Emlen, John M.

    2003-01-01

    Fluctuating asymmetry measures random deviations from bilateral symmetry, and thus estimates developmental instability, the loss of ability by an organism to regulate its development. There have been few rigorous tests of this proposition. Regulation of bilateral symmetry must involve either feedback between the sides or independent regulation toward a symmetric set point. Either kind of regulation should decrease asymmetry over time, but only right–left feedback produces compensatory growth across sides, seen as antipersistent growth following perturbation. Here, we describe the developmental trajectories of perturbed and unperturbed leaves of pumpkin, Cucurbita pepoL., grown at three densities. Covering one side of a leaf with aluminium foil for 24 h perturbed leaf growth. Reduced growth on the perturbed side caused leaves to become more asymmetrical than unperturbed controls. After the treatment the size-corrected asymmetry decreased over time. In addition, rescaled range analysis showed that asymmetry was antipersistent rather than random, i.e. fluctuation in one direction was likely to be followed by fluctuations in the opposite direction. Development involves right–left feedback. This feedback reduced size-corrected asymmetry over time most strongly in the lowest density treatment suggesting that developmental instability results from a lack of resilience rather than resistance. 

  10. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation

    Science.gov (United States)

    Sebastian, Soji; Sreenivas, Prethish; Sambasivan, Ramkumar; Cheedipudi, Sirisha; Kandalla, Prashanth; Pavlath, Grace K.; Dhawan, Jyotsna

    2009-01-01

    Most cells in adult tissues are nondividing. In skeletal muscle, differentiated myofibers have exited the cell cycle permanently, whereas satellite stem cells withdraw transiently, returning to active proliferation to repair damaged myofibers. We have examined the epigenetic mechanisms operating in conditional quiescence by analyzing the function of a predicted chromatin regulator mixed lineage leukemia 5 (MLL5) in a culture model of reversible arrest. MLL5 is induced in quiescent myoblasts and regulates both the cell cycle and differentiation via a hierarchy of chromatin and transcriptional regulators. Knocking down MLL5 delays entry of quiescent myoblasts into S phase, but hastens S-phase completion. Cyclin A2 (CycA) mRNA is no longer restricted to S phase, but is induced throughout G0/G1, with activation of the cell cycle regulated element (CCRE) in the CycA promoter. Overexpressed MLL5 physically associates with the CCRE and impairs its activity. MLL5 also regulates CycA indirectly: Cux, an activator of CycA promoter and S phase is induced in RNAi cells, and Brm/Brg1, CCRE-binding repressors that promote differentiation are repressed. In knockdown cells, H3K4 methylation at the CCRE is reduced, reflecting quantitative global changes in methylation. MLL5 appears to lack intrinsic histone methyl transferase activity, but regulates expression of histone-modifying enzymes LSD1 and SET7/9, suggesting an indirect mechanism. Finally, expression of muscle regulators Pax7, Myf5, and myogenin is impaired in MLL5 knockdown cells, which are profoundly differentiation defective. Collectively, our results suggest that MLL5 plays an integral role in novel chromatin regulatory mechanisms that suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells. PMID:19264965

  11. The RB/E2F pathway and regulation of RNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Ahlander, Joseph [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States); Bosco, Giovanni, E-mail: gbosco@email.arizona.edu [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States)

    2009-07-03

    The retinoblastoma tumor suppressor protein (RB) is inactivated in a majority of cancers. RB restricts cell proliferation by inhibiting the E2F family of transcription factors. The current model for RB/E2F function describes its role in regulating transcription at gene promoters. Whether the RB or E2F proteins might play a role in gene expression beyond transcription initiation is not well known. This review describes evidence that points to a novel role for the RB/E2F network in the regulation of RNA processing, and we propose a model as a framework for future research. The elucidation of a novel role of RB in RNA processing will have a profound impact on our understanding of the role of this tumor suppressor family in cell and developmental biology.

  12. Adapting Evidence-Based Interventions for Students with Developmental Disabilities

    Science.gov (United States)

    Gilmore, Linda; Campbell, Marilyn; Shochet, Ian

    2016-01-01

    Students with developmental disabilities have many challenges with learning and adaptive behaviour, as well as a higher prevalence rate of mental health problems. Although there is a substantial body of evidence for effcacious interventions for enhancing resilience and promoting mental health in typically developing children, very few programs…

  13. Beyond allostatic load: rethinking the role of stress in regulating human development.

    Science.gov (United States)

    Ellis, Bruce J; Del Giudice, Marco

    2014-02-01

    How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

  14. Insulation and wiring specificity of BceR-like response regulators and their target promoters in Bacillus subtilis.

    Science.gov (United States)

    Fang, Chong; Nagy-Staroń, Anna; Grafe, Martin; Heermann, Ralf; Jung, Kirsten; Gebhard, Susanne; Mascher, Thorsten

    2017-04-01

    BceRS and PsdRS are paralogous two-component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, P bceA or P psdA , resulting in a strong up-regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross-regulation has been observed between them. We therefore investigated the specificity determinants of P bceA and P psdA that ensure the insulation of these two paralogous pathways at the RR-promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high-affinity, low-specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low-affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities. © 2016 John Wiley & Sons Ltd.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  16. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  17. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  18. Documenting Different Domains of Promotion of Autonomy in Families

    Science.gov (United States)

    Manzi, Claudia; Regalia, Camillo; Pelucchi, Sara; Fincham, Frank D.

    2012-01-01

    Parental promotion of autonomy for offspring well-being has been widely recognized in developmental psychology. Recent studies, however, show that this association varies across cultures. Such variation may reflect inappropriate measurement of this dimension of parenting. Therefore, three existing measures of promotion of autonomy were used to…

  19. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  20. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Science.gov (United States)

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  1. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  2. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    International Nuclear Information System (INIS)

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-01

    Research highlights: → Ibandronate significantly promote the proliferation of PDLSC cells. → Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. → The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. → Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. → Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation-related genes via miRNAs. The exact

  3. MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence.

    Science.gov (United States)

    Chatterjee, Jaidip; Miyamoto, Carol M; Zouzoulas, Athina; Lang, B Franz; Skouris, Nicolas; Meighen, Edward A

    2002-10-01

    The induction of luminescence in Vibrio harveyi at the later stages of growth is controlled by a quorum-sensing mechanism in addition to nutritional signals. However, the mechanism of transmission of these signals directly to the lux promoters is unknown and only one regulatory protein, LuxR, has been shown to bind directly to lux promoter DNA. In this report, we have cloned and sequenced two genes, crp and metR, coding for the nutritional regulators, CRP (cAMP receptor protein) and MetR (a LysR homologue), involved in catabolite repression and methionine biosynthesis respectively. The metR gene was cloned based on a general strategy to detect lux DNA-binding proteins expressed from a genomic library, whereas the crp gene was cloned based on its complementation of an Escherichia coli crp mutant. Both CRP and MetR were shown to bind to lux promoter DNA, with CRP being dependent on the presence of cAMP. Expression studies indicated that the two regulators had opposite effects on luminescence: CRP was an activator and MetR a repressor. Disruption of crp decreased luminescence by about 1,000-fold showing that CRP is a major activator of luminescence the same as LuxR, whereas disruption of MetR resulted in activation of luminescence over 10-fold, confirming its function as a repressor. Comparison of the levels of the autoinducers involved in quorum sensing excreted by V. harveyi, and the crp and metR mutants, showed that autoinducer production was not significantly different, thus indicating that the nutritional signals do not affect luminescence by changing the levels of the signals required for quorum sensing. Indeed, the large effects of these nutritional sensors show that luminescence is controlled by multiple signals related to the environment and the cell density which must be integrated at the molecular level to control expression at the lux promoters.

  4. Promoting and regulating generic medicines: Brazil in comparative perspective

    Directory of Open Access Journals (Sweden)

    Elize Massard da Fonseca

    2017-04-01

    Full Text Available ABSTRACT Promoting the use of generic drugs can constitute a core instrument for countries’ national pharmaceutical policies, one that reduces drug expenditure while expanding health care access. Despite the potential importance of such policy measures and the differences among national practices, scholars embarking on comparative analysis lack a roadmap for determining which dimensions of generic drug policy to assess and compare. This report fills that gap by considering national rules and regulations across four dimensions deemed crucial to any evaluation: demonstrated therapeutic equivalence; pharmaceutical packaging and labeling; drug prescription; and drug substitution. Furthermore, this report examines how the diverse interests of public and private sector stakeholders might shape generic drug policy and its implementation. To illustrate the challenges and conflicts behind policy development and implementation, this report focuses on the case of Brazil.

  5. Developmental toxicology: adequacy of current methods.

    Science.gov (United States)

    Peters, P W

    1998-01-01

    Toxicology embraces several disciplines such as carcinogenicity, mutagenicity and reproductive toxicity. Reproductive toxicology is concerned with possible effects of substances on the reproductive process, i.e. on sexual organs and their functions, endocrine regulation, fertilization, transport of the fertilized ovum, implantation, and embryonic, fetal and postnatal development, until the end-differentiation of the organs is achieved. Reproductive toxicology is divided into areas related to male and female fertility, and developmental toxicology. Developmental toxicology can be further broken down into prenatal and postnatal toxicology. Today, much new information is available about the origins of developmental disorders resulting from chemical exposure. While these findings seem to promise important new developments in methodology and research, there is a danger of losing sight of the precepts and principles established in the light of existing knowledge. There is also a danger that we may fail to correct shortcomings in our existing procedures and practice. The aim of this presentation is to emphasize the importance of testing substances for their impact in advance of their use and to underline that we must use the best existing tools for carrying out risk assessments. Moreover, it needs to be stressed that there are many substances that are never assessed with respect to reproductive and developmental toxicity. Similarly, our programmes for post-marketing surveillance with respect to developmental toxicology are grossly inadequate. Our ability to identify risks to normal development and reproduction would be much improved, first if a number of straightforward precepts were always followed and second, if we had a clearer understanding of what we mean by risk and acceptable levels of risk in the context of development. Other aims of this paper are: to stress the complexity of the different stages of normal prenatal development; to note the principles that are

  6. The Implications of the Developmental Origins of Health and Disease on Public Health Policy and Health Promotion in South Africa.

    Science.gov (United States)

    Reddy, Sasiragha Priscilla; Mbewu, Anthony David

    2016-11-09

    The developmental origins of health and disease (DOHaD) hypothesis states that environmental influences in utero and in early life can determine health and disease in later life through the programming of genes and/or altered gene expression. The DOHaD is likely to have had an effect in South Africa during the fifty years of apartheid; and during the twenty years since the dawn of democracy in 1994. This has profound implications for public health and health promotion policies in South Africa, a country experiencing increased prevalence of noncommunicable diseases (NCDs) and risk factors and behaviours for NCDs due to rapid social and economic transition, and because of the DOHaD. Public health policy and health promotion interventions, such as those introduced by the South African Government over the past 20 years, were designed to improve the health of pregnant women (and their unborn children). They could in addition, through the DOHaD mechanism, reduce NCDs and their risk factors in their offspring in later life. The quality of public health data over the past 40 years in South Africa precludes the possibility of proving the DOHaD hypothesis in that context. Nevertheless, public health and health promotion policies need to be strengthened, if South Africa and other low and middle income countries (LMICs) are to avoid the very high prevalence of NCDs seen in Europe and North America in the 50 years following the Second World War, as a result of socio economic transition and the DOHaD.

  7. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3' untranslated region and intronic cis-elements.

    Science.gov (United States)

    Muhle, Rebecca A; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J; Muhle, Michael E; Fidock, David A

    2009-11-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitised erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilising the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var subtelomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronised parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may result from the integrated UpsA promoter being largely silenced by the neighbouring cg6 promoter. Our analyses also revealed that the DownsA 3' untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA-promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyse promoter activity of Group A var genes, which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var

  8. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Rational Choice and Developmental Influences on Recidivism Among Adolescent Felony Offenders

    OpenAIRE

    Fagan, Jeffrey; Piquero, Alex R.

    2007-01-01

    Recent case law and social science both have claimed that the developmental limitations of adolescents affect their capacity for control and decision making with respect to crime, diminishing their culpability and reducing their exposure to punishment. Social science has focused on two concurrent adolescent developmental influences: the internalization of legal rules and norms that regulate social and antisocial behaviors, and the development of rationality to frame behavioral choices and dec...

  10. Screening, intervention and outcome in autism and other developmental disorders: the role of randomized controlled trials.

    Science.gov (United States)

    Fernell, Elisabeth; Wilson, Philip; Hadjikhani, Nouchine; Bourgeron, Thomas; Neville, Brian; Taylor, David; Minnis, Helen; Gillberg, Christopher

    2014-08-01

    We draw attention to a number of important considerations in the arguments about screening and outcome of intervention in children with autism and other developmental disorders. Autism screening in itself never provides a final clinical diagnosis, but may well identify developmental deviations indicative of autism-or of other developmental disorders-that should lead to referral for further clinical assessment. Decisions regarding population or clinic screening cannot be allowed to be based on the fact that prospective longitudinal RCT designs over decades could never be performed in complex developmental disorders. We propose an alternative approach. Early screening for autism and other developmental disorders is likely to be of high societal importance and should be promoted and rigorously evaluated.

  11. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide.

    Science.gov (United States)

    Xue, Yan-Feng; Zhang, Meng; Qi, Zhong-Qiang; Li, You-Qin; Shi, Zhiqi; Chen, Jian

    2016-02-01

    Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching. © 2015 Society of Chemical Industry.

  12. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  13. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  14. Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Rohlin, A; Engwall, Y; Fritzell, K

    2011-01-01

    inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require......Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half...... of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance...

  15. The History of Legislation and Regulations Related to Children with Developmental Disabilities: Implications for School Nursing Practice Today

    Science.gov (United States)

    Dang, Michelle T.

    2010-01-01

    A significant number of children in the United States have developmental disabilities. Historically, many children with developmental disabilities were institutionalized and rarely seen in public. Currently, children with developmental disabilities are entitled to education and health-related support services that permit them access to public…

  16. DNAJC6 promotes hepatocellular carcinoma progression through induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Yang, Tao; Li, Xiao-Na; Li, Xing-Guang; Li, Ming; Gao, Peng-Zhi

    2014-01-01

    Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients with HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC

  17. DNAJC6 promotes hepatocellular carcinoma progression through induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tao [Hepatobiliary Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China); Li, Xiao-Na [General Surgery, Sports Science Institute of Hebei Province, Shijiazhuang 050011 (China); Li, Xing-Guang; Li, Ming [General Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China); Gao, Peng-Zhi, E-mail: pengzhigaovip@163.com [Hepatobiliary Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China)

    2014-12-12

    Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients with HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC.

  18. Oral Language Impairments in Developmental Disorders Characterized by Language Strengths: A Comparison of Asperger Syndrome and Nonverbal Learning Disabilities

    Science.gov (United States)

    Stothers, M. E.; Cardy, J. Oram

    2012-01-01

    Asperger syndrome (AS) and nonverbal learning disabilities (NLD) are developmental disorders in which linguistic ability is reported to be stronger than in disorders from which they must be distinguished for diagnosis. Children and adults with AS and NLD share pragmatic weaknesses, atypical social behaviours, and some cognitive features. To date,…

  19. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana.

    Science.gov (United States)

    Giri, Mrunmay K; Singh, Nidhi; Banday, Zeeshan Z; Singh, Vijayata; Ram, Hathi; Singh, Deepjyoti; Chattopadhyay, Sudip; Nandi, Ashis K

    2017-09-01

    G-BOX BINDING FACTOR 1 (GBF1) influences light-regulated seedling development in Arabidopsis, and inhibits CATALASE 2 (CAT2) expression during senescence. CAT2 functions as a scavenger of hydrogen peroxide. The role of GBF1 in the defense response is not known. We report here that GBF1 positively influences the defense against virulent and avirulent strains of Pseudomonas syringae. The gbf1 mutants are susceptible, whereas GBF1 over-expresser transgenic plants are resistant to bacterial pathogens. GBF1 negatively regulates pathogen-induced CAT2 expression and thereby positively regulates the hypersensitive response. In addition to CAT2 promoter, GBF1 binds to the G-box-like element present in the intron of PHYTOALEXIN DEFICIENT 4 (PAD4). This association of GBF1 with PAD4 intron is enhanced upon pathogenesis. GBF1 positively regulates PAD4 transcription in an intron-dependent manner. GBF1-mediated positive regulation of PAD4 expression is also evident in gbf1 mutant and GBF1 over-expression lines. Similar to pad4 mutants, pathogen-induced camalexin and salicylic acid (SA) accumulation, and expression of SA-inducible PATHOGENESIS RELATED1 (PR1) gene are compromised in the gbf1 mutant. Exogenous application of SA rescues the loss-of-defense phenotypes of gbf1 mutant. Thus, altogether, our results demonstrate that GBF1 is an important component of the plant defense response that functions upstream of SA accumulation and, by oppositely regulating CAT2 and PAD4, promotes disease resistance in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved

    International Nuclear Information System (INIS)

    Huang, Lixing; Wang, Chonggang; Zhang, Youyu; Wu, Meifang; Zuo, Zhenghong

    2013-01-01

    Highlights: • Phe exposure caused obvious morphological changes in the retina. • Phe exposure caused apoptosis and reduction of cell proliferation in the retina. • Phe causes ocular toxicity might be via the AhR/Zeb1/Mitf/Pax6 signaling pathway. • AhR is a repressor of Zeb1. -- Abstract: Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression

  1. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  2. Promoting the self-regulation of clinical reasoning skills in nursing students.

    Science.gov (United States)

    Kuiper, R; Pesut, D; Kautz, D

    2009-10-02

    The purpose of this paper is to describe the research surrounding the theories and models the authors united to describe the essential components of clinical reasoning in nursing practice education. The research was conducted with nursing students in health care settings through the application of teaching and learning strategies with the Self-Regulated Learning Model (SRL) and the Outcome-Present-State-Test (OPT) Model of Reflective Clinical Reasoning. Standardized nursing languages provided the content and clinical vocabulary for the clinical reasoning task. This descriptive study described the application of the OPT model of clinical reasoning, use of nursing language content, and reflective journals based on the SRL model with 66 undergraduate nursing students over an 8 month period of time. The study tested the idea that self-regulation of clinical reasoning skills can be developed using self-regulation theory and the OPT model. This research supports a framework for effective teaching and learning methods to promote and document learner progress in mastering clinical reasoning skills. Self-regulated Learning strategies coupled with the OPT model suggest benefits of self-observation and self-monitoring during clinical reasoning activities, and pinpoints where guidance is needed for the development of cognitive and metacognitive awareness. Thinking and reasoning about the complexities of patient care needs requires attention to the content, processes and outcomes that make a nursing care difference. These principles and concepts are valuable to clinical decision making for nurses globally as they deal with local, regional, national and international health care issues.

  3. Developmental dyslexia and dysgraphia: What can we learn from the one about the other?

    Directory of Open Access Journals (Sweden)

    Diana eDöhla

    2016-01-01

    Full Text Available Up to 17 % of German school children suffer from reading and writing disabilities. Unlike developmental dyslexia, only few studies have addressed dysgraphia. Presenting a comprehensive overview of the current state of the art in developmental dyslexia and dysgraphia, this paper aims to determine how far existing knowledge about the causes of developmental dyslexia also apply to developmental dysgraphia. To promote understanding of developmental dysgraphia, the paper discusses relevant aspects such as predictors, causes and comorbidities, models of acquisition as well as existing deficit models. A comparison of definitions in the DSM-V and ICD-10 complemented by an overview of the most recent German guideline ought to give the reader deeper insight into this topic. The current issue of growing up bilingually and the connection between reading and writing deficits are also discussed. In conclusion, this paper presents a critical survey of theoretical and practical implications for the diagnostics and treatment of developmental dysgraphia.

  4. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  5. Distinguishing Hidden Markov Chains

    OpenAIRE

    Kiefer, Stefan; Sistla, A. Prasad

    2015-01-01

    Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HM...

  6. Agro-food industry growth and obesity in China: what role for regulating food advertising and promotion and nutrition labelling?

    Science.gov (United States)

    Hawkes, C

    2008-03-01

    Taking a food supply chain approach, this paper examines the regulation of food marketing and nutrition labelling as strategies to help combat obesity in China in an era of rapid agro-food industry growth. China is the largest food producer and consumer in the world. Since the early 1980s, the agro-food industry has undergone phenomenal expansion throughout the food supply chain, from agricultural production to trade, agro-food processing to food retailing, and from food service to advertising and promotion. This industry growth, alongside related socioeconomic changes and government policies, has encouraged a 'nutrition transition'. China's population, especially in urban areas, is now consuming significantly more energy from dietary fat, which is leading to higher rates of obesity. Regulation of food advertising and promotion and nutrition labelling has the potential to help prevent the further growth of obesity in China and encourage the agro-food industry to supplier healthier foods. Government legislation and guidance, as well as self-regulation and voluntary initiatives, are needed to reduce children's exposure to food advertising and promotion, and increase the effectiveness of nutrition labelling. Policies on food marketing and nutrition labelling should be adapted to the China context, and accompanied by further action throughout the food supply chain. Given China's unique characteristics and position in the world today, there is an opportunity for the government and the agro-food industry to lead the world by creating a balanced, health promoting model of complementary legislation and industry action.

  7. Children’s Self-Regulation and School Achievement in Cultural Contexts: The Role of Maternal Restrictive Control

    Directory of Open Access Journals (Sweden)

    Mirjam eWeis

    2016-05-01

    Full Text Available Self-regulation can be developed through parent-child interactions and has been related to developmental outcomes, e.g. such as educational achievement. This study examined cross-cultural differences and similarities in maternal restrictive control, self-regulation (i.e., behavior and emotion regulation and school achievement and relations among these variables in Germany and Chile. Seventy-six German and 167 Chilean fourth graders, their mothers, and their teachers participated. Mothers and teachers rated children’s behavior regulation with a subscale of the Strengths and Difficulties Questionnaire. Children reported their use of emotion regulation strategies on the Questionnaire for the Measurement of Stress and Coping. Mothers rated maternal restrictive control by answering the Parenting Practice Questionnaire. School achievement was assessed by grades for language and mathematics. Results showed higher behavior regulation of German children in comparison to Chilean children and a higher preference of restrictive parental control in Chilean mothers than in German mothers. Regression analyses revealed positive relations between children’s behavior regulation and school achievement in Germany and in Chile. Further, in both cultural contexts, maternal restrictive control was related negatively to behavior regulation and positively to anger-oriented emotion regulation. In sum, the study showed the central function of behavior regulation for school achievement underlining negative relations of maternal restrictive control with children’s self-regulation and school achievement in diverse cultural contexts. Culturally adapted interventions related to parenting practices to promote children’s behavior regulation may assist in also promoting children’s school achievement.

  8. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression.

    Directory of Open Access Journals (Sweden)

    Chuntao Gao

    Full Text Available Stem cell factor (SCF and hypoxia-inducible factor-1α (HIF-1α both have important functions in pancreatic ductal adenocarcinoma (PDAC. This study aims to analyze the expression and clinicopathological significance of SCF and HIF-1α in PDAC specimens and explore the molecular mechanism at PDAC cells in vitro and in vivo. We showed that the expression of SCF was significantly correlated with HIF-1α expression via Western blot, PCR, chromatin immunoprecipitation (ChIP assay, and luciferase assay analysis. The SCF level was also correlated with lymph node metastasis and the pathological tumor node metastasis (pTNM stage in PDAC samples. The SCF higher-expression group had significantly lower survival rates than the SCF lower-expression group (p<0.05. Hypoxia up-regulated the expression of SCF through the hypoxia-inducible factor (HIF-1α in PDAC cells at the protein and RNA levels. When HIF-1α was knocked down by RNA interference, the SCF level decreased significantly. Additionally, ChIP and luciferase results demonstrated that HIF-1α can directly bind to the hypoxia response element (HRE region of the SCF promoter and activate the SCF transcription under hypoxia. The results of colony formation, cell scratch, and transwell migration assay showed that SCF promoted the proliferation and invasion of PANC-1 cells under hypoxia. Furthermore, the down-regulated ability of cell proliferation and invasion following HIF-1α knockdown was rescued by adding exogenous SCF under hypoxia in vitro. Finally, when the HIF-1α expression was inhibited by digoxin, the tumor volume and the SCF level decreased, thereby proving the relationship between HIF-1α and SCF in vivo. In conclusion, SCF is an important factor for the growth of PDAC. In our experiments, we proved that SCF, a downstream gene of HIF-1α, can promote the development of PDAC under hypoxia. Thus, SCF might be a potential therapeutic target for PDAC.

  9. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  10. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  11. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  12. Constructivist developmental theory is needed in developmental neuroscience

    Science.gov (United States)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  13. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    Science.gov (United States)

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251

  14. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression.

    Science.gov (United States)

    Schausi, Diane; Tiffoche, Christophe; Thieulant, Marie-Lise

    2003-07-01

    We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells.

  15. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3’ untranslated region and intronic cis-elements

    Science.gov (United States)

    Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.

    2009-01-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of

  16. A developmental approach to mentalizing communities: I. A model for social change.

    Science.gov (United States)

    Twemlow, Stuart W; Fonagy, Peter; Sacco, Frank C

    2005-01-01

    A developmental model is proposed applying attachment theory to complex social systems to promote social change. The idea of mentalizing communities is outlined with a proposal for three projects testing the model: ways to reduce bullying and create a peaceful climate in schools, projects to promote compassion in cities by a focus of end-of-life care, and a mentalization-based intervention into parenting style of borderline and substance abusing parents.

  17. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Alicia Jiménez-Fernández

    Full Text Available Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.

  18. Parental Perceptions of Physical Activity Benefits for Youth with Developmental Disabilities

    Science.gov (United States)

    Pitchford, E. Andrew; Siebert, Erin; Hamm, Jessica; Yun, Joonkoo

    2016-01-01

    Physical activity promotion is of need for youth with developmental disabilities. Parental perceptions of physical activity benefits may influence youth behaviors. This study investigated the relationship between parental beliefs on the importance of physical activity and physical activity levels among youth with disabilities. Parents and…

  19. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y.

    2016-01-01

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning two orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  20. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  1. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift.

    Science.gov (United States)

    Johnson, Norman A; Porter, Adam H

    2007-01-01

    Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

  2. The study on Egr-1 promoter which is radioactive promoter

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Guo Yang; Lv Zhonghong

    2006-01-01

    Radiogenetic therapy is a heated reaseach on oncotherapy. Early growth response gene-1 (Egr-1) gene promoter is a probably means in radiogenetic therapy. The article review studying on Egr-1 gene promoter and constructing regulating gene expressing system by radiation-inducible Egr-1 gene promoter. (authors)

  3. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  4. Comparative analyses of bidirectional promoters in vertebrates

    Directory of Open Access Journals (Sweden)

    Taylor James

    2008-05-01

    Full Text Available Abstract Background Orthologous genes with deep phylogenetic histories are likely to retain similar regulatory features. In this report we utilize orthology assignments for pairs of genes co-regulated by bidirectional promoters to map the ancestral history of the promoter regions. Results Our mapping of bidirectional promoters from humans to fish shows that many such promoters emerged after the divergence of chickens and fish. Furthermore, annotations of promoters in deep phylogenies enable detection of missing data or assembly problems present in higher vertebrates. The functional importance of bidirectional promoters is indicated by selective pressure to maintain the arrangement of genes regulated by the promoter over long evolutionary time spans. Characteristics unique to bidirectional promoters are further elucidated using a technique for unsupervised classification, known as ESPERR. Conclusion Results of these analyses will aid in our understanding of the evolution of bidirectional promoters, including whether the regulation of two genes evolved as a consequence of their proximity or if function dictated their co-regulation.

  5. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    Directory of Open Access Journals (Sweden)

    Mohammed Alsaweed

    2015-10-01

    Full Text Available Human milk (HM is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance.

  6. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  7. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  8. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  9. A roadmap for the integration of culture into developmental psychopathology.

    Science.gov (United States)

    Causadias, José M

    2013-11-01

    In this paper, I propose a roadmap for the integration of culture in developmental psychopathology. This integration is pressing because culture continues to be somewhat disconnected from theory, research, training, and interventions in developmental psychopathology, thus limiting our understanding of the epigenesis of mental health. I argue that in order to successfully integrate culture into developmental psychopathology, it is crucial to (a) study cultural development, (b) consider both individual-level and social-level cultural processes, (c) examine the interplay between culture and biology, and (d) promote improved and direct cultural assessment. I provide evidence in support of each of these guidelines, present alternative conceptual frameworks, and suggest new lines of research. Hopefully, that these directions will contribute to the emerging field of cultural development and psychopathology, which focuses on the elucidation of the cultural processes that initiate, maintain, or derail trajectories of normal and abnormal behavior.

  10. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Alessandra Baragli

    Full Text Available Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii increased cell survival and reduced apoptosis during precursor selection; (iii promoted the generation of islet-like cell clusters (ICCs with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs, Notch receptors and neurogenin 3 (Ngn3 during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.

  11. The Dens: Normal Development, Developmental Variants and Anomalies, and Traumatic Injuries

    Directory of Open Access Journals (Sweden)

    William T O′Brien

    2015-01-01

    Full Text Available Accurate interpretation of cervical spine imagining can be challenging, especially in children and the elderly. The biomechanics of the developing pediatric spine and age-related degenerative changes predispose these patient populations to injuries centered at the craniocervical junction. In addition, congenital anomalies are common in this region, especially those associated with the axis/dens, due to its complexity in terms of development compared to other vertebral levels. The most common congenital variations of the dens include the os odontoideum and a persistent ossiculum terminale. At times, it is necessary to distinguish normal development, developmental variants, and developmental anomalies from traumatic injuries in the setting of acute traumatic injury. Key imaging features are useful to differentiate between traumatic fractures and normal or variant anatomy acutely; however, the radiologist must first have a basic understanding of the spectrum of normal developmental anatomy and its anatomic variations in order to make an accurate assessment. This review article attempts to provide the basic framework required for accurate interpretation of cervical spine imaging with a focus on the dens, specifically covering the normal development and ossification of the dens, common congenital variants and their various imaging appearances, fracture classifications, imaging appearances, and treatment options.

  12. An integrative review of ethnic and cultural variation in socialization and children's self-regulation.

    Science.gov (United States)

    LeCuyer, Elizabeth A; Zhang, Yi

    2015-04-01

    To examine the evidence for cross-cultural variation in socialization and children's normative self-regulation, based on a contextual-developmental perspective. Nurses and healthcare workers in multi-cultural societies must understand diversity in socializing influences (including parenting) and in children's behaviour. A contextual-developmental perspective implies that normative cultural and ethnic values will influence socializing processes and behaviour, which in turn will influence children's self-regulation. Integrative review. Studies were located using five major search engines from 1990-2011. Domains of a contextual-developmental perspective and a comprehensive definition of self-regulation assisted the generation of search terms. Selected studies compared at least two ethnic or cultural groups and addressed contextual-developmental domains: (1) culturally specific social values, beliefs, or attitudes; (2) socializing behaviours; and (3) children's normative self-regulation. Eleven studies about children's self-regulation were found to have data consistent with a contextual-developmental perspective. Studies used descriptive correlational or comparative designs with primarily convenience sampling; eight confirmed stated hypotheses, three were exploratory. Findings across studies evidenced coherent patterns of sociocultural influence on children's attention, compliance, delay of gratification, effortful control and executive function. A contextual-developmental perspective provided a useful perspective to examine normative differences in values, socializing behaviours and children's self-regulation. This perspective and these findings are expected to guide future research, to assist nurses and healthcare providers to understand diversity in parenting and children's behaviour. © 2014 John Wiley & Sons Ltd.

  13. A developmental perspective on the neural bases of human empathy.

    Science.gov (United States)

    Tousignant, Béatrice; Eugène, Fanny; Jackson, Philip L

    2017-08-01

    While empathy has been widely studied in philosophical and psychological literatures, recent advances in social neuroscience have shed light on the neural correlates of this complex interpersonal phenomenon. In this review, we provide an overview of brain imaging studies that have investigated the neural substrates of human empathy. Based on existing models of the functional architecture of empathy, we review evidence of the neural underpinnings of each main component, as well as their development from infancy. Although early precursors of affective sharing and self-other distinction appear to be present from birth, recent findings also suggest that even higher-order components of empathy such as perspective-taking and emotion regulation demonstrate signs of development during infancy. This merging of developmental and social neuroscience literature thus supports the view that ontogenic development of empathy is rooted in early infancy, well before the emergence of verbal abilities. With age, the refinement of top-down mechanisms may foster more appropriate empathic responses, thus promoting greater altruistic motivation and prosocial behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Localization and regulation of bacteriophage Mu promoters

    International Nuclear Information System (INIS)

    Stoddard, S.F.; Howe, M.M.

    1989-01-01

    Mu promoters active during the lytic cycle were located by isolating RNA at various times after induction of Mu prophages, radiolabeling it by capping in vitro, and hybridizing it to Mu DNA fragments on Southern blots. Signals were detected from four new promoters in addition to the previously characterized P e (early), P cM (repressor), and P mom (late) promoters. A major signal upstream of C was first observed at 12 min and intensified thereafter with RNA from cts and C amber but not replication-defective prophages; these characteristics indicate that this signal arises from a middle promoter, which we designate P m . With 20- and 40-min RNA, four additional major signals originated in the C-lys, F-G-I, N-P, and com-mom regions. These signals were missing with RNA from C amber and replication-defective prophages and therefore reflected the activity of late promoters, one of which we presume was P mom . Uninduced lysogens showed weak signals from five regions, one from the early regulatory region, three between genes B and lys, and one near the late genes K, L, and M. The first of these probably resulted from P cM activity; the others remain to be identified

  15. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  16. An economic analysis of the political promotion system in China

    OpenAIRE

    Jiancai Pi

    2017-01-01

    This paper mainly discusses the political promotion system in China. Specifically, we develop a generalized analytical framework by introducing the contest success function. On the one hand, the central government can give the optimal political promotion benefits to local officials to incentivize them to exert desirable developmental efforts. On the other hand, the central government can undertake a further design of the political promotion system to motivate local officials vi...

  17. Analysis of MVP and VPARP promoters indicates a role for chromatin remodeling in the regulation of MVP.

    Science.gov (United States)

    Emre, Nil; Raval-Fernandes, Sujna; Kickhoefer, Valerie A; Rome, Leonard H

    2004-04-16

    Multi-drug-resistant cancer cells frequently express elevated levels of ribonucleoprotein complexes termed vaults. The increased expression of vault proteins and their mRNAs has led to the suggestion that vaults may play a direct role in preventing drug toxicity. To further understand vault component up-regulation, the three proteins that comprise the vault, the major vault protein (MVP), vault poly(ADP-ribose) polymerase (VPARP), and telomerase-associated protein-1 (TEP1), were examined with respect to gene amplification and drug-induced chromatin remodeling. Gene amplification was not responsible for increased vault component levels in multi-drug-resistant cancer cell lines. The TATA-less murine MVP and human VPARP promoters were identified and functionally characterized. There was no significant activation of either the MVP or VPARP promoters in drug-resistant cell lines in comparison to their parental, drug-sensitive counterparts. Treatment of various cell lines with sodium butyrate, an inhibitor of histone deacetylase (HDAC), led to an increase in vault component protein levels. Furthermore, treatment with trichostatin A (TSA), a more specific inhibitor of HDAC, caused an increase in MVP protein, mRNA, and promoter activity. These results suggest that up-regulation of MVP in multi-drug resistance (MDR) may involve chromatin remodeling.

  18. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  19. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  20. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    Science.gov (United States)

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  1. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  2. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program.We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators.This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further investigations of the contributions of miRNAs to mast cell differentiation and

  3. Acoustic and Perceptual Correlates of Stress in Nonwords Produced by Children with Suspected Developmental Apraxia of Speech and Children with Phonological Disorder.

    Science.gov (United States)

    Munson, Benjamin; Bjorum, Elissa M.; Windsor, Jennifer

    2003-01-01

    This study examined whether accuracy in producing linguistic stress reliably distinguished between five children with suspected developmental apraxia of speech (sDAS) and five children with phonological disorder (PD). No group differences in the production of stress were found; however, listeners judged that nonword repetitions of the children…

  4. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity.

    OpenAIRE

    Leoni, L; Ciervo, A; Orsi, N; Visca, P

    1996-01-01

    The pvdA gene, encoding the enzyme L-ornithine N5-oxygenase, catalyzes a key step of the pyoverdin biosynthetic pathway in Pseudomonas aeruginosa. Expression studies with a promoter probe vector made it possible to identify three tightly iron-regulated promoter regions in the 5.9-kb DNA fragment upstream of pvdA. The promoter governing pvdA expression was located within the 154-bp sequence upstream of the pvdA translation start site. RNA analysis showed that expression of PvdA is iron regulat...

  5. Regulation of Expressive Behavior as Reflecting Affect Socialization.

    Science.gov (United States)

    Saarni, Carolyn

    Regulated expressiveness (the modification of expressive behavior) is a complex phenomenon. Accomplished basically in four ways, regulated expressiveness has developmental dimensions, motivational precursors, and cognitive antecedents, including perspective-taking ability and the growth of self-awareness. Ability to regulate expressiveness appears…

  6. The phenotypic plasticity of developmental modules

    Directory of Open Access Journals (Sweden)

    Aabha I. Sharma

    2016-08-01

    Full Text Available Abstract Background Organisms develop and evolve in a modular fashion, but how individual modules interact with the environment remains poorly understood. Phenotypically plastic traits are often under selection, and studies are needed to address how traits respond to the environment in a modular fashion. In this study, tissue-specific plasticity of melanic spots was examined in the large milkweed bug, Oncopeltus fasciatus. Results Although the size of the abdominal melanic bands varied according to rearing temperatures, wing melanic bands were more robust. To explore the regulation of abdominal pigmentation plasticity, candidate genes involved in abdominal melanic spot patterning and biosynthesis of melanin were analyzed. While the knockdown of dopa decarboxylase (Ddc led to lighter pigmentation in both the wings and the abdomen, the shape of the melanic elements remained unaffected. Although the knockdown of Abdominal-B (Abd-B partially phenocopied the low-temperature phenotype, the abdominal bands were still sensitive to temperature shifts. These observations suggest that regulators downstream of Abd-B but upstream of DDC are responsible for the temperature response of the abdomen. Ablation of wings led to the regeneration of a smaller wing with reduced melanic bands that were shifted proximally. In addition, the knockdown of the Wnt signaling nuclear effector genes, armadillo 1 and armadillo 2, altered both the melanic bands and the wing shape. Thus, the pleiotropic effects of Wnt signaling may constrain the amount of plasticity in wing melanic bands. Conclusions We propose that when traits are regulated by distinct pre-patterning mechanisms, they can respond to the environment in a modular fashion, whereas when the environment impacts developmental regulators that are shared between different modules, phenotypic plasticity can manifest as a developmentally integrated system.

  7. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.

    Science.gov (United States)

    Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi

    2016-02-15

    FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.

  8. Four MicroRNAs Promote Prostate Cell Proliferation with Regulation of PTEN and Its Downstream Signals In Vitro

    Science.gov (United States)

    Xue, Jing-lun; Chen, Jin-zhong

    2013-01-01

    Background Phosphatase and tensin homologue (PTEN), as a tumor suppressor, plays vital roles in tumorigenesis and progression of prostate cancer. However, the mechanisms of PTEN regulation still need further investigation. We here report that a combination of four microRNAs (miR-19b, miR-23b, miR-26a and miR-92a) promotes prostate cell proliferation by regulating PTEN and its downstream signals in vitro. Methodology/Principal Findings We found that the four microRNAs (miRNAs) could effectively suppress PTEN expression by directly interacting with its 3’ UTR in prostate epithelial and cancer cells. Under-expression of the four miRNAs by antisense neutralization up-regulates PTEN expression, while overexpression of the four miRNAs accelerates epithelial and prostate cancer cell proliferation. Furthermore, the expression of the four miRNAs could, singly or jointly, alter the expression of the key components in the phosphoinositide 3-kinase (PI3K)/Akt pathway, including PIK3CA, PIK3CD, PIK3R1 and Akt, along with their downstream signal, cyclin D1. Conclusions These results suggested that the four miRNAs could promote prostate cancer cell proliferation by co-regulating the expression of PTEN, PI3K/Akt pathway and cyclin D1 in vitro. These findings increase understanding of the molecular mechanisms of prostate carcinogenesis and progression, even provide valuable insights into the diagnosis, prognosis, and rational design of novel therapeutics for prostate cancer. PMID:24098737

  9. Control of PNG kinase, a key regulator of mRNA translation, is coupled to meiosis completion at egg activation.

    Science.gov (United States)

    Hara, Masatoshi; Petrova, Boryana; Orr-Weaver, Terry L

    2017-05-30

    The oocyte-to-embryo transition involves extensive changes in mRNA translation, regulated in Drosophila by the PNG kinase complex whose activity we show here to be under precise developmental control. Despite presence of the catalytic PNG subunit and the PLU and GNU activating subunits in the mature oocyte, GNU is phosphorylated at Cyclin B/CDK1sites and unable to bind PNG and PLU. In vitro phosphorylation of GNU by CyclinB/CDK1 blocks activation of PNG. Meiotic completion promotes GNU dephosphorylation and PNG kinase activation to regulate translation. The critical regulatory effect of phosphorylation is shown by replacement in the oocyte with a phosphorylation-resistant form of GNU, which promotes PNG-GNU complex formation, elevation of Cyclin B, and meiotic defects consistent with premature PNG activation. After PNG activation GNU is destabilized, thus inactivating PNG. This short-lived burst in kinase activity links development with maternal mRNA translation and ensures irreversibility of the oocyte-to-embryo transition.

  10. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116.

    Science.gov (United States)

    Choi, Jee-Hye; Min, Na Young; Park, Jina; Kim, Jin Hong; Park, Soo Hyun; Ko, Young Jong; Kang, Yoonsung; Moon, Young Joon; Rhee, Sangmyung; Ham, Seung Wook; Park, Ae Ja; Lee, Kwang-Ho

    2010-01-01

    Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  12. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    International Nuclear Information System (INIS)

    Yao, Jingjing; Xu, Chen; Fang, Ziyu; Li, Yaoming; Liu, Houqi; Wang, Yue; Xu, Chuanliang; Sun, Yinghao

    2016-01-01

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  13. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  14. Promoting Self-Regulation in Health Among Vulnerable Brazilian Children: Protocol Study

    Directory of Open Access Journals (Sweden)

    Luciana B. Mattos

    2018-05-01

    Full Text Available The Health and Education Ministries of Brazil launched the Health in School Program (Programa Saúde na Escola - PSE in 2007. The purpose of the PSE is two-fold: articulate the actions of the education and health systems to identify risk factors and prevent them; and promote health education in the public elementary school system. In the health field, the self-regulation (SR construct can contribute to the understanding of life habits which can affect the improvement of individuals' health. This research aims to present a program that promotes SR in health (SRH. This program (PSRH includes topics on healthy eating and oral health from the PSE; it is grounded on the social cognitive framework and uses story tools to train 5th grade Brazilian students in SRH. The study consists of two phases. In Phase 1, teachers and health professionals participated in a training program on SRH, and in Phase 2, they will be expected to conduct an intervention in class to promote SRH. The participants were randomly assigned into three groups: the Condition I group followed the PSE program, the Condition II group followed the PSRH (i.e., PSE plus the SRH program, and the control group (CG did not enroll in either of the health promotion programs. For the baseline of the study, the following measures and instruments were applied: Body Mass Index (BMI, Simplified Oral Hygiene Index (OHI-S, Previous Day Food Questionnaire (PFDQ, and Declarative Knowledge for Health Instrument. Data indicated that the majority are eutrophic children, but preliminary outcomes showed high percentages of children that are overweight, obese and severely obese. Moreover, participants in all groups reported high consumption of ultraprocessed foods (e.g., soft drinks, artificial juices, and candies. Oral health data from the CI and CII groups showed a prevalence of regular oral hygiene, while the CG presented good oral hygiene. The implementation of both PSE and PSRH are expected to help

  15. A Distinguish Attack on COSvd Cipher

    OpenAIRE

    Mohammad Ali Orumiehchi ha; R. Mirghadri

    2007-01-01

    The COSvd Ciphers has been proposed by Filiol and others (2004). It is a strengthened version of COS stream cipher family denoted COSvd that has been adopted for at least one commercial standard. We propose a distinguish attack on this version, and prove that, it is distinguishable from a random stream. In the COSvd Cipher used one S-Box (10×8) on the final part of cipher. We focus on S-Box and use weakness this S-Box for distinguish attack. In addition, found a leak on HNLL that the sub s-bo...

  16. Toward a Neuroscience of Adult Cognitive Developmental Theory

    Directory of Open Access Journals (Sweden)

    Fady Girgis

    2018-01-01

    Full Text Available Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several “neo-Piagetian” theories have emerged in an attempt to better characterize adult cognitive development. For example, Kegan's Constructive Developmental Theory (CDT argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious. In recent years, neuroscience has shown a growing interest in the biological substrates and neural mechanisms encompassing adult cognitive development, because psychological and psychiatric disorders can arise from deficiencies therein. In this article, we will use Kegan's CDT as a framework to discuss adult cognitive development in relation to closely correlated existing constructs underlying social processing, such as the perception of self and others. We will review the functional imaging and electrophysiologic evidence behind two key concepts relating to these posited developmental changes. These include self-related processing, a field that distinguishes between having conscious experiences (“being a self” and being aware of oneself having conscious experiences (“being aware of being a self”; and theory of mind, which is the objective awareness of possessing mental states such as beliefs and desires (i.e., having a “mind” and the understanding that others possess mental states that can be different from one's own. We shall see that cortical midline structures, including the medial prefrontal cortex and cingulate gyrus, as well as the temporal lobe, are associated

  17. Toward a Neuroscience of Adult Cognitive Developmental Theory.

    Science.gov (United States)

    Girgis, Fady; Lee, Darrin J; Goodarzi, Amir; Ditterich, Jochen

    2018-01-01

    Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several "neo-Piagetian" theories have emerged in an attempt to better characterize adult cognitive development. For example, Kegan's Constructive Developmental Theory (CDT) argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious. In recent years, neuroscience has shown a growing interest in the biological substrates and neural mechanisms encompassing adult cognitive development, because psychological and psychiatric disorders can arise from deficiencies therein. In this article, we will use Kegan's CDT as a framework to discuss adult cognitive development in relation to closely correlated existing constructs underlying social processing, such as the perception of self and others. We will review the functional imaging and electrophysiologic evidence behind two key concepts relating to these posited developmental changes. These include self-related processing, a field that distinguishes between having conscious experiences ("being a self") and being aware of oneself having conscious experiences ("being aware of being a self"); and theory of mind, which is the objective awareness of possessing mental states such as beliefs and desires (i.e., having a "mind") and the understanding that others possess mental states that can be different from one's own. We shall see that cortical midline structures, including the medial prefrontal cortex and cingulate gyrus, as well as the temporal lobe, are associated with psychological tasks that

  18. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling.

    Science.gov (United States)

    Zhang, Jin-fang; Fu, Wei-ming; He, Ming-liang; Xie, Wei-dong; Lv, Qing; Wan, Gang; Li, Guo; Wang, Hua; Lu, Gang; Hu, Xiang; Jiang, Su; Li, Jian-na; Lin, Marie C M; Zhang, Ya-ou; Kung, Hsiang-fu

    2011-01-01

    Osteogenic differentiation of mesenchymal stem cells (MSCs) is a complex process, which is regulated by various factors including microRNAs. Our preliminary data showed that the expression of endogenous miR-20a was increased during the course of osteogenic differentiation. Simultaneously, the expression of osteoblast markers and regulators BMP2, BMP4, Runx2, Osx, OCN and OPN was also elevated whereas adipocyte markers PPARγ and osteoblast antagonist, Bambi and Crim1, were downregulated, thereby suggesting that miR-20a plays an important role in regulating osteoblast differentiation. To validate this hypothesis, we tested its effects on osteogenic differentiation by introducing miR-20a mimics and lentiviral-miR20a-expression vectors into hMSCs. We showed that miR-20a promoted osteogenic differentiation by the upregulation of BMP/Runx2 signaling. We performed bioinformatics analysis and predicted that PPARγ, Bambi and Crim1 would be potential targets of miR-20a. PPARγ is a negative regulator of BMP/Runx2 signaling whereas Bambi or Crim1 are antagonists of the BMP pathway. Furthermore, we confirmed that all these molecules were indeed the targets of miR-20a by luciferase reporter, quantitative RT-PCR and western blot assays. Similarly to miR-20a overexpression, the osteogenesis was enhanced by the silence of PPARγ, Bambi or Crim1 by specific siRNAs. Taken together, for the first time, we demonstrated that miR-20a promoted the osteogenesis of hMSCs in a co-regulatory pattern by targeting PPARγ, Bambi and Crim1, the negative regulators of BMP signaling.

  19. Role of the pre- and post-natal environment in developmental programming of health and productivity.

    Science.gov (United States)

    Reynolds, Lawrence P; Caton, Joel S

    2012-05-06

    The concept that developmental insults (for example, poor pre- or postnatal nutrition) can have long-term consequences on health and well-being of the offspring has been termed developmental programming. In livestock, developmental programming affects production traits, including growth, body composition, and reproduction. Although low birth weight was used as a proxy for compromised fetal development in the initial epidemiological studies, based on controlled studies using livestock and other animal models in the last two decades we now know that developmental programming can occur independently of any effects on birth weight. Studies in humans, rodents, and livestock also have confirmed the critical role of the placenta in developmental programming. In addition, the central role of epigenetic regulation in developmental programming has been confirmed. Lastly, relatively simple therapeutic/management strategies designed to 'rescue' placental development and function are being developed to minimize the effects of developmental programming on health and productivity of humans, livestock, and other mammals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Developmental regulation of Xenopus 5S RNA genes

    International Nuclear Information System (INIS)

    Wormington, W.M.; Schlissel, M.; Brown, D.D.

    1983-01-01

    In this paper it is demonstrated that the actively transcribed fraction of somatic 5S RNA genes in somatic-cell chromatin is complexed stably with all required factors, so that the addition of only purified RNA polymerase III is needed to support somatic 5S RNA synthesis in vitro. Oocyte 5S RNA genes in somatic-cell chromatin appear to lack these factors, since their activation in salt-washed somatic-cell chromatin depends on exogeneous transciption factors in addition to RNA polymerase III. The developmental control of 5S RNA genes is established over a period beginning with the onset of 5S RNA synthesis in late blastula embryos, and this control is reproduced in vitro using chromatin templates isolated from appropriate stages. We propose that a decreasing concentration of the 5S-specific transcription factor during embryogenesis contributes to the inactivation of oocyte 5S RNA genes. 12 references, 4 figures, 1 table

  1. Learning To Breathe: Developmental Phase Transitions in Oxygen Status.

    Science.gov (United States)

    Considine, Michael J; Diaz-Vivancos, Pedro; Kerchev, Pavel; Signorelli, Santiago; Agudelo-Romero, Patricia; Gibbs, Daniel J; Foyer, Christine H

    2017-02-01

    Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide ( • NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, • NO-, and redox-dependent signalling curate developmental transitions in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identification of a functional element in the promoter of the silkworm (Bombyx mori) fat body-specific gene Bmlp3.

    Science.gov (United States)

    Xu, Hanfu; Deng, Dangjun; Yuan, Lin; Wang, Yuancheng; Wang, Feng; Xia, Qingyou

    2014-08-01

    30K proteins are a group of structurally related proteins that play important roles in the life cycle of the silkworm Bombyx mori and are largely synthesized and regulated in a time-dependent manner in the fat body. Little is known about the upstream regulatory elements associated with the genes encoding these proteins. In the present study, the promoter of Bmlp3, a fat body-specific gene encoding a 30K protein family member, was characterized by joining sequences containing the Bmlp3 promoter with various amounts of 5' upstream sequences to a luciferase reporter gene. The results indicated that the sequences from -150 to -250bp and -597 to -675bp upstream of the Bmlp3 transcription start site were necessary for high levels of luciferase activity. Further analysis showed that a 21-bp sequence located between -230 and -250 was specifically recognized by nuclear factors from silkworm fat bodies and BmE cells, and could enhance luciferase reporter-gene expression 2.8-fold in BmE cells. This study provides new insights into the Bmlp3 promoter and contributes to the further clarification of the function and developmental regulation of Bmlp3. Copyright © 2014. Published by Elsevier B.V.

  3. Intellectual Disability and Developmental Risk: Promoting Intervention to Improve Child and Family Well-Being

    Science.gov (United States)

    Crnic, Keith A.; Neece, Cameron L.; McIntyre, Laura Lee; Blacher, Jan; Baker, Bruce L.

    2017-01-01

    Initial intervention processes for children with intellectual disabilities (IDs) largely focused on direct efforts to impact core cognitive and academic deficits associated with the diagnosis. Recent research on risk processes in families of children with ID, however, has influenced new developmental system approaches to early intervention. Recent…

  4. Regulatory RNA at the root of animals: dynamic expression of developmental lincRNAs in the calcisponge Sycon ciliatum.

    Science.gov (United States)

    Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja

    2015-12-22

    Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.

  5. Punishment Insensitivity in Early Childhood: A Developmental, Dimensional Approach.

    Science.gov (United States)

    Nichols, Sara R; Briggs-Gowan, Margaret J; Estabrook, Ryne; Burns, James L; Kestler, Jacqueline; Berman, Grace; Henry, David B; Wakschlag, Lauren S

    2015-08-01

    Impairment in learning from punishment ("punishment insensitivity") is an established feature of severe antisocial behavior in adults and youth but it has not been well studied as a developmental phenomenon. In early childhood, differentiating a normal: abnormal spectrum of punishment insensitivity is key for distinguishing normative misbehavior from atypical manifestations. This study employed a novel measure, the Multidimensional Assessment Profile of Disruptive Behavior (MAP-DB), to examine the distribution, dimensionality, and external validity of punishment insensitivity in a large, demographically diverse community sample of preschoolers (3-5 years) recruited from pediatric clinics (N = 1,855). Caregivers completed surveys from which a seven-item Punishment Insensitivity scale was derived. Findings indicated that Punishment Insensitivity behaviors are relatively common in young children, with at least 50 % of preschoolers exhibiting them sometimes. Item response theory analyses revealed a Punishment Insensitivity spectrum. Items varied along a severity continuum: most items needed to occur "Often" in order to be severe and behaviors that were qualitatively atypical or intense were more severe. Although there were item-level differences across sociodemographic groups, these were small. Construct, convergent, and divergent validity were demonstrated via association to low concern for others and noncompliance, motivational regulation, and a disruptive family context. Incremental clinical utility was demonstrated in relation to impairment. Early childhood punishment insensitivity varies along a severity continuum and is atypical when it predominates. Implications for understanding the phenomenology of emergent disruptive behavior are discussed.

  6. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Zbynek Bozdech

    2003-10-01

    Full Text Available Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7 was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the

  7. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. [Emory-MED; (SBU); (TAM); (UNC); (Vanderbilt-MED); (Utah); (UCHSC)

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  8. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. (Emory-MED); (UNCSM); (UNC); (UCHSC); (TAM); (Vanderbilt-MED); (SBU); (Utah)

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  9. Regulation of MLH1 mRNA and protein expression by promoter methylation in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Rasmussen, Anders Aamann; Byriel, Lene

    2013-01-01

    In colorectal cancer MLH1 deficiency causes microsatellite instability, which is relevant for the patient's prognosis and treatment, and its putative heredity. Dysfunction of MLH1 is caused by sporadic gene promoter hypermethylation or by hereditary mutations as seen in Lynch Syndrome. The aim...... of this study was to determine in detail how DNA methylation regulates MLH1 expression and impacts clinical management....

  10. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Tong, Joanna H; Lo, Kwok W; To, Ka F; Ng, David C; Chau, Shuk L; So, Ken K; Leung, Patrick P; Lee, Tin L; Lung, Raymond W; Chan, Michael W; Chan, Anthony W

    2010-01-01

    Human Disabled-2 (DAB2), is a multi-function signalling molecule that it is frequently down-regulated in human cancers. We aimed to investigate the possible tumour suppressor effect of DAB2 in nasopharyngeal carcinoma (NPC). We studied the expression of DAB2 in NPC cell lines, xenografts and primary tumour samples. The status of promoter methylation was assessed by methylation specific PCR and bisulfite sequencing. The functional role of DAB2 in NPC was investigated by re-introducing DAB2 expression into NPC cell line C666-1. Decrease or absent of DAB2 transcript was observed in NPC cell lines and xenografts. Loss of DAB2 protein expression was seen in 72% (33/46) of primary NPC as demonstrated by immunohistochemistry. Aberrant DAB2 promoter methylation was detected in 65.2% (30/46) of primary NPC samples by methylation specific PCR. Treatment of the DAB2 negative NPC cell line C666-1 with 5-aza-2'-deoxycytidine resulted in restoration of DAB2 expression in a dose-dependent manner. Overexpression of DAB2 in NPC cell line C666-1 resulted in reduced growth rate and 35% reduction in anchorage-dependent colony formation, and inhibition of serum-induced c-Fos expression compared to vector-transfected controls. Over expression of DAB2 resulted in alterations of multiple pathways as demonstrated by expression profiling and functional network analysis, which confirmed the role of DAB2 as an adaptor molecule involved in multiple receptor-mediated signalling pathways. We report the frequent down regulation of DAB2 in NPC and the promoter hypermethylation contributes to the loss of expression of DAB2. This is the first study demonstrating frequent DAB2 promoter hypermethylation in human cancer. Our functional studies support the putative tumour suppressor effect of DAB2 in NPC cells

  11. Local and Global Distinguishability in Quantum Interferometry

    International Nuclear Information System (INIS)

    Durkin, Gabriel A.; Dowling, Jonathan P.

    2007-01-01

    A statistical distinguishability based on relative entropy characterizes the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the ''NOON'' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes

  12. Mild developmental foreign accent syndrome and psychiatric comorbidity: Altered white matter integrity in speech and emotion regulation networks

    Directory of Open Access Journals (Sweden)

    Marcelo L Berthier

    2016-08-01

    Full Text Available Foreign accent syndrome (FAS is a speech disorder that is defined by the emergence of a peculiar manner of articulation and intonation which is perceived as foreign. In most cases of acquired FAS (AFAS the new accent is secondary to small focal lesions involving components of the bilaterally distributed neural network for speech production. In the past few years FAS has also been described in different psychiatric conditions (conversion disorder, bipolar disorder, schizophrenia as well as in developmental disorders (specific language impairment, apraxia of speech. In the present study, two adult males, one with atypical phonetic production and the other one with cluttering, reported having developmental FAS (DFAS since their adolescence. Perceptual analysis by naïve judges could not confirm the presence of foreign accent, possibly due to the mildness of the speech disorder. However, detailed linguistic analysis provided evidence of prosodic and segmental errors previously reported in AFAS cases. Cognitive testing showed reduced communication in activities of daily living and mild deficits related to psychiatric disorders. Psychiatric evaluation revealed long-lasting internalizing disorders (neuroticism, anxiety, obsessive-compulsive disorder, social phobia, depression, alexithymia, hopelessness, and apathy in both subjects. Diffusion tensor imaging (DTI data from each subject with DFAS were compared with data from a group of 21 age- and gender-matched healthy control subjects. Diffusion parameters (MD, AD, and RD in predefined regions of interest showed changes of white matter microstructure in regions previously related with AFAS and psychiatric disorders. In conclusion, the present findings militate against the possibility that these two subjects have FAS of psychogenic origin. Rather, our findings provide evidence that mild DFAS occurring in the context of subtle, yet persistent, developmental speech disorders may be associated with

  13. Regulation of proximal-distal intercalation during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-12-01

    Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  14. Response regulator heterodimer formation controls a key stage in Streptomyces development.

    Directory of Open Access Journals (Sweden)

    Mahmoud M Al-Bassam

    2014-08-01

    Full Text Available The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI. Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells.

  15. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...... is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2......-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion...

  16. Threat ≠ prevention, challenge ≠ promotion: the impact of threat, challenge and regulatory focus on attention to negative stimuli.

    Science.gov (United States)

    Sassenberg, Kai; Sassenrath, Claudia; Fetterman, Adam K

    2015-01-01

    The purpose of the current experiment was to distinguish between the impact of strategic and affective forms of gain- and loss-related motivational states on the attention to negative stimuli. On the basis of the counter-regulation principle and regulatory focus theory, we predicted that individuals would attend more to negative than to neutral stimuli in a prevention focus and when experiencing challenge, but not in a promotion focus and under threat. In one experiment (N = 88) promotion, prevention, threat, or challenge states were activated through a memory task, and a subsequent dot probe task was administered. As predicted, those in the prevention focus and challenge conditions had an attentional bias towards negative words, but those in promotion and threat conditions did not. These findings provide support for the idea that strategic mindsets (e.g., regulatory focus) and hot emotional states (e.g., threat vs. challenge) differently affect the processing of affective stimuli.

  17. let-7 miRNAs Can Act through Notch to Regulate Human Gliogenesis

    Directory of Open Access Journals (Sweden)

    M. Patterson

    2014-11-01

    Full Text Available It is clear that neural differentiation from human pluripotent stem cells generates cells that are developmentally immature. Here, we show that the let-7 plays a functional role in the developmental decision making of human neural progenitors, controlling whether these cells make neurons or glia. Through gain- and loss-of-function studies on both tissue and pluripotent derived cells, our data show that let-7 specifically regulates decision making in this context by regulation of a key chromatin-associated protein, HMGA2. Furthermore, we provide evidence that the let-7/HMGA2 circuit acts on HES5, a NOTCH effector and well-established node that regulates fate decisions in the nervous system. These data link the let-7 circuit to NOTCH signaling and suggest that this interaction serves to regulate human developmental progression.

  18. Novel insights into regulation of asparagine synthetase in conifers

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2012-05-01

    Full Text Available Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4. In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait., PpAS1 and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1 was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  19. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  20. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  1. Distinguished trajectories in time dependent vector fields

    OpenAIRE

    Madrid, J. A. Jimenez; Mancho, Ana M.

    2008-01-01

    We introduce a new definition of distinguished trajectory that generalizes the concepts of fixed point and periodic orbit to aperiodic dynamical systems. This new definition is valid for identifying distinguished trajectories with hyperbolic and nonhyperbolic types of stability. The definition is implemented numerically and the procedure consists of determining a path of limit coordinates. It has been successfully applied to known examples of distinguished trajectories. In the context of high...

  2. Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Berthold Frank

    2009-04-01

    Full Text Available Abstract Background HAND2, a key regulator for the development of the sympathetic nervous system, is located on chromosome 4q33 in a head-to-head orientation with DEIN, a recently identified novel gene with stage specific expression in primary neuroblastoma (NB. Both genes are expressed in primary NB as well as most NB cell lines and are separated by a genomic sequence of 228 bp. The similar expression profile of both genes suggests a common transcriptional regulation mediated by a bidirectional promoter. Results Northern Blot analysis of DEIN and HAND2 in 20 primary NBs indicated concurrent expression levels of the two genes, which was confirmed by microarray analysis of 236 primary NBs (Pearson's correlation coefficient r = 0.65. While DEIN expression in the latter cohort was associated with stage 4S (p = 0.02, HAND2 expression was not associated with tumor stage. In contrast, both HAND2 and DEIN transcript levels were highly associated with age at diagnosis DEIN orientation, an average 3.4 fold increase in activity was observed as compared to the promoterless vector, whereas an average 15.4 fold activation was detected in HAND2 orientation. The presence of two highly conserved putative regulatory elements, one of which was shown to enhance HAND2 expression in branchial arches previously, displayed weak repressor activity for both genes. Conclusion HAND2 and DEIN represent a gene pair that is tightly linked by a bidirectional promoter in an evolutionary highly conserved manner. Expression of both genes in NB is co-regulated by asymmetrical activity of this promoter and modulated by the activity of two cis-regulatory elements acting as weak repressors. The concurrent quantitative and tissue specific expression of HAND2 and DEIN suggests a functional link between both genes.

  3. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    International Nuclear Information System (INIS)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-01-01

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth

  4. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori.

    Science.gov (United States)

    Kayukawa, Takumi; Murata, Mika; Kobayashi, Isao; Muramatsu, Daisuke; Okada, Chieko; Uchino, Keiro; Sezutsu, Hideki; Kiuchi, Makoto; Tamura, Toshiki; Hiruma, Kiyoshi; Ishikawa, Yukio; Shinoda, Tetsuro

    2014-04-01

    Juvenile hormone (JH) has an ability to repress the precocious metamorphosis of insects during their larval development. Krüppel homolog 1 (Kr-h1) is an early JH-inducible gene that mediates this action of JH; however, the fine hormonal regulation of Kr-h1 and the molecular mechanism underlying its antimetamorphic effect are little understood. In this study, we attempted to elucidate the hormonal regulation and developmental role of Kr-h1. We found that the expression of Kr-h1 in the epidermis of penultimate-instar larvae of the silkworm Bombyx mori was induced by JH secreted by the corpora allata (CA), whereas the CA were not involved in the transient induction of Kr-h1 at the prepupal stage. Tissue culture experiments suggested that the transient peak of Kr-h1 at the prepupal stage is likely to be induced cooperatively by JH derived from gland(s) other than the CA and the prepupal surge of ecdysteroid, although involvement of unknown factor(s) could not be ruled out. To elucidate the developmental role of Kr-h1, we generated transgenic silkworms overexpressing Kr-h1. The transgenic silkworms grew normally until the spinning stage, but their development was arrested at the prepupal stage. The transgenic silkworms from which the CA were removed in the penultimate instar did not undergo precocious pupation or larval-larval molt but fell into prepupal arrest. This result demonstrated that Kr-h1 is indeed involved in the repression of metamorphosis but that Kr-h1 alone is incapable of implementing normal larval molt. Moreover, the expression profiles and hormonal responses of early ecdysone-inducible genes (E74, E75, and Broad) in transgenic silkworms suggested that Kr-h1 is not involved in the JH-dependent modulation of these genes, which is associated with the control of metamorphosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  6. Radioprotective effect of hematopoietic growth factor gene therapy regulated by Egr-1 promoter on radiation injury of SCID mice

    International Nuclear Information System (INIS)

    Du Nan; Pei Xuetao; Luo Chengji; Su Yongping; Cheng Tianmin

    2002-01-01

    Objective: To explore the radioprotective effect of the expression of hematopoietic growth factors regulated by radio-inducible promoter on radiation injury. Methods: The human FL cDNA and EGFP cDNA were linked together with an internal ribosome entry site (IRES) and then inserted into the eukaryotic expression vector pCI-neo with the Egr-1 promoter (Egr-EF), and further transduced into bone marrow stromal cell lines HFCL (HFCL/EF). The HFCL/EF and CD34 + cells from human umbilical cord blood were transplanted i.v. one after the other into sublethally irradiated severe combined immunodeficient (SCID) mice. The number of peripheral blood WBC and human cells engrafted in recipient mice were detected by flow cytometry and CFU-GM assay. Results: In contrast to two control groups (HFCL and HFCL/F), HFCL/EF (the Egr-1 regulatory element-driven expression of FL gene therapy) resulted in a proportionally obvious increase in the number of the WBC at early stage after irradiation. Significant differences were found for CD45 + , CD34 + , CFU-GM, and nucleated cells in the bone marrow. Conclusion: Hematopoietic growth factor gene therapy regulated by radio-inducible promoter has radioprotective effect on radiation hematopoietic injury

  7. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    International Nuclear Information System (INIS)

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-01-01

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets

  8. [Food intake regulation - 2nd part].

    Science.gov (United States)

    Brunerová, Ludmila; Anděl, Michal

    2014-01-01

    The review article summarizes the principles of hedonic regulation of food intake which represents the food intake independent on the maintenance of homeostasis. The theory describing hedonic regulation, so called Incentive Salience Theory, comprises three major processes: liking (positive attribution to food stimulus), wanting (motivation to gain it) and learning (identification of these stimuli and distinguishing them from those connected with aversive reaction). Neuronal reward circuits are the anatomical and functional substrates of hedonic regulation. They react to gustatory and olfactory (or visual) stimuli associated with food intake. A food item is preferred in case its consumption is connected with a pleasant feeling thus promoting the behavioural reaction. The probability of this reaction after repetitive exposure to such a stimulus is increased (learned preference). On the contrary, learned aversion after repetitive exposure is connected with avoidance of a food item associated with a negative feeling. Main mediators of hedonic regulation are endocannabinoids, opioids and monoamines (dopamine, serotonin). Dopamine in dorsal striatum via D2 receptors generates food motivation as a key means of survival, however in ventral striatum (nucleus accumbens) is responsible for motivation to food bringing pleasure. Serotonin via its receptors 5-HT1A a T-HT2C decreases intake of palatable food. It plays a significant role in the pathogenesis of eating disorders, particularly mental anorexia. There, a food restriction represents a kind of automedication to constitutionally pathologically increased serotonin levels. Detailed understanding of processes regulating food intake is a key to new pharmacological interventions in eating disorders.

  9. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.

    Science.gov (United States)

    Pautasso, Constanza; Reca, Sol; Chatfield-Reed, Kate; Chua, Gordon; Galello, Fiorella; Portela, Paula; Zaremberg, Vanina; Rossi, Silvia

    2016-08-01

    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Promoting Self-regulated Learning of Brazilian Preservice Student Teachers: Results of an Intervention Program

    Directory of Open Access Journals (Sweden)

    Danielle Ribeiro Ganda

    2018-02-01

    Full Text Available Self-regulation is the process by which individuals monitor, control, and reflect on their learning. Self-regulated students have motivational, metacognitive, affective, and behavioral characteristics that enhance their learning. As the importance of self-regulated learning is well acknowledged by research nowadays, the aim of this study is to examine the effectiveness of an innovative course designed to promote self-regulated learning among Brazilian preservice student teachers. The innovative approach was developed in the format of a program of intervention based heavily on self-reflection. The content involved student exposure to self-reflexive activities, lectures on the self-regulated learning framework, and theoretical tasks aimed at fostering self-regulation of students in a double perspective: as a student and as a future teacher. The efficacy of the approach was tested by comparison with both the results of students who had taken a course with theoretical content only and those who had not taken any course at all. The sample consisted of 109 students in 4 different freshman classes in a Teacher Education Program in a Brazilian public university in an inner city in the state of São Paulo. The research was conducted using a quasi-experimental design with three stages: pretest, intervention, and posttest. The classes were randomly assigned to experimental and control conditions as follows: an experimental group involving intervention, an experimental group exposed to theory, and two control groups not taking the course. Before and after the intervention program, all the participants responded to the Learning and Study Strategies Inventory and the Self-efficacy for Self-regulated Learning scales. Overall, the results showed that the intervention program format had a positive impact in enhancing student self-regulation. Moreover, students in both the experimental groups reported both higher gains in self-efficacy for self-regulated learning

  11. One of the Two Genes Encoding Nucleoid-Associated HU Proteins in Streptomyces coelicolor Is Developmentally Regulated and Specifically Involved in Spore Maturation▿ †

    Science.gov (United States)

    Salerno, Paola; Larsson, Jessica; Bucca, Giselda; Laing, Emma; Smith, Colin P.; Flärdh, Klas

    2009-01-01

    Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUα and HUβ, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor. PMID:19717607

  12. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    Science.gov (United States)

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  13. Psychopathy: Developmental Perspectives and their Implications for Treatment

    Science.gov (United States)

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2015-01-01

    Psychopathy is a neuropsychiatric disorder marked by deficient emotional responses, lack of empathy, and poor behavioral controls, commonly resulting in persistent antisocial deviance and criminal behavior. Accumulating research suggests that psychopathy follows a developmental trajectory with strong genetic influences, and which precipitates deleterious effects on widespread functional networks, particularly within paralimbic regions of the brain. While traditional therapeutic interventions commonly administered in prisons and forensic institutions have been notoriously ineffective at combating these outcomes, alternative strategies informed by an understanding of these specific neuropsychological obstacles to healthy development, and which target younger individuals with nascent symptoms of psychopathy are more promising. Here we review recent neuropsychiatric and neuroimaging literature that informs our understanding of the brain systems compromised in psychopathy, and apply these data to a broader understanding of its developmental course, ultimately promoting more proactive intervention strategies profiting from adaptive neuroplasticity in youth. PMID:23542910

  14. Integral and Multidimensional Linear Distinguishers with Correlation Zero

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Leander, Gregor; Nyberg, Kaisa

    2012-01-01

    Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation li...... weak key assumptions. © International Association for Cryptologic Research 2012....

  15. A promoter-level mammalian expression atlas

    NARCIS (Netherlands)

    Forrest, A.R.R.; Kawaji, H.; Rehli, M.; Baillie, J.K.; de Hoon, M.J.L.; Haberle, V.; Lassmann, T.; Kulakovskiy, I.V.; Lizio, M.; Itoh, M.; Andersson, R.; Mungall, C.J.; Meehan, T.F.; Schmeier, S.; Bertin, N.; Jorgensen, M.; Dimont, E.; Arner, E.; Schmidl, C.; Schaefer, U.; Medvedeva, Y.A.; Plessy, C.; Vitezic, M.; Severin, J.; Semple, C.A.; Ishizu, Y.; Young, R.S.; Francescatto, M.; Alam, I.; Albanese, D.; Altschuler, G.M.; Arakawa, T.; Archer, J.A.C.; Arner, P.; Babina, M.; Rennie, S.; Balwierz, P.J.; Beckhouse, A.G.; Pradhan-Bhatt, S.; Blake, J.A.; Blumenthal, A.; Bodega, B.; Bonetti, A.; Briggs, J.; Brombacher, F.; Burroughs, A.M.; Califano, A.; Cannistraci, C.V.; Carbajo, D.; Chen, Y.; Chierici, M.; Ciani, Y.; Clevers, H.C.; Dalla, E.; Davis, C.A.; Detmar, M.; Diehl, A.D.; Dohi, T.; Drablos, F.; Edge, A.S.B.; Edinger, M.; Ekwall, K.; Endoh, M.; Enomoto, H.; Fagiolini, M.; Fairbairn, L.; Fang, H.; Farach-Carson, M.C.; Faulkner, G.J.; Favorov, A.V.; Fisher, M.E.; Frith, M.C.; Fujita, R.; Fukuda, S.; Furlanello, C.; Furuno, M.; Furusawa, J.; Geijtenbeek, T.B.; Gibson, A.P.; Gingeras, T.; Goldowitz, D.; Gough, J.; Guhl, S.; Guler, R.; Gustincich, S.; Ha, T.J.; Hamaguchi, M.; Hara, M.; Harbers, M.; Harshbarger, J.; Hasegawa, A.; Hasegawa, Y.; Hashimoto, T.; Herlyn, M.; Hitchens, K.J.; Sui, S.J.H.; Hofmann, O.M.; Hoof, I.; Hori, F.; Rizzu, P.; Heutink, P.; Carninci, P.; Hayashizaki, Y.

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and

  16. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  17. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    Science.gov (United States)

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  18. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells.

    Science.gov (United States)

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-06-08

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS.

  19. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  20. Leisure, recreation, and play from a developmental context.

    Science.gov (United States)

    Caldwell, Linda L; Witt, Peter A

    2011-01-01

    Participation in activities and experiences defined as play, recreation,and leisure has important developmental implications for youth. Elements and characteristics of leisure experiences contribute directly to the development of identity, autonomy, competence,initiative, civic duty, and social connections. Whether in informal or formal, appropriately structured and organized programs,leisure experiences can help facilitate adolescent development in these areas. For example, one of the defining elements of leisure is that it is characterized by free choice and self-determination. Programs that promote leadership, choice, autonomy, and initiative can help adolescents deal with developmental challenges associated with this age group. Leisure experiences can also promote civic engagement and provide important peer-to-peer, peer to-adult, and peer-to-community connections. The social context of leisure is important to adolescent development in that it provides opportunities to learn empathy, loyalty, and intimacy in their group activities, as well as to negotiate with peers, resolve conflict,and work together for communal goals. In addition, adolescents often report positive emotional experiences in leisure, which can serve as a relief from the stress they feel in other areas of their lives and contribute to positive psychological adjustment and well-being. A case study is used to show how planned, purposive programs can be used as critical components of efforts to contribute to adolescent development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  1. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; McKim, Sarah M; Murmu, Jhadeswar; Haughn, George W; Hepworth, Shelley R

    2010-09-01

    The transition to flowering is a tightly controlled developmental decision in plants. In Arabidopsis, LEAFY (LFY) and APETALA1 (AP1) are key regulators of this transition and expression of these genes in primordia produced by the inflorescence meristem confers floral fate. Here, we examine the role of architectural regulators BLADE-ON-PETIOLE1 (BOP1) and BOP2 in promotion of floral meristem identity. Loss-of-function bop1 bop2 mutants show subtle defects in inflorescence and floral architecture but in combination with lfy or ap1, synergistic defects in floral meristem fate and determinacy are revealed. The most dramatic changes occur in bop1 bop2 ap1-1 triple mutants where flowers are converted into highly branched inflorescence-like shoots. Our data show that BOP1/2 function distinctly from LFY to upregulate AP1 in floral primordia and that all three activities converge to down-regulate flowering-time regulators including AGAMOUS-LIKE24 in stage 2 floral meristems. Subsequently, BOP1/2 promote A-class floral-organ patterning in parallel with LFY and AP1. Genetic and biochemical evidence support the model that BOP1/2 are recruited to the promoter of AP1 through direct interactions with TGA bZIP transcription factors, including PERIANTHIA. These data reveal an important supporting role for BOP1/2 in remodeling shoot architecture during the floral transition. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  2. I. DEVELOPMENTAL METHODOLOGY AS A CENTRAL SUBDISCIPLINE OF DEVELOPMENTAL SCIENCE.

    Science.gov (United States)

    Card, Noel A

    2017-06-01

    This first chapter introduces the main goals of the monograph and previews the remaining chapters. The goals of this monograph are to provide summaries of our current understanding of advanced developmental methodologies, provide information that can advance our understanding of human development, identify shortcomings in our understanding of developmental methodology, and serve as a flagpost for organizing developmental methodology as a subdiscipline within the broader field of developmental science. The remaining chapters in this monograph address issues in design (sampling and big data), longitudinal data analysis, and issues of replication and research accumulation. The final chapter describes the history of developmental methodology, considers how the previous chapters in this monograph fit within this subdiscipline, and offers recommendations for further advancement. © 2017 The Society for Research in Child Development, Inc.

  3. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.

    Science.gov (United States)

    Busk, P K; Jensen, A B; Pagès, M

    1997-06-01

    The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.

  4. CT of Normal Developmental and Variant Anatomy of the Pediatric Skull: Distinguishing Trauma from Normality.

    Science.gov (United States)

    Idriz, Sanjin; Patel, Jaymin H; Ameli Renani, Seyed; Allan, Rosemary; Vlahos, Ioannis

    2015-01-01

    The use of computed tomography (CT) in clinical practice has been increasing rapidly, with the number of CT examinations performed in adults and children rising by 10% per year in England. Because the radiology community strives to reduce the radiation dose associated with pediatric examinations, external factors, including guidelines for pediatric head injury, are raising expectations for use of cranial CT in the pediatric population. Thus, radiologists are increasingly likely to encounter pediatric head CT examinations in daily practice. The variable appearance of cranial sutures at different ages can be confusing for inexperienced readers of radiologic images. The evolution of multidetector CT with thin-section acquisition increases the clarity of some of these sutures, which may be misinterpreted as fractures. Familiarity with the normal anatomy of the pediatric skull, how it changes with age, and normal variants can assist in translating the increased resolution of multidetector CT into more accurate detection of fractures and confident determination of normality, thereby reducing prolonged hospitalization of children with normal developmental structures that have been misinterpreted as fractures. More important, the potential morbidity and mortality related to false-negative interpretation of fractures as normal sutures may be avoided. The authors describe the normal anatomy of all standard pediatric sutures, common variants, and sutural mimics, thereby providing an accurate and safe framework for CT evaluation of skull trauma in pediatric patients. (©)RSNA, 2015.

  5. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  6. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    Directory of Open Access Journals (Sweden)

    Ro Dae-Kyun

    2009-07-01

    Full Text Available Abstract Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L. were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes

  7. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2018-01-01

    Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510

  8. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2017-01-01

    Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.

  9. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  10. A promoter-level mammalian expression atlas

    DEFF Research Database (Denmark)

    Forest, Alistair R.R.; Kawaji, Hideya; Rehli, Michael

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and t...

  11. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  12. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  13. Neuroimaging of developmental psychopathologies: the importance of self-regulatory and neuroplastic processes in adolescence

    DEFF Research Database (Denmark)

    Spessot, Alexandra L; Plessen, Kerstin J; Peterson, Bradley S

    2004-01-01

    Normal brain maturational and developmental processes, together with plastic reorganization of the brain in response to experiential demands, contribute to the acquisition of improved capacities for self-regulation and impulse control during adolescence. The frontal lobe is a main focus for these......Normal brain maturational and developmental processes, together with plastic reorganization of the brain in response to experiential demands, contribute to the acquisition of improved capacities for self-regulation and impulse control during adolescence. The frontal lobe is a main focus...... for these developmental and plastic processes during the transition from adolescence into adulthood. Tourette syndrome (TS), defined as the chronic presence of motor and vocal tics, has been increasingly conceptualized as a disorder of impaired self-regulatory control. This disordered control is thought to give rise...... to semicompulsory urges to perform the movements that constitute simple tics, complex tics, or compulsions. Neuroimaging studies suggest that the expression of the genetic diathesis to TS is influenced by genetic and nongenetic factors affecting activity-dependent reorganization of neuroregulatory systems, thereby...

  14. Development of a promoter shutoff system in Aspergillus oryzae using a sorbitol-sensitive promoter.

    Science.gov (United States)

    Oda, Ken; Terado, Shiho; Toyoura, Rieko; Fukuda, Hisashi; Kawauchi, Moriyuki; Iwashita, Kazuhiro

    2016-09-01

    Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.

  15. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits.

    Directory of Open Access Journals (Sweden)

    Sangkyu Park

    Full Text Available Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR and squalene synthase (SS genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS, belonging to a sesquiterpene cyclase (STC family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA, resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits.

  16. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.

    Science.gov (United States)

    Hattori, T; Terada, T; Hamasuna, S

    1995-06-01

    Osem, a rice gene homologous to the wheat Em gene, which encodes one of the late-embryogenesis abundant proteins was isolated. The gene was characterized with respect to control of transcription by abscisic acid (ABA) and the transcriptional activator VP1, which is involved in the ABA-regulated gene expression during late embryo-genesis. A fusion gene (Osem-GUS) consisting of the Osem promoter and the bacterial beta-glucuronidase (GUS) gene was constructed and tested in a transient expression system, using protoplasts derived from a suspension-cultured line of rice cells, for activation by ABA and by co-transfection with an expression vector (35S-Osvp1) for the rice VP1 (OSVP1) cDNA. The expression of Osem-GUS was strongly (40- to 150-fold) activated by externally applied ABA and by over-expression of (OS)VP1. The Osem promoter has three ACGTG-containing sequences, motif A, motif B and motif A', which resemble the abscisic acid-responsive element (ABRE) that was previously identified in the wheat Em and the rice Rab16. There is also a CATGCATG sequence, which is known as the Sph box and is shown to be essential for the regulation by VP1 of the maize anthocyanin regulatory gene C1. Focusing on these sequence elements, various mutant derivatives of the Osem promoter in the transient expression system were assayed. The analysis revealed that motif A functions not only as an ABRE but also as a sequence element required for the regulation by (OS)VP1.

  17. The Development of Emotional and Behavioral Self-Regulation and Their Effects on Academic Achievement in Childhood

    Science.gov (United States)

    Edossa, Ashenafi Kassahun; Schroeders, Ulrich; Weinert, Sabine; Artelt, Cordula

    2018-01-01

    Self-regulation is an essential ability of children to cope with various developmental challenges. This study examines the developmental interplay between emotional and behavioral self-regulation during childhood and the relationship with academic achievement using data from the longitudinal Millennium Cohort Study (UK). Using cross-lagged panel…

  18. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium.

    Science.gov (United States)

    Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao

    2013-04-12

    The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.

  19. Getting Back to the Woods: Familial Perspectives on Culture and Preschoolers' Acquisition of Self-Regulation and Emotion Regulation

    Science.gov (United States)

    Boyer, Wanda

    2013-01-01

    Discourse on culture is vital to early childhood educators' understanding of the young child in various socio-cultural experiences in family and community settings. In this article, the author will present a contemporary definition of culture. This article will then discuss the developmental constructs of self-regulation and emotion regulation and…

  20. Vulnerability to alcohol-related problems: a policy brief with implications for the regulation of alcohol marketing.

    Science.gov (United States)

    Babor, Thomas F; Robaina, Katherine; Noel, Jonathan K; Ritson, E Bruce

    2017-01-01

    The concern that alcohol advertising can have detrimental effects on vulnerable viewers has prompted the development of codes of responsible advertising practices. This paper evaluates critically the concept of vulnerability as it applies to (1) susceptibility to alcohol-related harm and (2) susceptibility to the effects of marketing, and describes its implications for the regulation of alcohol marketing. We describe the findings of key published studies, review papers and expert reports to determine whether these two types of vulnerability apply to population groups defined by (1) age and developmental history; (2) personality characteristics; (3) family history of alcoholism; (4) female sex and pregnancy risk; and (5) history of alcohol dependence and recovery status. Developmental theory and research suggest that groups defined by younger age, incomplete neurocognitive development and a history of alcohol dependence may be particularly vulnerable because of the disproportionate harm they experience from alcohol and their increased susceptibility to alcohol marketing. Children may be more susceptible to media imagery because they do not have the ability to compensate for biases in advertising portrayals and glamorized media imagery. Young people and people with a history of alcohol dependence appear to be especially vulnerable to alcohol marketing, warranting the development of new content and exposure guidelines focused on protecting those groups to improve current self-regulation codes promoted by the alcohol industry. If adequate protections cannot be implemented through this mechanism, statutory regulations should be considered. © 2016 Society for the Study of Addiction.

  1. Regulation of basophil and mast cell development by transcription factors

    Directory of Open Access Journals (Sweden)

    Haruka Sasaki

    2016-04-01

    Full Text Available Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  2. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells.

    Science.gov (United States)

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-12-07

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.

  3. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  4. Social geography of developmental health in the early years.

    Science.gov (United States)

    Hertzman, Clyde

    2010-01-01

    What happens to children in their earliest years is critical for their development throughout the life course. The years from zero to school age are foundational for brain and biological development. Attachment and face recognition; impulse control and regulation of physical aggression; executive function in the prefrontal cortex and focused attention; fine and gross motor functions and coordination; receptive and expressive language; and understandings of quantitative concepts are all established during this time and become embedded in the architecture and function of the brain (Doherty 1997; Kolb 2009; McCain and Mustard 1999). Brain and biological development are in turn expressed through three broad domains of development of the whole child: physical, social-emotional and language-cognitive, which together are the basis of "developmental health" (Keating and Hertzman 1999). Developmental health influences many aspects of well-being, including obesity and stunting, mental health, heart disease, competence in literacy and numeracy, criminality and economic participation throughout life (Irwin et al. 2007). Accordingly, developmental health is the central concern of this article.

  5. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    Full Text Available Plant growth-promoting rhizobacteria (PGPR induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects

  6. 29 CFR 541.503 - Promotion work.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Promotion work. 541.503 Section 541.503 Labor Regulations... Outside Sales Employees § 541.503 Promotion work. (a) Promotion work is one type of activity often.... Promotion activities directed toward consummation of the employee's own sales are exempt. Promotional...

  7. Method for distinguishing fuel pellets

    International Nuclear Information System (INIS)

    Sagami, Masaharu; Kurihara, Kunitoshi.

    1978-01-01

    Purpose: To distinguish correctly and efficiently the kind of fuel substance enclosed in a cladding tube. Method: Elements such as manganess 55, copper 65, vanadium 51, zinc 64, scandium 45 and the like, each having a large neutron absorption cross section and discharging gamma rays of inherent bright line spectra are applied to or mixed in fuel pellets of different kinds in uranium enrichment degree, plutonium concentration, burnable poison concentration or the like. These fuel rods are irradiated with neutron beams, and energy spectra of gamma rays discharged upon this occasion are observed to carry out distinguishing of fuel pellets. (Aizawa, K.)

  8. Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants.

    Science.gov (United States)

    Krekels, Elke H J; van Ham, Saskia; Allegaert, Karel; de Hoon, Jan; Tibboel, Dick; Danhof, Meindert; Knibbe, Catherijne A J

    2015-09-01

    Based on recovered metabolite ratios in urine, it has been concluded that paracetamol glucuronidation may be up-regulated upon multiple dosing. This study investigates paracetamol clearance in neonates and infants after single and multiple dosing using a population modelling approach. A population pharmacokinetic model was developed in NONMEM VI, based on paracetamol plasma concentrations from 54 preterm and term neonates and infants, and on paracetamol, paracetamol-glucuronide and paracetamol-sulphate amounts in urine from 22 of these patients. Patients received either a single intravenous propacetamol dose or up to 12 repeated doses. Paracetamol and metabolite disposition was best described with one-compartment models. The formation clearance of paracetamol-sulphate was 1.46 mL/min/kg(1.4), which was about 5.5 times higher than the formation clearance of the glucuronide of 0.266 mL/min/kg. The renal excretion rate constants of both metabolites was estimated to be 11.4 times higher than the excretion rate constant of unchanged paracetamol, yielding values of 0.580 mL/min/kg. Developmental changes were best described by bodyweight in linear relationships on the distribution volumes, the formation of paracetamol-glucuronide and the unchanged excretion of paracetamol, and in an exponential relationship on the formation of paracetamol-sulphate. There was no evidence for up-regulation or other time-varying changes in any of the model parameters. Simulations with this model illustrate how paracetamol-glucuronide recovery in urine increases over time due to the slower formation of this metabolite and in the absence of up-regulation. Developmental changes, described by bodyweight-based functions, rather than up-regulation, explain developmental changes in paracetamol disposition in neonates and infants.

  9. Mother-Child Interaction and Resilience in Children with Early Developmental Risk

    Science.gov (United States)

    Fenning, Rachel M.; Baker, Jason K.

    2014-01-01

    Although prenatal and genetic factors make strong contributions to the emergence of intellectual disability (ID), children's early environment may have the potential to alter developmental trajectories and to foster resilience in children with early risk. The present study examined mother-child interaction and the promotion of competence in 50 children with early developmental delays. Three related but distinct aspects of mother-child interaction were considered: maternal technical scaffolding, maternal positive-sensitivity, and mother-child dyadic pleasure. Children were classified as exhibiting undifferentiated delays at age three based upon performance on developmental assessments and the absence of known genetic syndromes. Mother-child interaction was assessed at age four through observational ratings of structured laboratory tasks and through naturalistic home observations. ID was identified at age five using the dual criteria of clinically significant delays in cognitive functioning and adaptive behavior. Maternal technical scaffolding and dyadic pleasure each uniquely predicted reduced likelihood of later ID, beyond the contributions of children's early developmental level and behavioral functioning. Follow-up analyses suggested that mother-child interaction was primarily important to resilience in the area of adaptive behavior, with scaffolding and dyadic pleasure differentially associated with particular sub-domains. Implications for theories of intellectual disability and for family-based early intervention and prevention efforts are discussed. PMID:22662771

  10. What do general practitioners think about an online self-regulation programme for health promotion? Focus group interviews.

    Science.gov (United States)

    Plaete, Jolien; Crombez, Geert; DeSmet, Ann; Deveugele, Myriam; Verloigne, Maïté; De Bourdeaudhuij, Ilse

    2015-01-22

    Chronic diseases may be prevented through programmes that promote physical activity and healthy nutrition. Computer-tailoring programmes are effective in changing behaviour in the short- and long-term. An important issue is the implementation of these programmes in general practice. However, there are several barriers that hinder the adoption of eHealth programmes in general practice. This study explored the feasibility of an eHealth programme that was designed, using self-regulation principles. Seven focus group interviews (a total of 62 GPs) were organized to explore GPs' opinions about the feasibility of the eHealth programme for prevention in general practice. At the beginning of each focus group, GPs were informed about the principles of the self-regulation programme 'My Plan'. Open-ended questions were used to assess the opinion of GPs about the content and the use of the programme. The focus groups discussions were audio-taped, transcribed and thematically analysed via NVivo software. The majority of the GPs was positive about the use of self-regulation strategies and about the use of computer-tailored programmes in general practice. There were contradictory results about the delivery mode of the programme. GPs also indicated that the programme might be less suited for patients with a low educational level or for old patients. Overall, GPs are positive about the adoption of self-regulation techniques for health promotion in their practice. However, they raised doubts about the adoption in general practice. This barrier may be addressed (1) by offering various ways to deliver the programme, and (2) by allowing flexibility to match different work flow systems. GPs also believed that the acceptability and usability of the programme was low for patients who are old or with low education. The issues raised by GPs will need to be taken into account when developing and implementing an eHealth programme in general practice.

  11. Developmentally Regulated Production of meso-Zeaxanthin in Chicken Retinal Pigment Epithelium/Choroid and Retina.

    Science.gov (United States)

    Gorusupudi, Aruna; Shyam, Rajalekshmy; Li, Binxing; Vachali, Preejith; Subhani, Yumna K; Nelson, Kelly; Bernstein, Paul S

    2016-04-01

    meso-Zeaxanthin is a carotenoid that is rarely encountered in nature outside of the vertebrate eye. It is not a constituent of a normal human diet, yet this carotenoid comprises one-third of the primate macular pigment. In the current study, we undertook a systematic approach to biochemically characterize the production of meso-zeaxanthin in the vertebrate eye. Fertilized White Leghorn chicken eggs were analyzed for the presence of carotenoids during development. Yolk, liver, brain, serum, retina, and RPE/choroid were isolated, and carotenoids were extracted. The samples were analyzed on C-30 or chiral HPLC columns to determine the carotenoid composition. Lutein and zeaxanthin were found in all studied nonocular tissues, but no meso-zeaxanthin was ever detected. Among the ocular tissues, the presence of meso-zeaxanthin was consistently observed starting at embryonic day 17 (E17) in the RPE/choroid, several days before its consistent detection in the retina. If RPE/choroid of an embryo was devoid of meso-zeaxanthin, the corresponding retina was always negative as well. This is the first report of developmentally regulated synthesis of meso-zeaxanthin in a vertebrate system. Our observations suggest that the RPE/choroid is the primary site of meso-zeaxanthin synthesis. Identification of meso-zeaxanthin isomerase enzyme in the developing chicken embryo will facilitate our ability to determine the biochemical mechanisms responsible for production of this unique carotenoid in other higher vertebrates, such as humans.

  12. Measuring Self-Regulated Learning in the Workplace

    Science.gov (United States)

    Fontana, Rosa Pia; Milligan, Colin; Littlejohn, Allison; Margaryan, Anoush

    2015-01-01

    In knowledge-intensive industries, the workplace has become a key locus of learning. To perform effectively, knowledge workers must be able to take responsibility for their own developmental needs, and in particular, to regulate their own learning. This paper describes the construction and validation of an instrument (the Self-Regulated Learning…

  13. Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation

    Directory of Open Access Journals (Sweden)

    Leslie A. Frankel

    2012-01-01

    Full Text Available The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed.

  14. Developmental exposure to trichloroethylene promotes CD4+ T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.; Jernigan, Stefanie; Melnyk, Stepan; James, S. Jill

    2008-01-01

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-γ following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice were exposed to 0.1 mg/ml TCE (∼ 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-α, and IFN-γ by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders

  15. Cumulative-Genetic Plasticity, Parenting and Adolescent Self-Regulation

    Science.gov (United States)

    Belsky, Jay; Beaver, Kevin M.

    2011-01-01

    Background: The capacity to control or regulate one's emotions, cognitions and behavior is central to competent functioning, with limitations in these abilities associated with developmental problems. Parenting appears to influence such self-regulation. Here the differential-susceptibility hypothesis is tested that the more putative "plasticity…

  16. miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.

    Science.gov (United States)

    Cai, Wei; Jiang, Haitao; Yu, Yifan; Xu, Yong; Zuo, Wenshan; Wang, Shouguo; Su, Zhen

    2017-11-01

    Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    , isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several...

  18. Nurturing care: promoting early childhood development.

    Science.gov (United States)

    Britto, Pia R; Lye, Stephen J; Proulx, Kerrie; Yousafzai, Aisha K; Matthews, Stephen G; Vaivada, Tyler; Perez-Escamilla, Rafael; Rao, Nirmala; Ip, Patrick; Fernald, Lia C H; MacMillan, Harriet; Hanson, Mark; Wachs, Theodore D; Yao, Haogen; Yoshikawa, Hirokazu; Cerezo, Adrian; Leckman, James F; Bhutta, Zulfiqar A

    2017-01-07

    The UN Sustainable Development Goals provide a historic opportunity to implement interventions, at scale, to promote early childhood development. Although the evidence base for the importance of early childhood development has grown, the research is distributed across sectors, populations, and settings, with diversity noted in both scope and focus. We provide a comprehensive updated analysis of early childhood development interventions across the five sectors of health, nutrition, education, child protection, and social protection. Our review concludes that to make interventions successful, smart, and sustainable, they need to be implemented as multi-sectoral intervention packages anchored in nurturing care. The recommendations emphasise that intervention packages should be applied at developmentally appropriate times during the life course, target multiple risks, and build on existing delivery platforms for feasibility of scale-up. While interventions will continue to improve with the growth of developmental science, the evidence now strongly suggests that parents, caregivers, and families need to be supported in providing nurturing care and protection in order for young children to achieve their developmental potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies.

    Science.gov (United States)

    Özsu, Nesibe; Chan, Qian Yi; Chen, Bin; Gupta, Mainak Das; Monteiro, Antónia

    2017-09-01

    Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 48 CFR 219.7104 - Developmental assistance costs eligible for reimbursement or credit.

    Science.gov (United States)

    2010-10-01

    ... costs eligible for reimbursement or credit. 219.7104 Section 219.7104 Federal Acquisition Regulations... reimbursement or credit. (a) Developmental assistance provided under an approved mentor-protege agreement is... eligible for reimbursement are set forth in appendix I. (b) Before incurring any costs under the Program...

  1. Reporter-Based Isolation of Developmental Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Eyemen Kheir

    2018-04-01

    Full Text Available The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS. The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

  2. Motor competence and its effect on positive developmental trajectories of health

    OpenAIRE

    Robinson, L.E.; Stodden, David F.; Barnett, L.M.; Lopes, Vítor P.; Logan, S.W.; Rodrigues, Luis Paulo; D'Hondt, E.

    2015-01-01

    In 2008, Stodden and colleagues took a unique developmental approach toward addressing the potential role of motor competence in promoting positive or negative trajectories of physical activity, health-related fitness, and weight status. The conceptual model proposed synergistic relationships among physical activity, motor competence, perceived motor competence, health-related physical fit- ness, and obesity with associations hypothesized to strengthen over time. At the ...

  3. Abnormal Stress Responsivity in a Rodent Developmental Disruption Model of Schizophrenia

    OpenAIRE

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-01-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for ...

  4. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.

    Science.gov (United States)

    Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György

    2018-06-01

    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.

  6. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    International Nuclear Information System (INIS)

    Tamburini, Beth A; Cutter, Gary R; Wojcieszyn, John W; Bellgrau, Donald; Gemmill, Robert M; Hunter, Lawrence E; Modiano, Jaime F; Phang, Tzu L; Fosmire, Susan P; Scott, Milcah C; Trapp, Susan C; Duckett, Megan M; Robinson, Sally R; Slansky, Jill E; Sharkey, Leslie C

    2010-01-01

    The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells

  7. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Slansky Jill E

    2010-11-01

    Full Text Available Abstract Background The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. Methods We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA. Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Results Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma. Conclusions The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic

  8. THE REGULATIONS RELATING TO FOODSTUFFS FOR INFANTS AND YOUNG CHILDREN (R 991: A FORMULA FOR THE PROMOTION OF BREASTFEEDING OR CENSORSHIP OF COMMERCIAL SPEECH?

    Directory of Open Access Journals (Sweden)

    Lize Mills

    2014-04-01

    Full Text Available The regulation of commercial speech in the interests of public health is an issue which recently has become the topic of numerous debates. Two examples of such governmental regulation are the subjects of discussion in this article, namely the prohibition on the advertising and promotion of tobacco products, as well as the proposed prohibition on the advertising and promotion of infant formulae and other foods and products marketed as being suitable for infants or young children. The article seek to evaluate the recently proposed regulations published in terms of the Foodstuffs, Cosmetics and Disinfectants Act in the light of the reasoning by the Supreme Court of Appeal in the British American Tobacco South Africa (Pty Limited v Minister of Health 463/2011 [2012] ZASCA 107 (20 June 2012 decision, and in particular in terms of the section 36 test of reasonableness and proportionality found in the Constitution of the Republic of South Africa, 1996. It argues that, although the South African Department of Health must be applauded for its attempt at improving public health in the country, some of the provisions of the proposed regulations are not constitutionally sound. It will be contended that, despite the fact that the promotion of breastfeeding is a laudable goal, the introduction only of measures which restrict the right to advertise these types of products will not necessarily achieve this objective.

  9. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Directory of Open Access Journals (Sweden)

    Joshua D. Campbell

    2018-04-01

    Full Text Available Summary: This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs from five sites associated with smoking and/or human papillomavirus (HPV. SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs, DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+ and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches. : Campbell et al. reveal that squamous cell cancers from different tissue sites may be distinguished from other cancers and subclassified molecularly by recurrent alterations in chromosomes, DNA methylation, messenger and microRNA expression, or by mutations. These affect squamous cell pathways and programs that provide candidates for therapy. Keywords: genomics, transcriptomics, proteomics, head and neck squamous cell carcinoma, lung squamous cell carcinoma, esophageal squamous cell carcinoma, cervical squamous cell carcinoma, bladder carcinoma with squamous differentiation, human papillomavirus

  10. Rab27A mediated by NF-κB promotes the stemness of colon cancer cells via up-regulation of cytokine secretion.

    Science.gov (United States)

    Feng, Feixue; Jiang, Yinghao; Lu, Huanyu; Lu, Xiaozhao; Wang, Shan; Wang, Lifeng; Wei, Mengying; Lu, Wei; Du, Zhichao; Ye, Zichen; Yang, Guodong; Yuan, Fang; Ma, Yanxia; Lei, Xiaoying; Lu, Zifan

    2016-09-27

    Recent evidences have unveiled critical roles of cancer stem cells (CSCs) in tumorigenicity, but how interactions between CSC and tumor environments help maintain CSC initiation remains obscure. The small GTPases Rab27A regulates autocrine and paracrine cytokines by monitoring exocytosis of extracellular vesicles, and is reported to promote certain tumor progression. We observe that overexpression of Rab27A increased sphere formation efficiency (SFE) by increasing the proportion of CD44+ and PKH26high cells in HT29 cell lines, and accelerating the growth of colosphere with higher percentage of cells at S phase. Mechanism study revealed that the supernatant derived from HT29 sphere after Rab27A overexpression was able to expand sphere numbers with elevated secretion of VEGF and TGF-β. In tumor implanting nude mice model, tumor initiation rates and tumor sizes were enhanced by Rab27A with obvious angiogenesis. As a contrast, knocking down Rab27A impaired the above effects. More importantly, the correlation between higher p65 level and Rab27A in colon sphere was detected, p65 was sufficient to induce up-regulation of Rab27A and a functional NF-κB binding site in the Rab27A promoter was demonstrated. Altogether, our findings reveal a unique mechanism that tumor environment related NF-κB signaling promotes various colon cancer stem cells (cCSCs) properties via an amplified paracrine mechanism regulated by higher Rab27A level.

  11. Cell Cycle-Dependent Recruitment of Polycomb Proteins to the ASNS Promoter Counteracts C/ebp-Mediated Transcriptional Activation in Bombyx mori

    Science.gov (United States)

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Zhu, Li; Xu, Jian; Tatsuke, Tsuneyuki; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2013-01-01

    Epigenetic modifiers and transcription factors contribute to developmentally programmed gene expression. Here, we establish a functional link between epigenetic regulation by Polycomb group (PcG) proteins and transcriptional regulation by C/ebp that orchestrates the correct expression of Bombyx mori asparagine synthetase (BmASNS), a gene involved in the biosynthesis of asparagine. We show that the cis-regulatory elements of YY1-binding motifs and the CpG island present on the BmASNS promoter are required for the recruitment of PcG proteins and the subsequent deposition of the epigenetic repression mark H3K27me3. RNAi-mediated knockdown of PcG genes leads to derepression of the BmASNS gene via the recruitment of activators, including BmC/ebp, to the promoter. Intriguingly, we find that PcG proteins and BmC/ebp can dynamically modulate the transcriptional output of the BmASNS target in a cell cycle-dependent manner. It will be essential to suppress BmASNS expression by PcG proteins at the G2/M phase of the cell cycle in the presence of BmC/ebp activator. Thus, our results provide a novel insight into the molecular mechanism underlying the recruitment and regulation of the PcG system at a discrete gene locus in Bombyx mori. PMID:23382816

  12. Cheating by exploitation of developmental prestalk patterning in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Anupama Khare

    2010-02-01

    Full Text Available The cooperative developmental system of the social amoeba Dictyostelium discoideum is susceptible to exploitation by cheaters-strains that make more than their fair share of spores in chimerae. Laboratory screens in Dictyostelium have shown that the genetic potential for facultative cheating is high, and field surveys have shown that cheaters are abundant in nature, but the cheating mechanisms are largely unknown. Here we describe cheater C (chtC, a strong facultative cheater mutant that cheats by affecting prestalk differentiation. The chtC gene is developmentally regulated and its mRNA becomes stalk-enriched at the end of development. chtC mutants are defective in maintaining the prestalk cell fate as some of their prestalk cells transdifferentiate into prespore cells, but that defect does not affect gross developmental morphology or sporulation efficiency. In chimerae between wild-type and chtC mutant cells, the wild-type cells preferentially give rise to prestalk cells, and the chtC mutants increase their representation in the spore mass. Mixing chtC mutants with other cell-type proportioning mutants revealed that the cheating is directly related to the prestalk-differentiation propensity of the victim. These findings illustrate that a cheater can victimize cooperative strains by exploiting an established developmental pathway.

  13. Cheating by Exploitation of Developmental Prestalk Patterning in Dictyostelium discoideum

    Science.gov (United States)

    Khare, Anupama; Shaulsky, Gad

    2010-01-01

    The cooperative developmental system of the social amoeba Dictyostelium discoideum is susceptible to exploitation by cheaters—strains that make more than their fair share of spores in chimerae. Laboratory screens in Dictyostelium have shown that the genetic potential for facultative cheating is high, and field surveys have shown that cheaters are abundant in nature, but the cheating mechanisms are largely unknown. Here we describe cheater C (chtC), a strong facultative cheater mutant that cheats by affecting prestalk differentiation. The chtC gene is developmentally regulated and its mRNA becomes stalk-enriched at the end of development. chtC mutants are defective in maintaining the prestalk cell fate as some of their prestalk cells transdifferentiate into prespore cells, but that defect does not affect gross developmental morphology or sporulation efficiency. In chimerae between wild-type and chtC mutant cells, the wild-type cells preferentially give rise to prestalk cells, and the chtC mutants increase their representation in the spore mass. Mixing chtC mutants with other cell-type proportioning mutants revealed that the cheating is directly related to the prestalk-differentiation propensity of the victim. These findings illustrate that a cheater can victimize cooperative strains by exploiting an established developmental pathway. PMID:20195510

  14. [Subtainable health promotion via organisational development--a model project for teachers in professional training schools].

    Science.gov (United States)

    Schumacher, L; Nieskens, B; Bräuer, H; Sieland, B

    2005-02-01

    The goal of this project is the development, implementation and evaluation of a concept designed for sustainable health promotion among occupational and trade school teachers. We assume that for sustainable health promotion -- along with a behavioral prevention program -- a change is necessary in the structure, as well as, the working and communication processes within schools. The realization of early teacher participation and self regulated cooperative groups initiates comprehensive and goal-oriented developmental processes in the project schools. The organizational development process was accomplished in the following way: At the beginning we conducted a diagnosis of school-specific and individual health risks and the resources available to the project schools. The results were reported for both the individual and for the teacher group. This was intended to clarify the potential for improvement and, thus, strengthen the teachers' motivation toward processes of change. Following the diagnosis, the teachers chose areas of stress-related strain and then worked in groups to develop and implement behaviour and working condition-oriented intervention strategies for health promotion. The diagnosis results confirm the necessity of school-specific health promotion: the schools demonstrate very different demand and resource profiles. Furthermore, is has become evident that the central success factor for health promotion in schools is the teachers' willingness for change. The individual and group reports of the diagnosis results seem to have made clear how essential individual and organisational changes are.

  15. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  16. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    International Nuclear Information System (INIS)

    Henrique Barreta, Marcos; Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de; Ferreira, Rogério; Oliveira, João Francisco de; Gonçalves, Paulo Bayard Dias; Bordignon, Vilceu

    2012-01-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  17. Rational Choice and Developmental Influences on Recidivism Among Adolescent Felony Offenders.

    Science.gov (United States)

    Fagan, Jeffrey; Piquero, Alex R

    2007-12-01

    Recent case law and social science both have claimed that the developmental limitations of adolescents affect their capacity for control and decision making with respect to crime, diminishing their culpability and reducing their exposure to punishment. Social science has focused on two concurrent adolescent developmental influences: the internalization of legal rules and norms that regulate social and antisocial behaviors, and the development of rationality to frame behavioral choices and decisions. The interaction of these two developmental processes, and the identification of one domain of socialization and development as the primary source of motivation or restraint in adolescence, is the focus of this article. Accordingly, we combine rational choice and legal socialization frameworks into an integrated, developmental model of criminality. We test this framework in a large sample of adolescent felony offenders who have been interviewed at six-month intervals for two years. Using hierarchical and growth curve models, we show that both legal socialization and rational choice factors influence patterns of criminal offending over time. When punishment risks and costs are salient, crime rates are lower over time. We show that procedural justice is a significant antecedent of legal socialization, but not of rational choice. We also show that both mental health and developmental maturity moderate the effects of perceived crime risks and costs on criminal offending.

  18. Rational Choice and Developmental Influences on Recidivism Among Adolescent Felony Offenders

    Science.gov (United States)

    Fagan, Jeffrey; Piquero, Alex R.

    2009-01-01

    Recent case law and social science both have claimed that the developmental limitations of adolescents affect their capacity for control and decision making with respect to crime, diminishing their culpability and reducing their exposure to punishment. Social science has focused on two concurrent adolescent developmental influences: the internalization of legal rules and norms that regulate social and antisocial behaviors, and the development of rationality to frame behavioral choices and decisions. The interaction of these two developmental processes, and the identification of one domain of socialization and development as the primary source of motivation or restraint in adolescence, is the focus of this article. Accordingly, we combine rational choice and legal socialization frameworks into an integrated, developmental model of criminality. We test this framework in a large sample of adolescent felony offenders who have been interviewed at six-month intervals for two years. Using hierarchical and growth curve models, we show that both legal socialization and rational choice factors influence patterns of criminal offending over time. When punishment risks and costs are salient, crime rates are lower over time. We show that procedural justice is a significant antecedent of legal socialization, but not of rational choice. We also show that both mental health and developmental maturity moderate the effects of perceived crime risks and costs on criminal offending. PMID:20148123

  19. SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus.

    Science.gov (United States)

    Eijlander, Robyn T; Holsappel, Siger; de Jong, Anne; Ghosh, Abhinaba; Christie, Graham; Kuipers, Oscar P

    2016-01-01

    Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus , whereas this is not observed in Bacillus subtilis . Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus Δ spoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes.

  20. Developmental Programming: State-of-the-Science and Future Directions

    Science.gov (United States)

    Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric

    2016-01-01

    Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645

  1. Promoter reuse in prokaryotes

    NARCIS (Netherlands)

    Nijveen, H.; Matus-Garcia, M.; Passel, van M.W.J.

    2012-01-01

    Anecdotal evidence shows promoters being reused separate from their downstream gene, thus providing a mechanism for the efficient and rapid rewiring of a gene’s transcriptional regulation. We have identified over 4000 groups of highly similar promoters using a conservative sequence similarity search

  2. Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter

    Directory of Open Access Journals (Sweden)

    Amrita Salvi

    2017-03-01

    Full Text Available Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein. We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs characterized by the consensus sequence 5′-GCGTG-3′ at -132 bp(HRE1 and at -662 bp(HRE2 relative to transcription start site (TSS. Site-directed mutagenesis of HRE1(-132 but not HRE2(-662 abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132 but not HRE2(-662 under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132 and explains the role of N-WASP in hypoxia induced invadopodia formation.

  3. Community health promotion approaches within institutions for disabled

    DEFF Research Database (Denmark)

    Holm, Jesper

    From a two years study of 3 special educational institutions for disabled in Zealand, Denmark, we have done qualitative studies of the focus-areas that the institutions have pointed out as their Best Practices of Health Promotion in everyday life. We have in general followed research questions......: What practices do special institutions for people with developmental disabilities believe to be health promoting, and will a research based reconstruction of these practices with health promotion concepts have anything to offer for professionals in this area? How will the involved parties experience...... each other practices and is possible to establish a mutual institutional learning process, as a surplus to normal quality control (NPM)? What understandings of psyche, individual, mind-body-spirit, health promotion etc. are involved in these practices, and how do they relate to the institutional...

  4. The Domain of Developmental Psychopathology.

    Science.gov (United States)

    Sroufe, L. Alan; Rutter, Michael

    1984-01-01

    Describes how developmental psychopathology differs from related disciplines, including abnormal psychology, psychiatry, clinical child psychology, and developmental psychology. Points out propositions underlying a developmental perspective and discusses implications for research in developmental psychopathology. (Author/RH)

  5. EARLY REGULATION IN CHILDREN WHO ARE LATER DIAGNOSED WITH AUTISM SPECTRUM DISORDER. A LONGITUDINAL STUDY WITHIN THE DANISH NATIONAL BIRTH COHORT.

    Science.gov (United States)

    Lemcke, Sanne; Parner, Erik T; Bjerrum, Merete; Thomsen, Per H; Lauritsen, Marlene B

    2018-03-01

    Studies have shown that children later diagnosed with autism spectrum disorders (ASD) in their first years of life might show symptoms in main developmental areas and that these signs might be sensed by the parents. The present study investigated in a large birth cohort if children later diagnosed with ASD had deviations at 6 and 18 months in areas such as the ability to self-regulate emotions, feeding, and sleeping. The study was based on prospective information collected from 76,322 mothers who participated in the Danish National Birth Cohort. When the children reached an average age of 11 years, 973 children with ASD and a control group of 300 children with intellectual disability (IDnoASD) were identified via Danish health registries. Associations were found between short periods of breast-feeding and the children later diagnosed with ASD and IDnoASD as well as associations at 18 months to deviations in regulation of emotions and activity. The similarities in these associations emphasize how difficult it is to distinguish between diagnoses early in life. © 2018 Michigan Association for Infant Mental Health.

  6. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Yan Coulombe

    2010-05-01

    Full Text Available The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation.We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation.Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression.

  7. Distinguishing attack on five-round Feistel networks

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Raddum, H

    2003-01-01

    Recently it was shown (by J. Patarin) how to distinguish a general five-round Feistel network from a random permutation using O(2/sup 3n/2/) chosen plaintexts or O(2/sup 7n/4/) known plaintexts. The present authors report improvement of these results and a distinguisher is presented which uses ro...

  8. Life Span Developmental Approach

    Directory of Open Access Journals (Sweden)

    Ali Eryilmaz

    2011-03-01

    Full Text Available The Life Span Developmental Approach examines development of individuals which occurs from birth to death. Life span developmental approach is a multi-disciplinary approach related with disciplines like psychology, psychiatry, sociology, anthropology and geriatrics that indicates the fact that development is not completed in adulthood, it continues during the life course. Development is a complex process that consists of dying and death. This approach carefully investigates the development of individuals with respect to developmental stages. This developmental approach suggests that scientific disciplines should not explain developmental facts only with age changes. Along with aging, cognitive, biological, and socioemotional development throughout life should also be considered to provide a reasonable and acceptable context, guideposts, and reasonable expectations for the person. There are three important subjects whom life span developmental approach deals with. These are nature vs nurture, continuity vs discontinuity, and change vs stability. Researchers using life span developmental approach gather and produce knowledge on these three most important domains of individual development with their unique scientific methodology.

  9. A 1-kb bacteriophage lambda fragment functions as an insulator to effectively block enhancer-promoter interactions in Arabidopsis thaliana

    Science.gov (United States)

    The 35S cauliflower mosaic virus (CaMV) promoter contains an enhancer element that is able to override the tissue-, organ- and developmental-stage specificity of nearby promoters. Consequently, the precise control of transgene expression in transgenic plants, which often contain the 35S CaMV promot...

  10. Distinguishability of countable quantum states and von Neumann lattice

    International Nuclear Information System (INIS)

    Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2016-01-01

    The condition for distinguishability of a countably infinite number of pure states by a single measurement is given. Distinguishability is to be understood as the possibility of an unambiguous measurement. For a finite number of states, it is known that the necessary and sufficient condition of distinguishability is that the states are linearly independent. For an infinite number of states, several natural classes of distinguishability can be defined. We give a necessary and sufficient condition for a system of pure states to be distinguishable. It turns out that each level of distinguishability naturally corresponds to one of the generalizations of linear independence to families of infinite vectors. As an important example, we apply the general theory to von Neumann’s lattice, a subsystem of coherent states which corresponds to a lattice in the classical phase space. We prove that the condition for distinguishability is that the area of the fundamental region of the lattice is greater than the Planck constant, and also find subtle behavior on the threshold. These facts reveal the measurement theoretical meaning of the Planck constant and give a justification for the interpretation that it is the smallest unit of area in the phase space. The cases of uncountably many states and of mixed states are also discussed. (paper)

  11. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down-regulated

  12. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation.

    Science.gov (United States)

    Asghar, Adeel; Lajeunesse, Audrey; Dulla, Kalyan; Combes, Guillaume; Thebault, Philippe; Nigg, Erich A; Elowe, Sabine

    2015-09-24

    During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.

  13. Regulation of the activity of the promoter of RNA-induced silencing, C3PO.

    Science.gov (United States)

    Sahu, Shriya; Williams, Leo; Perez, Alberto; Philip, Finly; Caso, Giuseppe; Zurawsky, Walter; Scarlata, Suzanne

    2017-09-01

    RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 10 18 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway. © 2017 The Protein Society.

  14. Developmental regulation of aromatase activity in the rat hypothalamus

    International Nuclear Information System (INIS)

    Lephart, E.D.

    1989-01-01

    The brain of all mammalian species studied thus far contain an enzymatic activity (aromatase) that catalyzes the conversion of androgens to estrogens. The activity is highest during prenatal development and contributes to the establishment of sex differences which determine adult gonadotropin secretion patterns and reproductive behavior. The studies presented in this dissertation represent a systematic effort to elucidate the mechanism(s) that control the initiation of and contribute to maintaining rat hypothalamic aromatase activity during pre- and postnatal development. Aromatase enzyme activity was measured by the 3 H 2 O release assay or by traditional estrogen product isolation. Brain aromatase mRNA was detected by hybridization to a cDNA encoding rat aromatase cytochrome P-450. In both males and females the time of puberty was associated with a decline in hypothalamic aromatase activity. This decline may represent a factor underlying the peri-pubertal decrease in the sensitivity to gonadal steroid feedback that accompanies completion of puberty. The results also indicate that androgens regulate brain aromatase levels during both the prepubertal and peri-pubertal stages of sexual development and that this regulation is transiently lost in young adults. Utilizing a hypothalamic organotypic culture system, aromatase activity in vitro was maintained for as long as two days. The results of studies of a variety of hormonal and metabolic regulators suggest that prenatal aromatase activity is regulated by factor(s) that function independently from the classical cyclic AMP and protein kinase C trans-membrane signaling pathways

  15. Private regulation in EU better regulation : Past performance and future promises

    NARCIS (Netherlands)

    Verbruggen, Paul

    The promotion of private regulation is frequently part of better regulation programmes. Also the Better Regulation programme of the European Union (EU) initiated in 2002 advocated forms of private regulation as important means to improve EU law-making activities. However, for various reasons the

  16. Targeting self-regulation to promote health behaviors in children.

    Science.gov (United States)

    Miller, Alison L; Gearhardt, Ashley N; Fredericks, Emily M; Katz, Benjamin; Shapiro, Lilly Fink; Holden, Kelsie; Kaciroti, Niko; Gonzalez, Richard; Hunter, Christine; Lumeng, Julie C

    2018-02-01

    Poor self-regulation (i.e., inability to harness cognitive, emotional, motivational resources to achieve goals) is hypothesized to contribute to unhealthy behaviors across the lifespan. Enhancing early self-regulation may increase positive health outcomes. Obesity is a major public health concern with early-emerging precursors related to self-regulation; it is therefore a good model for understanding self-regulation and health behavior. Preadolescence is a transition when children increase autonomy in health behaviors (e.g., eating, exercise habits), many of which involve self-regulation. This paper presents the scientific rationale for examining self-regulation mechanisms that are hypothesized to relate to health behaviors, specifically obesogenic eating, that have not been examined in children. We describe novel intervention protocols designed to enhance self-regulation skills, specifically executive functioning, emotion regulation, future-oriented thinking, and approach bias. Interventions are delivered via home visits. Assays of self-regulation and obesogenic eating behaviors using behavioral tasks and self-reports are implemented and evaluated to determine feasibility and psychometrics and to test intervention effects. Participants are low-income 9-12 year-old children who have been phenotyped for self-regulation, stress, eating behavior and adiposity through early childhood. Study goals are to examine intervention effects on self-regulation and whether change in self-regulation improves obesogenic eating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment.

    Science.gov (United States)

    Nagpal, Neha; Ahmad, Hafiz M.; Chameettachal, Shibu; Sundar, Durai; Ghosh, Sourabh; Kulshreshtha, Ritu

    2015-01-01

    The molecular mechanisms of hypoxia induced breast cell migration remain incompletely understood. Our results show that hypoxia through hypoxia-inducible factor (HIF) brings about a time-dependent increase in the level of an oncogenic microRNA, miR-191 in various breast cancer cell lines. miR-191 enhances breast cancer aggressiveness by promoting cell proliferation, migration and survival under hypoxia. We further established that miR-191 is a critical regulator of transforming growth factor beta (TGFβ)-signaling and promotes cell migration by inducing TGFβ2 expression under hypoxia through direct binding and indirectly by regulating levels of a RNA binding protein, human antigen R (HuR). The levels of several TGFβ pathway genes (like VEGFA, SMAD3, CTGF and BMP4) were found to be higher in miR-191 overexpressing cells. Lastly, anti-miR-191 treatment given to breast tumor spheroids led to drastic reduction in spheroid tumor volume. This stands as a first report of identification of a microRNA mediator that links hypoxia and the TGFβ signaling pathways, both of which are involved in regulation of breast cancer metastasis. Together, our results show a critical role of miR-191 in hypoxia-induced cancer progression and suggest that miR-191 inhibition may offer a novel therapy for hypoxic breast tumors. PMID:25867965

  18. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  19. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  20. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongyan [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Ai, Zhiying [Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); College of Life Sciences, Northwest A and F University, Yangling 712100, Shaanxi (China); Yao, Kezhen [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Cao, Lixia; Du, Juan; Shi, Xiaoyan [Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); College of Life Sciences, Northwest A and F University, Yangling 712100, Shaanxi (China); Guo, Zekun, E-mail: gzk@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhylab@hotmail.com [College of Veterinary Medicine, Northwest A and F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi (China)

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  1. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    International Nuclear Information System (INIS)

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-01-01

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR

  2. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  3. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster.

    Science.gov (United States)

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime

    2017-10-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. CEREBELLUM: LINKS BETWEEN DEVELOPMENT, DEVELOPMENTAL DISORDERS AND MOTOR LEARNING

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2012-01-01

    Full Text Available The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodelling are being unravelled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip (RL, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signalling between granule cells and Purkinje neurons. The expression profile of SHH (Sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired development and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders.

  5. Promoting Creativity in the Middle Grades Language Arts Classroom

    Science.gov (United States)

    Batchelor, Katherine E.; Bintz, William P.

    2013-01-01

    Middle level educators around the country aim to create a classroom environment and a way of teaching that is developmentally responsive, challenging, empowering, and equitable for every student. One way to ensure this is to include instruction that promotes creativity. This article offers guiding principles and shares instructional lessons that…

  6. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1 promoter and its regulation by Sp1

    Directory of Open Access Journals (Sweden)

    Botella Luisa M

    2010-06-01

    Full Text Available Abstract Background Activin receptor-like kinase 1 (ALK1 is a Transforming Growth Factor-β (TGF-β receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1 give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210 was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into

  7. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Augoff Katarzyna

    2012-01-01

    Full Text Available Abstract Background microRNAs have been established as powerful regulators of gene expression in normal physiological as well as in pathological conditions, including cancer progression and metastasis. Recent studies have demonstrated a key role of miR-31 in the progression and metastasis of breast cancer. Downregulation of miR-31 enhances several steps of the invasion-metastasis cascade in breast cancer, i.e., local invasion, extravasation and survival in the circulation system, and metastatic colonization of distant sites. miR-31 exerts its metastasis-suppressor activity by targeting a cohort of pro-metastatic genes, including RhoA and WAVE3. The molecular mechanisms that lead to the loss of miR-31 and the activation of its pro-metastatic target genes during these specific steps of the invasion-metastasis cascade are however unknown. Results In the present report, we identify promoter hypermethylation as one of the major mechanisms for silencing miR-31 in breast cancer, and in the triple-negative breast cancer (TNBC cell lines of basal subtype, in particular. miR-31 maps to the intronic sequence of a novel long non-coding (lncRNA, LOC554202 and the regulation of its transcriptional activity is under control of LOC554202. Both miR-31 and the host gene LOC554202 are down-regulated in the TNBC cell lines of basal subtype and over-expressed in the luminal counterparts. Treatment of the TNBC cell lines with either a de-methylating agent alone or in combination with a de-acetylating agent resulted in a significant increase of both miR-31 and its host gene, suggesting an epigenetic mechanism for the silencing of these two genes by promoter hypermethylation. Finally, both methylation-specific PCR and sequencing of bisulfite-converted DNA demonstrated that the LOC554202 promoter-associated CpG island is heavily methylated in the TNBC cell lines and hypomethylated in the luminal subtypes. Conclusion Loss of miR-31 expression in TNBC cell lines is

  8. Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

    DEFF Research Database (Denmark)

    Damgaard, Tina; Knudsen, Lene M; Dahl, Inger Marie S

    2009-01-01

    the regulation of the CD56 promoter in relation to typical clinical factors. We used qPCR and FACS to measure the expression levels of CD56, and potential regulatory factors in patients with MM and related these with MM progression/prognosis. The transcription factors BTBD3, Pax5, RUNX1 and MMSET were positively...... associated with CD56 expression, as was CYCLIN D1, which is involved in disease progression, anti-apoptosis and proliferation. RUNX1 was negatively associated with the survival of stem-cell transplanted patients. Our findings propose four potential activators of the CD56 promoter and for CD56 to be involved...

  9. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.

    Science.gov (United States)

    Matsunaga, Taichi; Yamashita, Jun K

    2014-02-07

    Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation.

    Science.gov (United States)

    Takeuchi, Shinji; Fukuda, Koji; Yamada, Tadaaki; Arai, Sachiko; Takagi, Satoshi; Ishii, Genichiro; Ochiai, Atsushi; Iwakiri, Shotaro; Itoi, Kazumi; Uehara, Hisanori; Nishihara, Hiroshi; Fujita, Naoya; Yano, Seiji

    2017-04-01

    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27

    DEFF Research Database (Denmark)

    Soler, Laura; Miller, Ingrid; Hummel, Karin

    2016-01-01

    to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation...

  12. The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance.

    Science.gov (United States)

    Fasani, Elisa; DalCorso, Giovanni; Varotto, Claudio; Li, Mingai; Visioli, Giovanna; Mattarozzi, Monica; Furini, Antonella

    2017-06-01

    In the hyperaccumulator Arabidopsis halleri, the zinc (Zn) vacuolar transporter MTP1 is a key component of hypertolerance. Because protein sequences and functions are highly conserved between A. halleri and Arabidopsis thaliana, Zn tolerance in A. halleri may reflect the constitutively higher MTP1 expression compared with A. thaliana, based on copy number expansion and different cis regulation. Three MTP1 promoters were characterized in A. halleri ecotype I16. The comparison with the A. thaliana MTP1 promoter revealed different expression profiles correlated with specific cis-acting regulatory elements. The MTP1 5' untranslated region, highly conserved among A. thaliana, Arabidopsis lyrata and A. halleri, contains a dimer of MYB-binding motifs in the A. halleri promoters absent in the A. thaliana and A. lyrata sequences. Site-directed mutagenesis of these motifs revealed their role for expression in trichomes. A. thaliana mtp1 transgenic lines expressing AtMTP1 controlled by the native A. halleri promoter were more Zn-tolerant than lines carrying mutations on MYB-binding motifs. Differences in Zn tolerance were associated with different distribution of Zn among plant organs and in trichomes. The different cis-acting elements in the MTP1 promoters of A. halleri, particularly the MYB-binding sites, are probably involved in the evolution of Zn tolerance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Description of a developmental criterion-referenced assessment for promoting competence in internal medicine residents.

    Science.gov (United States)

    Varney, Andrew; Todd, Christine; Hingle, Susan; Clark, Michael

    2009-09-01

    End-of- rotation global evaluations can be subjective, produce inflated grades, lack interrater reliability, and offer information that lacks value. This article outlines the generation of a unique developmental criterion-referenced assessment that applies adult learning theory and the learner, manager, teacher model, and represents an innovative application to the American Board of Internal Medicine (ABIM) 9-point scale. We describe the process used by Southern Illinois University School of Medicine to develop rotation-specific, criterion-based evaluation anchors that evolved into an effective faculty development exercise. The intervention gave faculty a clearer understanding of the 6 Accreditation Council for Graduate Medical Education competencies, each rotation's educational goals, and how rotation design affects meaningful work-based assessment. We also describe easily attainable successes in evaluation design and pitfalls that other institutions may be able to avoid. Shifting the evaluation emphasis on the residents' development of competence has made the expectations of rotation faculty more transparent, has facilitated conversations between program director and residents, and has improved the specificity of the tool for feedback. Our findings showed the new approach reduced grade inflation compared with the ABIM end-of-rotation global evaluation form. We offer the new developmental criterion-referenced assessment as a unique application of the competences to the ABIM 9-point scale as a transferable model for improving the validity and reliability of resident evaluations across graduate medical education programs.

  14. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  15. Effect of Developmental Stimulation Program on the Developmental Measures of Toddlers

    Directory of Open Access Journals (Sweden)

    Elahe Ghayebie

    2018-04-01

    Full Text Available Background: The variability in the developmental skills is reduced after the first three years of life; therefore, it is necessary to identify and manage early developmental delays. Aim: The aim of this study was to investigate the effect of developmental stimulation program on the developmental measures of the toddlers. Method: The present randomized controlled clinical trial was conducted on 31 toddlers aged 1-3 years residing at Ali Asghar Foster Care Center within 2016-2017. Developmental interventions were carried out based on the modified guidelines of West Virginia Early Learning Standards Framework for eight weeks (three 2-hour sessions a week. The interventions included a range of age- and developmental-specific activities described in the given guidelines. Child development age was measured based on motor dimensions (i.e., gross and fine and language development (i.e., receptive and expressive before and after the intervention. The data were analyzed in SPSS software (version 11 using independent t-test and Chi-square test. Results: The mean ages of the participants in the control and intervention groups were 19.9±5.5 and 20±6.02, respectively (P=0.62. The mean ages of receptive language development (P=0.003, expressive language development (P

  16. Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of Cm∨Kn

    OpenAIRE

    Shunqin Liu

    2016-01-01

    According to different conditions, researchers have defined a great deal of coloring problems and the corresponding chromatic numbers. Such as, adjacent-vertex-distinguishing total chromatic number, adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper total chromatic number. And we focus on the smarandachely adjacent-vertex-distinguishing proper edge chromatic...

  17. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  18. Generation and characterization of neurogenin1-GFP transgenic medaka with potential for rapid developmental neurotoxicity screening

    International Nuclear Information System (INIS)

    Fan Chunyang; Simmons, Steven O.; Law, Sheran H.W.; Jensen, Karl; Cowden, John; Hinton, David; Padilla, Stephanie; Ramabhadran, Ram

    2011-01-01

    Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observation of the fish. Here we report the construction and characterization of transgenic medaka lines expressing green fluorescent protein (GFP) under the control of the zebrafish neurogenin 1 (ngn1) gene promoter. Neurogenin (ngn1) is a helix-loop-helix transcription factor expressed in proliferating neuronal progenitor cells early in neuronal differentiation and plays a crucial role in directing neurogenesis. GFP expression was detected from 24 h post-fertilization until hatching, in a spatial pattern consistent with the previously reported zebrafish ngn1 expression. Temporal expression of the transgene parallels the expression profile of the endogenous medaka ngn1 transcript. Further, we demonstrate that embryos from the transgenic line permit the non-destructive, real-time screening of ngn1 promoter-directed GFP expression in a 96-well format, enabling higher throughput studies of developmental neurotoxicants. This strain has been deposited with and maintained by the National BioResource Project and is available on request ( (http://www.shigen.nig.ac.jp/medaka/strainDetailAction.do?quickSearch=true and strainId=5660)).

  19. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  20. The Effectiveness of Tobacco Marketing Regulations on Reducing Smokers’ Exposure to Advertising and Promotion: Findings from the International Tobacco Control (ITC Four Country Survey

    Directory of Open Access Journals (Sweden)

    K. Michael Cummings

    2011-01-01

    Full Text Available Exposure to tobacco product marketing promotes the initiation, continuation, and reuptake of cigarette smoking and as a result the World Health Organization Framework Convention on Tobacco Control (WHO FCTC has called upon member Parties to enact comprehensive bans on tobacco advertising and promotion. This study examines the immediate and long term effectiveness of advertising restrictions enacted in different countries on exposure to different forms of product marketing, and examines differences in exposure across different socioeconomic status (SES groups. Nationally representative data from the United Kingdom, Canada, Australia, and the United States, collected from adult smokers between 2002 and 2008 using the International Tobacco Control Four Country Survey (ITC-4, were used in this study (N = 21,615. In light of the specific marketing regulation changes that occurred during the course of this study period, changes in awareness of tobacco marketing via various channels were assessed for each country, and for different SES groups within countries. Tobacco marketing regulations, once implemented, were associated with significant reductions in smokers’ reported awareness of pro-smoking cues, and the observed reductions were greatest immediately following the enactment of regulations. Changes in reported awareness were generally the same across different SES groups, although some exceptions were noted. While tobacco marketing regulations have been effective in reducing exposure to certain types of product marketing there still remain gaps, especially with regard to in-store marketing and price promotions.