WorldWideScience

Sample records for development experimental validation

  1. Flow cytometry: design, development and experimental validation

    International Nuclear Information System (INIS)

    Seigneur, Alain

    1987-01-01

    The flow cytometry techniques allow the analysis and sorting of living biologic cells at rates above five to ten thousand events per second. After a short review, we present in this report the design and development of a 'high-tech' apparatus intended for research laboratories and the experimental results. The first part deals with the physical principles allowing morphologic and functional analysis of cells or cellular components. The measured parameters are as follows: electrical resistance pulse sizing, light scattering and fluorescence. Hydrodynamic centering is used, and in the same way, the division of a water-stream into droplets leading to electrostatic sorting of particles. The second part deals with the apparatus designed by the 'Commissariat a l'Energie Atomique' (C.E.A.) and industrialised by 'ODAM' (ATC 3000). The last part of this thesis work is the performance evaluations of this cyto-meter. The difference between the two size measurement methods are analyzed: electrical resistance pulse sizing versus small-angle light scattering. By an original optics design, high sensitivity has been reached in the fluorescence measurement: the equivalent noise corresponds to six hundred fluorescein isothiocyanate (FITC) molecules. The sorting performances have also been analyzed and the cell viability proven. (author) [fr

  2. Development of a quality-assessment tool for experimental bruxism studies: reliability and validity.

    Science.gov (United States)

    Dawson, Andreas; Raphael, Karen G; Glaros, Alan; Axelsson, Susanna; Arima, Taro; Ernberg, Malin; Farella, Mauro; Lobbezoo, Frank; Manfredini, Daniele; Michelotti, Ambra; Svensson, Peter; List, Thomas

    2013-01-01

    To combine empirical evidence and expert opinion in a formal consensus method in order to develop a quality-assessment tool for experimental bruxism studies in systematic reviews. Tool development comprised five steps: (1) preliminary decisions, (2) item generation, (3) face-validity assessment, (4) reliability and discriminitive validity assessment, and (5) instrument refinement. The kappa value and phi-coefficient were calculated to assess inter-observer reliability and discriminative ability, respectively. Following preliminary decisions and a literature review, a list of 52 items to be considered for inclusion in the tool was compiled. Eleven experts were invited to join a Delphi panel and 10 accepted. Four Delphi rounds reduced the preliminary tool-Quality-Assessment Tool for Experimental Bruxism Studies (Qu-ATEBS)- to 8 items: study aim, study sample, control condition or group, study design, experimental bruxism task, statistics, interpretation of results, and conflict of interest statement. Consensus among the Delphi panelists yielded good face validity. Inter-observer reliability was acceptable (k = 0.77). Discriminative validity was excellent (phi coefficient 1.0; P reviews of experimental bruxism studies, exhibits face validity, excellent discriminative validity, and acceptable inter-observer reliability. Development of quality assessment tools for many other topics in the orofacial pain literature is needed and may follow the described procedure.

  3. Development of a quality-assessment tool for experimental bruxism studies: reliability and validity

    NARCIS (Netherlands)

    Dawson, A.; Raphael, K.G.; Glaros, A.; Axelsson, S.; Arima, T.; Ernberg, M.; Farella, M.; Lobbezoo, F.; Manfredini, D.; Michelotti, A.; Svensson, P.; List, T.

    2013-01-01

    AIMS: To combine empirical evidence and expert opinion in a formal consensus method in order to develop a quality-assessment tool for experimental bruxism studies in systematic reviews. METHODS: Tool development comprised five steps: (1) preliminary decisions, (2) item generation, (3) face-validity

  4. Development and Validation of a Rubric for Diagnosing Students’ Experimental Design Knowledge and Difficulties

    Science.gov (United States)

    Dasgupta, Annwesa P.; Anderson, Trevor R.

    2014-01-01

    It is essential to teach students about experimental design, as this facilitates their deeper understanding of how most biological knowledge was generated and gives them tools to perform their own investigations. Despite the importance of this area, surprisingly little is known about what students actually learn from designing biological experiments. In this paper, we describe a rubric for experimental design (RED) that can be used to measure knowledge of and diagnose difficulties with experimental design. The development and validation of the RED was informed by a literature review and empirical analysis of undergraduate biology students’ responses to three published assessments. Five areas of difficulty with experimental design were identified: the variable properties of an experimental subject; the manipulated variables; measurement of outcomes; accounting for variability; and the scope of inference appropriate for experimental findings. Our findings revealed that some difficulties, documented some 50 yr ago, still exist among our undergraduate students, while others remain poorly investigated. The RED shows great promise for diagnosing students’ experimental design knowledge in lecture settings, laboratory courses, research internships, and course-based undergraduate research experiences. It also shows potential for guiding the development and selection of assessment and instructional activities that foster experimental design. PMID:26086658

  5. Development and Validation of a Rubric for Diagnosing Students' Experimental Design Knowledge and Difficulties.

    Science.gov (United States)

    Dasgupta, Annwesa P; Anderson, Trevor R; Pelaez, Nancy

    2014-01-01

    It is essential to teach students about experimental design, as this facilitates their deeper understanding of how most biological knowledge was generated and gives them tools to perform their own investigations. Despite the importance of this area, surprisingly little is known about what students actually learn from designing biological experiments. In this paper, we describe a rubric for experimental design (RED) that can be used to measure knowledge of and diagnose difficulties with experimental design. The development and validation of the RED was informed by a literature review and empirical analysis of undergraduate biology students' responses to three published assessments. Five areas of difficulty with experimental design were identified: the variable properties of an experimental subject; the manipulated variables; measurement of outcomes; accounting for variability; and the scope of inference appropriate for experimental findings. Our findings revealed that some difficulties, documented some 50 yr ago, still exist among our undergraduate students, while others remain poorly investigated. The RED shows great promise for diagnosing students' experimental design knowledge in lecture settings, laboratory courses, research internships, and course-based undergraduate research experiences. It also shows potential for guiding the development and selection of assessment and instructional activities that foster experimental design. © 2014 A. P. Dasgupta et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana.

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-08-01

    The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Experimental Validation of the Electrokinetic Theory and Development of Seismoelectric Interferometry by Cross-Correlation

    Directory of Open Access Journals (Sweden)

    F. C. Schoemaker

    2012-01-01

    Full Text Available We experimentally validate a relatively recent electrokinetic formulation of the streaming potential (SP coefficient as developed by Pride (1994. The start of our investigation focuses on the streaming potential coefficient, which gives rise to the coupling of mechanical and electromagnetic fields. It is found that the theoretical amplitude values of this dynamic SP coefficient are in good agreement with the normalized experimental results over a wide frequency range, assuming no frequency dependence of the bulk conductivity. By adopting the full set of electrokinetic equations, a full-waveform wave propagation model is formulated. We compare the model predictions, neglecting the interface response and modeling only the coseismic fields, with laboratory measurements of a seismic wave of frequency 500 kHz that generates electromagnetic signals. Agreement is observed between measurement and electrokinetic theory regarding the coseismic electric field. The governing equations are subsequently adopted to study the applicability of seismoelectric interferometry. It is shown that seismic sources at a single boundary location are sufficient to retrieve the 1D seismoelectric responses, both for the coseismic and interface components, in a layered model.

  8. Development and experimental validation of a tool to determine out-of-field dose in radiotherapy

    International Nuclear Information System (INIS)

    Bessieres, I.

    2013-01-01

    Over the last two decades, many technical developments have been achieved on intensity modulated radiotherapy (IMRT) and allow a better conformation of the dose to the tumor and consequently increase the success of cancer treatments. These techniques often reduce the dose to organs at risk close to the target volume; nevertheless they increase peripheral dose levels. In this situation, the rising of the survival rate also increases the probability of secondary effects expression caused by peripheral dose deposition (second cancers for instance). Nowadays, the peripheral dose is not taken into account during the treatment planning and no reliable prediction tool exists. However it becomes crucial to consider the peripheral dose during the planning, especially for pediatric cases. Many steps of the development of an accurate and fast Monte Carlo out-of-field dose prediction tool based on the PENELOPE code have been achieved during this PhD work. To this end, we demonstrated the ability of the PENELOPE code to estimate the peripheral dose by comparing its results with reference measurements performed on two experimental configurations (metrological and pre-clinical). During this experimental work, we defined a protocol for low doses measurement with OSL dosimeters. In parallel, we highlighted the slow convergence of the code for clinical use. Consequently, we accelerated the code by implementing a new variance reduction technique called pseudo-deterministic transport which is specifically with the objective of improving calculations in areas far away from the beam. This step improved the efficiency of the peripheral doses estimation in both validation configurations (by a factor of 20) in order to reach reasonable computing times for clinical application. Optimization works must be realized in order improve the convergence of our tool and consider a final clinical use. (author) [fr

  9. Development and experimental validation of a thermoelectric test bench for laboratory lessons

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez

    2013-12-01

    Full Text Available The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difficulties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra. Normal 0 21 false false false ES X-NONE X-NONE Normal 0 21 false false false ES X-NONE X-NONE Experimental validation of UTDefect

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.S. [ABB Tekniska Roentgencentralen AB, Taeby (Sweden); Bostroem, A.; Wirdelius, H. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Mechanics

    1997-01-01

    This study reports on conducted experiments and computer simulations of ultrasonic nondestructive testing (NDT). Experiments and simulations are compared with the purpose of validating the simulation program UTDefect. UTDefect simulates ultrasonic NDT of cracks and some other defects in isotropic and homogeneous materials. Simulations for the detection of surface breaking cracks are compared with experiments in pulse-echo mode on surface breaking cracks in carbon steel plates. The echo dynamics are plotted and compared with the simulations. The experiments are performed on a plate with thickness 36 mm and the crack depths are 7.2 mm and 18 mm. L- and T-probes with frequency 1, 2 and 4 MHz and angels 45, 60 and 70 deg are used. In most cases the probe and the crack is on opposite sides of the plate, but in some cases they are on the same side. Several cracks are scanned from two directions. In total 53 experiments are reported for 33 different combinations. Generally the simulations agree well with the experiments and UTDefect is shown to be able to, within certain limits, perform simulations that are close to experiments. It may be concluded that: For corner echoes the eight 45 deg cases and the eight 60 deg cases show good agreement between experiments and UTDefect, especially for the 7.2 mm crack. The amplitudes differ more for some cases where the defect is close to the probe and for the corner of the 18 mm crack. For the two 70 deg cases there are too few experimental values to compare the curve shapes, but the amplitudes do not differ too much. The tip diffraction echoes also agree well in general. For some cases, where the defect is close to the probe, the amplitudes differ more than 10-15 dB, but for all but two cases the difference in amplitude is less than 7 dB. 6 refs.

  10. Physical validation issue of the NEPTUNE two-phase modelling: validation plan to be adopted, experimental programs to be set up and associated instrumentation techniques developed

    International Nuclear Information System (INIS)

    Pierre Peturaud; Eric Hervieu

    2005-01-01

    Full text of publication follows: A long-term joint development program for the next generation of nuclear reactors simulation tools has been launched in 2001 by EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique). The NEPTUNE Project constitutes the Thermal-Hydraulics part of this comprehensive program. Along with the underway development of this new two-phase flow software platform, the physical validation of the involved modelling is a crucial issue, whatever the modelling scale is, and the present paper deals with this issue. After a brief recall about the NEPTUNE platform, the general validation strategy to be adopted is first of all clarified by means of three major features: (i) physical validation in close connection with the concerned industrial applications, (ii) involving (as far as possible) a two-step process successively focusing on dominant separate models and assessing the whole modelling capability, (iii) thanks to the use of relevant data with respect to the validation aims. Based on this general validation process, a four-step generic work approach has been defined; it includes: (i) a thorough analysis of the concerned industrial applications to identify the key physical phenomena involved and associated dominant basic models, (ii) an assessment of these models against the available validation pieces of information, to specify the additional validation needs and define dedicated validation plans, (iii) an inventory and assessment of existing validation data (with respect to the requirements specified in the previous task) to identify the actual needs for new validation data, (iv) the specification of the new experimental programs to be set up to provide the needed new data. This work approach has been applied to the NEPTUNE software, focusing on 8 high priority industrial applications, and it has resulted in the definition of (i) the validation plan and experimental programs to be set up for the open medium 3D modelling

  11. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    Science.gov (United States)

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (psunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  12. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L. gene expression oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Paula Fernandez

    Full Text Available Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de. The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons. The resulting Sunflower Unigen Resource (SUR version 1.0 was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01 allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  13. Development, Implementation and Experimental Validations of Activation Products Models for Water Pool Reactors

    International Nuclear Information System (INIS)

    Petriw, S.N.

    2001-01-01

    Some parameters were obtained both calculations and experiments in order to determined the source of the meaning activation products in water pool reactors. In this case, the study was done in RA-6 reactor (Centro Atomico Bariloche - Argentina).In normal operation, neutron flux on core activates aluminium plates.The activity on coolant water came from its impurities activation and meanly from some quantity of aluminium that, once activated, leave the cladding and is transported by water cooling system.This quantity depends of the 'recoil range' of each activation reaction.The 'staying time' on pool (the time that nuclides are circulating on the reactor pool) is another characteristic parameter of the system.Stationary state activity of some nuclides depends of this time.Also, several theoretical models of activation on coolant water system are showed, and their experimental validations

  14. Development of robust flexible OLED encapsulations using simulated estimations and experimental validations

    International Nuclear Information System (INIS)

    Lee, Chang-Chun; Shih, Yan-Shin; Wu, Chih-Sheng; Tsai, Chia-Hao; Yeh, Shu-Tang; Peng, Yi-Hao; Chen, Kuang-Jung

    2012-01-01

    This work analyses the overall stress/strain characteristic of flexible encapsulations with organic light-emitting diode (OLED) devices. A robust methodology composed of a mechanical model of multi-thin film under bending loads and related stress simulations based on nonlinear finite element analysis (FEA) is proposed, and validated to be more reliable compared with related experimental data. With various geometrical combinations of cover plate, stacked thin films and plastic substrate, the position of the neutral axis (NA) plate, which is regarded as a key design parameter to minimize stress impact for the concerned OLED devices, is acquired using the present methodology. The results point out that both the thickness and mechanical properties of the cover plate help in determining the NA location. In addition, several concave and convex radii are applied to examine the reliable mechanical tolerance and to provide an insight into the estimated reliability of foldable OLED encapsulations. (paper)

  15. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    Science.gov (United States)

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  16. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  17. Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems

    Directory of Open Access Journals (Sweden)

    Félix Ruiz-Calvo

    2017-09-01

    Full Text Available Ground source heat pump (GSHP systems stand for an efficient technology for renewable heating and cooling in buildings. To optimize not only the design but also the operation of the system, a complete dynamic model becomes a highly useful tool, since it allows testing any design modifications and different optimization strategies without actually implementing them at the experimental facility. Usually, this type of systems presents strong dynamic operating conditions. Therefore, the model should be able to predict not only the steady-state behavior of the system but also the short-term response. This paper presents a complete GSHP system model based on an experimental facility, located at Universitat Politècnica de València. The installation was constructed in the framework of a European collaborative project with title GeoCool. The model, developed in TRNSYS, has been validated against experimental data, and it accurately predicts both the short- and long-term behavior of the system.

  18. Development and Validation of LC Method for the Determination of Famciclovir in Pharmaceutical Formulation Using an Experimental Design

    Directory of Open Access Journals (Sweden)

    Srinivas Vishnumulaka

    2008-01-01

    Full Text Available A rapid and sensitive RP-HPLC method with UV detection (242 nm for routine analysis of famciclovir in pharmaceutical formulations was developed. Chromatography was performed with mobile phase containing a mixture of methanol and phosphate buffer (50:50, v/v with flow rate 1.0 mL min−1. Quantitation was accomplished with internal standard method. The procedure was validated for linearity (correlation coefficient =0.9999, accuracy, robustness and intermediate precision. Experimental design was used for validation of robustness and intermediate precision. To test robustness, three factors were considered; percentage v/v of methanol in mobile phase, flow rate and pH; flow rate, the percentage of organic modifier and pH have considerable important effect on the response. For intermediate precision measure the variables considered were: analyst, equipment and number of days. The RSD value (0.86%, n=24 indicated an acceptable precision of the analytical method. The proposed method was simple, sensitive, precise, accurate and quick and useful for routine quality control.

  19. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  1. The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chiang

    2016-06-01

    Full Text Available An optimal solution, in combining physical and chemical water treatment methods, has been developed. This method uses a high voltage capacitance based (HVCB electrodes, coupled with biocides to form a sustainable solution in improving chiller plant performances. In this study, the industrial full-scale tests, instead of laboratory tests, have been conducted on chiller plants at the size of 5000 RT to 10,000 RT cooling capacities under commercial operation for more than two years. The experimental results indicated that the condenser approach temperatures can be maintained at below 1 °C for over two years. It has been validated that the coefficient of performance (COP of a chiller can be improved by over 5% by implementing this solution. Every 1 °C reduction in condenser approach temperature can yield approximately 3% increase on chiller COP, which warrants its future application potential in the HVAC industry, where Ta can degrade by 1 °C every three to six months. The solution developed in this study could also reduce chemical dosages and conserve makeup water substantially and is more environment friendly.

  2. Multimicrophone Speech Dereverberation: Experimental Validation

    Directory of Open Access Journals (Sweden)

    Marc Moonen

    2007-05-01

    Full Text Available Dereverberation is required in various speech processing applications such as handsfree telephony and voice-controlled systems, especially when signals are applied that are recorded in a moderately or highly reverberant environment. In this paper, we compare a number of classical and more recently developed multimicrophone dereverberation algorithms, and validate the different algorithmic settings by means of two performance indices and a speech recognition system. It is found that some of the classical solutions obtain a moderate signal enhancement. More advanced subspace-based dereverberation techniques, on the other hand, fail to enhance the signals despite their high-computational load.

  3. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    Science.gov (United States)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  4. Development and experimental validation of a monte carlo modeling of the neutron emission from a d-t generator

    Energy Technology Data Exchange (ETDEWEB)

    Remetti, Romolo; Lepore, Luigi [Sapienza University of Rome, Dept. SBAI, Via Antonio Scarpa 14, 00161 Rome (Italy); Cherubini, Nadia [ENEA CRE Casaccia, Nuclear Material Characterization Laboratory and Nuclear Waste Management, Via Anguillarese 301, 00123 Rome (Italy)

    2017-01-11

    An extensive use of Monte Carlo simulations led to the identification of a Thermo Scientific MP320 neutron generator MCNPX input deck. Such input deck is currently utilized at ENEA Casaccia Research Center for optimizing all the techniques and applications involving the device, in particular for explosives and drugs detection by fast neutrons. The working model of the generator was obtained thanks to a detailed representation of the MP320 internal components, and to the potentialities offered by the MCNPX code. Validation of the model was obtained by comparing simulated results vs. manufacturer's data, and vs. experimental tests. The aim of this work is explaining all the steps that led to those results, suggesting a procedure that might be extended to different models of neutron generators.

  5. Development and experimental validation of a monte carlo modeling of the neutron emission from a d-t generator

    Science.gov (United States)

    Remetti, Romolo; Lepore, Luigi; Cherubini, Nadia

    2017-01-01

    An extensive use of Monte Carlo simulations led to the identification of a Thermo Scientific MP320 neutron generator MCNPX input deck. Such input deck is currently utilized at ENEA Casaccia Research Center for optimizing all the techniques and applications involving the device, in particular for explosives and drugs detection by fast neutrons. The working model of the generator was obtained thanks to a detailed representation of the MP320 internal components, and to the potentialities offered by the MCNPX code. Validation of the model was obtained by comparing simulated results vs. manufacturer's data, and vs. experimental tests. The aim of this work is explaining all the steps that led to those results, suggesting a procedure that might be extended to different models of neutron generators.

  6. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    International Nuclear Information System (INIS)

    Chang Oh

    2006-01-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 900 C and operational fuel temperatures above 1250 C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR's higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gases (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  7. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  8. Validation of battery-alternator model against experimental data - a first step towards developing a future power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Boulos, A.M.; Burnham, K.J.; Mahtani, J.L. [Coventry University (United Kingdom). Control Theory and Applications Centre; Pacaud, C. [Jaguar Cars Ltd., Coventry (United Kingdom). Engineering Centre

    2004-01-01

    The electric power system of a modern vehicle has to supply enough electrical energy to drive numerous electrical and electronic systems and components. The electric power system of a vehicle consists of two major components: an alternator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands and the operating environment, such as road conditions and vehicle laden weight, is required when the capacities of the generator and the battery are to be determined for a vehicle. In this study, a battery-alternator system has been developed and simulated in MATLAB/Simulink, and data obtained from vehicle tests have been used as a basis for validating the models. This is considered to be a necessary first step in the design and development of a new 42 V power supply system. (author)

  9. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics......: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing...... by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens...

  10. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  11. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  12. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface

    Energy Technology Data Exchange (ETDEWEB)

    Nathan D. Jerred; Spencer Cooley; Robert C. O' Brien; Steven D. Howe; James E. O' Brien

    2012-09-01

    heat transfer process and complex nature of turbulent CO2 flow. Laboratory experimentation will aid design iterations and the development of both tethered and free-flying terrestrial hoppers that utilize an electrically heated core. The knowledge base acquired from these activities will refine the Mars Hopper’s future performance and optimize the RTR core components prior to constructing the final design.

  13. Experimental validation of the HARMONIE code

    International Nuclear Information System (INIS)

    Bernard, A.; Dorsselaere, J.P. van

    1984-01-01

    An experimental program of deformation, in air, of different groups of subassemblies (7 to 41 subassemblies), was performed on a scale 1 mock-up in the SPX1 geometry, in order to achieve a first experimental validation of the code HARMONIE. The agreement between tests and calculations was suitable, qualitatively for all the groups and quantitatively for regular groups of 19 subassemblies at most. The differences come mainly from friction between pads, and secondly from the foot gaps. (author)

  14. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, K.J.; Morgan, G.A. [Savannah River Laboratory, Aiken, SC (United States)

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  15. Development and validation of a general approach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks.

    Science.gov (United States)

    Pivetta, Tiziana; Isaia, Francesco; Trudu, Federica; Pani, Alessandra; Manca, Matteo; Perra, Daniela; Amato, Filippo; Havel, Josef

    2013-10-15

    The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed. The method was applied to several binary mixtures of cisplatin and [Cu(1,10-orthophenanthroline)2(H2O)](ClO4)2, Cu(1,10-orthophenanthroline)(H2O)2(ClO4)2 or [Cu(1,10-orthophenanthroline)2(imidazolidine-2-thione)](ClO4)2. The cytotoxicity of the two drugs, alone and in combination, was determined against human acute T-lymphoblastic leukemia cells (CCRF-CEM). For all systems, a synergistic effect was found for selected combinations. © 2013 Elsevier B.V. All rights reserved.

  16. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  17. Development of Prediction Model and Experimental Validation in Predicting the Curcumin Content of Turmeric (Curcuma longa L.).

    Science.gov (United States)

    Akbar, Abdul; Kuanar, Ananya; Joshi, Raj K; Sandeep, I S; Mohanty, Sujata; Naik, Pradeep K; Mishra, Antaryami; Nayak, Sanghamitra

    2016-01-01

    The drug yielding potential of turmeric ( Curcuma longa L.) is largely due to the presence of phyto-constituent 'curcumin.' Curcumin has been found to possess a myriad of therapeutic activities ranging from anti-inflammatory to neuroprotective. Lack of requisite high curcumin containing genotypes and variation in the curcumin content of turmeric at different agro climatic regions are the major stumbling blocks in commercial production of turmeric. Curcumin content of turmeric is greatly influenced by environmental factors. Hence, a prediction model based on artificial neural network (ANN) was developed to map genome environment interaction basing on curcumin content, soli and climatic factors from different agroclimatic regions for prediction of maximum curcumin content at various sites to facilitate the selection of suitable region for commercial cultivation of turmeric. The ANN model was developed and tested using a data set of 119 generated by collecting samples from 8 different agroclimatic regions of Odisha. The curcumin content from these samples was measured that varied from 7.2% to 0.4%. The ANN model was trained with 11 parameters of soil and climatic factors as input and curcumin content as output. The results showed that feed-forward ANN model with 8 nodes (MLFN-8) was the most suitable one with R 2 value of 0.91. Sensitivity analysis revealed that minimum relative humidity, altitude, soil nitrogen content and soil pH had greater effect on curcumin content. This ANN model has shown proven efficiency for predicting and optimizing the curcumin content at a specific site.

  18. Development of prediction model and experimental validation in predicting the curcumin content of turmeric (Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Abdul Akbar

    2016-10-01

    Full Text Available The drug yielding potential of turmeric (Curcuma longa L. is largely due to the presence of phyto-constituent ‘curcumin’. Curcumin has been found to possess a myriad of therapeutic activities ranging from anti-inflammatory to neuroprotective. Lack of requisite high curcumin containing genotypes and variation in the curcumin content of turmeric at different agro climatic regions are the major stumbling blocks in commercial production of turmeric. Curcumin content of turmeric is greatly influenced by environmental factors. Hence, a prediction model based on artificial neural network (ANN was developed to map genome environment interaction basing on curcumin content, soli and climatic factors from different agroclimatic regions for prediction of maximum curcumin content at various sites to facilitate the selection of suitable region for commercial cultivation of turmeric. The ANN model was developed and tested using a data set of 119 generated by collecting samples from 8 different agroclimatic regions of Odisha. The curcumin content from these samples was measured that varied from 7.2% to 0.4%. The ANN model was trained with 11 parameters of soil and climatic factors as input and curcumin content as output. The results showed that feed-forward ANN model with 8 nodes (MLFN-8 was the most suitable one with R2 value of 0.91. Sensitivity analysis revealed that minimum relative humidity, altitude, soil nitrogen content and soil pH had greater effect on curcumin content. This ANN model has shown proven efficiency for predicting and optimizing the curcumin content at a specific site.

  19. Wire-mesh sensors: an experimental tool for two-phase CDF model development and code validation

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2004-07-01

    Full text of publication follows:The Institute of Safety Research of the Forschungszentrum Rossendorf, Germany, has developed electrode-mesh sensors, which allow the measurement of the electrical conductivity distribution in a flow duct. This can be used either for the detection of the gaseous phase in a gas-liquid flow or for mixing studies in single phase flow, when the components have different electric conductivities. Two grids of crossing wires are placed into the flow closely behind each other. The wires of the first plane (transmitter plane) are supplied with pulses of a driving voltage in a successive order. The data acquisition is done by measuring the electrical currents arriving at the second grid (receiver wires). After the last transmitter electrode has been activated, a two-dimensional matrix is available that reflects the conductivities at crossing points of the electrodes of the two grids. Sequences of these 2D distributions are recorded with a rate of up to 10 kHz. Due to the high measuring rate each bubble is mapped in several successive instantaneous frames. This allows to obtain bubble size distributions as well as bubble-size resolved gas fraction profiles beside the visualisation and the calculation of profiles of the time-averaged void fraction. Two sensors placed behind each other can furthermore be used for bubble velocity measurements using cross-correlation techniques. Sensors with three layers of electrode grids can be used for the measurement of the velocity of individual bubbles. The sensor is widely used to study the evolution of the flow pattern in an upwards air-water flow. The experiments aim at closure equations describing forces acting on bubbles as well as coalescence and fragmentation frequencies for the implementation in CFD-codes. The largest sensor used until now has a circular measuring cross-section of about 200 mm diameter and is equipped with two grids of 64 wires. Therefore, the spatial resolution is 3 mm, the measuring

  20. Wire-mesh sensors: an experimental tool for two-phase CDF model development and code validation

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2004-01-01

    Full text of publication follows:The Institute of Safety Research of the Forschungszentrum Rossendorf, Germany, has developed electrode-mesh sensors, which allow the measurement of the electrical conductivity distribution in a flow duct. This can be used either for the detection of the gaseous phase in a gas-liquid flow or for mixing studies in single phase flow, when the components have different electric conductivities. Two grids of crossing wires are placed into the flow closely behind each other. The wires of the first plane (transmitter plane) are supplied with pulses of a driving voltage in a successive order. The data acquisition is done by measuring the electrical currents arriving at the second grid (receiver wires). After the last transmitter electrode has been activated, a two-dimensional matrix is available that reflects the conductivities at crossing points of the electrodes of the two grids. Sequences of these 2D distributions are recorded with a rate of up to 10 kHz. Due to the high measuring rate each bubble is mapped in several successive instantaneous frames. This allows to obtain bubble size distributions as well as bubble-size resolved gas fraction profiles beside the visualisation and the calculation of profiles of the time-averaged void fraction. Two sensors placed behind each other can furthermore be used for bubble velocity measurements using cross-correlation techniques. Sensors with three layers of electrode grids can be used for the measurement of the velocity of individual bubbles. The sensor is widely used to study the evolution of the flow pattern in an upwards air-water flow. The experiments aim at closure equations describing forces acting on bubbles as well as coalescence and fragmentation frequencies for the implementation in CFD-codes. The largest sensor used until now has a circular measuring cross-section of about 200 mm diameter and is equipped with two grids of 64 wires. Therefore, the spatial resolution is 3 mm, the measuring

  1. HTC Experimental Program: Validation and Calculational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fernex, F.; Ivanova, T.; Bernard, F.; Letang, E. [Inst Radioprotect and Surete Nucl, F-92262 Fontenay Aux Roses (France); Fouillaud, P. [CEA Valduc, Serv Rech Neutron and Critcite, 21 - Is-sur-Tille (France); Thro, J. F. [AREVA NC, F-78000 Versailles (France)

    2009-05-15

    In the 1980's a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat a I'Energie Atomique, France) with the support of the Institut de Radioprotection et de Surete Nucleaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions. The HTC rods, specifically fabricated for the experiments, simulated typical pressurized water reactor uranium oxide spent fuel that had an initial enrichment of 4. 5 wt% {sup 235}U and was burned to 37.5 GWd/tonne U. The configurations have been modeled with the CRISTAL criticality package and SCALE 5.1 code system. Sensitivity/uncertainty analysis has been employed to evaluate the HTC experiments and to study their applicability for validation of burnup credit calculations. This paper presents the experimental program, the principal results of the experiment evaluation, and modeling. The HTC data applicability to burnup credit validation is demonstrated with an example of spent-fuel storage models. (authors)

  2. Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...

  3. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  4. A Comprehensive Validation Methodology for Sparse Experimental Data

    Science.gov (United States)

    Norman, Ryan B.; Blattnig, Steve R.

    2010-01-01

    A comprehensive program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as models are developed over time. The models are placed under configuration control, and automated validation tests are used so that comparisons can readily be made as models are improved. Though direct comparisons between theoretical results and experimental data are desired for validation purposes, such comparisons are not always possible due to lack of data. In this work, two uncertainty metrics are introduced that are suitable for validating theoretical models against sparse experimental databases. The nuclear physics models, NUCFRG2 and QMSFRG, are compared to an experimental database consisting of over 3600 experimental cross sections to demonstrate the applicability of the metrics. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by analyzing subsets of the model parameter space.

  5. Experimental validation of prototype high voltage bushing

    Science.gov (United States)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  6. Experimental validation of wireless communication with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian [Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xian 710048 (China); Baptista, Murilo S.; Grebogi, Celso [Institute for Complex System and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  7. Experimental validation of wireless communication with chaos

    International Nuclear Information System (INIS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-01-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  8. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  9. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  10. Experimental validation of an ultrasonic flowmeter for unsteady flows

    Science.gov (United States)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  11. Fission Product Experimental Program: Validation and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, N.; Ivanova, T.; Letang, E. [Inst Radioprotect and Surete Nucl, F-92262 Fontenay Aux Roses (France); Girault, E. [CEA Valduc, Serv Rech Neutron and Critcite, 21 - Is-sur-Tille (France); Thro, J. F. [AREVA NC, F-78000 Versailles (France)

    2009-02-15

    From 1998 to 2004, a series of critical experiments referred to as the fission product (FP) experimental program was performed at the Commissariat a l'Energie Atomique Valduc research facility. The experiments were designed by Institut de Radioprotection et de Surete Nucleaire (IRSN) and funded by AREVA NC and IRSN within the French program supporting development of a technical basis for burnup credit validation. The experiments were performed with the following six key fission products encountered in solution either individually or as mixtures: {sup 103}Rh, {sup 133}Cs, {sup nat}Nd, {sup 149}Sm, {sup 152}Sm, and {sup 155}Gd. The program aimed at compensating for the lack of information on critical experiments involving FPs and at establishing a basis for FPs credit validation. One hundred forty-five critical experiments were performed, evaluated, and analyzed with the French CRISTAL criticality safety package and the American SCALE5. 1 code system employing different cross-section libraries. The aim of the paper is to show the experimental data potential to improve the ability to perform validation of full burnup credit calculation. The paper describes three Phases of the experimental program; the results of preliminary evaluation, the calculation, and the sensitivity/uncertainty study of the FP experiments used to validate the APOLLO2-MORET 4 route in the CRISTAL criticality package for burnup credit applications. (authors)

  12. Experimental validation of a new heterogeneous mechanical test design

    Science.gov (United States)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.

  13. Criteria of the validation of experimental and evaluated covariance data

    International Nuclear Information System (INIS)

    Badikov, S.

    2008-01-01

    The criteria of the validation of experimental and evaluated covariance data are reviewed. In particular: a) the criterion of the positive definiteness for covariance matrices, b) the relationship between the 'integral' experimental and estimated uncertainties, c) the validity of the statistical invariants, d) the restrictions imposed to correlations between experimental errors, are described. Applying these criteria in nuclear data evaluation was considered and 4 particular points have been examined. First preserving positive definiteness of covariance matrices in case of arbitrary transformation of a random vector was considered, properties of the covariance matrices in operations widely used in neutron and reactor physics (splitting and collapsing energy groups, averaging the physical values over energy groups, estimation parameters on the basis of measurements by means of generalized least squares method) were studied. Secondly, an algorithm for comparison of experimental and estimated 'integral' uncertainties was developed, square root of determinant of a covariance matrix is recommended for use in nuclear data evaluation as a measure of 'integral' uncertainty for vectors of experimental and estimated values. Thirdly, a set of statistical invariants-values which are preserved in statistical processing was presented. And fourthly, the inequality that signals a correlation between experimental errors that leads to unphysical values is given. An application is given concerning the cross-section of the (n,t) reaction on Li 6 with a neutron incident energy comprised between 1 and 100 keV

  14. Experimental validation of pulsed column inventory estimators

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Weh, R.; Eiben, K.; Dander, T.; Hakkila, E.A.

    1991-01-01

    Near-real-time accounting (NRTA) for reprocessing plants relies on the timely measurement of all transfers through the process area and all inventory in the process. It is difficult to measure the inventory of the solvent contractors; therefore, estimation techniques are considered. We have used experimental data obtained at the TEKO facility in Karlsruhe and have applied computer codes developed at Clemson University to analyze this data. For uranium extraction, the computer predictions agree to within 15% of the measured inventories. We believe this study is significant in demonstrating that using theoretical models with a minimum amount of process data may be an acceptable approach to column inventory estimation for NRTA. 15 refs., 7 figs

  15. Development and Validation of a Precise and Stability Indicating LC Method for the Determination of Benzalkonium Chloride in Pharmaceutical Formulation Using an Experimental Design

    Directory of Open Access Journals (Sweden)

    Harshal K. Trivedi

    2010-01-01

    Full Text Available A simple, precise, shorter runtime and stability indicating reverse-phase high performance liquid chromatographic method has been developed and validated for the quantification of benzalkonium chloride (BKC preservative in pharmaceutical formulation of sparfloxacin eye drop. The method was successfully applied for determination of benzalkonium chloride in various ophthalmic formulations like latanoprost, timolol, dexametasone, gatifloxacin, norfloxacin, combination of moxifloxacin and dexamethasone, combination of nepthazoline HCl, zinc sulphate and chlorpheniramine maleate, combination of tobaramycin and dexamethasone, combination of phenylephrine HCl, naphazoline HCl, menthol and camphor. The RP-LC separation was achieved on an Purospher Star RP-18e 75 mm × 4.0 mm, 3.0 μ in the isocratic mode using buffer: acetonitrile (35: 65, v/v, as the mobile phase at a flow rate of 1.8 mL/min. The methods were performed at 215 nm; in LC method, quantification was achieved with PDA detection over the concentration range of 50 to 150 μg/mL. The method is effective to separate four homologs with good resolution in presence of excipients, sparfloxacin and degradable compound due to sparfloxacin and BKC within five minutes. The method was validated and the results were compared statistically. They were found to be simple, accurate, precise and specific. The proposed method was validated in terms of specificity, precision, recovery, solution stability, linearity and range. All the validation parameters were within the acceptance range and concordant to ICH guidelines.

  16. Topology Optimization for Wave Propagation Problems with Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk

    designed using the proposed method is provided. A novel approach for designing meta material slabs with selectively tuned negative refractive behavior is outlined. Numerical examples demonstrating the behavior of a slab under different conditions is provided. Results from an experimental studydemonstrating...... agreement with numerical predictions are presented. Finally an approach for designing acoustic wave shaping devices is treated. Three examples of applications are presented, a directional sound emission device, a wave splitting device and a flat focusing lens. Experimental results for the first two devices......This Thesis treats the development and experimental validation of density-based topology optimization methods for wave propagation problems. Problems in the frequency regime where design dimensions are between approximately one fourth and ten wavelengths are considered. All examples treat problems...

  17. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  18. Numerical simulation and experimental validation of coiled adiabatic capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2007-04-15

    The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)

  19. Development and Validation of Stability-Indicating Method for Estimation of Chlorthalidone in Bulk and Tablets with the Use of Experimental Design in Forced Degradation Experiments

    Directory of Open Access Journals (Sweden)

    Sandeep Sonawane

    2016-01-01

    Full Text Available Chlorthalidone was subjected to various forced degradation conditions. Substantial degradation of chlorthalidone was obtained in acid, alkali, and oxidative conditions. Further full factorial experimental design was applied for acid and alkali forced degradation conditions, in which strength of acid/alkali, temperature, and time of heating were considered as independent variables (factors and % degradation was considered as dependent variable (response. Factors responsible for acid and alkali degradation were statistically evaluated using Yates analysis and Pareto chart. Furthermore, using surface response curve, optimized 10% degradation was obtained. All chromatographic separation was carried out on Phenomenex HyperClone C 18 column (250 × 4.6 mm, 5 μ, using mobile phase comprising methanol : acetonitrile : phosphate buffer (20 mM (pH 3.0 adjusted with o-phosphoric acid: 30 : 10 : 60% v/v. The flow rate was kept constant at 1 mL/min and eluent was detected at 241 nm. In calibration curve experiments, linearity was found to be in the range of 2–12 μg/mL. Validation experiments proved good accuracy and precision of the method. Also there was no interference of excipients and degradation products at the retention time of chlorthalidone, indicating specificity of the method.

  20. Development and Validation of a Rapid RP-HPLC Method for the Determination of Venlafaxine Hydrochloride in Pharmaceutical Dosage forms using Experimental Design

    Directory of Open Access Journals (Sweden)

    Vanita Somasekhar

    2009-01-01

    Full Text Available The objective of the current study was to develop a simple, accurate, precise and rapid reversed-phase HPLC method and subsequent validation as per ICH guidelines for the determination of venlafaxine hydrochloride in pharmaceutical dosage forms. The proposed RP-HPLC method utilizes a 5 μm Varian® Microsorb-MV 100 C18 column (250 mmx4.6 mm at ambient temperature. A 23 factorial design consisting of 3 factors at 2 levels was set up to standardize the chromatographic conditions. A numerical optimization technique employing the desirability approach was used to locate the optimum chromatographic conditions. The optimum mobile phase consisted of acetonitrile, 0.04 M potassium dihydrogen phosphate buffer and methanol (45:25:30, v/v, with pH adjusted to 5.5 using 10% phosphoric acid solution. The mobile phase was delivered isocratically at a flow rate of 1 mL/min with UV detection at 224 nm. The calibration plots constructed using the optimized chromatographic conditions displayed good linear relationship in the concentration range of 1-50 μg/mL with r=0.9992. The method was validated for precision, accuracy, robustness and recovery. The minimum detectable and minimum quantifiable amounts were found to be 0.568 and 1.72 μg/mL, respectively and the method was found to be reproducible from the statistical data generated. Venlafaxine hydrochloride was eluted at 3.43 min

  1. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  2. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Teke, T; Milette, MP [BC Cancer Agency Centre for the Southern Interior (Canada); Huang, V; Thomas, SD [BC Cancer Agency Fraser Valley Cancer Centre (Canada)

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  3. Experimental validation of a topology optimized acoustic cavity

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    2015-01-01

    This paper presents the experimental validation of an acoustic cavity designed using topology optimization with the goal of minimizing the sound pressure locally for monochromatic excitation. The presented results show good agreement between simulations and measurements. The effect of damping...

  4. Experimental validation of optimum resistance moment of concrete ...

    African Journals Online (AJOL)

    Experimental validation of optimum resistance moment of concrete slabs reinforced ... other solutions to combat corrosion problems in steel reinforced concrete. ... Eight specimens of two-way spanning slabs reinforced with CFRP bars were ...

  5. Validating experimental and theoretical Langmuir probe analyses

    Science.gov (United States)

    Pilling, L. S.; Carnegie, D. A.

    2007-08-01

    Analysis of Langmuir probe characteristics contains a paradox in that it is unknown a priori which theory is applicable before it is applied. Often theories are assumed to be correct when certain criteria are met although they may not validate the approach used. We have analysed the Langmuir probe data from cylindrical double and single probes acquired from a dc discharge plasma over a wide variety of conditions. This discharge contains a dual-temperature distribution and hence fitting a theoretically generated curve is impractical. To determine the densities, an examination of the current theories was necessary. For the conditions where the probe radius is the same order of magnitude as the Debye length, the gradient expected for orbital-motion limited (OML) is approximately the same as the radial-motion gradients. An analysis of the 'gradients' from the radial-motion theory was able to resolve the differences from the OML gradient value of two. The method was also able to determine whether radial or OML theories applied without knowledge of the electron temperature, or separation of the ion and electron contributions. Only the value of the space potential is necessary to determine the applicable theory.

  6. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  7. 76 FR 81991 - National Spectrum Sharing Research Experimentation, Validation, Verification, Demonstration and...

    Science.gov (United States)

    2011-12-29

    ... NATIONAL SCIENCE FOUNDATION National Spectrum Sharing Research Experimentation, Validation... requirements of national level spectrum research, development, demonstration, and field trial facilities... to determine the optimal way to manage and use the radio spectrum. During Workshop I held at Boulder...

  8. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  9. Experimental validation of models for Plasma Focus devices

    International Nuclear Information System (INIS)

    Rodriguez Palomino, Luis; Gonzalez, Jose; Clausse, Alejandro

    2003-01-01

    Plasma Focus(PF) Devices are thermonuclear pulsators that produce short pulsed radiation (X-ray, charged particles and neutrons). Since Filippov and Mather, investigations have been used to study plasma properties. Nowadays the interest about PF is focused in technology applications, related to the use of these devices as pulsed neutron sources. In the numerical calculus the Inter institutional PLADEMA (PLAsmas DEnsos MAgnetizados) network is developing three models. Each one is useful in different engineering stages of the Plasma Focus design. One of the main objectives in this work is a comparative study on the influence of the different parameters involved in each models. To validate these results, several experimental measurements under different geometry and initial conditions were performed. (author)

  10. Experimental validation of additively manufactured optimized shapes for passive cooling

    DEFF Research Database (Denmark)

    Lazarov, Boyan S.; Sigmund, Ole; Meyer, Knud E.

    2018-01-01

    This article confirms the superior performance of topology optimized heat sinks compared to lattice designs and suggests simpler manufacturable pin-fin design interpretations. The development is driven by the wide adoption of light-emitting-diode (LED) lamps for industrial and residential lighting....... The presented heat sink solutions are generated by topology optimization, a computational morphogenesis approach with ultimate design freedom, relying on high-performance computing and simulation. Optimized devices exhibit complex and organic-looking topologies which are realized with the help of additive...... manufacturing. To reduce manufacturing cost, a simplified interpretation of the optimized design is produced and validated as well. Numerical and experimental results agree well and indicate that the obtained designs outperform lattice geometries by more than 21%, resulting in a doubling of life expectancy and...

  11. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  12. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Izarra, G. de [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Elter, Zs. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Verma, V. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Metrology, Instrumentation and Information Department, Saclay, 91191 Gif-sur-Yvette (France); Chapoutier, N.; Scholer, A.C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon (France); Hellesen, C.; Jacobsson, S. [Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Cantonnet, B.; Nappe, J.C. [PHOTONIS France, Nuclear Instrumentation, 19100 Brive-la-Gaillarde (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Energy Department, 3 rue Joliot-Curie, 91191 Gif-sur-Yvette (France)

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under

  13. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  14. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; De Izarra, G. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Elter, Zs.; Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goteborg, (Sweden); Verma, V.; Hellesen, C.; Jacobsson, S. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Sensors and Electronic Architecture Laboratory, Saclay, F-91191 Gif Sur Yvette, (France); Chapoutier, N.; Scholer, A-C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon, (France); Cantonnet, B.; Nappe, J-C. [PHONIS France S.A.S, Nuclear Instrumentation, Avenue Roger Roncier, B.P. 520, F-19106 Brive Cedex, (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Department of Power and Energy System, F-91192 Gif Sur Yvette, (France); Jadot, F. [CEA, DEN, DER, ASTRID Project Group, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  15. Neuroinflammatory targets and treatments for epilepsy validated in experimental models.

    Science.gov (United States)

    Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M

    2017-07-01

    A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  16. Tyre tread-block friction: modelling, simulation and experimental validation

    Science.gov (United States)

    Wallaschek, Jörg; Wies, Burkard

    2013-07-01

    Pneumatic tyres are used in vehicles since the beginning of the last century. They generate braking and steering forces for bicycles, motor cycles, cars, busses, trucks, agricultural vehicles and aircraft. These forces are generated in the usually very small contact area between tyre and road and their performance characteristics are of eminent importance for safety and comfort. Much research has been addressed to optimise tyre design with respect to footprint pressure and friction. In this context, the development of virtual tyre prototypes, that is, simulation models for the tyre, has grown to a science in its own. While the modelling of the structural dynamics of the tyre has reached a very advanced level, which allows to take into account effects like the rate-independent inelasticity of filled elastomers or the transient 3D deformations of the ply-reinforced tread, shoulder and sidewalls, little is known about the friction between tread-block elements and road. This is particularly obvious in the case when snow, ice, water or a third-body layer are present in the tyre-road contact. In the present paper, we give a survey on the present state of knowledge in the modelling, simulation and experimental validation of tyre tread-block friction processes. We concentrate on experimental techniques.

  17. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  18. Experimental validation of the containment codes ASTARTE and SEURBNUK

    International Nuclear Information System (INIS)

    Kendall, K.C.; Arnold, L.A.; Broadhouse, B.J.; Jones, A.; Yerkess, A.; Benuzzi, A.

    1979-10-01

    The fast reactor containment codes ASTARTE and SEURBNUK are being validated against data from the COVA series of small scale experiments being performed jointly by the UKAEA and JRC Ispra. The experimental programme is nearly complete, and data are given. (U.K.)

  19. Numerical multi-criteria optimization methods for alloy design. Development of new high strength nickel-based superalloys and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Ralf; Mueller, Alexander; Ritter, Nils C.; Singer, Robert F. [Institute of Science and Technology of Metals, Department of Materials Science and Engineering, University of Erlangen (Germany)

    2016-07-01

    A new approach for the design of optimum balanced metallic alloys is presented. It is based on a mathematical multi-criteria optimization method which uses different property models to predict the alloy behavior in dependency of composition. These property models are mostly based on computational thermodynamics (CALPHAD-method). The full composition range of the alloying elements can be considered using these models. In alloy design usually several contradicting goals have to be fulfilled. This is handled by the calculation of so-called Pareto-fronts. The aim of our approach is to guide the experimental research towards new alloy compositions that have a high probability of having very good properties. Consequently the number of required test alloys can be massively reduced. The approach will be demonstrated for the computer-aided design of a new Re-free superalloy with nearly identical creep strength as that of Re-containing superalloys. Our starting point for the design was to maintain the good properties of the gamma prime-phase in well-known alloys like CMSX-4 and to maximize the solid solution strengthening of W and Mo. The presented experimental measurements proof the excellent properties.

  20. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  1. Experimental validation of calculated atomic charges in ionic liquids

    Science.gov (United States)

    Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.

    2018-05-01

    A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

  2. Physics of subcritical multiplying regions and experimental validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1996-01-01

    The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)

  3. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part I: development and validation of a pulmonary cannabinoid route of exposure for experimental pharmacology studies in rodents.

    Science.gov (United States)

    Manwell, Laurie A; Charchoglyan, Armen; Brewer, Dyanne; Matthews, Brittany A; Heipel, Heather; Mallet, Paul E

    2014-01-01

    Most studies evaluating the effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in animal models administer it via a parenteral route (e.g., intraperitoneal (IP) or intravenous injection (IV)), however, the common route of administration for human users is pulmonary (e.g., smoking or vapourizing marijuana). A vapourized Δ(9)-THC delivery system for rodents was developed and used to compare the effects of pulmonary and parenteral Δ(9)-THC administration on blood cannabinoid levels and behaviour. Sprague-Dawley rats were exposed to pulmonary Δ(9)-THC (1, 5, and 10mg of inhaled vapour) delivered via a Volcano® vapourizing device (Storz and Bickel, Germany) or to parenteral Δ(9)-THC (0.25, 0.5, 1.0, and 1.5mg/kg injected IP). Quantification of Δ(9)-THC and its psychoactive metabolite, 11-hydroxy-Δ(9)-THC (11-OH-Δ(9)-THC), in blood was determined by liquid chromatography/mass spectrometry (LC/MS). In order to verify the potential for the vapourization procedure to produce a robust conditioned place preference (CPP) or conditioned place avoidance CPA, classical conditioning procedures were systematically varied by altering the exposure time (10 or 20min) and number of exposed rats (1 or 2) while maintaining the same vapourization dose (10mg). Blood collected at 20min intervals showed similar dose-dependent and time-dependent changes in Δ(9)-THC and 11-OH-Δ(9)-THC for both pulmonary and parenteral administration of Δ(9)-THC. However, vapourized Δ(9)-THC induced CPP under certain conditions whereas IP-administered Δ(9)-THC induced CPA. These results support and extend the limited evidence (e.g., in humans, Naef et al., 2004; in rodents, Niyuhire et al., 2007) that Δ(9)-THC produces qualitatively different effects on behaviour depending upon the route of administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Threats to the Internal Validity of Experimental and Quasi-Experimental Research in Healthcare.

    Science.gov (United States)

    Flannelly, Kevin J; Flannelly, Laura T; Jankowski, Katherine R B

    2018-01-24

    The article defines, describes, and discusses the seven threats to the internal validity of experiments discussed by Donald T. Campbell in his classic 1957 article: history, maturation, testing, instrument decay, statistical regression, selection, and mortality. These concepts are said to be threats to the internal validity of experiments because they pose alternate explanations for the apparent causal relationship between the independent variable and dependent variable of an experiment if they are not adequately controlled. A series of simple diagrams illustrate three pre-experimental designs and three true experimental designs discussed by Campbell in 1957 and several quasi-experimental designs described in his book written with Julian C. Stanley in 1966. The current article explains why each design controls for or fails to control for these seven threats to internal validity.

  5. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  6. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  7. Skill development in experimental courses

    Directory of Open Access Journals (Sweden)

    Héctor Bagán

    2015-09-01

    Full Text Available Experimental courses offer a good opportunity to work with competences, promoting the incorporation of strategies oriented towards motivating students to actively involve in the learning process, promoting reflexive learning and developing generic skills. This study presents different ways of developing and evaluating some important general skills, settle on four specific objectives: 1. To increase student motivation using samples of potential interest to students and explaining real-live application of their samples analyses; 2. To assist students’ self-regulation and learning autonomy by using the portfolio; 3. To promote group work through experiments in pairs and small-group discussions; 4. To develop communication skills through small-group discussions and oral presentations. Results show that the type of sample used and real-life application has important influence on motivation. The portfolio is a good tool to promote reflection and to evaluate both specific and generic skills in experimental courses, the dynamics of a laboratory course permit students to develop their group-work and communicative skills, and peer evaluations both improve students’ communication skills and promote metacognitive reflection. Finally, the project demonstrates that it is possible to train students in general skills using the specific course content and that the incorporation of participatory methodologies encourages students to become actively involved in the teaching-learning process.

  8. Experimental Validation of a Dynamic Model for Lightweight Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Gasparetto

    2013-03-01

    Full Text Available Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism.

  9. Experimental validation of lead cross sections for scale and MCNP

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    Moving spent nuclear fuel between facilities often requires the use of lead-shielded casks. Criticality safety that is based upon calculations requires experimental validation of the fuel matrix and lead cross section libraries. A series of critical experiments using a high-enriched uranium-aluminum fuel element with a variety of reflectors, including lead, has been identified. Twenty-one configurations were evaluated in this study. The fuel element was modelled for KENO V.a and MCNP 4a using various cross section sets. The experiments addressed in this report can be used to validate lead-reflected calculations. Factors influencing calculated k eff which require further study include diameters of styrofoam inserts and homogenization

  10. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  11. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gulnur

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non-expert-like thinking in students and to evaluate the…

  12. Experimental Validation of the Reverberation Effect in Room Electromagnetics

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2015-01-01

    . This tail can be characterized with Sabine's or Eyring's reverberation models, which were initially developed in acoustics. So far, these models were only fitted to data collected from radio measurements, but no thorough validation of their prediction ability in electromagnetics has been performed yet...

  13. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  14. Experimental validation for calcul methods of structures having shock non-linearity

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1987-01-01

    For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr

  15. Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-05-01

    This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs

  16. Development on experimental VHTR instrumentation

    International Nuclear Information System (INIS)

    Wakayama, N.; Ara, K.; Terada, H.; Yamagishi, H.; Tomoda, T.

    1982-06-01

    This paper describes developmental works on the instrumentation of the Experimental VHTR. In the area of the nuclear instrumentation for the reactor control, high temperature fission counter-chambers have been developed. These withstood the accelerated irradiation life tests at 600 deg. C, the long term in-reactor operating test at 600 deg. C and the 800 deg. C-operating tests for several hundred hours in a simulated accident condition. Platinum-Molybdenum alloy thermocouples have been studied as a neutron-irradiation-resistant high-temperature thermocouple for the in-core temperature distribution monitoring of the VHTR in the temperature range between 1000 deg. C and 1350 deg. C. The instability problems of the Pt-5% Mo/Pt-0.1% Mo thermocouple seem to be overcome by introducing a double sheath structure and adopting a better material to the inner sheath. A local failure and abnormality monitoring method for the HTR fuel is also studied using a gas-sweeping irradiation rig for the CPF compacts. This study aims mainly at the development of a method to compensate for the dependency of the FP-release rate on the fuel temperature, the neutron flux density, the burn-up and others, in order to increase the detection sensitivity of fuel failures. (author)

  17. DTU PMU Laboratory Development - Testing and Validation

    OpenAIRE

    Garcia-Valle, Rodrigo; Yang, Guang-Ya; Martin, Kenneth E.; Nielsen, Arne Hejde; Østergaard, Jacob

    2010-01-01

    This is a report of the results of phasor measurement unit (PMU) laboratory development and testing done at the Centre for Electric Technology (CET), Technical University of Denmark (DTU). Analysis of the PMU performance first required the development of tools to convert the DTU PMU data into IEEE standard, and the validation is done for the DTU-PMU via a validated commercial PMU. The commercial PMU has been tested from the authors' previous efforts, where the response can be expected to foll...

  18. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  19. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  20. CFD Modeling and Experimental Validation of a Solar Still

    Directory of Open Access Journals (Sweden)

    Mahmood Tahir

    2017-01-01

    Full Text Available Earth is the densest planet of the solar system with total area of 510.072 million square Km. Over 71.68% of this area is covered with water leaving a scant area of 28.32% for human to inhabit. The fresh water accounts for only 2.5% of the total volume and the rest is the brackish water. Presently, the world is facing chief problem of lack of potable water. This issue can be addressed by converting brackish water into potable through a solar distillation process and solar still is specially assigned for this purpose. Efficiency of a solar still explicitly depends on its design parameters, such as wall material, chamber depth, width and slope of the zcondensing surface. This study was aimed at investigating the solar still parameters using CFD modeling and experimental validation. The simulation data of ANSYS-FLUENT was compared with actual experimental data. A close agreement among the simulated and experimental results was seen in the presented work. It reveals that ANSYS-FLUENT is a potent tool to analyse the efficiency of the new designs of the solar distillation systems.

  1. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  2. Analytical and Experimental Study for Validation of the Device to Confine BN Reactor Melted Fuel

    International Nuclear Information System (INIS)

    Rogozhkin, S.; Osipov, S.; Sobolev, V.; Shepelev, S.; Kozhaev, A.; Mavrin, M.; Ryabov, A.

    2013-01-01

    To validate the design and confirm the design characteristics of the special retaining device (core catcher) used for protection of BN reactor vessel in the case of a severe beyond-design basis accident with core melting, computational and experimental studies were carried out. The Tray test facility that uses water as coolant was developed and fabricated by OKBM; experimental studies were performed. To verify the methodical approach used for the computational study, experimental results obtained in the Tray test facility were compared with numerical simulation results obtained by the STAR-CCM+ CFD code

  3. IVIM: modeling, experimental validation and application to animal models

    International Nuclear Information System (INIS)

    Fournet, Gabrielle

    2016-01-01

    This PhD thesis is centered on the study of the IVIM ('Intravoxel Incoherent Motion') MRI sequence. This sequence allows for the study of the blood microvasculature such as the capillaries, arterioles and venules. To be sensitive only to moving groups of spins, diffusion gradients are added before and after the 180 degrees pulse of a spin echo (SE) sequence. The signal component corresponding to spins diffusing in the tissue can be separated from the one related to spins travelling in the blood vessels which is called the IVIM signal. These two components are weighted by f IVIM which represents the volume fraction of blood inside the tissue. The IVIM signal is usually modelled by a mono-exponential (ME) function and characterized by a pseudo-diffusion coefficient, D*. We propose instead a bi-exponential IVIM model consisting of a slow pool, characterized by F slow and D* slow corresponding to the capillaries as in the ME model, and a fast pool, characterized by F fast and D* fast, related to larger vessels such as medium-size arterioles and venules. This model was validated experimentally and more information was retrieved by comparing the experimental signals to a dictionary of simulated IVIM signals. The influence of the pulse sequence, the repetition time and the diffusion encoding time was also studied. Finally, the IVIM sequence was applied to the study of an animal model of Alzheimer's disease. (author) [fr

  4. Design of JT-60SA magnets and associated experimental validations

    International Nuclear Information System (INIS)

    Zani, L.; Barabaschi, P.; Peyrot, M.; Meunier, L.; Tomarchio, V.; Duglue, D.; Decool, P.; Torre, A.; Marechal, J.L.; Della Corte, A.; Di Zenobio, A.; Muzzi, L.; Cucchiaro, A.; Turtu, S.; Ishida, S.; Yoshida, K.; Tsuchiya, K.; Kizu, K.; Murakami, H.

    2011-01-01

    In the framework of the JT-60SA project, aiming at upgrading the present JT-60U tokamak toward a fully superconducting configuration, the detailed design phase led to adopt for the three main magnet systems a brand new design. Europe (EU) is expected to provide to Japan (JA) the totality of the toroidal field (TF) magnet system, while JA will provide both Equilibrium field (EF) and Central Solenoid (CS) systems. All magnet designs were optimized trough the past years and entered in parallel into extensive experimentally-based phases of concept validation, which came to maturation in the years 2009 and 2010. For this, all magnet systems were investigated by mean of dedicated samples, e.g. conductor and joint samples designed, manufactured and tested at full scale in ad hoc facilities either in EU or in JA. The present paper, after an overall description of magnet systems layouts, presents in a general approach the different experimental campaigns dedicated to qualification design and manufacture processes of either coils, conductors and electrical joints. The main results with the associated analyses are shown and the main conclusions presented, especially regarding their contribution to consolidate the triggering of magnet mass production. The status of respective manufacturing stages in EU and in JA are also evoked. (authors)

  5. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  6. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  7. Method for Determining Volumetric Efficiency and Its Experimental Validation

    OpenAIRE

    Ambrozik Andrzej; Kurczyński Dariusz; Łagowski Piotr

    2017-01-01

    Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, ...

  8. DTU PMU Laboratory Development - Testing and Validation

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Yang, Guang-Ya; Martin, Kenneth E.

    2010-01-01

    This is a report of the results of phasor measurement unit (PMU) laboratory development and testing done at the Centre for Electric Technology (CET), Technical University of Denmark (DTU). Analysis of the PMU performance first required the development of tools to convert the DTU PMU data into IEEE...... standard, and the validation is done for the DTU-PMU via a validated commercial PMU. The commercial PMU has been tested from the authors' previous efforts, where the response can be expected to follow known patterns and provide confirmation about the test system to confirm the design and settings....... In a nutshell, having 2 PMUs that observe same signals provides validation of the operation and flags questionable results with more certainty. Moreover, the performance and accuracy of the DTU-PMU is tested acquiring good and precise results, when compared with a commercial phasor measurement device, PMU-1....

  9. Validated modified Lycopodium spore method development for ...

    African Journals Online (AJOL)

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of ...

  10. First experimental validation on the core equilibrium code: HARMONIE

    International Nuclear Information System (INIS)

    Van Dorsselaere, J.; Cozzani, M.; Gnuffi, M.

    1981-08-01

    The code HARMONIE calculates the mechanical equilibrium of a fast reactor. An experimental program of deformation, in air, of groups of subassemblies, was performed on a mock-up, in the Super Phenix 1- geometry. This program included three kinds of tests, all performed without and then with grease: on groups of 2 or 3 rings of subassemblies, subjected to a force acting upon flats or angles; on groups of 35 and 41 subassemblies, subjected to a force acting on the first row, then with 1 or 2 empty cells; and on groups with 1 or 2 bowed subassemblies or 1 enlarged one over flats. A preliminary test on the friction coefficient in air between two pads showed some dependance upon the pad surface condition with a scattering factor of 8. Two basic code hypotheses were validated: the rotation of the subassemblies around their axis was negligible after deformation of the group, and the choice of a mean Maxwell coefficient, between those of 1st and 2nd slope, led to very similar results to experimental. The agreement between tests and HARMONIE calculations was suitable, qualitatively for all the groups and quantitatively for regular groups of 3 rings at most. But the difference increased for larger groups of 35 or 41 subassemblies: friction between pads, neglected by HARMONIE, seems to be the main reason. Other reasons for these differences are: the influence of the loading order on the mock-up, and the initial contacts issued from the gap between foot and diagrid-insert, and from manufacture bowings

  11. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    Science.gov (United States)

    Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.

    2007-03-01

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  12. Validation of a buffet meal design in an experimental restaurant.

    Science.gov (United States)

    Allirot, Xavier; Saulais, Laure; Disse, Emmanuel; Roth, Hubert; Cazal, Camille; Laville, Martine

    2012-06-01

    We assessed the reproducibility of intakes and meal mechanics parameters (cumulative energy intake (CEI), number of bites, bite rate, mean energy content per bite) during a buffet meal designed in a natural setting, and their sensitivity to food deprivation. Fourteen men were invited to three lunch sessions in an experimental restaurant. Subjects ate their regular breakfast before sessions A and B. They skipped breakfast before session FAST. The same ad libitum buffet was offered each time. Energy intakes and meal mechanics were assessed by foods weighing and video recording. Intrasubject reproducibility was evaluated by determining intraclass correlation coefficients (ICC). Mixed-models were used to assess the effects of the sessions on CEI. We found a good reproducibility between A and B for total energy (ICC=0.82), carbohydrate (ICC=0.83), lipid (ICC=0.81) and protein intake (ICC=0.79) and for meal mechanics parameters. Total energy, lipid and carbohydrate intake were higher in FAST than in A and B. CEI were found sensitive to differences in hunger level while the other meal mechanics parameters were stable between sessions. In conclusion, a buffet meal in a normal eating environment is a valid tool for assessing the effects of interventions on intakes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development and validation of sodium fire codes

    International Nuclear Information System (INIS)

    Morii, Tadashi; Himeno Yoshiaki; Miyake, Osamu

    1989-01-01

    Development, verification, and validation of the spray fire code, SPRAY-3M, the pool fire codes, SOFIRE-M2 and SPM, the aerosol behavior code, ABC-INTG, and the simultaneous spray and pool fires code, ASSCOPS, are presented. In addition, the state-of-the-art of development of the multi-dimensional natural convection code, SOLFAS, for the analysis of heat-mass transfer during a fire, is presented. (author)

  14. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  15. HIPdb: a database of experimentally validated HIV inhibiting peptides.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-01-01

    Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.

  16. Experimental validation of Monte Carlo calculations for organ dose

    International Nuclear Information System (INIS)

    Yalcintas, M.G.; Eckerman, K.F.; Warner, G.G.

    1980-01-01

    The problem of validating estimates of absorbed dose due to photon energy deposition is examined. The computational approaches used for the estimation of the photon energy deposition is examined. The limited data for validation of these approaches is discussed and suggestions made as to how better validation information might be obtained

  17. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    Science.gov (United States)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  18. Experimental studies of morphology development

    International Nuclear Information System (INIS)

    Whitton, J.L.

    1986-01-01

    This contribution is a resume of the approximately eight years of experimental investigation of ion beam-induced modification of metal surfaces. The aim, from the beginning, was to make a detailed series of experiments with well defined controllable parameters in an attempt to establish the mechanism responsible for the production of the topographical features observed so frequently on ion-bombarded surfaces of metals. Typically, for the initial system, 40 keV argon ions directed on to copper, the sputtering yield is fairly constant from normal angle of incidence to about 30 0 , rising fairly smoothly to a maximum at 80 0 , then dropping rapidly to zero at around 82 0 . A very strong grain orientation effect was observed in the early experiments. (Auth.)

  19. Numerical and Experimental Validation of a New Damage Initiation Criterion

    Science.gov (United States)

    Sadhinoch, M.; Atzema, E. H.; Perdahcioglu, E. S.; van den Boogaard, A. H.

    2017-09-01

    Most commercial finite element software packages, like Abaqus, have a built-in coupled damage model where a damage evolution needs to be defined in terms of a single fracture energy value for all stress states. The Johnson-Cook criterion has been modified to be Lode parameter dependent and this Modified Johnson-Cook (MJC) criterion is used as a Damage Initiation Surface (DIS) in combination with the built-in Abaqus ductile damage model. An exponential damage evolution law has been used with a single fracture energy value. Ultimately, the simulated force-displacement curves are compared with experiments to validate the MJC criterion. 7 out of 9 fracture experiments were predicted accurately. The limitations and accuracy of the failure predictions of the newly developed damage initiation criterion will be discussed shortly.

  20. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  1. Multi-actuators vehicle collision avoidance system - Experimental validation

    Science.gov (United States)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  2. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real-time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real-time constraints. A detailed dynamic model of the system is derived for the simulation study. By neglecting the high-order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input-output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  3. Numerical modelling of negative discharges in air with experimental validation

    International Nuclear Information System (INIS)

    Tran, T N; Golosnoy, I O; Lewin, P L; Georghiou, G E

    2011-01-01

    Axisymmetric finite element models have been developed for the simulation of negative discharges in air without and with the presence of dielectrics. The models are based on the hydrodynamic drift-diffusion approximation. A set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) is coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. The model of a negative corona discharge (without dielectric barriers) in a needle-plane geometry is analysed first. The results obtained show good agreement with experimental observations for various Trichel pulse characteristics. With dielectric barriers introduced into the discharge system, the surface discharge exhibits some similarities and differences to the corona case. The model studies the dynamics of volume charge generation, electric field variations and charge accumulation over the dielectric surface. The predicted surface charge density is consistent with experimental results obtained from the Pockels experiment in terms of distribution form and magnitude.

  4. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  5. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  6. Experimental validation of a computer simulation of radiographic film

    International Nuclear Information System (INIS)

    Goncalves, Elicardo A. de S.; Azeredo, Raphaela; Assis, Joaquim T.; Anjos, Marcelino J. dos; Oliveira, Davi F.; Oliveira, Luis F. de

    2015-01-01

    In radiographic films, the behavior of characteristic curve is very important for the image quality. Digitization/visualization are always performed by light transmission and the characteristic curve is known as a behavior of optical density in function of exposure. In a first approach, in a Monte-Carlo computer simulation trying to build a Hurter-Driffield curve by a stochastic model, the results showed the same known shape, but some behaviors, like the influence of silver grain size, are not expected. A real H and D curve was build exposing films, developing and measuring the optical density. When comparing model results with a real curve, trying to fit them and estimating some parameters, a difference in high exposure region shows a divergence between the models and the experimental data. Since the optical density is a function of metallic silver generated by chemical development, direct proportion was considered, but the results suggests a limitation in this proportion. In fact, when the optical density was changed by another way to measure silver concentration, like x-ray fluorescence, the new results agree with the models. Therefore, overexposed films can contain areas with different silver concentrations but it can't be seen due to the fact that optical density measurement is limited. Mapping the silver concentration in the film area can be a solution to reveal these dark images, and x-ray fluorescence has shown to be the best way to perform this new way to digitize films. (author)

  7. Experimental validation of a computer simulation of radiographic film

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil). Laboratorio de Instrumentacao e Simulacao Computacional Cientificas Aplicadas; Azeredo, Raphaela, E-mail: raphaelaazeredo@yahoo.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica Armando Dias Tavares. Programa de Pos-Graduacao em Fisica; Assis, Joaquim T., E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Anjos, Marcelino J. dos; Oliveira, Davi F.; Oliveira, Luis F. de, E-mail: marcelin@uerj.br, E-mail: davi.oliveira@uerj.br, E-mail: lfolive@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica Armando Dias Tavares. Departamento de Fisica Aplicada e Termodinamica

    2015-07-01

    In radiographic films, the behavior of characteristic curve is very important for the image quality. Digitization/visualization are always performed by light transmission and the characteristic curve is known as a behavior of optical density in function of exposure. In a first approach, in a Monte-Carlo computer simulation trying to build a Hurter-Driffield curve by a stochastic model, the results showed the same known shape, but some behaviors, like the influence of silver grain size, are not expected. A real H and D curve was build exposing films, developing and measuring the optical density. When comparing model results with a real curve, trying to fit them and estimating some parameters, a difference in high exposure region shows a divergence between the models and the experimental data. Since the optical density is a function of metallic silver generated by chemical development, direct proportion was considered, but the results suggests a limitation in this proportion. In fact, when the optical density was changed by another way to measure silver concentration, like x-ray fluorescence, the new results agree with the models. Therefore, overexposed films can contain areas with different silver concentrations but it can't be seen due to the fact that optical density measurement is limited. Mapping the silver concentration in the film area can be a solution to reveal these dark images, and x-ray fluorescence has shown to be the best way to perform this new way to digitize films. (author)

  8. Experimental validation of incomplete data CT image reconstruction techniques

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hsiao, M.L.; Tam, K.C.

    1989-01-01

    X-ray CT inspection of large metal parts is often limited by x-ray penetration problems along many of the ray paths required for a complete CT data set. In addition, because of the complex geometry of many industrial parts, manipulation difficulties often prevent scanning over some range of angles. CT images reconstructed from these incomplete data sets contain a variety of artifacts which limit their usefulness in part quality determination. Over the past several years, the authors' company has developed 2 new methods of incorporating a priori information about the parts under inspection to significantly improve incomplete data CT image quality. This work reviews the methods which were developed and presents experimental results which confirm the effectiveness of the techniques. The new methods for dealing with incomplete CT data sets rely on a priori information from part blueprints (in electronic form), outer boundary information from touch sensors, estimates of part outer boundaries from available x-ray data, and linear x-ray attenuation coefficients of the part. The two methods make use of this information in different fashions. The relative performance of the two methods in detecting various flaw types is compared. Methods for accurately registering a priori information with x-ray data are also described. These results are critical to a new industrial x-ray inspection cell built for inspection of large aircraft engine parts

  9. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  10. Experimental validation of thermo-chemical algorithm for a simulation of pultrusion processes

    Science.gov (United States)

    Barkanov, E.; Akishin, P.; Miazza, N. L.; Galvez, S.; Pantelelis, N.

    2018-04-01

    To provide better understanding of the pultrusion processes without or with temperature control and to support the pultrusion tooling design, an algorithm based on the mixed time integration scheme and nodal control volumes method has been developed. At present study its experimental validation is carried out by the developed cure sensors measuring the electrical resistivity and temperature on the profile surface. By this verification process the set of initial data used for a simulation of the pultrusion process with rod profile has been successfully corrected and finally defined.

  11. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  12. Developing and validating a sham cupping device.

    Science.gov (United States)

    Lee, Myeong Soo; Kim, Jong-In; Kong, Jae Cheol; Lee, Dong-Hyo; Shin, Byung-Cheul

    2010-12-01

    The aims of this study were to develop a sham cupping device and to validate its use as a placebo control for healthy volunteers. A sham cupping device was developed by establishing a small hole to reduce the negative pressure after suction such that inner pressure could not be maintained in the cup. We enrolled 34 healthy participants to evaluate the validity of the sham cupping device as a placebo control. The participants were informed that they would receive either real or sham cupping and were asked which treatment they thought they had received. Other sensations and adverse events related to cupping therapy were investigated. 17 patients received real cupping therapy and 17 received sham cupping. The two groups felt similar sensations. There was a tendency for subjects to feel that real cupping created a stronger sensation than sham cupping (48.9±21.4 vs 33.3±20.3 on a 100mm visual analogue scale). There were only mild to moderate adverse events observed in both groups. We developed a new sham cupping device that seems to provide a credible control for real cupping therapy by producing little or no negative pressure. This conclusion was supported by a pilot study, but more rigorous research is warranted regarding the use of this device.

  13. HZETRN radiation transport validation using balloon-based experimental data

    Science.gov (United States)

    Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.

    2018-05-01

    The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that

  14. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium

    International Nuclear Information System (INIS)

    Bert, Juliette; Chrenko, Daniela; Sophy, Tonino; Le Moyne, Luis; Sirot, Frédéric

    2014-01-01

    A Stirling engine with nominal output power of 1 kW is tested using air and helium as working gases. The influence of working pressure, engine speed and temperature of the hot source is studied, analyzing instantaneous gas pressure as well as instantaneous and stationary temperature at different positions to derive the effective power. A zero dimensional finite-time thermodynamic, three zones model of a generic Stirling engine is developed and successfully validated against experimental gas temperature and pressure in each zone, providing the effective power. This validation underlines the interest of different working gases as well as different geometric configurations for different applications. Furthermore, the validated model allows parametric studies of the engine, with regard to geometry, working gas and engine kinematics. It is used in order to optimize the kinematic of a Stirling engine for different working points and gases. - Highlights: • A Stirling engine of 1 kW is tested using air and helium as working gas. • Effects of working pressure, speed and temperature on power are studied. • A zero dimensional finite-time thermodynamic, three zones model of it is validated. • The validated model is used for parametric studies and optimization of the engine

  15. Alteration of 'R7T7' type nuclear glasses: statistical approach, experimental validation, local evolution model

    International Nuclear Information System (INIS)

    Thierry, F.

    2003-02-01

    The aim of this work is to propose an evolution of nuclear (R7T7-type) glass alteration modeling. The first part of this thesis is about development and validation of the 'r(t)' model. This model which predicts the decrease of alteration rates in confined conditions is based upon a coupling between a first-order dissolution law and a diffusion barrier effect of the alteration gel layer. The values and the uncertainties regarding the main adjustable parameters of the model (α, Dg and C*) have been determined from a systematic study of the available experimental data. A program called INVERSION has been written for this purpose. This work lead to characterize the validity domain of the 'r(t)' model and to parametrize it. Validation experiments have been undertaken, confirming the validity of the parametrization over 200 days. A new model is proposed in the second part of this thesis. It is based on an inhibition of glass dissolution reaction by silicon coupled with a local description of silicon retention in the alteration gel layer. This model predicts the evolutions of boron and silicon concentrations in solution as well as the concentrations and retention profiles in the gel layer. These predictions have been compared to measurements of retention profiles by the secondary ion mass spectrometry (SIMS) method. The model has been validated on fractions of gel layer which reactivity present low or moderate disparities. (author)

  16. Three-dimensional shape optimization of a cemented hip stem and experimental validations.

    Science.gov (United States)

    Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi

    2015-03-01

    This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.

  17. Experimental validation of TASS/SMR-S critical flow model for the integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Ra, In Sik; Kim, Kun Yeup [ACT Co., Daejeon (Korea, Republic of); Chung, Young Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral PWR, SMART (System- Integrated Modular Advanced ReacTor) is being developed in KAERI. It has a compact size and a relatively small power rating (330MWt) compared to a conventional reactor. Because new concepts are applied to SMART, an experimental and analytical validation is necessary for the safety evaluation of SMART. The analytical safety validation is being accomplished by a safety analysis code for an integral reactor, TASS/SMR-S developed by KAERI. TASS/SMR-S uses a lumped parameter one dimensional node and path modeling for the thermal hydraulic calculation and it uses point kinetics for the reactor power calculation. It has models for a general usage such as a core heat transfer model, a wall heat structure model, a critical flow model, component models, and it also has many SMART specific models such as an once through helical coiled steam generator model, and a condensate heat transfer model. To ensure that the TASS/SMR-S code has the calculation capability for the safety evaluation of SMART, the code should be validated for the specific models with the separate effect test experimental results. In this study, TASS/SMR-S critical flow model is evaluated as compared with SMD (Super Moby Dick) experiment

  18. Development and Experimental Validation of Large Eddy Simulation Techniques for the Prediction of Combustion-Dynamic Process in Syngas Combustion: Characterization of Autoignition, Flashback, and Flame-Liftoff at Gas-Turbine Relevant Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ihme, Matthias [Univ. of Michigan, Ann Arbor, MI (United States); Driscoll, James [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-08-31

    The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controlling unstable flame regimes in HHC-combustion.

  19. Experimental validation of waveform relaxation technique for power ...

    Indian Academy of Sciences (India)

    Two systems are considered: a HVDC controller tested with a detailed model of the converters, and a TCSC based damping controller tested with a low frequency model of a power system. The results are validated with those obtained using simulated models of the controllers. We also present results of an experiment in ...

  20. Development and Validation of a Video-Based Social Knowledge Test for Junior Commissioned Army Officers

    National Research Council Canada - National Science Library

    Schneider, R. J; Johnson, J. W

    2004-01-01

    Social knowledge/skill are increasingly critical to the success of U.S. Army officers. In this paper, we describe development and criterion-related validation of an experimental video-based social knowledge test...

  1. COVERS Neonatal Pain Scale: Development and Validation

    Directory of Open Access Journals (Sweden)

    Ivan L. Hand

    2010-01-01

    Full Text Available Newborns and infants are often exposed to painful procedures during hospitalization. Several different scales have been validated to assess pain in specific populations of pediatric patients, but no single scale can easily and accurately assess pain in all newborns and infants regardless of gestational age and disease state. A new pain scale was developed, the COVERS scale, which incorporates 6 physiological and behavioral measures for scoring. Newborns admitted to the Neonatal Intensive Care Unit or Well Baby Nursery were evaluated for pain/discomfort during two procedures, a heel prick and a diaper change. Pain was assessed using indicators from three previously established scales (CRIES, the Premature Infant Pain Profile, and the Neonatal Infant Pain Scale, as well as the COVERS Scale, depending upon gestational age. Premature infant testing resulted in similar pain assessments using the COVERS and PIPP scales with an r=0.84. For the full-term infants, the COVERS scale and NIPS scale resulted in similar pain assessments with an r=0.95. The COVERS scale is a valid pain scale that can be used in the clinical setting to assess pain in newborns and infants and is universally applicable to all neonates, regardless of their age or physiological state.

  2. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    International Nuclear Information System (INIS)

    Sison Escaño, Mary Clare; Arevalo, Ryan Lacdao; Kasai, Hideaki; Gyenge, Elod

    2014-01-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH 4 − on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements. (topical review)

  3. Signal Validation: A Survey of Theoretical and Experimental Studies at the KFKI Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.

    1996-07-01

    The aim of this survey paper is to collect the results of the theoretical and experimental work that has been done on early failure and change detection, signal/detector validation, parameter estimation and system identification problems in the Applied Reactor Physics Department of the KFKI-AEI. The present paper reports different applications of the theoretical methods using real and computer simulated data. The final goal is two-sided: 1) to better understand the mathematical/physical background of the applied methods and 2) to integrate the useful algorithms into a large, complex diagnostic software system. The software is under development, a preliminary version (called JEDI) has already been accomplished. (author)

  4. Validation of the CATHARE2 code against experimental data from Brayton-cycle plants

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Tauveron, Nicolas; Geffraye, Genevieve; Gentner, Herve

    2008-01-01

    In recent years the Commissariat a l'Energie Atomique (CEA) has commissioned a wide range of feasibility studies of future-advanced nuclear reactors, in particular gas-cooled reactors (GCR). The thermohydraulic behaviour of these systems is a key issue for, among other things, the design of the core, the assessment of thermal stresses, and the design of decay heat removal systems. These studies therefore require efficient and reliable simulation tools capable of modelling the whole reactor, including the core, the core vessel, piping, heat exchangers and turbo-machinery. CATHARE2 is a thermal-hydraulic 1D reference safety code developed and extensively validated for the French pressurized water reactors. It has been recently adapted to deal also with gas-cooled reactor applications. In order to validate CATHARE2 for these new applications, CEA has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE2 is being validated against existing experimental data. And in particular from the German power plants Oberhausen I and II. These facilities have both been operated by the German utility Energie Versorgung Oberhausen (E.V.O.) and their power conversion systems resemble to the high-temperature reactor concepts: Oberhausen I is a 13.75-MWe Brayton-cycle air turbine plant, and Oberhausen II is a 50-MWe Brayton-cycle helium turbine plant. The paper presents these two plants, the adopted CATHARE2 modelling and a comparison between experimental data and code results for both steady state and transient cases

  5. Numerical calibration and experimental validation of a PCM-Air heat exchanger model

    International Nuclear Information System (INIS)

    Stathopoulos, N.; El Mankibi, M.; Santamouris, Mattheos

    2017-01-01

    Highlights: • Development of a PCM-Air heat exchanger experimental unit and its numerical model. • Differential Scanning Calorimetry for PCM properties. • Ineptitude of DSC obtained heat capacity curves. • Creation of adequate heat capacity curves depending on heat transfer rates. • Confrontation of numerical and experimental results and validation of the model. - Abstract: Ambitious goals have been set at international, European and French level for energy consumption and greenhouse gas emissions decrease of the building sector. Achieving them requires renewable energy integration, a technology that presents however an important drawback: intermittent energy production. In response, thermal energy storage (TES) technology applications have been developed in order to correlate energy production and consumption of the building. Phase Change Materials (PCMs) have been widely used in TES applications as they offer a high storage density and adequate phase change temperature range. It is important to accurately know the thermophysical properties of the PCM, both for experimental (system design) and numerical (correct prediction) purposes. In this paper, the fabrication of a PCM – Air experimental prototype is presented at first, along with the development of a numerical model simulating the downstream temperature evolution of the heat exchanger. Particular focus is given to the calibration method and the validation of the model using experimental characterization results. Differential scanning calorimetry (DSC) is used to define the thermal properties of the PCM. Initial numerical results are underestimated compared to experimental ones. Various factors were investigated, pointing to the ineptitude of the heat capacity parameter, as DSC results depend on heating/cooling rates. Adequate heat capacity curves were empirically determined, depending on heat transfer rates and based on DSC results and experimental observations. The results of the proposed model

  6. Development and validation of a nodal code for core calculation

    International Nuclear Information System (INIS)

    Nowakowski, Pedro Mariano

    2004-01-01

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  7. Experimental Validation and Model Verification for a Novel Geometry ICPC Solar Collector

    DEFF Research Database (Denmark)

    Perers, Bengt; Duff, William S.; Daosukho, Jirachote

    A novel geometry ICPC solar collector was developed at the University of Chicago and Colorado State University. A ray tracing model has been designed to investigate the optical performance of both the horizontal and vertical fin versions of this collector. Solar radiation is modeled as discrete...... to the desired incident angle of the sun’s rays, performance of the novel ICPC solar collector at various specified angles along the transverse and longitudinal evacuated tube directions were experimentally determined. To validate the ray tracing model, transverse and longitudinal performance predictions...... at the corresponding specified incident angles are compared to the Sandia results. A 100 m2 336 Novel ICPC evacuated tube solar collector array has been in continuous operation at a demonstration project in Sacramento California since 1998. Data from the initial operation of the array are used to further validate...

  8. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  9. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  10. Developing and validating rapid assessment instruments

    CERN Document Server

    Abell, Neil; Kamata, Akihito

    2009-01-01

    This book provides an overview of scale and test development. From conceptualization through design, data collection, analysis, and interpretation, critical concerns are identified and grounded in the increasingly sophisticated psychometric literature. Measurement within the health, social, and behavioral sciences is addressed, and technical and practical guidance is provided. Acknowledging the increasingly sophisticated contributions in social work, psychology, education, nursing, and medicine, the book balances condensation of complex conceptual challenges with focused recommendations for conceiving, planning, and implementing psychometric study. Primary points are carefully referenced and consistently illustrated to illuminate complicated or abstract principles. Basics of construct conceptualization and establishing evidence of validity are complimented with introductions to concept mapping and cross-cultural translation. In-depth discussion of cutting edge topics like bias and invariance in item responses...

  11. Experimental Analysis and Model Validation of an Opaque Ventilated Facade

    DEFF Research Database (Denmark)

    López, F. Peci; Jensen, Rasmus Lund; Heiselberg, Per

    2012-01-01

    Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was ...

  12. Melt pool modelling, simulation and experimental validation for SLM

    NARCIS (Netherlands)

    Wits, Wessel

    2017-01-01

    SLM parts are built by successively melting layers of powder in a powder bed. Process parameters are often optimized experimentally by laser scanning a number of single tracks and subsequently determining which settings lead to a good compromise between quality and build speed. However,

  13. Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin.

    Science.gov (United States)

    Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R

    2015-11-01

    The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a "complete mystical experience" that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. © The Author(s) 2015.

  14. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  15. Experimental and simulation validation of ABHE for disinfection of Legionella in hot water systems

    International Nuclear Information System (INIS)

    Altorkmany, Lobna; Kharseh, Mohamad; Ljung, Anna-Lena; Staffan Lundström, T.

    2017-01-01

    Highlights: • ABHE system can supply a continues thermal treatment of water with saving energy. • Mathematical and experimental validation of ABHE performance are presented. • EES-based model is developed to simulate ABHE system. • Energy saving by ABHE is proved for different initial working parameters. - Abstract: The work refers to an innovative system inspired by nature that mimics the thermoregulation system that exists in animals. This method, which is called Anti Bacteria Heat Exchanger (ABHE), is proposed to achieve continuous thermal disinfection of bacteria in hot water systems with high energy efficiency. In particular, this study aims to demonstrate the opportunity to gain energy by means of recovering heat over a plate heat exchanger. Firstly, the thermodynamics of the ABHE is clarified to define the ABHE specification. Secondly, a first prototype of an ABHE is built with a specific configuration based on simplicity regarding design and construction. Thirdly, an experimental test is carried out. Finally, a computer model is built to simulate the ABHE system and the experimental data is used to validate the model. The experimental results indicate that the performance of the ABHE system is strongly dependent on the flow rate, while the supplied temperature has less effect. Experimental and simulation data show a large potential for saving energy of this thermal disinfection method by recovering heat. To exemplify, when supplying water at a flow rate of 5 kg/min and at a temperature of 50 °C, the heat recovery is about 1.5 kW while the required pumping power is 1 W. This means that the pressure drop is very small compared to the energy recovered and consequently high saving in total cost is promising.

  16. Absorber and regenerator models for liquid desiccant air conditioning systems. Validation and comparison using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.; Heinzen, R.; Jordan, U.; Vajen, K. [Kassel Univ., Inst. of Thermal Engineering, Kassel (Germany); Saman, W.; Halawa, E. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Solar assisted air conditioning systems using liquid desiccants represent a promising option to decrease high summer energy demand caused by electrically driven vapor compression machines. The main components of liquid desiccant systems are absorbers for dehumidifying and cooling of supply air and regenerators for concentrating the desiccant. However, high efficient and validated reliable components are required and the design and operation have to be adjusted to each respective building design, location, and user demand. Simulation tools can help to optimize component and system design. The present paper presents new developed numerical models for absorbers and regenerators, as well as experimental data of a regenerator prototype. The models have been compared with a finite-difference method model as well as experimental data. The data are gained from the regenerator prototype presented and an absorber presented in the literature. (orig.)

  17. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report; TOPFLOW-Experimente, Modellentwicklung und Validierung zur Qualifizierung von CFD-Codes fuer Zweiphasenstroemungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-15

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  18. DMFC anode polarization: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-01-03

    Anode two-phase flow has an important influence on DMFC performance and methanol crossover. In order to elucidate two-phase flow influence on anode performance, in this work, anode polarization is investigated combining experimental and modelling approach. A systematic experimental analysis of operating conditions influence on anode polarization is presented. Hysteresis due to operating condition is observed; experimental results suggest that it arises from methanol accumulation and has to be considered in evaluating DMFC performances and measurements reproducibility. A model of DMFC anode polarization is presented and utilised as tool to investigate anode two-phase flow. The proposed analysis permits one to produce a confident interpretation of the main involved phenomena. In particular, it confirms that methanol electro-oxidation kinetics is weakly dependent on methanol concentration and that methanol transport in gas phase produces an important contribution in anode feeding. Moreover, it emphasises the possibility to optimise anode flow rate in order to improve DMFC performance and reduce methanol crossover. (author)

  19. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  20. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

    International Nuclear Information System (INIS)

    Zeile, Christian; Maione, Ivan A.

    2015-01-01

    Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

  1. Summary: Experimental validation of real-time fault-tolerant systems

    Science.gov (United States)

    Iyer, R. K.; Choi, G. S.

    1992-01-01

    Testing and validation of real-time systems is always difficult to perform since neither the error generation process nor the fault propagation problem is easy to comprehend. There is no better substitute to results based on actual measurements and experimentation. Such results are essential for developing a rational basis for evaluation and validation of real-time systems. However, with physical experimentation, controllability and observability are limited to external instrumentation that can be hooked-up to the system under test. And this process is quite a difficult, if not impossible, task for a complex system. Also, to set up such experiments for measurements, physical hardware must exist. On the other hand, a simulation approach allows flexibility that is unequaled by any other existing method for system evaluation. A simulation methodology for system evaluation was successfully developed and implemented and the environment was demonstrated using existing real-time avionic systems. The research was oriented toward evaluating the impact of permanent and transient faults in aircraft control computers. Results were obtained for the Bendix BDX 930 system and Hamilton Standard EEC131 jet engine controller. The studies showed that simulated fault injection is valuable, in the design stage, to evaluate the susceptibility of computing sytems to different types of failures.

  2. The International Experimental Thermal Hydraulic Systems database – TIETHYS: A new NEA validation tool

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, Upendra S.

    2018-07-22

    Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary of appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/

  3. Dynamic Modeling of Wind Turbine Gearboxes and Experimental Validation

    DEFF Research Database (Denmark)

    Pedersen, Rune

    Grinding corrections are often applied to gear teeth, which will alter the load distribution across the tooth. Grinding corrections will also change the load sharing between neighboring tooth pairs, and in turn the gear mesh stiffness. In this thesis, a model for calculating the gear mesh stiffness...... is presented. The model takes into account the effects of load and applied grinding corrections. The results are verified by comparing to simulated and experimental results reported in the existing literature. Using gear data loosely based on a 1 MW wind turbine gearbox, the gear mesh stiffness is expanded...

  4. Experimental development of power reactor intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Lee, K.Y.

    1992-01-01

    The US nuclear utility industry initiated an ambitious program to modernize the control systems at a minimum of ten existing nuclear power plants by the year 2000. That program addresses urgent needs to replace obsolete instrumentation and analog controls with highly reliable state-of-the-art computer-based digital systems. Large increases in functionality that could theoretically be achieved in a distributed digital control system are not an initial priority in the industry program but could be logically considered in later phases. This paper discusses the initial development of an experimental sequence for developing, testing, and verifying intelligent fault-accommodating control for commercial nuclear power plant application. The sequence includes an ultra-safe university research reactor (TRIGA) and a passively safe experimental power plant (Experimental Breeder Reactor 2)

  5. Validation of Code ASTEC with LIVE-L1 Experimental Results

    International Nuclear Information System (INIS)

    Bachrata, Andrea

    2008-01-01

    The severe accidents with core melting are considered at the design stage of project at Generation 3+ of Nuclear Power Plants (NPP). Moreover, there is an effort to apply the severe accident management to the operated NPP. The one of main goals of severe accidents mitigation is corium localization and stabilization. The two strategies that fulfil this requirement are: the in-vessel retention (e.g. AP-600, AP- 1000) and the ex-vessel retention (e.g. EPR). To study the scenario of in-vessel retention, a large experimental program and the integrated codes have been developed. The LIVE-L1 experimental facility studied the formation of melt pools and the melt accumulation in the lower head using different cooling conditions. Nowadays, a new European computer code ASTEC is being developed jointly in France and Germany. One of the important steps in ASTEC development in the area of in-vessel retention of corium is its validation with LIVE-L1 experimental results. Details of the experiment are reported. Results of the ASTEC (module DIVA) application to the analysis of the test are presented. (author)

  6. Experimental validation of flexible multibody dynamics beam formulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)

    2015-08-15

    In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

  7. Observers for vehicle tyre/road forces estimation: experimental validation

    Science.gov (United States)

    Doumiati, M.; Victorino, A.; Lechner, D.; Baffet, G.; Charara, A.

    2010-11-01

    The motion of a vehicle is governed by the forces generated between the tyres and the road. Knowledge of these vehicle dynamic variables is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. This study introduces a new estimation process for tyre/road forces. It presents many benefits over the existing state-of-art works, within the dynamic estimation framework. One of these major contributions consists of discussing in detail the vertical and lateral tyre forces at each tyre. The proposed method is based on the dynamic response of a vehicle instrumented with potentially integrated sensors. The estimation process is separated into two principal blocks. The role of the first block is to estimate vertical tyre forces, whereas in the second block two observers are proposed and compared for the estimation of lateral tyre/road forces. The different observers are based on a prediction/estimation Kalman filter. The performance of this concept is tested and compared with real experimental data using a laboratory car. Experimental results show that the proposed approach is a promising technique to provide accurate estimation. Thus, it can be considered as a practical low-cost solution for calculating vertical and lateral tyre/road forces.

  8. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  9. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  10. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  11. Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    Science.gov (United States)

    Maiti, Raman

    2016-06-01

    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.

  12. Electrode-tissues interface: modeling and experimental validation

    International Nuclear Information System (INIS)

    Sawan, M; Laaziri, Y; Mounaim, F; Elzayat, E; Corcos, J; Elhilali, M M

    2007-01-01

    The electrode-tissues interface (ETI) is one of the key issues in implantable devices such as stimulators and sensors. Once the stimulator is implanted, safety and reliability become more and more critical. In this case, modeling and monitoring of the ETI are required. We propose an empirical model for the ETI and a dedicated integrated circuit to measure its corresponding complex impedance. These measurements in the frequency range of 1 Hz to 100 kHz were achieved in acute dog experiments. The model demonstrates a closer fitting with experimental measurements. In addition, a custom monitoring device based on a stimuli current generator has been completed to evaluate the phase shift and voltage across the electrodes and to transmit wirelessly the values to an external controller. This integrated circuit has been fabricated in a CMOS 0.18 μm process, which consumes 4 mW only during measurements and occupies an area of 1 mm 2 . (review article)

  13. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  14. Experimental validation of a Bayesian model of visual acuity.

    LENUS (Irish Health Repository)

    Dalimier, Eugénie

    2009-01-01

    Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.

  15. Brazilian Irradiation Project: CAFE-MOD1 validation experimental program

    International Nuclear Information System (INIS)

    Mattos, Joao Roberto Loureiro de; Costa, Antonio Carlos L. da; Esteves, Fernando Avelar; Dias, Marcio Soares

    1999-01-01

    The Brazilian Irradiation Project whose purpose is to provide Brazil with a minimal structure to qualify the design, fabrication and quality procedures of nuclear fuels, consists of three main facilities: IEA-R1 reactor of IPEN-CNEN/SP, CAFE-MOD1 irradiation device and a unit of hot cells. The CAFE-MOD1 is based on concepts successfully used for more than 20 years in the main nuclear institutes around the world. Despite these concepts are already proved it should be adapted to each reactor condition. For this purpose, there is an ongoing experimental program aiming at the certification of the criteria and operational limits of the CAFE-MOD1 in order to get the allowance for its installation at the IEA-R1 reactor. (author)

  16. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  17. Simulation of the AC corona phenomenon with experimental validation

    International Nuclear Information System (INIS)

    Villa, Andrea; Barbieri, Luca; Marco, Gondola; Malgesini, Roberto; Leon-Garzon, Andres R

    2017-01-01

    The corona effect, and in particular the Trichel phenomenon, is an important aspect of plasma physics with many technical applications, such as pollution reduction, surface and medical treatments. This phenomenon is also associated with components used in the power industry where it is, in many cases, the source of electro-magnetic disturbance, noise and production of undesired chemically active species. Despite the power industry to date using mainly alternating current (AC) transmission, most of the studies related to the corona effect have been carried out with direct current (DC) sources. Therefore, there is technical interest in validating numerical codes capable of simulating the AC phenomenon. In this work we describe a set of partial differential equations that are comprehensive enough to reproduce the distinctive features of the corona in an AC regime. The model embeds some selectable chemical databases, comprising tens of chemical species and hundreds of reactions, the thermal dynamics of neutral species and photoionization. A large set of parameters—deduced from experiments and numerical estimations—are compared, to assess the effectiveness of the proposed approach. (paper)

  18. Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors

    International Nuclear Information System (INIS)

    Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.

    2014-01-01

    Highlights: • A DES of a turbocharger compressor working at peak pressure point is performed. • In-duct pressure signals are measured in a steady flow rig with 3-sensor arrays. • Pressure spectra comparison is performed as a validation for the numerical model. • A suitable comparison methodology is developed, relying on pressure decomposition. • Whoosh noise at outlet duct is detected in experimental and numerical spectra. - Abstract: Centrifugal compressors working in the surge side of the map generate a broadband noise in the range of 1–3 kHz, named as whoosh noise. This noise is perceived at strongly downsized engines operating at particular conditions (full load, tip-in and tip-out maneuvers). A 3-dimensional CFD model of a centrifugal compressor is built to analyze fluid phenomena related to whoosh noise. A detached eddy simulation is performed with the compressor operating at the peak pressure point of 160 krpm. A steady flow rig mounted on an anechoic chamber is used to obtain experimental measurements as a means of validation for the numerical model. In-duct pressure signals are obtained in addition to standard averaged global variables. The numerical simulation provides global variables showing excellent agreement with experimental measurements. Pressure spectra comparison is performed to assess noise prediction capability of numerical model. The influence of the type and position of the virtual pressure probes is evaluated. Pressure decomposition is required by the simulations to obtain meaningful spectra. Different techniques for obtaining pressure components are analyzed. At the simulated conditions, a broadband noise in 1–3 kHz frequency band is detected in the experimental measurements. This whoosh noise is also captured by the numerical model

  19. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  20. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  1. An Experimental Platform for Autonomous Bus Development

    Directory of Open Access Journals (Sweden)

    Héctor Montes

    2017-11-01

    Full Text Available Nowadays, with highly developed instrumentation, sensing and actuation technologies, it is possible to foresee an important advance in the field of autonomous and/or semi-autonomous transportation systems. Intelligent Transport Systems (ITS have been subjected to very active research for many years, and Bus Rapid Transit (BRT is one area of major interest. Among the most promising transport infrastructures, the articulated bus is an interesting, low cost, high occupancy capacity and friendly option. In this paper, an experimental platform for research on the automatic control of an articulated bus is presented. The aim of the platform is to allow full experimentation in real conditions for testing technological developments and control algorithms. The experimental platform consists of a mobile component (a commercial articulated bus fully instrumented and a ground test area composed of asphalt roads inside the Consejo Superior de Investigaciones Científicas (CSIC premises. This paper focuses also on the development of a human machine interface to ease progress in control system evaluation. Some experimental results are presented in order to show the potential of the proposed platform.

  2. Experimental validation of calculation schemes connected with PWR absorbers and burnable poisons; Validation experimentale des schemas de calcul relatifs aux absorbants et poisons consommables dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Klenov, P.

    1995-10-01

    In France 80% of electricity is produced by PWR reactors. For a better exploitation of these reactors a modular computer code Apollo-II has been developed. his code compute the flux transport by discrete ordinate method or by probabilistic collisions on extended configurations such as reactor cells, assemblies or little cores. For validation of this code on mixed oxide fuel lattices with absorbers an experimental program Epicure in the reactor Eole was induced. This thesis is devoted to the validation of the Apollo code according to the results of the Epicure program. 43 refs., 65 figs., 1 append.

  3. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    Science.gov (United States)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  4. Helicopter noise in hover: Computational modelling and experimental validation

    Science.gov (United States)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  5. Experimental Validation of Elliptical Fin-Opening Behavior

    Directory of Open Access Journals (Sweden)

    James M. Garner

    2003-01-01

    Full Text Available An effort to improve the performance of ordnance has led to the consideration of the use of folding elliptical fins for projectile stabilization. A second order differential equation was used to model elliptical fin deployment history and accounts for: deployment with respect to the geometric properties of the fin, the variation in fin aerodynamics during deployment, the initial yaw effect on fin opening, and the variation in deployment speed based on changes in projectile spin. This model supports tests conducted at the Transonic Experimental Facility, Aberdeen Proving Ground examining the opening behavior of these uniquely shaped fins. The fins use the centrifugal force from the projectile spin to deploy. During the deployment, the fin aerodynamic forces vary with angle-of-attack changes to the free stream. Model results indicate that projectile spin dominates the initial opening rates and aerodynamics dominate near the fully open state. The model results are examined to explain the observed behaviors, and suggest improvements for later designs.

  6. Study of experimental validation for combustion analysis of GOTHIC code

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yang, S. Y.; Park, K. C.; Jeong, S. H.

    2001-01-01

    In this study, present lumped and subdivided GOTHIC6 code analyses of the premixed hydrogen combustion experiment at the Seoul National University and comparison with the experiment results. The experimental facility has 16367 cc free volume and rectangular shape. And the test was performed with unit equivalence ratio of the hydrogen and air, and with various location of igniter position. Using the lumped and mechanistic combustion model in GOTHIC6 code, the experiments were simulated with the same conditions. In the comparison between experiment and calculated results, the GOTHIC6 prediction of the combustion response does not compare well with the experiment results. In the point of combustion time, the lumped combustion model of GOTHIC6 code does not simulate the physical phenomena of combustion appropriately. In the case of mechanistic combustion model, the combustion time is predicted well, but the induction time of calculation data is longer than the experiment data remarkably. Also, the laminar combustion model of GOTHIC6 has deficiency to simulate combustion phenomena unless control the user defined value appropriately. And the pressure is not a proper variable that characterize the three dimensional effect of combustion

  7. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    Science.gov (United States)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental

  8. Laser cutting of metal laminates: analysis and experimental validation

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    2000-01-01

    Laser cutting has been investigated for a number of aluminum–synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at the same speed as homogeneous

  9. Impact mechanics of ship collisions and validations with experimental results

    DEFF Research Database (Denmark)

    Zhang, Shengming; Villavicencio, R.; Zhu, L.

    2017-01-01

    Closed-form analytical solutions for the energy released for deforming and crushing ofstructures and the impact impulse during ship collisions were developed and published inMarine Structures in 1998 [1]. The proposed mathematical models have been used bymany engineers and researchers although th...

  10. Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong [Southern Univ. and A& M College, Baton Rouge, LA (United States)

    2016-05-30

    This report summarizes our recent works of theoretical modeling, simulation and experimental validation of the simulation results on the ferritic oxide dispersion strengthened (ODS) alloy research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related ODS samples were synthesized and characterized. The simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement are briefly introduced.

  11. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  12. Experimental Validation for Hot Stamping Process by Using Taguchi Method

    Science.gov (United States)

    Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad

    2016-02-01

    Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.

  13. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests

    Directory of Open Access Journals (Sweden)

    Mariane Miyashiro

    2011-06-01

    Full Text Available OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5. RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20 for PU-1, 347.90 MPa (SD=109.54 for PU-2 and 304.64 MPa (SD=25.48 for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.

  14. Simulation and experimental validation of the performance of a absorption refrigerator

    International Nuclear Information System (INIS)

    Olbricht, Michael; Luke, Andrea

    2015-01-01

    The two biggest obstacles to a stronger market penetration of absorption refrigerators are their high cost and the size of the apparatus, which are due to the inaccurate methods for plant design. In order to contribute to an improved design a thermodynamic model is presented to describe the performance of a absorption refrigerator with the working fluid water/lithium. In this model, the processes are displayed in the single apparatus and coupled to each other in the systemic context. Thereby the interactions between the apparatus can specifically investigated and thus the process limiting component can be identified under the respective conditions. A validation of the simulation model and the boundary conditions used is done based on experimental data operating a self-developed absorption refrigerator. In the simulation, the heat transfer surfaces in accordance with the real system can be specified. The heat transport is taken into account based on typical values for the heat transfer in the individual apparatuses. Simulation results show good agreement with the experimental data. The physical relationships and influences externally defined operating parameters are correctly reproduced. Due to the chosen low heat transfer coefficient, the calculated cooling capacities by the model are below the experimentally measured. Finally, the possibilities and limitations are discussed by using the model and further improvement possibilities are suggested. [de

  15. Toward a Cooperative Experimental System Development Approach

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kyng, Morten; Mogensen, Preben Holst

    1997-01-01

    This chapter represents a step towards the establishment of a new system development approach, called Cooperative Experimental System Development (CESD). CESD seeks to overcome a number of limitations in existing approaches: specification oriented methods usually assume that system design can...... be based solely on observation and detached reflection; prototyping methods often have a narrow focus on the technical construction of various kinds of prototypes; Participatory Design techniques—including the Scandinavian Cooperative Design (CD) approaches—seldom go beyond the early analysis....../design activities of development projects. In contrast, the CESD approach is characterized by its focus on: active user involvement throughout the entire development process; prototyping experiments closely coupled to work-situations and use-scenarios; transforming results from early cooperative analysis...

  16. Experimental Validation of Surrogate Models for Predicting the Draping of Physical Interpolating Surfaces

    DEFF Research Database (Denmark)

    Christensen, Esben Toke; Lund, Erik; Lindgaard, Esben

    2018-01-01

    This paper concerns the experimental validation of two surrogate models through a benchmark study involving two different variable shape mould prototype systems. The surrogate models in question are different methods based on kriging and proper orthogonal decomposition (POD), which were developed...... to the performance of the studied surrogate models. By comparing surrogate model performance for the two variable shape mould systems, and through a numerical study involving simple finite element models, the underlying cause of this effect is explained. It is concluded that for a variable shape mould prototype...... hypercube approach. This sampling method allows for generating a space filling and high-quality sample plan that respects mechanical constraints of the variable shape mould systems. Through the benchmark study, it is found that mechanical freeplay in the modeled system is severely detrimental...

  17. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  18. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  19. Developing a validation for environmental sustainability

    Science.gov (United States)

    Adewale, Bamgbade Jibril; Mohammed, Kamaruddeen Ahmed; Nawi, Mohd Nasrun Mohd; Aziz, Zulkifli

    2016-08-01

    One of the agendas for addressing environmental protection in construction is to reduce impacts and make the construction activities more sustainable. This important consideration has generated several research interests within the construction industry, especially considering the construction damaging effects on the ecosystem, such as various forms of environmental pollution, resource depletion and biodiversity loss on a global scale. Using Partial Least Squares-Structural Equation Modeling technique, this study validates environmental sustainability (ES) construct in the context of large construction firms in Malaysia. A cross-sectional survey was carried out where data was collected from Malaysian large construction firms using a structured questionnaire. Results of this study revealed that business innovativeness and new technology are important in determining environmental sustainability (ES) of the Malaysian construction firms. It also established an adequate level of internal consistency reliability, convergent validity and discriminant validity for each of this study's constructs. And based on this result, it could be suggested that the indicators for organisational innovativeness dimensions (business innovativeness and new technology) are useful to measure these constructs in order to study construction firms' tendency to adopt environmental sustainability (ES) in their project execution.

  20. Verification and validation of the PLTEMP/ANL code for thermal hydraulic analysis of experimental and test reactors

    International Nuclear Information System (INIS)

    Kalimullah, M.; Olson, A.O.; Feldman, E.E.; Hanan, N.; Dionne, B.

    2012-01-01

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  1. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  2. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  4. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  5. ENGINEERING DESIGN OPTIMIZATION OF HEEL TESTING EQUIPMENT IN THE EXPERIMENTAL VALIDATION OF SAFE WALKING

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2017-06-01

    Full Text Available Experimental test methods for the evaluation of the resistance of heels of ladies' shoes in the case of impact loads are fully defined by International Organization for Standardization (ISO procedures that indicate all the conditions of experiment. A first Standard (ISO 19553 specifies the test method for determining the strength of the heels in the case of single impact. The result offers a valuation of the liability to fail under the sporadic heavy blows. A second Standard (ISO 19556 details a method for testing the capability of heels of women' shoes to survive to the repetition of small impacts provoked by normal walking. These Standards strictly define the features for two different testing devices (with specific materials, geometries, weights, etc. and all the experimental procedures to be followed during tests. On the contrary, this paper describes the technical solutions adopted to design one single experimental device able to perform impact testing of heels in both conditions. Joining the accuracy of mechanic movements with the speed of an electronic control system, a new and flexible equipment for the complete characterization of heels respect to (single or fatigue impacts was developed. Moreover a new level of performances in experimental validation of heel resistance was introduced by the versatility of the user-defined software control programs, able to encode every complex time-depending cycle of impact loads. Dynamic simulations permitted to investigate the impacts on heel in different conditions of testing, optimizing the machine design. The complexity of real stresses on shoes during an ordinary walk and in other common situations (as going up and downstairs was considered for a proper dimensioning.

  6. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  8. Validation of Experimental whole-body SAR Assessment Method in a Complex Indoor Environment

    DEFF Research Database (Denmark)

    Bamba, Aliou; Joseph, Wout; Vermeeren, Gunter

    2012-01-01

    Assessing experimentally the whole-body specific absorption rate (SARwb) in a complex indoor environment is very challenging. An experimental method based on room electromagnetics theory (accounting only the Line-Of-Sight as specular path) to assess the whole-body SAR is validated by numerical...... of the proposed method is that it allows discarding the computation burden because it does not use any discretizations. Results show good agreement between measurement and computation at 2.8 GHz, as long as the plane wave assumption is valid, i.e., for high distances from the transmitter. Relative deviations 0...

  9. Experimental validation of a mathematical model for seabed liquefaction in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Kirca, Özgür; Fredsøe, Jørgen

    2011-01-01

    This paper summarizes the results of an experimental study directed towards the validation of a mathematical model for the buildup of pore water pressure and resulting liquefaction of marine soils under progressive waves. Experiments were conducted under controlled conditions with silt ( d50 = 0.......070 mm) in a wave flume with a soil pit. Waves with wave heights in the range 7.7-18 cm with the water depth 55 cm and the wave period 1.6 s enabled us to study both the liquefaction and no-liquefaction regime pore water pressure buildup. The experimental data was used to validate the model. A numerical...

  10. Experimental Peptide Identification Repository (EPIR): an integrated peptide-centric platform for validation and mining of tandem mass spectrometry data

    DEFF Research Database (Denmark)

    Kristensen, Dan Bach; Brønd, Jan Christian; Nielsen, Peter Aagaard

    2004-01-01

    LC MS/MS has become an established technology in proteomic studies, and with the maturation of the technology the bottleneck has shifted from data generation to data validation and mining. To address this bottleneck we developed Experimental Peptide Identification Repository (EPIR), which...... is an integrated software platform for storage, validation, and mining of LC MS/MS-derived peptide evidence. EPIR is a cumulative data repository where precursor ions are linked to peptide assignments and protein associations returned by a search engine (e.g. Mascot, Sequest, or PepSea). Any number of datasets can...

  11. Dynamic model with experimental validation of a biogas-fed SOFC plant

    International Nuclear Information System (INIS)

    D'Andrea, G.; Gandiglio, M.; Lanzini, A.; Santarelli, M.

    2017-01-01

    Highlights: • 60% of DIR into the SOFC anode reduces the air blower parasitic losses by 14%. • PID-controlled cathode airflow enables fast thermal regulation of the SOFC. • Stack overheating occurs due to unexpected reductions in the cathode airflow. • Current ramp rates higher than +0.30 A/min lead to an excessive stack overheating. - Abstract: The dynamic model of a poly-generation system based on a biogas-fed solid oxide fuel cell (SOFC) plant is presented in this paper. The poly-generation plant was developed in the framework of the FP7 EU-funded project SOFCOM ( (www.sofcom.eu)), which consists of a fuel-cell based polygeneration plant with CO_2 capture and re-use. CO_2 is recovered from the anode exhaust of the SOFC (after oxy-combustion, cooling and water condensation) and the Carbon is fixed in the form of micro-algae in a tubular photobioreactor. This work focuses on the dynamic operation of the SOFC module running on steam-reformed biogas. Both steady state and dynamic operation of the fuel cell stack and the related Balance-of-Plant (BoP) has been modeled in order to simulate the thermal behavior and performance of the system. The model was validated against experimental data gathered during the operation of the SOFCOM proof-of-concept showing good agreement with the experimental data. The validated model has been used to investigate further on the harsh off-design operation of the proof-of-concept. Simulation results provide guidelines for an improved design of the control system of the plant, highlighting the feasible operating region under safe conditions and means to maximize the overall system efficiency.

  12. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Kourosh Salehi-Ashtiani; Jason A. Papin

    2012-01-13

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and

  13. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  14. Development and Validation of Multi-Dimensional Personality ...

    African Journals Online (AJOL)

    This study was carried out to establish the scientific processes for the development and validation of Multi-dimensional Personality Inventory (MPI). The process of development and validation occurred in three phases with five components of Agreeableness, Conscientiousness, Emotional stability, Extroversion, and ...

  15. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  16. DMFC performance and methanol cross-over: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energia, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-10-15

    A combined experimental and modelling approach is proposed to analyze methanol cross-over and its effect on DMFC performance. The experimental analysis is performed in order to allow an accurate investigation of methanol cross-over influence on DMFC performance, hence measurements were characterized in terms of uncertainty and reproducibility. The findings suggest that methanol cross-over is mainly determined by diffusion transport and affects cell performance partly via methanol electro-oxidation at the cathode. The modelling analysis is carried out to further investigate methanol cross-over phenomenon. A simple model evaluates the effectiveness of two proposed interpretations regarding methanol cross-over and its effects. The model is validated using the experimental data gathered. Both the experimental analysis and the proposed and validated model allow a substantial step forward in the understanding of the main phenomena associated with methanol cross-over. The findings confirm the possibility to reduce methanol cross-over by optimizing anode feeding. (author)

  17. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  18. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  19. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  20. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within ±10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the 92 Mo(n, 2n) 91g Mo reaction in FENDL, and lack of activation cross section data, e.g., the 138 Ba(n, 2n) 137m Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  1. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within {+-}10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the {sup 92}Mo(n, 2n){sup 91g}Mo reaction in FENDL, and lack of activation cross section data, e.g., the {sup 138}Ba(n, 2n){sup 137m}Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  2. NUMERICAL MODELLING AND EXPERIMENTAL INFLATION VALIDATION OF A BIAS TWO-WHEEL TIRE

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available This paper presents a parametric study on the development of a computational model for bias two-wheel tire through finite element analysis (FEA. An 80/90- 17 bias two-wheel tire was adopted which made up of four major layers of rubber compound with different material properties to strengthen the structure. Mooney-Rivlin hyperelastic model was applied to represent the behaviour of incompressible rubber compound. A 3D tire model was built for structural static finite element analysis. The result was validated from the inflation analysis. Structural static finite element analysis method is suitable for evaluation of the tire design and improvement of the tire behaviour to desired performance. Experimental tire was inflated at various pressures and the geometry between numerical and experimental tire were compared. There are good agreements between numerical simulation model and the experiment results. This indicates that the simulation model can be applied to the bias two-wheel tire design in order to predict the tire behaviour and improve its mechanical characteristics.

  3. Investigation and experimental validation of the contribution of optical interconnects in the SYMPHONIE massively parallel computer

    International Nuclear Information System (INIS)

    Scheer, Patrick

    1998-01-01

    Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr

  4. Numerical modelling and experimental validation of hydrodynamics of an emulsion in an extraction column

    International Nuclear Information System (INIS)

    Paisant, Jean-Francois

    2014-01-01

    a second approach, an experimental device was sized in order to establish an extensional flow in order to characterize and validate the physical model by data acquisition. These series of experiments were conducted by coupling particle image velocimetry with laser induced fluorescence (FIL). Continuous phases velocity was obtained by PIV and a drop detecting and tracking algorithm has been developed to estimate dispersed and continuous phases velocities and the volume fraction of the dispersed phase. These results, such as velocities and strain rate tensor, have been used in a first validation of the model. (author) [fr

  5. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  6. Experimental validation of the twins prediction program for rolling noise. Pt.2: results

    NARCIS (Netherlands)

    Thompson, D.J.; Fodiman, P.; Mahé, H.

    1996-01-01

    Two extensive measurement campaigns have been carried out to validate the TWINS prediction program for rolling noise, as described in part 1 of this paper. This second part presents the experimental results of vibration and noise during train pass-bys and compares them with predictions from the

  7. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera...

  8. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    of 10 kW during switching (mean of approximately 250 W) and a pressure loss below 0.5 bar at 600 l/min. The main goal of this article is validate parts of the mathematical framework based on a series of experiments. Furthermore, this article aims to document the experience gained from the experimental...

  9. Design of passive directional acoustic devices using Topology Optimization - from method to experimental validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Fernandez Grande, Efren

    2016-01-01

    emission in two dimensions and is experimentally validated using three dimensional prints of the optimized designs. The emitted fields exhibit a level difference of at least 15 dB on axis relative to the off-axis directions, over frequency bands of approximately an octave. It is demonstrated to be possible...

  10. Experimental validation of sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2013-01-01

    This paper is concerned with experimental validation of a recently proposed method of controlling sound fields with a circular double-layer array of loudspeakers [Chang and Jacobsen, J. Acoust. Soc. Am. 131(6), 4518-4525 (2012)]. The double-layer of loudspeakers is realized with 20 pairs of closed...

  11. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...

  12. Modeling of surge in free-spool centrifugal compressors : experimental validation

    NARCIS (Netherlands)

    Gravdahl, J.T.; Willems, F.P.T.; Jager, de A.G.; Egeland, O.

    2004-01-01

    The derivation of a compressor characteristic, and the experimental validation of a dynamic model for a variable speed centrifugal compressor using this characteristic, are presented. The dynamic compressor model of Fink et al. is used, and a variable speed compressor characteristic is derived by

  13. Experimental developments towards an ITER thermography diagnostic

    International Nuclear Information System (INIS)

    Reichle, R.; Brichard, B.; Escourbiac, F.; Gardarein, J.L.; Hernandez, D.; Le Niliot, C.; Rigollet, F.; Serra, J.J.; Badie, J.M.; van Ierschot, S.; Jouve, M.; Martinez, S.; Ooms, H.; Pocheau, C.; Rauber, X.; Sans, J.L.; Scheer, E.; Berghmans, F.; Decreton, M.

    2007-01-01

    In the course of the development of a concept for a spectrally resolving thermography diagnostic for the ITER divertor using optical fibres experimental development work has been carried out in three different areas. Firstly ZrF 4 fibres and hollow fibres (silica capillaries with internal AG/AgJ coating) were tested in a Co 60 irradiation facility under γ irradiation up to doses of 5 kGy and 27 kGy, respectively. The ZrF 4 fibres suffered more radiation induced degradation (>1 db/m) then the hollow fibres (0-0.4 db/m). Secondly multi-colour pyroreflectometry is being developed towards tokamak applicability. The emissivity and temperature of tungsten samples were measured in the range of 700-1500 o C. The angular working range for off normal observation of the method was 20-30 o . The working distance of the method has been be increased from cm to the m range. Finally, encouraging preliminary results have been obtained concerning the application of pulsed and modulated active thermography

  14. Experimental validation of a rate-based model for CO2 capture using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Svendsen, H. F.; Michelsen, Michael Locht

    2007-01-01

    Detailed experimental data, including temperature profiles over the absorber, for a carbon dioxide (CO"2) absorber with structured packing in an integrated laboratory pilot plant using an aqueous 2-amino-2-methyl-1-propanol (AMP) solution are presented. The experimental gas-liquid material balance...... was within an average of 3.5% for the experimental conditions presented. A predictive rate-based steady-state model for CO"2 absorption into an AMP solution, using an implicit expression for the enhancement factor, has been validated against the presented pilot plant data. Furthermore, a parameter...

  15. Experimental validation of the fluid–structure interaction simulation of a bioprosthetic aortic heart valve

    International Nuclear Information System (INIS)

    Kemp, I.; Dellimore, K.; Rodriguez, R.; Scheffer, C.; Blaine, D.; Weich, H.; Doubell, A.

    2013-01-01

    Experiments performed on a 19 mm diameter bioprosthetic valve were used to successfully validate the fluid–structure interaction (FSI) simulation of an aortic valve at 72 bpm. The FSI simulation was initialized via a novel approach utilizing a Doppler sonogram of the experimentally tested valve. Using this approach very close quantitative agreement (≤12.5 %) between the numerical predictions and experimental values for several key valve performance parameters, including the peak systolic transvalvular pressure gradient, rapid valve opening time and rapid valve closing time, was obtained. The predicted valve leaflet kinematics during opening and closing were also in good agreement with the experimental measurements.

  16. An Experimental Simulation to Validate FEM to Predict Transverse Young’s Modulus of FRP Composites

    Directory of Open Access Journals (Sweden)

    V. S. Sai

    2013-01-01

    Full Text Available Finite element method finds application in the analysis of FRP composites due to its versatility in getting the solution for complex cases which are not possible by exact classical analytical approaches. The finite element result is questionable unless it is obtained from converged mesh and properly validated. In the present work specimens are prepared with metallic materials so that the arrangement of fibers is close to hexagonal packing in a matrix as similar arrangement in case of FRP is complex due to the size of fibers. Transverse Young’s moduli of these specimens are determined experimentally. Equivalent FE models are designed and corresponding transverse Young’s moduli are compared with the experimental results. It is observed that the FE values are in good agreement with the experimental results, thus validating FEM for predicting transverse modulus of FRP composites.

  17. Development, standardization and validation of social anxiety scale ...

    African Journals Online (AJOL)

    Little attention has been given to social anxiety in Nigeria despite its debilitating effects on the sufferers. The objective of this study was to develop, standardize and validate an instrument (Social Anxiety Scale) with high coefficients of Cronbach Alpha Internal Consistency Split-half reliability and construct validity.

  18. Development and validation of a reversed phase High Performance ...

    African Journals Online (AJOL)

    A simple, rapid, accurate and economical isocratic Reversed Phase High Performance Liquid Chromatography (RPHPLC) method was developed, validated and used for the evaluation of content of different brands of paracetamol tablets. The method was validated according to ICH guidelines and may be adopted for the ...

  19. Development and preliminary validation of a screen for ...

    African Journals Online (AJOL)

    Development and preliminary validation of a screen for interpersonal childhood trauma experiences among school-going youth in Durban, South Africa. ... validity in the sense that all scales were significantly correlated with scores on clinical measures of post-traumatic stress disorder (PTSD) and/or complex PTSD.

  20. Experimental Validation of UTDefect: Scattering in Anisotropic Media and Near-field Behavior

    International Nuclear Information System (INIS)

    Pecorari, Claudio

    2002-11-01

    Theoretical models that simulate measurements of ultrasonic waves undergoing scattering by material defects have been developed by Prof. Bostroem and co-workers at Chalmers Univ. of Tech. for a variety of experimental configurations and defects. A software program named UTDefect has been developed at the same time, which gathers the theoretical results obtained so far in a single package. A discussion of the motivations behind such an effort and details concerning UTDefect can be found in articles by Bostroem. Following an initial effort to validate some of the theoretical predictions available at the time, the present project has been conceived as a support to the on-going theoretical work. In fact, the goal of the project described in this report has been the experimental validation of two aspects of the above theory that have not yet been tested: the scattering of a finite ultrasonic beam by a surface-breaking crack in an anisotropic medium, and an improved model of the behaviour of a finite ultrasonic beam in the near-field region of the source. In the last case, the supporting medium is supposed to be isotropic. To carry out the first task, a single crystal, silicon sample was employed. A surface-breaking notch with a depth of approximately 1.8 mm was introduced by means of a wire-cutting saw to simulate a scattering defect. Two kinds of measurements were performed of this sample. The first one considered the signal amplitude as a function of the transducer position. To this end, three wedges generating beams propagating in different directions were used. The second series of measurements concerned the frequency content of the backscattered signals at the position where the amplitude was maximum. All three wedges mentioned above were used also in this part of the work. The experimental results were compared to the values of the physical quantities of interest as predicted by UTDefect, with the only difference that UTDefect was run for a sub-surface rectangular

  1. Experimental Testing and Model Validation of a Decoupled-Phase On-Load Tap Changer Transformer in an Active Network

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Hu, Junjie; Coppo, Massimiliano

    2016-01-01

    Due to the increasing penetration of single-phase small generation units and electric vehicles connected to distribution grids, system operators are facing challenges related to local unbalanced voltage rise or drop issues, which may lead to a violation of the allowed voltage band. To address...... this problem, distribution transformers with on-load tapping capability are under development. This paper presents model and experimental validation of a 35 kVA three-phase power distribution transformer with independent on-load tap changer control capability on each phase. With the purpose of investigating...... to reproduce the main feature of an unbalanced grid. The experimental activities are recreated in by carrying out dynamics simulation studies, aiming at validating the implemented models of both the transformer as well as the other grid components. Phase-neutral voltages’ deviations are limited, proving...

  2. Employee Development and Turnover Intention: Theory Validation

    Science.gov (United States)

    Rahman, Wali; Nas, Zekeriya

    2013-01-01

    Purpose: This study aims to examine the pattern of behavior of turnover intentions in developing countries "vis-a-vis" the one in advanced countries through the empirical data from public universities in Khyber Pakhtunkhwa, Pakistan. The study provides empirical evidence from academia in Pakistan, thereby enriching the understanding of…

  3. Validating Curriculum Development Using Text Mining

    Science.gov (United States)

    West, Jason

    2017-01-01

    Interdisciplinarity requires the collaboration of two or more disciplines to combine their expertise to jointly develop and deliver learning and teaching outcomes appropriate for a subject area. Curricula and assessment mapping are critical components to foster and enhance interdisciplinary learning environments. Emerging careers in data science…

  4. Development and Validation of a Translation Test.

    Science.gov (United States)

    Ghonsooly, Behzad

    1993-01-01

    Translation testing methodology has been criticized for its subjective character. No real strides have so far been made in developing an objective translation test. In this paper, certain detailed procedures including various phases of pretesting have been performed to achieve objectivity and scorability in translation testing methodology. In…

  5. On the selection of shape and orientation of a greenhouse. Thermal modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 004, Punjab (India)

    2009-01-15

    In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31 N and 77 E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 C (maximum) and 3.5 C (daily average) at 31 N latitude. (author)

  6. Development and validation of a premature ejaculation diagnostic tool.

    Science.gov (United States)

    Symonds, Tara; Perelman, Michael A; Althof, Stanley; Giuliano, François; Martin, Mona; May, Kathryn; Abraham, Lucy; Crossland, Anna; Morris, Mark

    2007-08-01

    Diagnosis of premature ejaculation (PE) for clinical trial purposes has typically relied on intravaginal ejaculation latency time (IELT) for entry, but this parameter does not capture the multidimensional nature of PE. Therefore, the aim was to develop a brief, multidimensional, psychometrically validated instrument for diagnosing PE status. The questionnaire development involved three stages: (1) Five focus groups and six individual interviews were conducted to develop the content; (2) psychometric validation using three different groups of men; and (3) generation of a scoring system. For psychometric validation/scoring system development, data was collected from (1) men with PE based on clinician diagnosis, using DSM-IV-TR, who also had IELTs or =11 PE. The development and validation of this new PE diagnostic tool has resulted in a new, user-friendly, and brief self-report questionnaire for use in clinical trials to diagnose PE.

  7. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  8. Underwater behaviour of bitumen coated radioactive wastes: experimental validation of the Colonbo degradation model

    International Nuclear Information System (INIS)

    Gwinner, B.

    2004-03-01

    In the release scenario considered for geologic repository, water is thought to be the main aggressive agent with regards to bituminized radioactive waste (composed in general of 60 weight % of bitumen, 40% of soluble/insoluble salts and a few ppm of radionuclides). Since liquid water can diffuse in pure bitumen, leaching of bituminized waste results in the dissolution of the most soluble salts and leads to the development of a more or less concentrated saline solution-filled pore structure (called permeable layer). In consequence of the generation of a porous layer in the bituminized waste, leaching of salts and radionuclides can then take place. Research performed at the Atomic Energy Commission (CEA) aims therefore at understanding the consequences of ground-water immersion on the transport properties and radionuclides leaching of bituminized waste materials. To this end, a constitutive model (called COLONBO) which describes mathematically the leaching of bituminized waste has been developed. The COLONBO model is based on the following assumptions: 1. Water and dissolved salts migrate in the permeable layer according to Fick's first law. The diffusion of water and salts are quantified by effective diffusion coefficients which are unknown. 2. The mechanical properties of the bitumen matrix are not considered during leaching (free swelling). Up to now, the COLONBO model has been used only to model experimental water uptake and salt leach curves, leading (theoretical) estimates of the effective diffusion coefficients of water and salts in the permeable layer. The aim of this work was to validate experimentally the numerical results obtained with the COLONBO model. First, the correspondence between experimental and simulated water uptake and salt leach rates obtained on various bituminized waste materials is checked, leading estimates of the effective diffusion coefficients of water and salts in the permeable layer. Second, the evolution of the thickness and of the

  9. A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance

    Directory of Open Access Journals (Sweden)

    Wang Xiaowei

    2008-12-01

    Full Text Available Abstract Background Quantitative polymerase chain reaction (QPCR is a widely applied analytical method for the accurate determination of transcript abundance. Primers for QPCR have been designed on a genomic scale but non-specific amplification of non-target genes has frequently been a problem. Although several online databases have been created for the storage and retrieval of experimentally validated primers, only a few thousand primer pairs are currently present in existing databases and the primers are not designed for use under a common PCR thermal profile. Results We previously reported the implementation of an algorithm to predict PCR primers for most known human and mouse genes. We now report the use of that resource to identify 17483 pairs of primers that have been experimentally verified to amplify unique sequences corresponding to distinct murine transcripts. The primer pairs have been validated by gel electrophoresis, DNA sequence analysis and thermal denaturation profile. In addition to the validation studies, we have determined the uniformity of amplification using the primers and the technical reproducibility of the QPCR reaction using the popular and inexpensive SYBR Green I detection method. Conclusion We have identified an experimentally validated collection of murine primer pairs for PCR and QPCR which can be used under a common PCR thermal profile, allowing the evaluation of transcript abundance of a large number of genes in parallel. This feature is increasingly attractive for confirming and/or making more precise data trends observed from experiments performed with DNA microarrays.

  10. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  11. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  12. Zero-G experimental validation of a robotics-based inertia identification algorithm

    Science.gov (United States)

    Bruggemann, Jeremy J.; Ferrel, Ivann; Martinez, Gerardo; Xie, Pu; Ma, Ou

    2010-04-01

    The need to efficiently identify the changing inertial properties of on-orbit spacecraft is becoming more critical as satellite on-orbit services, such as refueling and repairing, become increasingly aggressive and complex. This need stems from the fact that a spacecraft's control system relies on the knowledge of the spacecraft's inertia parameters. However, the inertia parameters may change during flight for reasons such as fuel usage, payload deployment or retrieval, and docking/capturing operations. New Mexico State University's Dynamics, Controls, and Robotics Research Group has proposed a robotics-based method of identifying unknown spacecraft inertia properties1. Previous methods require firing known thrusts then measuring the thrust, and the velocity and acceleration changes. The new method utilizes the concept of momentum conservation, while employing a robotic device powered by renewable energy to excite the state of the satellite. Thus, it requires no fuel usage or force and acceleration measurements. The method has been well studied in theory and demonstrated by simulation. However its experimental validation is challenging because a 6- degree-of-freedom motion in a zero-gravity condition is required. This paper presents an on-going effort to test the inertia identification method onboard the NASA zero-G aircraft. The design and capability of the test unit will be discussed in addition to the flight data. This paper also introduces the design and development of an airbearing based test used to partially validate the method, in addition to the approach used to obtain reference value for the test system's inertia parameters that can be used for comparison with the algorithm results.

  13. Development and Validation of Reentry Simulation Using MATLAB

    National Research Council Canada - National Science Library

    Jameson, Jr, Robert E

    2006-01-01

    This research effort develops a program using MATLAB to solve the equations of motion for atmospheric reentry and analyzes the validity of the program for use as a tool to expeditiously predict reentry profiles...

  14. Development and validation of a spectroscopic method for the ...

    African Journals Online (AJOL)

    Development and validation of a spectroscopic method for the simultaneous analysis of ... advanced analytical methods such as high pressure liquid ..... equipment. DECLARATIONS ... high-performance liquid chromatography. J Chromatogr.

  15. Preliminary Validation of the MATRA-LMR Code Using Existing Sodium-Cooled Experimental Data

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Kim, Sangji

    2014-01-01

    The main objective of the SFR prototype plant is to verify TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. The fuel design limit is highly dependent on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, an accurate temperature calculation in each subassembly is highly important to assure a safe and reliable operation of the reactor systems. The current core thermalhydraulic design is mainly performed using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code, which has been already validated using the existing sodium-cooled experimental data. In addition to the SLTHEN code, a detailed analysis is performed using the MATRA-LMR (Multichannel Analyzer for Transient and steady-state in Rod Array-Liquid Metal Reactor) code. In this work, the MATRA-LMR code is validated for a single subassembly evaluation using the previous experimental data. The MATRA-LMR code has been validated using existing sodium-cooled experimental data. The results demonstrate that the design code appropriately predicts the temperature distributions compared with the experimental values. Major differences are observed in the experiments with the large pin number due to the radial-wise mixing difference

  16. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  17. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  18. Bacterial Community Development in Experimental Gingivitis

    Science.gov (United States)

    Kistler, James O.; Booth, Veronica; Bradshaw, David J.; Wade, William G.

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1–V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344 267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  19. Bacterial community development in experimental gingivitis.

    Directory of Open Access Journals (Sweden)

    James O Kistler

    Full Text Available Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp, and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs per sample. Principal coordinates analysis (PCoA plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new

  20. Application of a computational situation assessment model to human system interface design and experimental validation of its effectiveness

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Koh, Kwang-Yong; Seong, Poong-Hyun

    2013-01-01

    Highlights: ► We validate the effectiveness of a proposed procedure thru an experiment. ► The proposed procedure addresses the salient coding of the key information. ► It was found that salience coding affects operators’ attention significantly. ► The first observation to the key information quickly guided to the correct situation awareness. ► It was validated the proposed procedure is effective for better situation awareness. - Abstract: To evaluate the effects of human cognitive characteristics on situation awareness, a computational situation assessment model of nuclear power plant operators has been developed, as well as a procedure to apply the developed model to the design of human system interfaces (HSIs). The concept of the proposed procedure is to identify the key information source, which is expected to guarantee fast and accurate diagnosis when operators attend to it. The developed computational model is used to search the diagnostic paths and the key information source. In this study, an experiment with twelve trained participants was executed to validate the effectiveness of the proposed procedure. Eighteen scenarios covering various accidents were administered twice for each subject, and experimental data were collected and analyzed. As a result of the data analysis, it was validated that the salience level of information sources significantly influences the attention of operators, and the first observation of the key information sources leads operators to a quick and correct situation assessment. Therefore, we conclude that the proposed procedure for applying the developed model to HSI design is effective

  1. Belief in astrology inventory: development and validation.

    Science.gov (United States)

    Chico, Eliseo; Lorenzo-Seva, Urbano

    2006-12-01

    After the paper by Mayo, White, and Eysenck in 1978, a considerable number of papers studied the so-called sun-sign-effect predicted by astrology: people born with the sun in a positive sign are supposed to be extraverted, and those with the sun in a negative sign are supposed to be introverted. In these papers, researchers used ad hoc questionnaires with a few questions related to belief, knowledge, experience, or attitude toward astrology. However, an appropriate inventory with known psychometric properties has yet to be developed to assess the belief in astrology. In the present paper, the Belief in Astrology Inventory is presented with some psychometric data. The participants were 743 undergraduates studying Psychology and Social Sciences at a university in Spain. Correlation of scores on Belief in Astrology and Extraversion was small but significant (r = .22; r2 = .04) for positive sun-sign participants. This value accounts for negligible common variance. Women had significandy higher scores on the inventory than men.

  2. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.

    Science.gov (United States)

    Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri

    2015-08-07

    A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.

  3. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation

    International Nuclear Information System (INIS)

    Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine

    2014-01-01

    Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints

  4. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy

    International Nuclear Information System (INIS)

    Testa, M.; Schümann, J.; Lu, H.-M.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2013-01-01

    Purpose: TOPAS (TOol for PArticle Simulation) is a particle simulation code recently developed with the specific aim of making Monte Carlo simulations user-friendly for research and clinical physicists in the particle therapy community. The authors present a thorough and extensive experimental validation of Monte Carlo simulations performed with TOPAS in a variety of setups relevant for proton therapy applications. The set of validation measurements performed in this work represents an overall end-to-end testing strategy recommended for all clinical centers planning to rely on TOPAS for quality assurance or patient dose calculation and, more generally, for all the institutions using passive-scattering proton therapy systems. Methods: The authors systematically compared TOPAS simulations with measurements that are performed routinely within the quality assurance (QA) program in our institution as well as experiments specifically designed for this validation study. First, the authors compared TOPAS simulations with measurements of depth-dose curves for spread-out Bragg peak (SOBP) fields. Second, absolute dosimetry simulations were benchmarked against measured machine output factors (OFs). Third, the authors simulated and measured 2D dose profiles and analyzed the differences in terms of field flatness and symmetry and usable field size. Fourth, the authors designed a simple experiment using a half-beam shifter to assess the effects of multiple Coulomb scattering, beam divergence, and inverse square attenuation on lateral and longitudinal dose profiles measured and simulated in a water phantom. Fifth, TOPAS’ capabilities to simulate time dependent beam delivery was benchmarked against dose rate functions (i.e., dose per unit time vs time) measured at different depths inside an SOBP field. Sixth, simulations of the charge deposited by protons fully stopping in two different types of multilayer Faraday cups (MLFCs) were compared with measurements to benchmark the

  5. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil; Lee, Eui-Jong; Jeong, Sanghyun; Guo, Jiaxin; An, Alicia Kyoungjin; Guo, Hong; Kim, Joonha; Leiknes, TorOve; Ghaffour, NorEddine

    2016-01-01

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  6. Experimental validation of plugging during drop formation in a T-junction.

    Science.gov (United States)

    Abate, Adam R; Mary, Pascaline; van Steijn, Volkert; Weitz, David A

    2012-04-21

    At low capillary number, drop formation in a T-junction is dominated by interfacial effects: as the dispersed fluid flows into the drop maker nozzle, it blocks the path of the continuous fluid; this leads to a pressure rise in the continuous fluid that, in turn, squeezes on the dispersed fluid, inducing pinch-off of a drop. While the resulting drop volume predicted by this "squeezing" mechanism has been validated for a range of systems, as of yet, the pressure rise responsible for the actual pinch-off has not been observed experimentally. This is due to the challenge of measuring the pressures in a T-junction with the requisite speed, accuracy, and localization. Here, we present an empirical study of the pressures in a T-junction during drop formation. Using Laplace sensors, pressure probes we have developed, we confirm the central ideas of the squeezing mechanism; however, we also uncover other findings, including that the pressure of the dispersed fluid is not constant but rather oscillates in anti-phase with that of the continuous fluid. In addition, even at the highest capillary number for which monodisperse drops can be formed, pressure oscillations persist, indicating that drop formation in confined geometries does not transition to an entirely shear-driven mechanism, but to a mechanism combining squeezing and shearing.

  7. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    Science.gov (United States)

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  8. LES Modeling with Experimental Validation of a Compound Channel having Converging Floodplain

    Science.gov (United States)

    Mohanta, Abinash; Patra, K. C.

    2018-04-01

    Computational fluid dynamics (CFD) is often used to predict flow structures in developing areas of a flow field for the determination of velocity field, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD model along with the large eddy simulation (LES) model is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface flow or open channel flow by using volume of fluid method by comparing the data observed in hydraulics laboratory of the National Institute of Technology, Rourkela. The finite volume method with a dynamic sub grid scale was carried out for a constant aspect ratio and convergence condition. The results show that the secondary flow and centrifugal force influence flow pattern and show good agreement with experimental data. Within this paper over-bank flows have been numerically simulated using LES in order to predict accurate open channel flow behavior. The LES results are shown to accurately predict the flow features, specifically the distribution of secondary circulations both for in-bank channels as well as over-bank channels at varying depth and width ratios in symmetrically converging flood plain compound sections.

  9. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2016-12-27

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  10. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    Science.gov (United States)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  11. Development and validation of a theoretical test in basic laparoscopy

    DEFF Research Database (Denmark)

    Strandbygaard, Jeanett; Maagaard, Mathilde; Larsen, Christian Rifbjerg

    2013-01-01

    for first-year residents in obstetrics and gynecology. This study therefore aimed to develop and validate a framework for a theoretical knowledge test, a multiple-choice test, in basic theory related to laparoscopy. METHODS: The content of the multiple-choice test was determined by conducting informal...... conversational interviews with experts in laparoscopy. The subsequent relevance of the test questions was evaluated using the Delphi method involving regional chief physicians. Construct validity was tested by comparing test results from three groups with expected different clinical competence and knowledge.......001). Internal consistency (Cronbach's alpha) was 0.82. There was no evidence of differential item functioning between the three groups tested. CONCLUSIONS: A newly developed knowledge test in basic laparoscopy proved to have content and construct validity. The formula for the development and validation...

  12. Mollusc reproductive toxicity tests - Development and validation of test guidelines

    DEFF Research Database (Denmark)

    Ducrot, Virginie; Holbech, Henrik; Kinnberg, Karin Lund

    . Draft standard operating procedures (SOPs) have been designed based upon literature and expert knowledge from project partners. Pre-validation studies have been implemented to validate the proposed test conditions and identify issues in performing the SOPs and analyzing test results. Pre-validation work......The Organisation for Economic Cooperation and Development is promoting the development and validation of mollusc toxicity tests within its test guidelines programme, eventually aiming for the standardization of mollusc apical toxicity tests. Through collaborative work between academia, industry...... and stakeholders, this study aims to develop innovative partial life-cycle tests on the reproduction of the freshwater gastropods Potamopyrgus antipodarum and Lymnaea stagnalis, which are relevant candidate species for the standardization of mollusc apical toxicity tests assessing reprotoxic effects of chemicals...

  13. Development of knowledgebase system for assisting signal validation scheme design

    International Nuclear Information System (INIS)

    Kitamura, M.; Baba, T.; Washio, T.; Sugiyama, K.

    1987-01-01

    The purpose of this study is to develop a knowledgebase system to be used as a tool for designing signal validation schemes. The outputs from the signal validation scheme can be used as; (1) auxiliary signals for detecting sensor failures, (2) inputs to advanced instrumentation such as disturbance analysis and diagnosis system or safety parameter display system, and (3) inputs to digital control systems. Conventional signal validation techniques such as comparison of redundant sensors, limit checking, and calibration tests have been employed in nuclear power plants. However, these techniques have serious drawbacks, e.g. needs for extra sensors, vulnerability to common mode failures, limited applicability to continuous monitoring, etc. To alleviate these difficulties, a new signal validation technique has been developed by using the methods called analytic redundancy and parity space. Although the new technique has been proved feasible as far as preliminary tests are concerned, further developments should be made in order to enhance its practical applicability

  14. Development and validation of the Alcohol Myopia Scale.

    Science.gov (United States)

    Lac, Andrew; Berger, Dale E

    2013-09-01

    Alcohol myopia theory conceptualizes the ability of alcohol to narrow attention and how this demand on mental resources produces the impairments of self-inflation, relief, and excess. The current research was designed to develop and validate a scale based on this framework. People who were alcohol users rated items representing myopic experiences arising from drinking episodes in the past month. In Study 1 (N = 260), the preliminary 3-factor structure was supported by exploratory factor analysis. In Study 2 (N = 289), the 3-factor structure was substantiated with confirmatory factor analysis, and it was superior in fit to an empirically indefensible 1-factor structure. The final 14-item scale was evaluated with internal consistency reliability, discriminant validity, convergent validity, criterion validity, and incremental validity. The alcohol myopia scale (AMS) illuminates conceptual underpinnings of this theory and yields insights for understanding the tunnel vision that arises from intoxication.

  15. Development and validation of stability indicating studies of ...

    African Journals Online (AJOL)

    Development and validation of stability indicating studies of paliperidone ... A simple and sensitive stability indicating HPLC method is developed for the ... The developed method was proved adequate for quantitative determination of ... Browse By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  16. Construct Validation--Community College Instructional Development Inventory

    Science.gov (United States)

    Xiong, Soua; Delgado, Nexi; Wood, J. Luke; Harris, Frank, III

    2017-01-01

    This white paper describes the construct validation of the Community College Instructional Development Inventory (CC-IDI). The CC-IDI is an institutional assessment tool designed to inform professional development programming for instructional faculty. The instrument was developed to serve as a standardized assessment tool to determine the…

  17. Vortex-Concept for Radioactivity Release Prevention at NPP: Development of Computational Model of Lab-Scale Experimental Setup

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sana; Sung, Yim Man; Park, Jin Soo; Sung Hyung Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The experimental validation of the vortex-like air curtain concept and use of an appropriate CFD modelling approach for analyzing the problem becomes crucial. A lab-scale experimental setup is designed to validate the proposed concept and CFD modeling approach as a part of validation process. In this study, a computational model of this lab-scale experiment setup is developed using open source CFD code OpenFOAM. The computational results will be compared with experimental data for validation purposes in future, when experimental data is available. 1) A computation model of a lab-scale experimental setup, designed to validate the concept of artificial vortex-like airflow generation for application to radioactivity dispersion prevention in the event of severe accident, was developed. 2) The mesh sensitivity study was performed and a mesh of about 2 million cells was found to be sufficient for this setup.

  18. Validation by theoretical approach to the experimental estimation of efficiency for gamma spectrometry of gas in 100 ml standard flask

    International Nuclear Information System (INIS)

    Mohan, V.; Chudalayandi, K.; Sundaram, M.; Krishnamony, S.

    1996-01-01

    Estimation of gaseous activity forms an important component of air monitoring at Madras Atomic Power Station (MAPS). The gases of importance are argon 41 an air activation product and fission product noble gas xenon 133. For estimating the concentration, the experimental method is used in which a grab sample is collected in a 100 ml volumetric standard flask. The activity of gas is then computed by gamma spectrometry using a predetermined efficiency estimated experimentally. An attempt is made using theoretical approach to validate the experimental method of efficiency estimation. Two analytical models named relative flux model and absolute activity model were developed independently of each other. Attention is focussed on the efficiencies for 41 Ar and 133 Xe. Results show that the present method of sampling and analysis using 100 ml volumetric flask is adequate and acceptable. (author). 5 refs., 2 tabs

  19. Electromagnetic scattering problems -Numerical issues and new experimental approaches of validation

    Energy Technology Data Exchange (ETDEWEB)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg [University of Braunschweig, Institute for Electromagnetic Compatibility, Schleinitzstrasse 23, 38106 Braunschweig (Germany)

    2015-03-10

    Electromagnetic scattering problems, thus the question how radiated energy spreads when impinging on an object, are an essential part of wave propagation. Though the Maxwell’s differential equations as starting point, are actually quite simple,the integral formulation of an object’s boundary conditions, respectively the solution for unknown induced currents can only be solved numerically in most cases.As a timely topic of practical importance the scattering of rotating wind turbines is discussed, the numerical description of which is still based on rigorous approximations with yet unspecified accuracy. In this context the issue of validating numerical solutions is addressed, both with reference simulations but in particular with the experimental approach of scaled measurements. For the latter the idea of an incremental validation is proposed allowing a step by step validation of required new mathematical models in scattering theory.

  20. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    Directory of Open Access Journals (Sweden)

    Claudio Bustos

    Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

  1. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    OpenAIRE

    Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela

    2016-01-01

    Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...

  2. The Perceived Leadership Communication Questionnaire (PLCQ): Development and Validation.

    Science.gov (United States)

    Schneider, Frank M; Maier, Michaela; Lovrekovic, Sara; Retzbach, Andrea

    2015-01-01

    The Perceived Leadership Communication Questionnaire (PLCQ) is a short, reliable, and valid instrument for measuring leadership communication from both perspectives of the leader and the follower. Drawing on a communication-based approach to leadership and following a theoretical framework of interpersonal communication processes in organizations, this article describes the development and validation of a one-dimensional 6-item scale in four studies (total N = 604). Results from Study 1 and 2 provide evidence for the internal consistency and factorial validity of the PLCQ's self-rating version (PLCQ-SR)-a version for measuring how leaders perceive their own communication with their followers. Results from Study 3 and 4 show internal consistency, construct validity, and criterion validity of the PLCQ's other-rating version (PLCQ-OR)-a version for measuring how followers perceive the communication of their leaders. Cronbach's α had an average of.80 over the four studies. All confirmatory factor analyses yielded good to excellent model fit indices. Convergent validity was established by average positive correlations of.69 with subdimensions of transformational leadership and leader-member exchange scales. Furthermore, nonsignificant correlations with socially desirable responding indicated discriminant validity. Last, criterion validity was supported by a moderately positive correlation with job satisfaction (r =.31).

  3. Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions

    International Nuclear Information System (INIS)

    Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph

    2015-01-01

    Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the

  4. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids

    Science.gov (United States)

    Zimmerman, C.E.

    2005-01-01

    Analysis of otolith strontium (Sr) or strontium-to-calcium (Sr:Ca) ratios provides a powerful tool to reconstruct the chronology of migration among salinity environments for diadromous salmonids. Although use of this method has been validated by examination of known individuals and translocation experiments, it has never been validated under controlled experimental conditions. In this study, incorporation of otolith Sr was tested across a range of salinities and resulting levels of ambient Sr and Ca concentrations in juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus rnykiss), and Arctic char (Salvelinus alpinus). Experimental water was mixed, using stream water and seawater as end members, to create experimental salinities of 0.1, 6.3, 12.7, 18.6, 25.5, and 33.0 psu. Otolith Sr and Sr:Ca ratios were significantly related to salinity for all species (r2 range: 0.80-0.91) but provide only enough predictive resolution to discriminate among fresh water, brackish water, and saltwater residency. These results validate the use of otolith Sr:Ca ratios to broadly discriminate salinity histories encountered by salmonids but highlight the need for further research concerning the influence of osmoregulation and physiological changes associated with smoking on otolith microchemistry.

  5. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications

    International Nuclear Information System (INIS)

    Moreno-Rodríguez, A.; González-Gil, A.; Izquierdo, M.; Garcia-Hernando, N.

    2012-01-01

    This paper has shown the development of a theoretical model to determine the operating parameters and consumption of a domestic hot water (DHW) installation, which uses a direct-expansion solar assisted heat pump (DXSAHP) with refrigerant R-134a, a compressor with a rated capacity of 1.1 kW and collectors with a total area of 5.6 m 2 . The model results have been compared and validated the experimental results obtained with the equipment installed at the University Carlos III, South of Madrid. The analysis was conducted over the course of a year, and the results have been represented depending on the meteorological and process variables of several representative days. Taking into account the thermal losses of the installation and the dependency on the operating conditions, the acquired experimental coefficient of performance is between 1.7 and 2.9, while the DHW tank temperature over the course of the study is 51 °C. -- Highlights: ► The study aims to present a new theoretical model and an experimental validation. ► The experimental COP vary between 1.7 and 2.9 (max. condensation temperature 57 °C). ► The operating parameters respond to the solar radiation. The COP may increase up to 50%. ► The useful surface area varies between 50% and 85% of the total surface. ► The system stops if conditions exceed the maximum value of the absorbed heat.

  6. Development and validation of the Stirling Eating Disorder Scales.

    Science.gov (United States)

    Williams, G J; Power, K G; Miller, H R; Freeman, C P; Yellowlees, A; Dowds, T; Walker, M; Parry-Jones, W L

    1994-07-01

    The development and reliability/validity check of an 80-item, 8-scale measure for use with eating disorder patients is presented. The Stirling Eating Disorder Scales (SEDS) assess anorexic dietary behavior, anorexic dietary cognitions, bulimic dietary behavior, bulimic dietary cognitions, high perceived external control, low assertiveness, low self-esteem, and self-directed hostility. The SEDS were administered to 82 eating disorder patients and 85 controls. Results indicate that the SEDS are acceptable in terms of internal consistency, reliability, group validity, and concurrent validity.

  7. Development and validation of sodium fire analysis code ASSCOPS

    International Nuclear Information System (INIS)

    Ohno, Shuji

    2001-01-01

    A version 2.1 of the ASSCOPS sodium fire analysis code was developed to evaluate the thermal consequences of a sodium leak and consequent fire in LMFBRs. This report describes the computational models and the validation studies using the code. The ASSCOPS calculates sodium droplet and pool fire, and consequential heat/mass transfer behavior. Analyses of sodium pool or spray fire experiments confirmed that this code and parameters used in the validation studies gave valid results on the thermal consequences of sodium leaks and fires. (author)

  8. Macroscopic Dynamic Modeling of Sequential Batch Cultures of Hybridoma Cells: An Experimental Validation

    Directory of Open Access Journals (Sweden)

    Laurent Dewasme

    2017-02-01

    Full Text Available Hybridoma cells are commonly grown for the production of monoclonal antibodies (MAb. For monitoring and control purposes of the bioreactors, dynamic models of the cultures are required. However these models are difficult to infer from the usually limited amount of available experimental data and do not focus on target protein production optimization. This paper explores an experimental case study where hybridoma cells are grown in a sequential batch reactor. The simplest macroscopic reaction scheme translating the data is first derived using a maximum likelihood principal component analysis. Subsequently, nonlinear least-squares estimation is used to determine the kinetic laws. The resulting dynamic model reproduces quite satisfactorily the experimental data, as evidenced in direct and cross-validation tests. Furthermore, model predictions can also be used to predict optimal medium renewal time and composition.

  9. PSpice Modeling Platform for SiC Power MOSFET Modules with Extensive Experimental Validation

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Iannuzzo, Francesco; Nawaz, Muhammad

    2016-01-01

    to simulate the performance of high current rating (above 100 A), multi-chip SiC MOSFET modules both for static and switching behavior. Therefore, the simulation results have been validated experimentally in a wide range of operating conditions, including high temperatures, gate resistance and stray elements....... The whole process has been repeated for three different modules with voltage rating of 1.2 kV and 1.7 kV, manufactured by three different companies. Lastly, a parallel connection of two modules of the same type has been performed in order to observe the unbalancing and mismatches experimentally......The aim of this work is to present a PSpice implementation for a well-established and compact physics-based SiC MOSFET model, including a fast, experimental-based parameter extraction procedure in a MATLAB GUI environment. The model, originally meant for single-die devices, has been used...

  10. Content Validity and Acceptability of a Developed Worktext in Basic Mathematics 2

    Directory of Open Access Journals (Sweden)

    Mae Joy F. Tan-Espinar

    2017-02-01

    Full Text Available Teaching tertiary mathematics entails the use of instructional materials which lead to independent learning. The study evaluated the content validity and level of acceptability of a developed worktext in Basic Mathematics 2. It also found the significant difference between the respondents’ evaluation. Likewise, the study found the significant difference in the pretest and posttest performance between experimental and the control group and the difference between the posttest of the experimental and control groups. The study utilized the descriptive comparative method in determining the validity and acceptability of the developed worktext and the difference between the evaluation of experts/teachers and the student respondents. Quasi-experimental design was also used to find out if the worktext is effective in teaching the course employing t-test for correlated samples and t-test for independent samples. The result showed that the content validity and acceptability is very much valid and very much acceptable. The difference in the post-test between the experimental and the control groups was significant. It is concluded that the worktext is effective to be used in teaching the course.

  11. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.-M.

    2008-01-01

    CFD code validation requires experimental data that characterize the distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The paper reports about the use of wire-mesh sensors to study turbulent mixing processes in single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of other non

  12. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2007-01-01

    CFD code validation requires experimental data that characterize distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The presentation reports about the use of wire-mesh sensors to study turbulent mixing processes in the single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of

  13. Experimental development of an ultrasonic linear motor

    CSIR Research Space (South Africa)

    M'Boungui, G

    2010-01-01

    Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...

  14. The Bereavement Guilt Scale : Development and preliminary validation

    NARCIS (Netherlands)

    Li, Jie; Stroebe, Margaret; Chan, Cecilia L.W.; Chow, Amy Y.M.

    The rationale, development, and validation of the Bereavement Guilt Scale (BGS) are described in this article. The BGS was based on a theoretically developed, multidimensional conceptualization of guilt. Part 1 describes the generation of the item pool, derived from in-depth interviews, and review

  15. Development and Validation of Analytical Method for Losartan ...

    African Journals Online (AJOL)

    Development and Validation of Analytical Method for Losartan-Copper Complex Using UV-Vis Spectrophotometry. ... Tropical Journal of Pharmaceutical Research ... Purpose: To develop a new spectrophotometric method for the analysis of losartan potassium in pharmaceutical formulations by making its complex with ...

  16. Development and Validation of the Minnesota Borderline Personality Disorder Scale

    Science.gov (United States)

    Bornovalova, Marina A.; Hicks, Brian M.; Patrick, Christopher J.; Iacono, William G.; McGue, Matt

    2011-01-01

    Although large epidemiological data sets can inform research on the etiology and development of borderline personality disorder (BPD), they rarely include BPD measures. In some cases, however, proxy measures can be constructed using instruments already in these data sets. In this study, the authors developed and validated a self-report measure of…

  17. Development and Validation of Children's Responsible Environmental Behavior Scale

    Science.gov (United States)

    Erdogan, Mehmet; Ok, Ahmet; Marcinkowski, Thomas Joseph

    2012-01-01

    Though environmentally responsible behavior (ERB) has been a focus of many studies in the field of environmental education, very few scales have been developed to assess children's ERB. In this regard, this article focuses on the development and validation of Children's Responsible Environmental Behavior Scale (CREBS) and also reports the…

  18. Safe pediatric surgery: development and validation of preoperative interventions checklist

    Directory of Open Access Journals (Sweden)

    Maria Paula de Oliveira Pires

    2013-09-01

    Full Text Available OBJECTIVES: this study was aimed at developing and validating a checklist of preoperative pediatric interventions related to the safety of surgical patients. METHOD: methodological study concerning the construction and validation of an instrument with safe preoperative care indicators. The checklist was subject to validation through the Delphi technique, establishing a consensus level of 80%. RESULTS: five professional specialists in the area conducted the validation and a consensus on the content and the construct was reached after two applications of the Delphi technique. CONCLUSION: the "Safe Pediatric Surgery Checklist", simulating the preoperative trajectory of children, is an instrument capable of contributing to the preparation and promotion of safe surgery, as it identifies the presence or absence of measures required to promote patient safety.

  19. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)

    2012-07-01

    Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)

  20. An Experimental Validated Control Strategy of Maglev Vehicle-Bridge Self-Excited Vibration

    Directory of Open Access Journals (Sweden)

    Lianchun Wang

    2017-01-01

    Full Text Available This study discusses an experimentally validated control strategy of maglev vehicle-bridge vibration, which degrades the stability of the suspension control, deteriorates the ride comfort, and limits the cost of the magnetic levitation system. First, a comparison between the current-loop and magnetic flux feedback is carried out and a minimum model including flexible bridge and electromagnetic levitation system is proposed. Then, advantages and disadvantages of the traditional feedback architecture with the displacement feedback of electromagnet yE and bridge yB in pairs are explored. The results indicate that removing the feedback of the bridge’s displacement yB from the pairs (yE − yB measured by the eddy-current sensor is beneficial for the passivity of the levitation system and the control of the self-excited vibration. In this situation, the signal acquisition of the electromagnet’s displacement yE is discussed for the engineering application. Finally, to validate the effectiveness of the aforementioned control strategy, numerical validations are carried out and the experimental data are provided and analyzed.

  1. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  2. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  3. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  4. Development and preliminary validation of the Opioid Abuse Risk Screener

    Directory of Open Access Journals (Sweden)

    Patricia Henrie-Barrus

    2016-05-01

    Full Text Available Prescription opioid drug abuse has reached epidemic proportions. Individuals with chronic pain represent a large population at considerable risk of abusing opioids. The Opioid Abuse Risk Screener was developed as a comprehensive self-administered measure of potential risk that includes a wide range of critical elements noted in the literature to be relevant to opioid risk. The creation, refinement, and preliminary modeling of the item pool, establishment of preliminary concurrent validity, and the determination of the factor structure are presented. The initial development and validation of the Opioid Abuse Risk Screener shows promise for effective risk stratification.

  5. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Gil-Pita, R

    2010-01-01

    Often when performing electrical bioimpedance (EBI) spectroscopy measurements, the obtained EBI data present a hook-like deviation, which is most noticeable at high frequencies in the impedance plane. The deviation is due to a capacitive leakage effect caused by the presence of stray capacitances. In addition to the data deviation being remarkably noticeable at high frequencies in the phase and the reactance spectra, the measured EBI is also altered in the resistance and the modulus. If this EBI data deviation is not properly removed, it interferes with subsequent data analysis processes, especially with Cole model-based analyses. In other words, to perform any accurate analysis of the EBI spectroscopy data, the hook deviation must be properly removed. Td compensation is a method used to compensate the hook deviation present in EBI data; it consists of multiplying the obtained spectrum, Z meas (ω), by a complex exponential in the form of exp(–jωTd). Although the method is well known and accepted, Td compensation cannot entirely correct the hook-like deviation; moreover, it lacks solid scientific grounds. In this work, the Td compensation method is revisited, and it is shown that it should not be used to correct the effect of a capacitive leakage; furthermore, a more developed approach for correcting the hook deviation caused by the capacitive leakage is proposed. The method includes a novel correcting expression and a process for selecting the proper values of expressions that are complex and frequency dependent. The correctness of the novel method is validated with the experimental data obtained from measurements from three different EBI applications. The obtained results confirm the sufficiency and feasibility of the correcting method

  6. Experimental validation of a numerical model of two-phase displacement in porous medium

    International Nuclear Information System (INIS)

    Genty, A.

    1996-01-01

    Burial in geological layers appears to be an interesting solution to dispose of radioactive wastes. This thesis analyzes and simulates the behaviour of gas produced by waste barrels corrosion. The released contaminated gas drains the water initially present in the host rock and yields a water-gas two phase flow. A literature survey of two phase flow shows that fluid interfaces may display instabilities for definite flow characteristics. When the displacement is stable a smooth interface proceeds through the porous medium. When the interface shows fingering, the displacement is said to be 'viscous-unstable', and when the front is jagged the displacement is called 'capillary' displacement. A dimensional analysis of classical equations governing two phase flow in porous media is combined with a classification of dominant forces to define an original map of flow regimes that includes gravitational forces. The map is based on three dimensionless numbers and predicts a priori the flow type. For typical data describing a radioactive waste repository a 'viscous-unstable' displacement is predicted by the map. We simulate water-gas displacement with a numerical model previously developed; this code, based on the Muskat model, uses the mixed-hybrid finite elements technique and is therefore well adapted for tracking moving interfaces. Fluxes are well conserved, however instabilities cannot be simulated. We assume that there is always a scale to be found where instabilities can be averaged and we try to validate the model with experimental two phase flows. We performed laboratory water-gas flow experiments for a variety of flow conditions. The observed displacement types are consistent with the map of flow regimes. Good agreement with numerical simulations is obtained when precise parameters of the displacements are available, in particular relative permeability curves. We conclude that our model allows a first approach of migration of gas near a radioactive waste repository

  7. Development and Validation of WebQuests in Teaching Epics

    Directory of Open Access Journals (Sweden)

    Ronald Candy Santos Lasaten

    2017-05-01

    Full Text Available Using the Research Development (R&D methodology, the study aimed to develop and validate WebQuests which can be used in literature subjects, particularly in the tertiary level to address the need of literature teachers for pedagogy in the teaching of epic s. The development of the Web Quests was anchored on the Theory of Constructivism. Two groups of experts validated the Web Quests – the literature experts and the ICT experts. The Content Validation Checklist, used by the literature experts, was utilized t o evaluate the content of the Web Quests. Meanwhile, the Rubric for Evaluating Web Quests, used by the ICT experts, was utilized to evaluate the design characteristics of the Web Quests. Computed weighted means using range interval of point scores were emp loyed to treat the data gathered from the evaluation conducted by both group of experts. The Web Quests developed contain five major parts which include: 1 introduction; 2 task; 3 process; 4 evaluation; and 5 conclusion. Based on the findings, the con tent of the Web Quests developed are valid in terms of objectives, activities and instructional characteristics. Likewise, the design characteristics of the Web Quests are excellent in terms of introductions, tasks, processes, resources, evaluations, concl usions and overall designs. Thus, the Web Quests developed are acceptable and can be utilized as instructional materials by literature teachers in the teaching of epics.

  8. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.

    Science.gov (United States)

    Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A

    2018-05-21

    Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.

  9. Statistical method for the determination of the ignition energy of dust cloud - experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.; Lebecki, K.; Gillard, P.; Youinou, L.; Baudry, G. [University of Orleans, Bourges (France)

    2010-05-15

    Powdery materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguard to control the plants safety. The mitigation of an explosion hazard, according to the ATEX 137 Directive (1999/92/EU), requires the assessment of the dust ignition sensitivity. PRISME laboratory (University of Orleans) has developed an experimental set-up and methodology, using the Langlie test, for the quick determination of the explosion sensitivity of dusts. This method requires only 20 shots and ignition sensitivity is evaluated through the E{sub 50} (energy with an ignition probability of 0.5) A Hartmann tube, with a volume of 1.3l, was designed and built. Many results on the energy ignition thresholds of partially oxidised aluminium were obtained using this experimental device and compared to literature. E-50 evolution is the same as MIE but their respective values are different and MIE is lower than E{sub 50} however the link between E{sub 50} and MIE has not been elucidated In this paper, the Langlie method is explained in detail for the determination of the parameters (mean value E{sub 50} and standard deviation {sigma}) of the associated statistic law. The ignition probability versus applied energy is firstly measured for Lycopodium in order to validate the method A comparison between the normal and the lognormal law was achieved and the best fit was obtained with the lognormal law. In a second part, the Langlie test was performed on different dusts such as aluminium, cornstarch, lycopodium, coal, and PA12 in order to determine E-50 and {sigma} for each dust. The energies E{sub 05} and E{sub 10} corresponding respectively to an ignition probability of 0.05 and 0.1 are determined with the lognormal law and compared to MIE find in literature. E{sub 05} and E{sub 10} values of ignition energy were found to be very close and were in good agreement with MIE in the literature.

  10. Experimental validation of tape springs to be used as thin-walled space structures

    Science.gov (United States)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  11. The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2016-01-01

    Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.

  12. A Simulation Study of Threats to Validity in Quasi-Experimental Designs: Interrelationship between Design, Measurement, and Analysis.

    Science.gov (United States)

    Holgado-Tello, Fco P; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A

    2016-01-01

    The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity.

  13. Development, reliability and validity of the Diabetes Illness Representations Questionnaire

    DEFF Research Database (Denmark)

    Skinner, T. C.; Howells, L.; Greene, S.

    2003-01-01

    Aims: This article reports on the development and validity of a Diabetes-specific Illness Representations Questionnaire (DIRQ) to assess all five dimensions of an individual's perception of diabetes, for adolescents with Type 1 diabetes mellitus. Methods: There were two development studies. Study 1...... with a diabetes self-efficacy and barriers to adherence questionnaire. Subsequently there were two validation studies. Study 3: participants (n = 44 adolescents and 28 parents) completed the DIRQ and questionnaires assessing their self-care and psychological well-being. Glycaemic control was assessed through...... consist of two subscales, perceived threat and perceived impact, and provide further support for the distinction between treatment effectiveness to control diabetes and treatment effectiveness to prevent complications. Along with the validation studies, the results indicate that the questionnaire scales...

  14. Development and psychometric validation of the verbal affective memory test

    DEFF Research Database (Denmark)

    Jensen, Christian Gaden; Hjordt, Liv V; Stenbæk, Dea S

    2015-01-01

    . Furthermore, larger seasonal decreases in positive recall significantly predicted larger increases in depressive symptoms. Retest reliability was satisfactory, rs ≥ .77. In conclusion, VAMT-24 is more thoroughly developed and validated than existing verbal affective memory tests and showed satisfactory...... psychometric properties. VAMT-24 seems especially sensitive to measuring positive verbal recall bias, perhaps due to the application of common, non-taboo words. Based on the psychometric and clinical results, we recommend VAMT-24 for international translations and studies of affective memory.......We here present the development and validation of the Verbal Affective Memory Test-24 (VAMT-24). First, we ensured face validity by selecting 24 words reliably perceived as positive, negative or neutral, respectively, according to healthy Danish adults' valence ratings of 210 common and non...

  15. Construct validity of the Moral Development Scale for Professionals (MDSP).

    Science.gov (United States)

    Söderhamn, Olle; Bjørnestad, John Olav; Skisland, Anne; Cliffordson, Christina

    2011-01-01

    The aim of this study was to investigate the construct validity of the Moral Development Scale for Professionals (MDSP) using structural equation modeling. The instrument is a 12-item self-report instrument, developed in the Scandinavian cultural context and based on Kohlberg's theory. A hypothesized simplex structure model underlying the MDSP was tested through structural equation modeling. Validity was also tested as the proportion of respondents older than 20 years that reached the highest moral level, which according to the theory should be small. A convenience sample of 339 nursing students with a mean age of 25.3 years participated. Results confirmed the simplex model structure, indicating that MDSP reflects a moral construct empirically organized from low to high. A minority of respondents >20 years of age (13.5%) scored more than 80% on the highest moral level. The findings support the construct validity of the MDSP and the stages and levels in Kohlberg's theory.

  16. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  17. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Directory of Open Access Journals (Sweden)

    Pillon L.

    2012-08-01

    Full Text Available The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  18. Objectives of Experimental Validation of Mechanical Equipment for BN-1200 Reactor Plant

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Lyubimov, M.A.

    2013-01-01

    Conclusion: Fabricating and testing the pilot specimens of CRDMs, mockups of main elevator units, and cantilever refueling mechanism make it possible to validate their design. Positive testing results will make it possible to start the work on developing: • final designs of the elevator and cantilever refueling mechanism; • manufacturing design documentation on CRDM prototypes

  19. Development and validation of health service management competencies.

    Science.gov (United States)

    Liang, Zhanming; Howard, Peter F; Leggat, Sandra; Bartram, Timothy

    2018-04-09

    Purpose The importance of managerial competencies in monitoring and improving the performance of organisational leaders and managers is well accepted. Different processes have been used to identify and develop competency frameworks or models for healthcare managers around the world to meet different contextual needs. The purpose of the paper is to introduce a validated process in management competency identification and development applied in Australia - a process leading to a management competency framework with associated behavioural items that can be used to measure core management competencies of health service managers. Design/methodology/approach The management competency framework development study incorporated both qualitative and quantitative methods, implemented in four stages, including job description analysis, focus group discussions and online surveys. Findings The study confirmed that the four-stage process could identify management competencies and the framework developed is considered reliable and valid for developing a management competency assessment tool that can measure management competence amongst managers in health organisations. In addition, supervisors of health service managers could use the framework to distinguish perceived superior and average performers among managers in health organisations. Practical implications Developing the core competencies of health service managers is important for management performance improvement and talent management. The six core management competencies identified can be used to guide the design professional development activities for health service managers. Originality/value The validated management competency identification and development process can be applied in other countries and different industrial contexts to identify core management competency requirements.

  20. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  1. Workplace status: The development and validation of a scale.

    Science.gov (United States)

    Djurdjevic, Emilija; Stoverink, Adam C; Klotz, Anthony C; Koopman, Joel; da Motta Veiga, Serge P; Yam, Kai Chi; Chiang, Jack Ting-Ju

    2017-07-01

    Research suggests that employee status, and various status proxies, relate to a number of meaningful outcomes in the workplace. The advancement of the study of status in organizational settings has, however, been stymied by the lack of a validated workplace status measure. The purpose of this manuscript, therefore, is to develop and validate a measure of workplace status based on a theoretically grounded definition of status in organizations. Subject-matter experts were used to examine the content validity of the measure. Then, 2 separate samples were employed to assess the psychometric properties (i.e., factor structure, reliability, convergent and discriminant validity) and nomological network of a 5-item, self-report Workplace Status Scale (WSS). To allow for methodological flexibility, an additional 3 samples were used to extend the WSS to coworker reports of a focal employee's status, provide additional evidence for the validity and reliability of the WSS, and to demonstrate consensus among coworker ratings. Together, these studies provide evidence of the psychometric soundness of the WSS for assessing employee status using either self-reports or other-source reports. The implications of the development of the WSS for the study of status in organizations are discussed, and suggestions for future research using the new measure are offered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. The Trichotillomania Scale for Children: Development and Validation

    Science.gov (United States)

    Tolin, David F.; Diefenbach, Gretchen J.; Flessner, Christopher A.; Franklin, Martin E.; Keuthen, Nancy J.; Moore, Phoebe; Piacentini, John; Stein, Dan J.; Woods, Douglas W.

    2008-01-01

    Trichotillomania (TTM) is a chronic impulse control disorder characterized by repetitive hair-pulling resulting in alopecia. Although this condition is frequently observed in children and adolescents, research on pediatric TTM has been hampered by the absence of validated measures. The aim of the present study was to develop and test a new…

  3. Development and Validation of Coaches' Interpersonal Style Questionnaire

    Science.gov (United States)

    Pulido, Juan J.; Sánchez-Oliva, David; Leo, Francisco M.; Sánchez-Cano, Jorge; García-Calvo, Tomás

    2018-01-01

    Purpose: The objectives were to develop and validate the Coaches' Interpersonal Style Questionnaire. The Coaches' Interpersonal Style Questionnaire analyzes the interpersonal style adopted by coaches when implementing their strategy of supporting or thwarting athletes' basic psychological needs. Method: In Study 1, an exploratory factor analysis…

  4. Development and validation of a game addiction scale for adolescents

    NARCIS (Netherlands)

    Lemmens, J.S.; Valkenburg, P.M.; Peter, J.

    2009-01-01

    The aim of this study was to develop and validate a scale to measure computer and videogame addiction. Inspired by earlier theories and research on game addiction, we created 21 items to measure seven underlying criteria (i.e., salience, tolerance, mood modification, relapse, withdrawal, conflict,

  5. Development and validation of a game addiction scale

    NARCIS (Netherlands)

    Lemmens, J.S.; Valkenburg, P.M.; Peter, J.

    2008-01-01

    The aim of this study was to develop and validate a scale to measure computer and videogame addiction. Inspired by earlier theories and research on game and internet addiction, we created 21 items to measure seven criteria for game addiction (i.e., salience, tolerance, mood modification, relapse,

  6. Development and Validation of a Liquid Chromatographic Method ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous determination of six human immunodeficiency virus (HIV) protease inhibitors, indinavir, saquinavir, ritonavir, amprenavir, nelfinavir and lopinavir, was developed and validated. Optimal separation was achieved on a PLRP-S 100 Å, 250 x 4.6 mm I.D. column maintained ...

  7. The Development and Validation of the Instructional Dissent Scale

    Science.gov (United States)

    Goodboy, Alan K.

    2011-01-01

    Two studies (N = 420) were conducted to develop and validate the instructional dissent scale (IDS) for use in the college classroom. Participants in study 1 were 210 students who completed the IDS pilot inventory which was subjected to an exploratory factor analysis yielding three distinct factors of dissent (i.e., expressive, rhetorical,…

  8. Development and Validation of the Organizational Dissent Scale.

    Science.gov (United States)

    Kassing, Jeffrey W.

    1998-01-01

    Develops a measure for operationalizing how employees verbally express their contradictory opinions and disagreements about organizational phenomena. Tests the Organizational Dissent Scale (ODS) in a series of studies designed to generate evidence of validity/reliability for the measure. Indicates that the scale measures how employees express…

  9. Development and Validation of a Test for Bulimia.

    Science.gov (United States)

    Smith, Marcia C.; Thelen, Mark H.

    1984-01-01

    Developed the Bulimia Test (BULIT) based on responses of clinically identified females (N=18) and normal female college students (N=119) to preliminary test items. Results showed that the BULIT provided an objective, reliable, and valid measure by which to identify individuals with symptoms of bulimia. (Instrument is appended.) (LLL)

  10. Development and Validation of Improved Method for Fingerprint ...

    African Journals Online (AJOL)

    Purpose: To develop and validate an improved method by capillary zone electrophoresis with photodiode array detection for the fingerprint analysis of Ligusticum chuanxiong Hort. (Rhizoma Chuanxiong). Methods: The optimum high performance capillary electrophoresis (HPCE) conditions were 30 mM borax containing 5 ...

  11. Development and Validation of a Bioanalytical Method for Direct ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a user-friendly spiked plasma method for the extraction of diclofenac potassium that reduces the number of treatments with plasma sample, in order to minimize human error. Method: Instead of solvent evaporation technique, the spiked plasma sample was modified with H2SO4 and NaCl, ...

  12. The Development and Validation of the Perceived Academic Underachievement Scale

    Science.gov (United States)

    Snyder, Kate E.; Adelson, Jill L.

    2017-01-01

    Academic competence beliefs have been widely studied. However, conceptual and measurement efforts have not yet been directed toward understanding perceived underachievement (feeling that one's accomplishments fall below perceived capability). We conducted two studies in order to develop and examine validity evidence for the Perceived Academic…

  13. Development and Validation of the Mathematical Resilience Scale

    Science.gov (United States)

    Kooken, Janice; Welsh, Megan E.; McCoach, D. Betsy; Johnston-Wilder, Sue; Lee, Clare

    2016-01-01

    The Mathematical Resilience Scale measures students' attitudes toward studying mathematics, using three correlated factors: Value, Struggle, and Growth. The Mathematical Resilience Scale was developed and validated using exploratory and confirmatory factor analyses across three samples. Results provide a new approach to gauge the likelihood of…

  14. development and validation of an instrument for assessing junior ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    school Mathematics classroom environment as it affects teaching and learning of Mathematics in Enugu. State. ... plays a significant role in computer technology. ... classroom. The main purpose of this study was to develop and validate an instrument for assessing junior secondary school Mathematics classroom learning ...

  15. Development and external validation of a new PTA assessment scale

    NARCIS (Netherlands)

    Jacobs, B.; van Ekert, J.; Vernooy, L.P.; Dieperink, P.; Andriessen, T.M.J.C.; Hendriks, M.P.; van Vugt, A.B.; Emons, M.A.; Borm, G.F.; Vos, P.E.

    2012-01-01

    BACKGROUND: Post-traumatic amnesia (PTA) is a key symptom of traumatic brain injury (TBI). Accurate assessment of PTA is imperative in guiding clinical decision making. Our aim was to develop and externally validate a short, examiner independent and practical PTA scale, by selecting the most

  16. Development and Validation of the Game Perception Scale (GPS)

    Science.gov (United States)

    Vandercruysse, Sylke; Vandewaetere, Mieke; Maertens, Marie; ter Vrugte, Judith; Wouters, Pieter; de Jong, Ton; van Oostendorp, Herre; Elen, Jan

    2015-01-01

    Despite the pervasiveness of perception and considerable impact of perception on the use of ICT for educational purposes, there is a surprising paucity of perception assessment instruments. The present proposal expands on this through the development and initial validation of the Game Perception Scale (GPS). Based on perception literature,…

  17. Developing knowledge level scale of functional foods: Validity and ...

    African Journals Online (AJOL)

    The aim of the study was to develop a scale to determine the knowledge levels of University students on functional foods and to investigate the validity and reliability of the scale. The research was conducted on 417 (209 girls and 208 boys) undergraduate students in Selcuk University regarding functional foods.

  18. Development and Validation of Perceptions of Online Interaction Scale

    Science.gov (United States)

    Bagriacik Yilmaz, Ayse; Karatas, Serçin

    2018-01-01

    The aim of this study was to develop a measurement instrument which is compatible with literature, of which validity and reliability are proved with the aim of determining interaction perceived by learners in online learning environments. Accordingly, literature review was made, and outline form of the scale was formed with item pool by taking 14…

  19. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  20. Computational Prediction and Rationalization, and Experimental Validation of Handedness Induction in Helical Aromatic Oligoamide Foldamers.

    Science.gov (United States)

    Liu, Zhiwei; Hu, Xiaobo; Abramyan, Ara M; Mészáros, Ádám; Csékei, Márton; Kotschy, András; Huc, Ivan; Pophristic, Vojislava

    2017-03-13

    Metadynamics simulations were used to describe the conformational energy landscapes of several helically folded aromatic quinoline carboxamide oligomers bearing a single chiral group at either the C or N terminus. The calculations allowed the prediction of whether a helix handedness bias occurs under the influence of the chiral group and gave insight into the interactions (sterics, electrostatics, hydrogen bonds) responsible for a particular helix sense preference. In the case of camphanyl-based and morpholine-based chiral groups, experimental data confirming the validity of the calculations were already available. New chiral groups with a proline residue were also investigated and were predicted to induce handedness. This prediction was verified experimentally through the synthesis of proline-containing monomers, their incorporation into an oligoamide sequence by solid phase synthesis and the investigation of handedness induction by NMR spectroscopy and circular dichroism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Science.gov (United States)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  2. Experimental validation of neutron activation simulation of a varian medical linear accelerator.

    Science.gov (United States)

    Morato, S; Juste, B; Miro, R; Verdu, G; Diez, S

    2016-08-01

    This work presents a Monte Carlo simulation using the last version of MCNP, v. 6.1.1, of a Varian CLinAc emitting a 15MeV photon beam. The main objective of the work is to estimate the photoneutron production and activated products inside the medical linear accelerator head. To that, the Varian LinAc head was modelled in detail using the manufacturer information, and the model was generated with a CAD software and exported as a mesh to be included in the particle transport simulation. The model includes the transport of photoneutrons generated by primary photons and the (n, γ) reactions which can result in activation products. The validation of this study was done using experimental measures. Activation products have been identified by in situ gamma spectroscopy placed at the jaws exit of the LinAc shortly after termination of a high energy photon beam irradiation. Comparison between experimental and simulation results shows good agreement.

  3. Experimentally Manipulating Items Informs on the (Limited Construct and Criterion Validity of the Humor Styles Questionnaire

    Directory of Open Access Journals (Sweden)

    Willibald Ruch

    2017-04-01

    Full Text Available How strongly does humor (i.e., the construct-relevant content in the Humor Styles Questionnaire (HSQ; Martin et al., 2003 determine the responses to this measure (i.e., construct validity? Also, how much does humor influence the relationships of the four HSQ scales, namely affiliative, self-enhancing, aggressive, and self-defeating, with personality traits and subjective well-being (i.e., criterion validity? The present paper answers these two questions by experimentally manipulating the 32 items of the HSQ to only (or mostly contain humor (i.e., construct-relevant content or to substitute the humor content with non-humorous alternatives (i.e., only assessing construct-irrelevant context. Study 1 (N = 187 showed that the HSQ affiliative scale was mainly determined by humor, self-enhancing and aggressive were determined by both humor and non-humorous context, and self-defeating was primarily determined by the context. This suggests that humor is not the primary source of the variance in three of the HQS scales, thereby limiting their construct validity. Study 2 (N = 261 showed that the relationships of the HSQ scales to the Big Five personality traits and subjective well-being (positive affect, negative affect, and life satisfaction were consistently reduced (personality or vanished (subjective well-being when the non-humorous contexts in the HSQ items were controlled for. For the HSQ self-defeating scale, the pattern of relationships to personality was also altered, supporting an positive rather than a negative view of the humor in this humor style. The present findings thus call for a reevaluation of the role that humor plays in the HSQ (construct validity and in the relationships to personality and well-being (criterion validity.

  4. Experimentally Manipulating Items Informs on the (Limited) Construct and Criterion Validity of the Humor Styles Questionnaire.

    Science.gov (United States)

    Ruch, Willibald; Heintz, Sonja

    2017-01-01

    How strongly does humor (i.e., the construct-relevant content) in the Humor Styles Questionnaire (HSQ; Martin et al., 2003) determine the responses to this measure (i.e., construct validity)? Also, how much does humor influence the relationships of the four HSQ scales, namely affiliative, self-enhancing, aggressive, and self-defeating, with personality traits and subjective well-being (i.e., criterion validity)? The present paper answers these two questions by experimentally manipulating the 32 items of the HSQ to only (or mostly) contain humor (i.e., construct-relevant content) or to substitute the humor content with non-humorous alternatives (i.e., only assessing construct-irrelevant context). Study 1 ( N = 187) showed that the HSQ affiliative scale was mainly determined by humor, self-enhancing and aggressive were determined by both humor and non-humorous context, and self-defeating was primarily determined by the context. This suggests that humor is not the primary source of the variance in three of the HQS scales, thereby limiting their construct validity. Study 2 ( N = 261) showed that the relationships of the HSQ scales to the Big Five personality traits and subjective well-being (positive affect, negative affect, and life satisfaction) were consistently reduced (personality) or vanished (subjective well-being) when the non-humorous contexts in the HSQ items were controlled for. For the HSQ self-defeating scale, the pattern of relationships to personality was also altered, supporting an positive rather than a negative view of the humor in this humor style. The present findings thus call for a reevaluation of the role that humor plays in the HSQ (construct validity) and in the relationships to personality and well-being (criterion validity).

  5. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  6. Preliminary experimentally-validated forced and mixed convection computational simulations of the Rotatable Buoyancy Tunnel

    International Nuclear Information System (INIS)

    Clifford, Corey E.; Kimber, Mark L.

    2015-01-01

    Although computational fluid dynamics (CFD) has not been directly utilized to perform safety analyses of nuclear reactors in the United States, several vendors are considering adopting commercial numerical packages for current and future projects. To ensure the accuracy of these computational models, it is imperative to validate the assumptions and approximations built into commercial CFD codes against physical data from flows analogous to those in modern nuclear reactors. To this end, researchers at Utah State University (USU) have constructed the Rotatable Buoyancy Tunnel (RoBuT) test facility, which is designed to provide flow and thermal validation data for CFD simulations of forced and mixed convection scenarios. In order to evaluate the ability of current CFD codes to capture the complex physics associated with these types of flows, a computational model of the RoBuT test facility is created using the ANSYS Fluent commercial CFD code. The numerical RoBuT model is analyzed at identical conditions to several experimental trials undertaken at USU. Each experiment is reconstructed numerically and evaluated with the second-order Reynolds stress model (RSM). Two different thermal boundary conditions at the heated surface of the RoBuT test section are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). Additionally, the fluid velocity at the inlet of the test section is varied in an effort to modify the relative importance of natural convection heat transfer from the heated wall of the RoBuT. Mean velocity, both in the streamwise and transverse directions, as well as components of the Reynolds stress tensor at three points downstream of the RoBuT test section inlet are compared to results obtained from experimental trials. Early computational results obtained from this research initiative are in good agreement with experimental data obtained from the RoBuT facility and both the experimental data and numerical method can be used

  7. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: Experimental validation

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Distaso, Elia; Tamburrano, Paolo

    2016-01-01

    Highlights: • An innovative procedure to design a commercial proportional directional valve is shown. • Experimental tests are performed to demonstrate the flow force reduction. • The design is improved by means of a previously made optimization procedure. • Great reduction in the flow forces without reducing the flow rate is demonstrated. - Abstract: This paper presents the experimental validation of a new methodology for the design of the spool surfaces of four way three position direct operated proportional directional valves. The proposed methodology is based on the re-design of both the compensation profile (the central conical surface of the spool) and the lateral surfaces of the spool, in order to reduce the flow forces acting on the spool and hence the actuation forces. The aim of this work is to extend the application range of these valves to higher values of pressure and flow rate, thus avoiding the employment of more expensive two stage configurations in the case of high-pressure conditions and/or flow rate. The paper first presents a theoretical approach and a general strategy for the sliding spool design to be applied to any four way three position direct operated proportional directional valve. Then, the proposed approach is experimentally validated on a commercially available valve using a hydraulic circuit capable of measuring the flow rate as well as the actuation force over the entire spool stroke. The experimental results, performed using both the electronic driver provided by the manufacturer and a manual actuation system, show that the novel spool surface requires remarkably lower actuation forces compared to the commercial configuration, while maintaining the same flow rate trend as a function of the spool position.

  8. RESEARCH, DEVELOPMENT, AND EXPERIMENTAL TELECOMMUNICATIONS TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zvi H. Meiksin

    2002-07-01

    A temporary installation of Transtek's in-mine communications system in the Lake Lynn mine was used in the mine rescue training programs offered by NIOSH in April and May 2002. We developed and implemented a software program that permits point-to-point data transmission through our in-mine system. We also developed a wireless data transceiver for use in a PLC (programmed logic controller) to remotely control long-wall mining equipment.

  9. Experimental design technique applied to the validation of an instrumental Neutron Activation Analysis procedure

    International Nuclear Information System (INIS)

    Santos, Uanda Paula de M. dos; Moreira, Edson Gonçalves

    2017-01-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) method were carried out for the determination of the elements bromine, chlorine, magnesium, manganese, potassium, sodium and vanadium in biological matrix materials using short irradiations at a pneumatic system. 2 k experimental designs were applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. The chosen experimental designs were the 2 3 and the 2 4 , depending on the radionuclide half life. Different certified reference materials and multi-element comparators were analyzed considering the following variables: sample decay time, irradiation time, counting time and sample distance to detector. Comparator concentration, sample mass and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations, it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN /CNEN-SP). Optimized conditions were estimated based on the results of z-score tests, main effect, interaction effects and better irradiation conditions. (author)

  10. Experimental design technique applied to the validation of an instrumental Neutron Activation Analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Uanda Paula de M. dos; Moreira, Edson Gonçalves, E-mail: uandapaula@gmail.com, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) method were carried out for the determination of the elements bromine, chlorine, magnesium, manganese, potassium, sodium and vanadium in biological matrix materials using short irradiations at a pneumatic system. 2{sup k} experimental designs were applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. The chosen experimental designs were the 2{sup 3} and the 2{sup 4}, depending on the radionuclide half life. Different certified reference materials and multi-element comparators were analyzed considering the following variables: sample decay time, irradiation time, counting time and sample distance to detector. Comparator concentration, sample mass and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations, it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN /CNEN-SP). Optimized conditions were estimated based on the results of z-score tests, main effect, interaction effects and better irradiation conditions. (author)

  11. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  12. Development, Validation, and Implementation of a Clinic Nurse Staffing Guideline.

    Science.gov (United States)

    Deeken, Debra Jean; Wakefield, Douglas; Kite, Cora; Linebaugh, Jeanette; Mitchell, Blair; Parkinson, Deidre; Misra, Madhukar

    2017-10-01

    Ensuring that the level of nurse staffing used to care for patients is appropriate to the setting and service intensity is essential for high-quality and cost-effective care. This article describes the development, validation, and implementation of the clinic technical skills permission list developed specifically to guide nurse staffing decisions in physician clinics of an academic medical center. Results and lessons learned in using this staffing guideline are presented.

  13. The development and psychometric validation of the Ethical Awareness Scale.

    Science.gov (United States)

    Milliken, Aimee; Ludlow, Larry; DeSanto-Madeya, Susan; Grace, Pamela

    2018-04-19

    To develop and psychometrically assess the Ethical Awareness Scale using Rasch measurement principles and a Rasch item response theory model. Critical care nurses must be equipped to provide good (ethical) patient care. This requires ethical awareness, which involves recognizing the ethical implications of all nursing actions. Ethical awareness is imperative in successfully addressing patient needs. Evidence suggests that the ethical import of everyday issues may often go unnoticed by nurses in practice. Assessing nurses' ethical awareness is a necessary first step in preparing nurses to identify and manage ethical issues in the highly dynamic critical care environment. A cross-sectional design was used in two phases of instrument development. Using Rasch principles, an item bank representing nursing actions was developed (33 items). Content validity testing was performed. Eighteen items were selected for face validity testing. Two rounds of operational testing were performed with critical care nurses in Boston between February-April 2017. A Rasch analysis suggests sufficient item invariance across samples and sufficient construct validity. The analysis further demonstrates a progression of items uniformly along a hierarchical continuum; items that match respondent ability levels; response categories that are sufficiently used; and adequate internal consistency. Mean ethical awareness scores were in the low/moderate range. The results suggest the Ethical Awareness Scale is a psychometrically sound, reliable and valid measure of ethical awareness in critical care nurses. © 2018 John Wiley & Sons Ltd.

  14. A study on the development of photoelastic experimental hybrid method for colour isochromatics (I)

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Nam, Jeong Hwan; Kim, Kyo Hyoung; Kwon, O Sung; Kwon, Gun; Park, Sung Han

    2010-01-01

    Isochromatics obtained from photoelastic experiment shows the stress distributions of the full field of a structure under load. Therefore, stress distributions of the structure can be read at a glance through isochromatics. Many experimental data can be obtained from isochromatics which are then used in various photoelastic experimental hybrid methods for stress analysis. Monochromatic light has however, until now been used in the photoelastic experimental hybrid method to produce black and white isochromatics. The use of black and white isochromatics in photoelastic experimental hybrid method for black and white isochromatics requires high fringe orders in order to obtain sufficient experimental data for photoelastic hybrid techniques. Accordingly, this paper develops the photoelastic experimental hybrid method for color isochromatics in which a fringe order of 1 is enough to gather the experimental data of the photoelastic experimental hybrid method. The method was applied to validate stress concentration problems. Experimental results from this study indicated that the photoelastic experimental hybrid method for color isochromatics is more precise than the photoelastic experimental hybrid method for black and white isochromatics. The use of few fringe orders in photoelastic experimental hybrid method for color isochromatics can offer significant advantages in stress analysis of real components using reflective-type photoelastic experimental method

  15. Development and external validation of a new PTA assessment scale

    Directory of Open Access Journals (Sweden)

    Jacobs Bram

    2012-08-01

    Full Text Available Abstract Background Post-traumatic amnesia (PTA is a key symptom of traumatic brain injury (TBI. Accurate assessment of PTA is imperative in guiding clinical decision making. Our aim was to develop and externally validate a short, examiner independent and practical PTA scale, by selecting the most discriminative items from existing scales and using a three-word memory test. Methods Mild, moderate and severe TBI patients and control subjects were assessed in two separate cohorts, one for derivation and one for validation, using a questionnaire comprised of items from existing PTA scales. We tested which individual items best discriminated between TBI patients and controls, represented by sensitivity and specificity. We then created our PTA scale based on these results. This new scale was externally evaluated for its discriminative value using Receiver Operating Characteristic (ROC analysis and compared to existing PTA scales. Results The derivation cohort included 126 TBI patients and 31 control subjects; the validation cohort consisted of 132 patients and 30 controls. A set of seven items was eventually selected to comprise the new PTA scale: age, name of hospital, time, day of week, month, mode of transport and recall of three words. This scale demonstrated adequate discriminative values compared to existing PTA scales on three consecutive administrations in the validation cohort. Conclusion We introduce a valid, practical and examiner independent PTA scale, which is suitable for mild TBI patients at the emergency department and yet still valuable for the follow-up of more severely injured TBI patients.

  16. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences

    Science.gov (United States)

    Parsons, Thomas D.

    2015-01-01

    An essential tension can be found between researchers interested in ecological validity and those concerned with maintaining experimental control. Research in the human neurosciences often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and interactions. While this research is valuable, there is a growing interest in the human neurosciences to use cues about target states in the real world via multimodal scenarios that involve visual, semantic, and prosodic information. These scenarios should include dynamic stimuli presented concurrently or serially in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Furthermore, there is growing interest in contextually embedded stimuli that can constrain participant interpretations of cues about a target’s internal states. Virtual reality environments proffer assessment paradigms that combine the experimental control of laboratory measures with emotionally engaging background narratives to enhance affective experience and social interactions. The present review highlights the potential of virtual reality environments for enhanced ecological validity in the clinical, affective, and social neurosciences. PMID:26696869

  17. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  18. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  19. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  20. Content validity and reliability of test of gross motor development in Chilean children

    Directory of Open Access Journals (Sweden)

    Marcelo Cano-Cappellacci

    2015-01-01

    Full Text Available ABSTRACT OBJECTIVE To validate a Spanish version of the Test of Gross Motor Development (TGMD-2 for the Chilean population. METHODS Descriptive, transversal, non-experimental validity and reliability study. Four translators, three experts and 92 Chilean children, from five to 10 years, students from a primary school in Santiago, Chile, have participated. The Committee of Experts has carried out translation, back-translation and revision processes to determine the translinguistic equivalence and content validity of the test, using the content validity index in 2013. In addition, a pilot implementation was achieved to determine test reliability in Spanish, by using the intraclass correlation coefficient and Bland-Altman method. We evaluated whether the results presented significant differences by replacing the bat with a racket, using T-test. RESULTS We obtained a content validity index higher than 0.80 for language clarity and relevance of the TGMD-2 for children. There were significant differences in the object control subtest when comparing the results with bat and racket. The intraclass correlation coefficient for reliability inter-rater, intra-rater and test-retest reliability was greater than 0.80 in all cases. CONCLUSIONS The TGMD-2 has appropriate content validity to be applied in the Chilean population. The reliability of this test is within the appropriate parameters and its use could be recommended in this population after the establishment of normative data, setting a further precedent for the validation in other Latin American countries.

  1. Development and demonstration of a validation methodology for vehicle lateral dynamics simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Emir

    2013-02-01

    In this thesis a validation methodology to be used in the assessment of the vehicle dynamics simulation models is presented. Simulation of vehicle dynamics is used to estimate the dynamic responses of existing or proposed vehicles and has a wide array of applications in the development of vehicle technologies. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. The developed validation paradigm has a top-down approach to the problem. It is ascertained that vehicle dynamics simulation models can only be validated using test maneuvers although they are aimed for real world maneuvers. Test maneuvers are determined according to the requirements of the real event at the start of the model development project and data handling techniques, validation metrics and criteria are declared for each of the selected maneuvers. If the simulation results satisfy these criteria, then the simulation is deemed ''not invalid''. If the simulation model fails to meet the criteria, the model is deemed invalid, and model iteration should be performed. The results are analyzed to determine if the results indicate a modeling error or a modeling inadequacy; and if a conditional validity in terms of system variables can be defined. Three test cases are used to demonstrate the application of the methodology. The developed methodology successfully identified the shortcomings of the tested simulation model, and defined the limits of application. The tested simulation model is found to be acceptable but valid only in a certain dynamical range. Several insights for the deficiencies of the model are reported in the analysis but the iteration step of the methodology is not demonstrated. Utilizing the proposed methodology will help to achieve more time and cost efficient simulation projects with

  2. Development of an integrated signal validation system and application to operating power plants

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Holbert, K.E.; Kerlin, T.W.

    1989-01-01

    The objective of the university-industry joint research program at the University of Tennessee and Combustion Engineering, Inc. is to develop and implement a comprehensive signal validation system for current power plants and future advanced reactors. The integrated system consists of several parallel signal processing modules. The multi-modular decision information is combined to detect, isolate and characterize faulty signals. The signal validation system has been implemented in a VAX workstation and applied to operational data from a pressurized water reactor (PWR) and the Experimental Breeder Reactor-II (EBR-II). The use of the various signal validation techniques may be extended to predictive maintenance advising, instrument calibration verification, and to the development of intelligent instrumentation systems. 18 refs., 6 figs

  3. Experimental validation of thermal design of top shield for a pool type SFR

    International Nuclear Information System (INIS)

    Aithal, Sriramachandra; Babu, V. Rajan; Balasubramaniyan, V.; Velusamy, K.; Chellapandi, P.

    2016-01-01

    Highlights: • Overall thermal design of top shield in a SFR is experimentally verified. • Air jet cooling is effective in ensuring the temperatures limits for top shield. • Convection patterns in narrow annulus are in line with published CFD results. • Wire mesh insulation ensures gradual thermal gradient at top portion of main vessel. • Under loss of cooling scenario, sufficient time is available for corrective action. - Abstract: An Integrated Top Shield Test Facility towards validation of thermal design of top shield for a pool type SFR has been conceived, constructed & commissioned. Detailed experiments were performed in this experimental facility having full-scale features. Steady state temperature distribution within the facility is measured for various heater plate temperatures in addition to simulating different operating states of the reactor. Following are the important observations (i) jet cooling system is effective in regulating the roof slab bottom plate temperature and thermal gradient across roof slab simulating normal operation of reactor, (ii) wire mesh insulation provided in roof slab-main vessel annulus is effective in obtaining gradual thermal gradient along main vessel top portion and inhibiting the setting up of cellular convection within annulus and (iii) cellular convection with four distinct convective cells sets in the annular gap between roof slab and small rotatable plug measuring ∼ϕ4 m in diameter & gap width varying from 16 mm to 30 mm. Repeatability of results is also ensured during all the above tests. The results presented in this paper is expected to provide reference data for validation of thermal hydraulic models in addition to serving as design validation of jet cooling system for pool type SFR.

  4. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  5. Experimental Validation of a Differential Variational Inequality-Based Approach for Handling Friction and Contact in Vehicle

    Science.gov (United States)

    2015-11-20

    terrain modeled using the discrete element method (DEM). Experimental Validation of a Differential Variational Inequality -Based Approach for Handling...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Experimental Validation of a Differential Variational Inequality -Based Approach for...sinkage, and single wheel tests. 1.1. Modeling Frictional Contact Via Differential Variational Inequalities Consider a three dimensional (3D) system of

  6. Development and initial validation of a cessation fatigue scale.

    Science.gov (United States)

    Mathew, Amanda R; Heckman, Bryan W; Meier, Ellen; Carpenter, Matthew J

    2017-07-01

    Smoking cessation fatigue, or tiredness of attempting to quit smoking, has been posited as a latent construct encompassing loss of motivation, loss of hope in cessation success, decreased self-efficacy, and exhaustion of self-control resources. Despite the potential clinical impact of characterizing cessation fatigue, there is currently no validated measure to assess it. Using a rational scale development approach, we developed a cessation fatigue measure and examined its reliability and construct validity in relation to a) smokers' experience of a recently failed quit attempt (QA) and b) readiness to engage in a subsequent QA. Data were drawn from an online cross-sectional survey of 484 smokers who relapsed from a QA within the past 30days. Exploratory factor analysis identified three factors within the 17-item Cessation Fatigue Scale (CFS), which we labeled: emotional exhaustion, pessimism, and devaluation. High internal consistency was observed for each factor and across the full scale. As expected, CFS overall was positively associated with withdrawal severity and difficulty quitting. CFS was negatively associated with previously validated measures of intention to quit, self-efficacy, and abstinence-related motivational engagement, even after adjusting for nicotine dependence. Findings provide initial validation for a new tool to assess cessation fatigue and contribute needed information on a theory-driven component of cessation-related motivation and relapse risk. Copyright © 2017. Published by Elsevier B.V.

  7. Development and validation of a stock addiction inventory (SAI).

    Science.gov (United States)

    Youn, HyunChul; Choi, Jung-Seok; Kim, Dai-Jin; Choi, Sam-Wook

    2016-01-01

    Investing in financial markets is promoted and protected by the government as an essential economic activity, but can turn into a gambling addiction problem. Until now, few scales have widely been used to identify gambling addicts in financial markets. This study aimed to develop a self-rating scale to distinguish them. In addition, the reliability and validity of the stock addiction inventory (SAI) were demonstrated. A set of questionnaires, including the SAI, south oaks gambling screen (SOGS), and DSM-5 diagnostic criteria, for gambling disorder was completed by 1005 participants. Factor analysis, internal consistency testing, t tests, analysis of variance, and partial correlation analysis were conducted to verify the reliability and validity of SAI. The factor analysis results showed the final SAI consisting of two factors and nine items. The internal consistency and concurrent validity of SAI were verified. The Cronbach's α for the total scale was 0.892, and the SAI and its factors were significantly correlated with SOGS. This study developed a specific scale for financial market investments or trading; this scale proved to be reliable and valid. Our scale expands the understanding of gambling addiction in financial markets and provides a diagnostic reference.

  8. Development and validation of a toddler silhouette scale.

    Science.gov (United States)

    Hager, Erin R; McGill, Adrienne E; Black, Maureen M

    2010-02-01

    The purpose of this study is to develop and validate a toddler silhouette scale. A seven-point scale was developed by an artist based on photographs of 15 toddlers (6 males, 9 females) varying in race/ethnicity and body size, and a list of phenotypic descriptions of toddlers of varying body sizes. Content validity, age-appropriateness, and gender and race/ethnicity neutrality were assessed among 180 pediatric health professionals and 129 parents of toddlers. Inter- and intrarater reliability and concurrent validity were assessed by having 138 pediatric health professionals match the silhouettes with photographs of toddlers. Assessments of content validity revealed that most health professionals (74.6%) and parents of toddlers (63.6%) ordered all seven silhouettes correctly, and interobserver agreement for weight status classification was high (kappa = 0.710, r = 0.827, P gender (68.5%) and race/ethnicity (77.3%) neutral. The inter-rater reliability, based on matching silhouettes with photographs, was 0.787 (Cronbach's alpha) and the intrarater reliability was 0.855 (P parents' perception of and satisfaction with their toddler's body size. Interventions can be targeted toward parents who have inaccurate perceptions of or are dissatisfied with their toddler's body size.

  9. Test of Gross Motor Development: expert validity, confirmatory validity and internal consistence

    Directory of Open Access Journals (Sweden)

    Nadia Cristina Valentini

    2008-01-01

    The Test of Gross Motor Development (TGMD-2 is an instrument used to evaluate children’s level of motor development. The objective of this study was to translate and verify the clarity and pertinence of the TGMD-2 items by experts and the confirmatory factorial validity and the internal consistence by means of test-retest of the Portuguese TGMD-2. A cross-cultural translation was used to construct the Portuguese version. The participants of this study were 7 professionals and 587 children, from 27 schools (kindergarten and elementary from 3 to 10 years old (51.1% boys and 48.9% girls. Each child was videotaped performing the test twice. The videotaped tests were then scored. The results indicated that the Portuguese version of the TGMD-2 contains clear and pertinent motor items; demonstrated satisfactory indices of confirmatory factorial validity (÷2/gl = 3.38; Goodness-of-fit Index = 0.95; Adjusted Goodness-of-fit index = 0.92 and Tucker and Lewis’s Index of Fit = 0.83 and test-retest internal consistency (locomotion r = 0.82; control of object: r = 0.88. The Portuguese TGMD-2 demonstrated validity and reliability for the sample investigated.

  10. Development, Validation and Summative Evaluation of Card Pairing Games for Selected Math 8 Topics

    Directory of Open Access Journals (Sweden)

    Ronald O. Ocampo

    2015-12-01

    Full Text Available Traditional classroom situation where students are taught predominantly of lecture-discussion method put the classroom in a mathophobic atmosphere. Oftentimes, students exposed to this classroom atmosphere lead to math anxiety and eventually hate the subject and the teacher. Addressing this, varied interactive strategies to create an atmosphere of discourse has been developed and promoted. The use of instructional games has been viewed as one strategy that promotes active learning inside the classroom. Instructional games support constructivist learning and social learning. This study is aimed at developing, validating and evaluating card pairing games for specific topics in Math 8. The Research and Development model ( R& D was used. The card pairing games was validated by subject experts and experts in developing games. In evaluating the card pairing games, the Quasi-Experimental Pretest-Posttest design was used. There are six card pairing games developed for specific topics in Math 8; the card pairing game is highly valid based on the result of the validation; Students exposed to card pairing game become more intact (homogeneous; Students exposed to card games enhance academic performance. It is recommended to test the effectiveness of card pairing games to other group of students; Encourage math teachers to use the developed math card pairing games for classroom instruction; Develop other card pairing game for specific topics in math.

  11. Experimental Validation of Ex-Vessel Neutron Spectrum by Means of Dosimeter Materials Activation Method

    Directory of Open Access Journals (Sweden)

    S.A. Santa

    2017-06-01

    Full Text Available Neutron spectrum information in reactor core and around of ex-vessel reactor needs to be known with a certain degree of accuracy to support the development of fuels, materials, and other components. The most common method to determine neutron spectra is by utilizing the radioactivation of dosimeter materials. This report presents the evaluation of neutron flux incident on M3dosimeter sets which were irradiated outside the reactor vessel,as well as the validation of  neutron spectrum calculation. Al capsules containing both dosimeter set covered withCd and dosimeter set without Cd cover have been irradiated during the 35th operational cycle in the M3 ex-vessel irradiation hole position207 cmfrom core centerline at the space between the reactor vessel and the safety vessel. The capsules were positioned at Z=0.0 cm of core midplane. Each dosimeter set consists of Co-Al, Sc, Fe, Np, Nb, Ni, B, and Ta. The gamma-ray spectra of irradiated dosimeter materials were measured by 63 cc HPGe solid-state detector and photo-peak spectra were analyzed using BOB75 code. The reaction rates of each dosimeter materials and its uncertainty were analyzed based on 59Co (n,g 60Co, 237Np (n,f 95Zr-103Ru,  45Sc (n,g 46Sc, 58Fe (n,g 59Fe, 181Ta (n,g 182Ta, and 58Ni (n,p58Co reactions. The measured Cd ratios indicate that neutron spectrum at the irradiated dosimeter sets was dominated by low energy neutron. The experimental result shows that the calculated neutron spectra by DORT code at the ex-vessel positions need correction, especially in the fast neutron energy region, so as to obtain reasonable unfolding result consistent with the reaction rate measurement without any exception. Using biased DORT initial spectrum, the neutron spectrum and its integral quantity were unfolded by NEUPAC code. The result shows that total neutron flux, flux above 1.0 MeV, flux above 0.1 MeV, and the displacement rate of the dosimeter set not covered with Cd were 1.75× 1012 n cm2 s-1, 1

  12. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  13. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States); Siemens AG Healthcare, Henkestrasse 127, D-91052 Erlangen (Germany); Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2009-01-15

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 {mu}m pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of {+-}20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  14. Black liquor devolatilization and swelling - a detailed droplet model and experimental validation

    International Nuclear Information System (INIS)

    Jaervinen, M.; Zevenhoven, R.; Vakkilainen, E.; Forssen, M.

    2003-01-01

    In this paper, we present results from a new detailed physical model for single black liquor droplet pyrolysis and swelling, and validate them against experimental data from a non-oxidizing environment using two different reactor configurations. In the detailed model, we solve for the heat transfer and gas phase mass transfer in the droplet and thereby, the intra-particle gas-char and gas-gas interactions during drying and devolatilization can be studied. In the experimental part, the mass change, the swelling behaviour, and the volume fraction of larger voids, i.e. cenospheres in the droplets were determined in a non-oxidizing environment. The model gave a good correlation with experimental swelling and mass loss data. Calculations suggest that a considerable amount of the char can be consumed before the entire droplet has experienced the devolatilization and drying stages of combustion. Char formed at the droplet surface layer is generally consumed by gasification with H 2 O flowing outwards from the droplet interior. The extent of char conversion during devolatilization and the rate of devolatilization are greatly affected by swelling and the formation of larger voids in the particle. The more the particle swells and the more homogeneous the particle structure is, the larger is the conversion of char at the end of devolatilization

  15. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    Science.gov (United States)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  16. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System, Inc. (INSS), Fukui (Japan)

    2012-12-15

    Stratified 2-phase flows were investigated in 2 different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimal observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and saturated water at boundary conditions of up to 50 bar and 264 C. The measured CCFL characteristics were compared with similar experimental data and correlations available in the literature. This shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, the experimental results confirm that the Wallis similarity is appropriate to scale CCFL in the hot leg of a PWR over a wide range of pressure and temperature conditions. Finally, an image processing algorithm was developed to recognise the stratified interface in the camera frames. Subsequently, the interfacial structure along the hot leg was visualised by the representation of the probability distribution of the water level. (orig.)

  17. Experimental validation of the 'DELFIN' system with heavy water multicell measurements

    International Nuclear Information System (INIS)

    Grant, C.R.

    1990-01-01

    The DELFIN system, developed by the Analysis and Calculation Department of the Nuclear Power Plants Branch of the National Atomic Energy Commission, uses the finite elements method for the neutronic networks simulation and was validated through comparisons with other calculation codes and experiences with MTR (Materials Testing Reactors) reactors. This work compares calculations applying this system, with experiences carried out at the ZED-2 Canadian research reactor with vertical and horizontal adjusting steel rods, that is, bi- and tridimensional cases. (Author) [es

  18. A conceptual framework for homeostasis: development and validation

    Science.gov (United States)

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  19. Developing and Validating a New Classroom Climate Observation Assessment Tool.

    Science.gov (United States)

    Leff, Stephen S; Thomas, Duane E; Shapiro, Edward S; Paskewich, Brooke; Wilson, Kim; Necowitz-Hoffman, Beth; Jawad, Abbas F

    2011-01-01

    The climate of school classrooms, shaped by a combination of teacher practices and peer processes, is an important determinant for children's psychosocial functioning and is a primary factor affecting bullying and victimization. Given that there are relatively few theoretically-grounded and validated assessment tools designed to measure the social climate of classrooms, our research team developed an observation tool through participatory action research (PAR). This article details how the assessment tool was designed and preliminarily validated in 18 third-, fourth-, and fifth-grade classrooms in a large urban public school district. The goals of this study are to illustrate the feasibility of a PAR paradigm in measurement development, ascertain the psychometric properties of the assessment tool, and determine associations with different indices of classroom levels of relational and physical aggression.

  20. Predicting risk behaviors: development and validation of a diagnostic scale.

    Science.gov (United States)

    Witte, K; Cameron, K A; McKeon, J K; Berkowitz, J M

    1996-01-01

    The goal of this study was to develop and validate the Risk Behavior Diagnosis (RBD) Scale for use by health care providers and practitioners interested in promoting healthy behaviors. Theoretically guided by the Extended Parallel Process Model (EPPM; a fear appeal theory), the RBD scale was designed to work in conjunction with an easy-to-use formula to determine which types of health risk messages would be most appropriate for a given individual or audience. Because some health risk messages promote behavior change and others backfire, this type of scale offers guidance to practitioners on how to develop the best persuasive message possible to motivate healthy behaviors. The results of the study demonstrate the RBD scale to have a high degree of content, construct, and predictive validity. Specific examples and practical suggestions are offered to facilitate use of the scale for health practitioners.

  1. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  2. Development and validation of an index of musculoskeletal functional limitations

    Directory of Open Access Journals (Sweden)

    Katz Jeffrey N

    2009-06-01

    Full Text Available Abstract Background While musculoskeletal problems are leading sources of disability, there has been little research on measuring the number of functionally limiting musculoskeletal problems for use as predictor of outcome in studies of chronic disease. This paper reports on the development and preliminary validation of a self administered musculoskeletal functional limitations index. Methods We developed a summary musculoskeletal functional limitations index based upon a six-item self administered questionnaire in which subjects indicate whether they are limited a lot, a little or not at all because of problems in six anatomic regions (knees, hips, ankles and feet, back, neck, upper extremities. Responses are summed into an index score. The index was completed by a sample of total knee replacement recipients from four US states. Our analyses examined convergent validity at the item and at the index level as well as discriminant validity and the independence of the index from other correlates of quality of life. Results 782 subjects completed all items of the musculoskeletal functional limitations index and were included in the analyses. The mean age of the sample was 75 years and 64% were female. The index demonstrated anticipated associations with self-reported quality of life, activities of daily living, WOMAC functional status score, use of walking support, frequency of usual exercise, frequency of falls and dependence upon another person for assistance with chores. The index was strongly and independently associated with self-reported overall health. Conclusion The self-reported musculoskeletal functional limitations index appears to be a valid measure of musculoskeletal functional limitations, in the aspects of validity assessed in this study. It is useful for outcome studies following TKR and shows promise as a covariate in studies of chronic disease outcomes.

  3. Monte Carlo Modelling of Mammograms : Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, G; Panayiotakis, G [Univercity of Patras, School of Medicine, Medical Physics Department, 265 00 Patras (Greece); Bakas, A [Technological Educational Institution of Athens, Department of Radiography, 122 10 Athens (Greece); Tzanakos, G [University of Athens, Department of Physics, Divission of Nuclear and Particle Physics, 157 71 Athens (Greece)

    1999-12-31

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors) 16 refs, 4 figs

  4. Development and face validation of strategies for improving consultation skills

    OpenAIRE

    Lefroy, J; Thomas, A; Harrison, C; Williams, S; O'Mahony, F; Gay, S; Kinston, R; McKinley, RK

    2014-01-01

    While formative workplace based assessment can improve learners' skills, it often does not because the procedures used do not facilitate feedback which is sufficiently specific to scaffold improvement. Provision of pre-formulated strategies to address predicted learning needs has potential to improve the quality and automate the provision of written feedback. To systematically develop, validate and maximise the utility of a comprehensive list of strategies for improvement of consultation skil...

  5. Development and Validation of the Smartphone Addiction Inventory (SPAI)

    OpenAIRE

    Lin, Yu-Hsuan; Chang, Li-Ren; Lee, Yang-Han; Tseng, Hsien-Wei; Kuo, Terry B. J.; Chen, Sue-Huei

    2014-01-01

    OBJECTIVE: The aim of this study was to develop a self-administered scale based on the special features of smartphone. The reliability and validity of the Smartphone Addiction Inventory (SPAI) was demonstrated. METHODS: A total of 283 participants were recruited from Dec. 2012 to Jul. 2013 to complete a set of questionnaires, including a 26-item SPAI modified from the Chinese Internet Addiction Scale and phantom vibration and ringing syndrome questionnaire. There were 260 males and 23 females...

  6. Monte Carlo Modelling of Mammograms : Development and Validation

    International Nuclear Information System (INIS)

    Spyrou, G.; Panayiotakis, G.; Bakas, A.; Tzanakos, G.

    1998-01-01

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors)

  7. Experimental validation of Pu-Sm evolution model for CANDU-6 power transients

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Pomerantz, Marcelo E.; Moreno, Carlos A.

    2000-01-01

    Development of a methodology to evaluate the reactivity produced by Pu-Sm transient, effect displayed after power transients. This methodology allows to predict the behavior of liquid zones with which the fine control of CANDU reactor power is made. With this information, it is easier to foresee the refueling demand after power movements. The comparison with experimental results showed good agreement. (author)

  8. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  9. The development and validation of the Incivility from Customers Scale.

    Science.gov (United States)

    Wilson, Nicole L; Holmvall, Camilla M

    2013-07-01

    Scant research has examined customers as sources of workplace incivility, despite evidence suggesting that mistreatment is more common from organizational outsiders, including customers, than from organizational members (Grandey, Kern, & Frone, 2007; Schat & Kelloway, 2005). As an important step in extending the literature on customer incivility, we conducted two studies to develop and validate a measure of this construct. Study 1 used focus groups of retail and restaurant employees (n = 30) to elicit a list of uncivil customer behaviors, based on which we wrote initial scale items. Study 2 used a correlational survey design (n = 439) to pare down the number of scale items to 10 and to garner reliability and validity evidence for the scale. Exploratory and confirmatory factor analyses show that the scale is unidimensional and distinguishable from measures of the related, but distinct, constructs of interpersonal justice and psychological aggression from customers. Reliability analyses show that the scale is internally consistent. Significant correlations between the scale and individuals' job satisfaction, turnover intentions, and general and job-specific psychological strain provide evidence of criterion-related validity. Hierarchical regression analyses show that the scale significantly predicts three of four organizational and personal strain outcomes over and above a workplace incivility measure adapted for customer incivility, providing some evidence of incremental validity. Limitations and future research directions are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Development and validation of a smartphone addiction scale (SAS).

    Science.gov (United States)

    Kwon, Min; Lee, Joon-Yeop; Won, Wang-Youn; Park, Jae-Woo; Min, Jung-Ah; Hahn, Changtae; Gu, Xinyu; Choi, Ji-Hye; Kim, Dai-Jin

    2013-01-01

    The aim of this study was to develop a self-diagnostic scale that could distinguish smartphone addicts based on the Korean self-diagnostic program for Internet addiction (K-scale) and the smartphone's own features. In addition, the reliability and validity of the smartphone addiction scale (SAS) was demonstrated. A total of 197 participants were selected from Nov. 2011 to Jan. 2012 to accomplish a set of questionnaires, including SAS, K-scale, modified Kimberly Young Internet addiction test (Y-scale), visual analogue scale (VAS), and substance dependence and abuse diagnosis of DSM-IV. There were 64 males and 133 females, with ages ranging from 18 to 53 years (M = 26.06; SD = 5.96). Factor analysis, internal-consistency test, t-test, ANOVA, and correlation analysis were conducted to verify the reliability and validity of SAS. Based on the factor analysis results, the subscale "disturbance of reality testing" was removed, and six factors were left. The internal consistency and concurrent validity of SAS were verified (Cronbach's alpha = 0.967). SAS and its subscales were significantly correlated with K-scale and Y-scale. The VAS of each factor also showed a significant correlation with each subscale. In addition, differences were found in the job (psmartphone addiction scores (psmartphone addiction aspect of the diagnostic manual. This scale was proven to be relatively reliable and valid.

  11. Development and validation study of the Smartphone Overuse Screening Questionnaire.

    Science.gov (United States)

    Lee, Han-Kyeong; Kim, Ji-Hae; Fava, Maurizio; Mischoulon, David; Park, Jae-Hyun; Shim, Eun-Jung; Lee, Eun-Ho; Lee, Ji Hyeon; Jeon, Hong Jin

    2017-11-01

    The aim of this study was to develop a screening questionnaire that could distinguish individuals at high risk of smartphone overuse from casual users. The reliability, validity, and diagnostic ability of the Smartphone Overuse Screening Questionnaire (SOS-Q) were evaluated. Preliminary items were assessed by 50 addiction experts on-line, and 28 questions were selected. A total of 158 subjects recruited from six community centers for internet addiction participated in this study. The SOS-Q, Young's internet addiction scale, Korean scale for internet addiction, and Smartphone Scale for Smartphone Addiction (S-Scale) were used to assess the concurrent validity. Construct validity was supported by a six-factor model using an exploratory factor analysis. The internal consistency and the item-total correlations were favorable (α = 0.95, r = 0.35-0.81). The test-retest reliability was moderate (r = 0.70). The SOS-Q showed superior concurrent validity with the highest correlation between the S-Scale (r = 0.76). Receiver operating characteristic curve analysis revealed an area under the curve of 0.877. A cut-off point of 49 effectively categorized addiction high-risk group with a sensitivity of 0.81 and specificity of 0.86. Overall, the current study supports the use of SOS-Q as both a primary and supplementary measurement tool in a variety of settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development, validation and routine control of a radiation process

    International Nuclear Information System (INIS)

    Kishor Mehta

    2010-01-01

    Today, radiation is used in industrial processing for variety of applications; from low doses for blood irradiation to very high doses for materials modification and even higher for gemstone colour enhancement. At present, radiation is mainly provided by either radionuclides or machine sources; cobalt-60 is the most predominant radionuclide in use. Currently, there are several hundred irradiation facilities worldwide. Similar to other industries, quality management systems can assist radiation processing facilities in enhancing customer satisfaction and maintaining and improving product quality. To help fulfill quality management requirements, several national and international organizations have developed various standards related to radiation processing. They all have requirements and guidelines for development, validation and routine control of the radiation process. For radiation processing, these three phases involve the following activities. Development phase includes selecting the type of radiation source, irradiation facility and the dose required for the process. Validation phase includes conducting activities that give assurance that the process will be successful. Routine control then involves activities that provide evidence that the process has been successfully realized. These standards require documentary evidence that process validation and process control have been followed. Dosimetry information gathered during these processes provides this evidence. (authors)

  13. Investigating the construct validity of a development assessment centre

    Directory of Open Access Journals (Sweden)

    Nadia M. Brits

    2013-11-01

    Research purpose: The aim of this study was to determine the construct validity of a one-day development assessment centre (DAC using a convenience sample of 202 managers in a large South African banking institution. Motivation for the study: Although the AC method is popular, it has been widely criticised as to whether it predominantly measures the dimensions it is designed to measure. Research design, approach and method: The fit of the measurement models implied by the dimensions measured was analysed in a quantitative study using an ex post facto correlation design and structural equation modelling. Main findings: Bi-factor confirmatory factor analysis was used to assess the relative contribution of higher-order exercise and dimension effects. Empirical under-identification stemming from the small number of exercises designed to reflect designated latent dimensions restricted the number of DAC dimensions that could be evaluated. Ultimately, only one global dimension had enough measurement points and was analysed. The results suggested that dimension effects explained the majority of variance in the post-exercise dimension ratings. Practical/managerial implications: Candidates’ proficiency on each dimension was used as the basis for development reports. The validity of inferences holds important implications for candidates’ career development and growth. Contribution/value-add: The authors found only one study on construct validity of AC dimensions in the South African context. The present study is the first use the bi-factor approach. This study will consequently contribute to the scarce AC literature in South Africa.

  14. Development and validation of a measure of food choice values.

    Science.gov (United States)

    Lyerly, Jordan E; Reeve, Charlie L

    2015-06-01

    Food choice values (FCVs) are factors that individuals consider when deciding which foods to purchase and/or consume. Given the potentially important implications for health, it is critical for researchers to have access to a validated measure of FCV. Though there is an existing measure of FCV, this measure was developed 20 years ago and recent research suggests additional FCVs exist that are not included in this measure. A series of four studies was conducted to develop a new expanded measure of FCV. An eight-factor model of FCV was supported and confirmed. In aggregate, results from the four studies indicate that the measure is content valid, and has internally consistent scales that also demonstrated acceptable temporal stability and convergent validity. In addition, the eight scales of the measures were independent of social desirability, met criteria for measurement invariance across income groups, and predicted dietary intake. The development of this new measure of FCV may be useful for researchers examining FCVs (FCVs) in the future, as well as for use in intervention and prevention efforts targeting dietary choices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation

    DEFF Research Database (Denmark)

    Nathan, R.P.; Thomas, P.J.; Jain, M.

    2003-01-01

    and identify the likely size of these effects on D-e distributions. The study employs the MCNP 4C Monte Carlo electron/photon transport model, supported by an experimental validation of the code in several case studies. We find good agreement between the experimental measurements and the Monte Carlo...

  16. Test of Gross Motor Development : Expert Validity, confirmatory validity and internal consistence

    Directory of Open Access Journals (Sweden)

    Nadia Cristina Valentini

    2008-12-01

    Full Text Available The Test of Gross Motor Development (TGMD-2 is an instrument used to evaluate children’s level of motordevelopment. The objective of this study was to translate and verify the clarity and pertinence of the TGMD-2 items by expertsand the confirmatory factorial validity and the internal consistence by means of test-retest of the Portuguese TGMD-2. Across-cultural translation was used to construct the Portuguese version. The participants of this study were 7 professionalsand 587 children, from 27 schools (kindergarten and elementary from 3 to 10 years old (51.1% boys and 48.9% girls.Each child was videotaped performing the test twice. The videotaped tests were then scored. The results indicated thatthe Portuguese version of the TGMD-2 contains clear and pertinent motor items; demonstrated satisfactory indices ofconfirmatory factorial validity (χ2/gl = 3.38; Goodness-of-fit Index = 0.95; Adjusted Goodness-of-fit index = 0.92 and Tuckerand Lewis’s Index of Fit = 0.83 and test-retest internal consistency (locomotion r = 0.82; control of object: r = 0.88. ThePortuguese TGMD-2 demonstrated validity and reliability for the sample investigated.

  17. Thermodynamic properties of 1-naphthol: Mutual validation of experimental and computational results

    International Nuclear Information System (INIS)

    Chirico, Robert D.; Steele, William V.; Kazakov, Andrei F.

    2015-01-01

    Highlights: • Heat capacities were measured for the temperature range 5 K to 445 K. • Vapor pressures were measured for the temperature range 370 K to 570 K. • Computed and derived properties for ideal gas entropies are in excellent accord. • The enthalpy of combustion was measured and shown to be consistent with reliable literature values. • Thermodynamic consistency analysis revealed anomalous literature data. - Abstract: Thermodynamic properties for 1-naphthol (Chemical Abstracts registry number [90-15-3]) in the ideal-gas state are reported based on both experimental and computational methods. Measured properties included the triple-point temperature, enthalpy of fusion, and heat capacities for the crystal and liquid phases by adiabatic calorimetry; vapor pressures by inclined-piston manometry and comparative ebulliometry; and the enthalpy of combustion of the crystal phase by oxygen bomb calorimetry. Critical properties were estimated. Entropies for the ideal-gas state were derived from the experimental studies for the temperature range 298.15 ⩽ T/K ⩽ 600, and independent statistical calculations were performed based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. The mutual validation of the independent experimental and computed results is achieved with a scaling factor of 0.975 applied to the calculated vibrational frequencies. This same scaling factor was successfully applied in the analysis of results for other polycyclic molecules, as described in a series of recent articles by this research group. This article reports the first extension of this approach to a hydroxy-aromatic compound. All experimental results are compared with property values reported in the literature. Thermodynamic consistency between properties is used to show that several studies in the literature are erroneous. The enthalpy of combustion for 1-naphthol was also measured in this research, and excellent

  18. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  19. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  20. Development and validation of educational technology for venous ulcer care.

    Science.gov (United States)

    Benevides, Jéssica Lima; Coutinho, Janaina Fonseca Victor; Pascoal, Liliane Chagas; Joventino, Emanuella Silva; Martins, Mariana Cavalcante; Gubert, Fabiane do Amaral; Alves, Allana Mirella

    2016-04-01

    To develop and validate an educational technology venous ulcers care. Methodological study conducted in five steps: Situational diagnosis; literature review; development of texts, illustrations and layout; apparent and content validity by the Content Validity Index, assessment of Flesch Readability Index; and pilot testing. The developed technology was a type of booklet entitled Booklet for Venous Ulcers Care, consisting of seven topics: Diet and food intake, walking and light exercise, resting with elevated leg, bandage care, compression therapy, family support, and keeping healthy habits. The apparent validity revealed minimal agreement of 85.7% in the clarity and comprehensibility. The total content validity index was 0.97, the Flesch Readability Index was 75%, corresponding to the reading "fairly easy". The pilot test showed that 100% of people with venous ulcers evaluated the text and the illustrations as understandable, as appropriate. The educational technology proved to be valid for the appearance and content with potential for use in clinical practice. Construir e validar uma tecnologia educativa para cuidados com úlcera venosa. Estudo metodológico realizado em cinco fases: diagnóstico situacional; revisão da literatura; desenvolvimento de textos, ilustrações e diagramação; validade de aparência e de conteúdo pelo Índice de Validade de Conteúdo, avaliação do Índice de Legibilidade de Flesch; e teste piloto. A tecnologia desenvolvida foi do tipo cartilha intitulada Cartilha para cuidados com úlcera venosa, constituída de sete tópicos: Alimentação, Caminhadas e exercícios leves, Repouso com a perna elevada, Cuidados com o curativo, Terapia compressiva, Apoio familiar, e manter hábitos saudáveis. A validade aparente revelou concordância mínima de 85,7% na clareza e compreensibilidade. O Índice de Validade de Conteúdo total foi de 0,97, o Índice de legibilidade de Flesch foi de 75%, o que correspondeu à leitura "razoavelmente f

  1. Experimental and computational validation of BDTPS using a heterogeneous boron phantom

    CERN Document Server

    Daquino, G G; Mazzini, M; Moss, R L; Muzi, L

    2004-01-01

    The idea to couple the treatment planning system (TPS) to the information on the real boron distribution in the patient acquired by positron emission tomography (PET) is the main added value of the new methodology set-up at DIMNP (Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione) of University of Pisa, in collaboration with the JRC (Joint Research Centre) at Petten (NL). This methodology has been implemented in a new TPS, called Boron Distribution Treatment Planning System (BDTPS), which takes into account the actual boron distribution in the patient's organ, as opposed to other TPSs used in BNCT that assume an ideal uniform boron distribution. BDTPS is based on the Monte Carlo technique and has been experimentally validated comparing the computed main parameters (thermal neutron flux, boron dose, etc.) to those measured during the irradiation of an ad hoc designed phantom (HEterogeneous BOron phanto M, HEBOM). The results are also in good agreement with those obtained by the standard TPS SER...

  2. Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, F., E-mail: fabio.cinti@fi.infn.i [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Rettori, A. [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Pini, M.G. [ISC-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Mariani, M.; Micotti, E. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Lascialfari, A. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Institute of General Physiology and Biological Chemistry, University of Milano, Via Trentacoste 2, I-20134 Milano (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Papinutto, N. [CIMeC, University of Trento, Via delle Regole, 101 38060 Mattarello (Italy); Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Amato, A. [Paul Scherrer Institute, CH-5232 Villingen PSI (Switzerland); Caneschi, A.; Gatteschi, D. [INSTM R.U. Firenze and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Affronte, M. [CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Department of Physics, University of Modena and Reggio Emilia Via Campi 213/A, I-41100 Modena (Italy)

    2010-05-15

    Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac){sub 3}NITEt. The specific heat presents two anomalies at T{sub 0}=2.19(2)K and T{sub N}=1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T{sub N}=1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.

  3. Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets

    International Nuclear Information System (INIS)

    Cinti, F.; Rettori, A.; Pini, M.G.; Mariani, M.; Micotti, E.; Lascialfari, A.; Papinutto, N.; Amato, A.; Caneschi, A.; Gatteschi, D.; Affronte, M.

    2010-01-01

    Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac) 3 NITEt. The specific heat presents two anomalies at T 0 =2.19(2)K and T N =1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T N =1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.

  4. Design, Manufacturing and Experimental Validation of Optical Fiber Sensors Based Devices for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Angela CORICCIATI

    2016-06-01

    Full Text Available The use of optical fiber sensors is a promising and rising technique used for Structural Health Monitoring (SHM, because permit to monitor continuously the strain and the temperature of the structure where they are applied. In the present paper three different types of smart devices, that are composite materials with an optical fiber sensor embedded inside them during the manufacturing process, are described: Smart Patch, Smart Rebar and Smart Textile, which are respectively a plate for local exterior intervention, a rod for shear and flexural interior reinforcement and a textile for an external whole application. In addition to the monitoring aim, the possible additional function of these devices could be the reinforcement of the structures where they are applied. In the present work, after technology manufacturing description, the experimental laboratory characterization of each device is discussed. At last, smart devices application on medium scale masonry walls and their validation by mechanical tests is described.

  5. Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates

    Science.gov (United States)

    Saad Khan, Muhammad; Yaqub, Sana; Manner, Naathiya; Ani Karthwathi, Nur; Qasim, Ali; Mellon, Nurhayati Binti; Lal, Bhajan

    2018-04-01

    Clathrate hydrates are eminent structures regard as a threat to the gas and oil industry in light of their irritating propensity to subsea pipelines. For natural gas transmission and processing, the formation of gas hydrate is one of the main flow assurance delinquent has led researchers toward conducting fresh and meticulous studies on various aspects of gas hydrates. This paper highlighted the thermodynamic analysis on pure CH4 and CO2 gas hydrates on the custom fabricated equipment (Sapphire cell hydrate reactor) for experimental validation. CO2 gas hydrate formed at lower pressure (41 bar) as compared to CH4 gas hydrate (70 bar) while comparison of thermodynamic properties between CH4 and CO2 also presented in this study. This preliminary study could provide pathways for the quest of potent hydrate inhibitors.

  6. An experimentally validated simulation model for a four-stage spray dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2017-01-01

    mathematical model is an index-1 differential algebraic equation (DAE) model with 12 states, 9 inputs, 8 disturbances, and 30 parameters. The parameters in the model are identified from well-excited experimental data obtained from the industrialtype spray dryer. The simulated outputs ofthe model are validated...... is divided into four consecutive stages: a primary spray drying stage, two heated fluid bed stages, and a cooling fluid bed stage. Each of these stages in the model is assumed ideally mixed and the dynamics are described by mass- and energy balances. These balance equations are coupled with constitutive...... equations such as a thermodynamic model, the water evaporation rate, the heat transfer rates, and an equation for the stickiness of the powder (glass transition temperature). Laboratory data is used to model the equilibrium moisture content and the glass transition temperature of the powder. The resulting...

  7. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  8. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    Science.gov (United States)

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  9. Pattern dynamics of vortex ripples in sand: Nonlinear modeling and experimental validation

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Abel, M.; Krug, J.

    2002-01-01

    Vortex ripples in sand are studied experimentally in a one-dimensional setup with periodic boundary conditions. The nonlinear evolution, far from the onset of instability, is analyzed in the framework of a simple model developed for homogeneous patterns. The interaction function describing the mass...... transport between neighboring ripples is extracted from experimental runs using a recently proposed method for data analysis, and the predictions of the model are compared to the experiment. An analytic explanation of the wavelength selection mechanism in the model is provided, and the width of the stable...... band of ripples is measured....

  10. Development of the NSRR experimental data bank system, (1)

    International Nuclear Information System (INIS)

    Ishijima, Kiyomi; Uemura, Mutsumi; Ohnishi, Nobuaki

    1981-01-01

    To promote collection, arrangement, and utilization of the NSRR experimental data, development of the NSRR experimental data bank system was intended. Fundamental parts of the NSRR experimental data bank system, including the processing program DTBNK, have been completed. Data of the experiments performed so far have been collected and stored. Outline of the processing program and the method of utilization and the present status of the data bank system are discussed. (author)

  11. Development of an experimental apparatus for nucleate boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.

    1984-01-01

    An experimental apparatus is developed for the study of the parameters that affect nucleate boiling. The experimental set up is tested for nucleate boiling in an annular test section with subcooled water flow. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of the experimental apparatus is analysed by the results and by the problems raised by the operation of the setup. (Author) [pt

  12. Development and content validation of the power mobility training tool.

    Science.gov (United States)

    Kenyon, Lisa K; Farris, John P; Cain, Brett; King, Emily; VandenBerg, Ashley

    2018-01-01

    This paper outlines the development and content validation of the power mobility training tool (PMTT), an observational tool designed to assist therapists in developing power mobility training programs for children who have multiple, severe impairments. Initial items on the PMTT were developed based on a literature review and in consultation with therapists experienced in the use of power mobility. Items were trialled in clinical settings, reviewed, and refined. Items were then operationalized and an administration manual detailing scoring for each item was created. Qualitative and quantitative methods were used to establish content validity via a 15 member, international expert panel. The content validity ratio (CVR) was determined for each possible item. Of the 19 original items, 10 achieved minimum required CVR values and were included in the final version of the PMTT. Items related to manoeuvring a power mobility device were merged and an item related to the number of switches used concurrently to operate a power mobility device were added to the PMTT. The PMTT may assist therapists in developing training programs that facilitate the acquisition of beginning power mobility skills in children who have multiple, severe impairments. Implications for Rehabilitation The Power Mobility Training Tool (PMTT) was developed to help guide the development of power mobility intervention programs for children who have multiple, severe impairments. The PMTT can be used with children who access a power mobility device using either a joystick or a switch. Therapists who have limited experience with power mobility may find the PMTT to be helpful in setting up and conducting power mobility training interventions as a feasible aspect of a plan of care for children who have multiple, severe impairments.

  13. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  14. Site characterization and validation - Head variations during the entire experimental period

    International Nuclear Information System (INIS)

    Haigh, D.; Brightman, M.; Black, J.; Parry, S.

    1992-01-01

    The site characterization and validation project lasted for five years from 1986 to 1991. It consisted of a number of experiments within the region known as the SCV site. During this period of experimentation a monitoring system was established within the mine for the purpose of measuring the variation of head at a number of locations within and around the site. The system installed was based around a set of equipment known as a Piezomac TM system. In this system there is one central pressure transducer and each borehole interval is connected to it in turn. It can measure up to 55 separate points during each measurement 'cycle'. Monitoring points were either complete boreholes or sections of boreholes isolated by packers. In order to produce reasonable file size, data sets were screened. The results show that the SCV site was always responding to some form of hydrogeological disturbance. Many key tests were performed against changing background trends. This was particularly so of the simulated drift experiment and the large scale crosshole tests. However, some estimates of long term equilibrium heads before and after excavation of the validation drift have been made. Contoured plots of heads before and after show significant reduction of steady state heads as a result of drift excavation. Furthermore contouring the estimated long term drawdowns responding to the simulated drift experiment shows the specific influence of the H zone and the A/B zone. Overall the results of the monitoring show that the mine was a very active hydrogeological environment during the experimentation. Additionally it was often very difficult to clearly identify the causes of such disturbances. (au)

  15. [Development And Validation Of A Breastfeeding Knowledge And Skills Questionnaire].

    Science.gov (United States)

    Gómez Fernández-Vegue, M; Menéndez Orenga, M

    2015-12-01

    Pediatricians play a key role in the onset and duration of breastfeeding. Although it is known that they lack formal education on this subject, there are currently no validated tools available to assess pediatrician knowledge regarding breastfeeding. To develop and validate a Breastfeeding Knowledge and Skills Questionnaire for Pediatricians. Once the knowledge areas were defined, a representative sample of pediatricians was chosen to carry out the survey. After pilot testing, non-discriminating questions were removed. Content validity was assessed by 14 breastfeeding experts, who examined the test, yielding 22 scorable items (maximum score: 26 points). To approach criterion validity, it was hypothesized that a group of pediatricians with a special interest in breastfeeding (1) would obtain better results than pediatricians from a hospital without a maternity ward (2), and the latter would obtain a higher score than the medical residents of Pediatrics training in the same hospital (3). The questionnaire was also evaluated before and after a basic course in breastfeeding. Breastfeeding experts have an index of agreement of >.90 for each item. The 3 groups (n=82) were compared, finding significant differences between group (1) and the rest. Moreover, an improvement was observed in the participants who attended the breastfeeding course (n=31), especially among those with less initial knowledge. Regarding reliability, internal consistency (KR-20=.87), interobserver agreement, and temporal stability were examined, with satisfactory results. A practical and self-administered tool is presented to assess pediatrician knowledge regarding breastfeeding, with a documented validity and reliability. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  16. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til [Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany) and Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany); Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany); Philips Healthcare, X-Ray Pre-Development, Veenpluis 4-6, 5684PC Best (Netherlands); Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany)

    2010-09-15

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  17. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    International Nuclear Information System (INIS)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til

    2010-01-01

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  18. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    Energy Technology Data Exchange (ETDEWEB)

    Gerde, P. [National Inst. for Working Life, Solna (Sweden); Muggenburg, B.A.; Thornton-Manning, J.R. [and others

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipid membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled

  19. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  20. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  1. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  2. Energy performance of a ventilated façade by simulation with experimental validation

    International Nuclear Information System (INIS)

    Aparicio-Fernández, Carolina; Vivancos, José-Luis; Ferrer-Gisbert, Pablo; Royo-Pastor, Rafael

    2014-01-01

    A model for a building with ventilated façade was created using the software tool TRNSYS, version 17, and airflow parameters were simulated using TRNFlow. The results obtained with the model are compared and validated with experimental data. The temperature distribution along the air cavity was analysed and a chimney effect was observed, which produced the highest temperature gradient on the first floor. The heat flux of the external wall was analysed, and greater temperatures were observed on the external layer and inside the cavity. The model allows to calculate the energy demand of the building façade proposing and evaluating passive strategies. The corresponding office building for computer laboratories located in Valencia (Spain), was monitored for a year. The thermal behaviour of the floating external sheet was analysed using an electronic panel designed for the reading and storage of data. A feasibility study of the recovery of hot air inside the façade into the building was performed. The results obtained showed a lower heating demand when hot air is introduced inside the building, increasing the efficiency of heat recovery equipment. - Highlights: •An existing office building was monitored for a year. •A model of a ventilated façade by TRNSYS simulation tool was validated. •Air flow parameters inside the ventilated façade were identified. •Recovery of the hot air inside the façade for input into the building was studied

  3. Development and validation of an asthma first aid knowledge questionnaire.

    Science.gov (United States)

    Luckie, Kate; Pang, Tsz Chun; Kritikos, Vicky; Saini, Bandana; Moles, Rebekah Jane

    2018-05-01

    There is no gold standard outcome assessment for asthma first-aid knowledge. We therefore aimed to develop and validate an asthma first-aid knowledge questionnaire (AFAKQ) to be used before and after educational interventions. The AFAKQ was developed based on a content analysis of existing asthma knowledge questionnaires and current asthma management guidelines. Content and face validity was performed by a review panel consisting of expert respiratory physicians, researchers and parents of school aged children. A 21 item questionnaire was then pilot tested among a sample of caregivers, health professionals and pharmacy students. Exploratory Factor analysis was performed to determine internal consistency. The initial 46 item version of the AFAKQ, was reduced to 21 items after revision by the expert panel. This was then pilot tested amongst 161 participants and further reduced to 14 items. The exploratory factor analysis revealed a parsimonious one factor solution with a Cronbach's Alpha of 0.77 with the 14 item AFAKQ. The AFAKQ is a valid tool ready for application in evaluating the impact of educational interventions on asthma first-aid knowledge. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Development and face validation of strategies for improving consultation skills.

    Science.gov (United States)

    Lefroy, Janet; Thomas, Adam; Harrison, Chris; Williams, Stephen; O'Mahony, Fidelma; Gay, Simon; Kinston, Ruth; McKinley, R K

    2014-12-01

    While formative workplace based assessment can improve learners' skills, it often does not because the procedures used do not facilitate feedback which is sufficiently specific to scaffold improvement. Provision of pre-formulated strategies to address predicted learning needs has potential to improve the quality and automate the provision of written feedback. To systematically develop, validate and maximise the utility of a comprehensive list of strategies for improvement of consultation skills through a process involving both medical students and their clinical primary and secondary care tutors. Modified Delphi study with tutors, modified nominal group study with students with moderation of outputs by consensus round table discussion by the authors. 35 hospital and 21 GP tutors participated in the Delphi study and contributed 153 new or modified strategies. After review of these and the 205 original strategies, 265 strategies entered the nominal group study to which 46 year four and five students contributed, resulting in the final list of 249 validated strategies. We have developed a valid and comprehensive set of strategies which are considered useful by medical students. This list can be immediately applied by any school which uses the Calgary Cambridge Framework to inform the content of formative feedback on consultation skills. We consider that the list could also be mapped to alternative skills frameworks and so be utilised by schools which do not use the Calgary Cambridge Framework.

  5. Development and validation of the primary care team dynamics survey.

    Science.gov (United States)

    Song, Hummy; Chien, Alyna T; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Hacker, Karen; Rosenthal, Meredith B; Singer, Sara J

    2015-06-01

    To develop and validate a survey instrument designed to measure team dynamics in primary care. We studied 1,080 physician and nonphysician health care professionals working at 18 primary care practices participating in a learning collaborative aimed at improving team-based care. We developed a conceptual model and administered a cross-sectional survey addressing team dynamics, and we assessed reliability and discriminant validity of survey factors and the overall survey's goodness-of-fit using structural equation modeling. We administered the survey between September 2012 and March 2013. Overall response rate was 68 percent (732 respondents). Results support a seven-factor model of team dynamics, suggesting that conditions for team effectiveness, shared understanding, and three supportive processes are associated with acting and feeling like a team and, in turn, perceived team effectiveness. This model demonstrated adequate fit (goodness-of-fit index: 0.91), scale reliability (Cronbach's alphas: 0.71-0.91), and discriminant validity (average factor correlations: 0.49). It is possible to measure primary care team dynamics reliably using a 29-item survey. This survey may be used in ambulatory settings to study teamwork and explore the effect of efforts to improve team-based care. Future studies should demonstrate the importance of team dynamics for markers of team effectiveness (e.g., work satisfaction, care quality, clinical outcomes). © Health Research and Educational Trust.

  6. Construct validity of the Moral Development Scale for Professionals (MDSP

    Directory of Open Access Journals (Sweden)

    Söderhamn O

    2011-05-01

    Full Text Available Olle Söderhamn1,2, John Olav Bjørnestad1, Anne Skisland1, Christina Cliffordson21Faculty of Health and Sport Sciences, University of Agder, Grimstad and Kristiansand, Norway; 2Department of Nursing, Health and Culture, University West, Trollhättan, SwedenAbstract: The aim of this study was to investigate the construct validity of the Moral Development Scale for Professionals (MDSP using structural equation modeling. The instrument is a 12-item self-report instrument, developed in the Scandinavian cultural context and based on Kohlberg’s theory. A hypothesized simplex structure model underlying the MDSP was tested through structural equation modeling. Validity was also tested as the proportion of respondents older than 20 years that reached the highest moral level, which according to the theory should be small. A convenience sample of 339 nursing students with a mean age of 25.3 years participated. Results confirmed the simplex model structure, indicating that MDSP reflects a moral construct empirically organized from low to high. A minority of respondents >20 years of age (13.5% scored more than 80% on the highest moral level. The findings support the construct validity of the MDSP and the stages and levels in Kohlberg’s theory.Keywords: Kohlberg, scale testing, simplex structure model, structural equation modeling

  7. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  8. Examining the ecological validity of the Talent Development Environment Questionnaire.

    Science.gov (United States)

    Martindale, Russell J J; Collins, Dave; Douglas, Carl; Whike, Ally

    2013-01-01

    It is clear that high class expertise and effective practice exists within many talent development environments across the world. However, there is also a general consensus that widespread evidence-based policy and practice is lacking. As such, it is crucial to develop solutions which can facilitate effective dissemination of knowledge and promotion of evidence-based talent development systems. While the Talent Development Environment Questionnaire (Martindale et al., 2010 ) provides a method through which this could be facilitated, its ecological validity has remained untested. As such, this study aimed to investigate the real world applicability of the questionnaire through discriminant function analysis. Athletes across ten distinct regional squads and academies were identified and separated into two broad levels, 'higher quality' (n = 48) and 'lower quality' (n = 51) environments, based on their process quality and productivity. Results revealed that the Talent Development Environment Questionnaire was able to discriminate with 77.8% accuracy. Furthermore, in addition to the questionnaire as a whole, two individual features, 'quality preparation' (P < 0.01) and 'understanding the athlete' (P < 0.01), were found to be significant discriminators. In conclusion, the results indicate robust structural properties and sound ecological validity, allowing the questionnaire to be used with more confidence in applied and research settings.

  9. Development and validation of the Single Item Narcissism Scale (SINS).

    Science.gov (United States)

    Konrath, Sara; Meier, Brian P; Bushman, Brad J

    2014-01-01

    The narcissistic personality is characterized by grandiosity, entitlement, and low empathy. This paper describes the development and validation of the Single Item Narcissism Scale (SINS). Although the use of longer instruments is superior in most circumstances, we recommend the SINS in some circumstances (e.g. under serious time constraints, online studies). In 11 independent studies (total N = 2,250), we demonstrate the SINS' psychometric properties. The SINS is significantly correlated with longer narcissism scales, but uncorrelated with self-esteem. It also has high test-retest reliability. We validate the SINS in a variety of samples (e.g., undergraduates, nationally representative adults), intrapersonal correlates (e.g., positive affect, depression), and interpersonal correlates (e.g., aggression, relationship quality, prosocial behavior). The SINS taps into the more fragile and less desirable components of narcissism. The SINS can be a useful tool for researchers, especially when it is important to measure narcissism with constraints preventing the use of longer measures.

  10. Development and validation of analytical methods for dietary supplements

    International Nuclear Information System (INIS)

    Sullivan, Darryl; Crowley, Richard

    2006-01-01

    The expanding use of innovative botanical ingredients in dietary supplements and foods has resulted in a flurry of research aimed at the development and validation of analytical methods for accurate measurement of active ingredients. The pressing need for these methods is being met through an expansive collaborative initiative involving industry, government, and analytical organizations. This effort has resulted in the validation of several important assays as well as important advances in the method engineering procedures which have improved the efficiency of the process. The initiative has also allowed researchers to hurdle many of the barricades that have hindered accurate analysis such as the lack of reference standards and comparative data. As the availability for nutraceutical products continues to increase these methods will provide consumers and regulators with the scientific information needed to assure safety and dependable labeling

  11. Development and preliminary validation of flux map processing code MAPLE

    International Nuclear Information System (INIS)

    Li Wenhuai; Zhang Xiangju; Dang Zhen; Chen Ming'an; Lu Haoliang; Li Jinggang; Wu Yuanbao

    2013-01-01

    The self-reliant flux map processing code MAPLE was developed by China General Nuclear Power Corporation (CGN). Weight coefficient method (WCM), polynomial expand method (PEM) and thin plane spline (TPS) method were applied to fit the deviation between measured and predicted detector signal results for two-dimensional radial plane, to interpolate or extrapolate the non-instrumented location deviation. Comparison of results in the test cases shows that the TPS method can better capture the information of curved fitting lines than the other methods. The measured flux map data of the Lingao Nuclear Power Plant were processed using MAPLE as validation test cases, combined with SMART code. Validation results show that the calculation results of MAPLE are reasonable and satisfied. (authors)

  12. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)

    2018-02-13

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.

  13. Development and validation of a mass casualty conceptual model.

    Science.gov (United States)

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  14. Development and validation of a smartphone addiction scale (SAS.

    Directory of Open Access Journals (Sweden)

    Min Kwon

    Full Text Available OBJECTIVE: The aim of this study was to develop a self-diagnostic scale that could distinguish smartphone addicts based on the Korean self-diagnostic program for Internet addiction (K-scale and the smartphone's own features. In addition, the reliability and validity of the smartphone addiction scale (SAS was demonstrated. METHODS: A total of 197 participants were selected from Nov. 2011 to Jan. 2012 to accomplish a set of questionnaires, including SAS, K-scale, modified Kimberly Young Internet addiction test (Y-scale, visual analogue scale (VAS, and substance dependence and abuse diagnosis of DSM-IV. There were 64 males and 133 females, with ages ranging from 18 to 53 years (M = 26.06; SD = 5.96. Factor analysis, internal-consistency test, t-test, ANOVA, and correlation analysis were conducted to verify the reliability and validity of SAS. RESULTS: Based on the factor analysis results, the subscale "disturbance of reality testing" was removed, and six factors were left. The internal consistency and concurrent validity of SAS were verified (Cronbach's alpha = 0.967. SAS and its subscales were significantly correlated with K-scale and Y-scale. The VAS of each factor also showed a significant correlation with each subscale. In addition, differences were found in the job (p<0.05, education (p<0.05, and self-reported smartphone addiction scores (p<0.001 in SAS. CONCLUSIONS: This study developed the first scale of the smartphone addiction aspect of the diagnostic manual. This scale was proven to be relatively reliable and valid.

  15. Development and validation of a 10-year-old child ligamentous cervical spine finite element model.

    Science.gov (United States)

    Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H

    2013-12-01

    Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.

  16. Multiphysics modelling and experimental validation of an air-coupled array of PMUTs with residual stresses

    Science.gov (United States)

    Massimino, G.; Colombo, A.; D'Alessandro, L.; Procopio, F.; Ardito, R.; Ferrera, M.; Corigliano, A.

    2018-05-01

    In this paper a complete multiphysics modelling via the finite element method (FEM) of an air-coupled array of piezoelectric micromachined ultrasonic transducers (PMUT) and its experimental validation are presented. Two numerical models are described for the single transducer, axisymmetric and 3D, with the following features: the presence of fabrication induced residual stresses, which determine a non-linear initial deformed configuration of the diaphragm and a substantial fundamental mode frequency shift; the multiple coupling between different physics, namely electro-mechanical coupling for the piezo-electric model, thermo-acoustic-structural interaction and thermo-acoustic-pressure interaction for the waves propagation in the surrounding fluid. The model for the single transducer is enhanced considering the full set of PMUTs belonging to the silicon dye in a 4 × 4 array configuration. The results of the numerical multiphysics models are compared with experimental ones in terms of the initial static pre-deflection, of the diaphragm central point spectrum and of the sound intensity at 3.5 cm on the vertical direction along the axis of the diaphragm.

  17. A mathematical model for hydrogen evolution in an electrochemical cell and experimental validation

    International Nuclear Information System (INIS)

    Mahmut D Mat; Yuksel Kaplan; Beycan Ibrahimoglu; Nejat Veziroglu; Rafig Alibeyli; Sadiq Kuliyev

    2006-01-01

    Electrochemical reaction is largely employed in various industrial areas such as hydrogen production, chlorate process, electroplating, metal purification etc. Most of these processes often take place with gas evaluation on the electrodes. Presence of gas phase in the liquid phase makes the problem two-phase flow which is much knowledge available from heat transfer and fluid mechanics studies. The motivation of this study is to investigate hydrogen release in an electrolysis processes from two-phase flow point of view and investigate effect of gas release on the electrolysis process. Hydrogen evolution, flow field and current density distribution in an electrochemical cell are investigated with a two-phase flow model. The mathematical model involves solutions of transport equations for the variables of each phase with allowance for inter phase transfer of mass and momentum. An experimental set-up is established to collect data to validate and improve the mathematical model. Void fraction is determined from measurement of resistivity changes in the system due to the presence of bubbles. A good agreement is obtained between numerical results and experimental data. (authors)

  18. Experimental and Numerical Investigations on Feasibility and Validity of Prismatic Rock Specimen in SHPB

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2016-01-01

    Full Text Available The paper presents experimental and numerical studies on the feasibility and validity of using prismatic rock specimens in split Hopkinson pressure bar (SHPB test. Firstly, the experimental tests are conducted to evaluate the stress and strain uniformity in the prismatic specimens during impact loading. The stress analysis at the ends of the specimen shows that stress equilibrium can be achieved after about three wave reflections in the specimen, and the balance can be well maintained for a certain time after peak stress. The strain analysis reveals that the prismatic specimen deforms uniformly during the dynamic loading period. Secondly, numerical simulation is performed to further verify the stress and strain uniformity in the prismatic specimen in SHPB test. It indicates that the stress equilibrium can be achieved in prismatic specimen despite a certain degree of stress concentration at the corners. The comparative experiments demonstrate that the change of specimen shape has no significant effect on dynamic responses and failure patterns of the specimen. Finally, a dynamic crack propagation test is presented to show the application of the present work in studying fracturing mechanisms under dynamic loading.

  19. Intrapreneurial competencies: development and validation of a measurement scale

    Directory of Open Access Journals (Sweden)

    Tomás Vargas-Halabí

    2017-07-01

    Full Text Available Purpose - Few models have attempted to explain intrapreneurial behavior from the perspective of competencies. Therefore, the purpose of this paper is to contribute along this line by developing and validating a scale to measure intrapreneurial competencies for a Costa Rican organizational context. Design/methodology/approach - A three stage process was followed. The first stage considered literature review, expert judgment, cognitive interviews, and back-translation. In the second stage, the questionnaire was administered to a sample of 543 university professionals who worked mainly in private organizations in Costa Rica. The third stage led to evaluate of the proposed scale’s psychometric properties, including, exploratory factor analysis procedure performing by SPSS 19; confirmatory factor analysis procedures by means of structural equation modeling using EQS 6.2 version and finally, a linear regression model to obtain evidence of external criterion-related validity, performed by SPSS 19. Findings - This study provides evidence of five sub-dimensions of employee attributes, i.e., “opportunity promoter”, “proactivity”, “flexibility”, “drive”, and “risk taking” that constitute a higher-level construct called intrapreneurial competencies. The scale provided evidence of convergent, discriminant, and criterion-related validity – the latter, using an employee innovative behavior scale. Originality/value - The model offers a first step to continue studies that aim at developing a robust model of intrapreneurial competencies. This potential predictive capacity of an instrument of this nature would be useful for the business sector, particularly as a diagnostic instrument to strengthen processes of staff development in areas that promote the development of innovation and the creation of new businesses for the company.

  20. Development and Validation of an Automated Step Ergometer

    Directory of Open Access Journals (Sweden)

    C. de Sousa Maria do Socorro

    2014-12-01

    Full Text Available Laboratory ergometers have high costs, becoming inaccessible for most of the population, hence, it is imperative to develop affordable devices making evaluations like cardiorespiratory fitness feasible and easier. The objective of this study was to develop and validate an Automated Step Ergometer (ASE, adjusted according to the height of the subject, for predicting VO2max through a progressive test. The development process was comprised by three steps, the theoretical part, the prototype assembly and further validation. The ASE consists in an elevating platform that makes the step at a higher or lower level as required for testing. The ASE validation was obtained by comparing the values of predicted VO2max (equation and direct gas analysis on the prototype and on a, treadmill. For the validation process 167 subjects with average age of 31.24 ± 14.38 years, of both genders and different degrees of cardiorespiratory fitness, were randomized and divided by gender and training condition, into untrained (n=106, active (n=24 and trained (n=37 subjects. Each participant performed a progressive test on which the ASE started at the same height (20 cm for all. Then, according to the subject’s height, it varied to a maximum of 45 cm. Time in each stage and rhythm was chosen in accordance with training condition from lowest to highest (60-180 s; 116-160 bpm, respectively. Data was compared with the student’s t test and ANOVA; correlations were tested with Pearson’s r. The value of α was set at 0.05. No differences were found between the predicted VO2max and the direct gas analysis VO2max, nor between the ASE and treadmill VO2max (p= 0.365 with high correlation between ergometers (r= 0.974. The values for repeatability, reproducibility, and reliability of male and female groups measures were, respectively, 4.08 and 5.02; 0.50 and 1.11; 4.11 and 5.15. The values of internal consistency (Cronbach’s alpha among measures were all >0.90. It was verified

  1. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  2. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data

    DEFF Research Database (Denmark)

    Kamruzzaman, M.; Lutz, Th.; Würz, W.

    2012-01-01

    This paper describes an extensive assessment and a step by step validation of different turbulent boundary-layer trailing-edge noise prediction schemes developed within the European Union funded wind energy project UpWind. To validate prediction models, measurements of turbulent boundary-layer pr...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd.......-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re  =  2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...

  3. Modeling of the behavior of radon and its decay products in dwelling, and experimental validation of the model

    International Nuclear Information System (INIS)

    Gouronnec, A.M.; Robe, M.C.; Montassier, N.; Boulaud, D.

    1993-01-01

    A model of the type written by Jacobi is adapted to indoor air to describe the behavior of radon and its decay products within a dwelling, and is then adapted to a system of several stories. To start the validation of the model, computed data are compared with field measurements. The first observations we may make are that the model is consistent with data we have. But it is important to develop an exhaustive set of experimental data and to obtain as faithful as possible a representation of the mean situation; this specially concerns the ventilation rate of the enclosure and the rate of attachment to airborne particles. Further work should also be done to model deposition on surfaces. (orig.). (6 refs., 4 tabs.)

  4. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  5. Analysis of residual stresses due to roll-expansion process: Finite element computation and validation by experimental tests

    International Nuclear Information System (INIS)

    Aufaure, M.; Boudot, R.; Zacharie, G.; Proix, J.M.

    1987-01-01

    The steam generator heat exchangers of pressurized water reactors are made of U-shaped tubes, both ends of them being fixed to a plate by roll-expansion. This process consists in increasing the tube section by means of a rotating tool in order to apply its outer side to the surface of the hole through the plate. As reported by de Keroulas (1986), in service cracks appeared on these tubes in the transition from expanded to nonexpanded portions. So we developed a program to compute residual stresses at the surface of the tubes, which caused their cracking, and to endeavour to lower their level by acting on some parameters. This program was validated by experimental tests. (orig.)

  6. Development and Validation of the Eating Loss of Control Scale

    Science.gov (United States)

    Blomquist, Kerstin K.; Roberto, Christina A.; Barnes, Rachel D.; White, Marney A.; Masheb, Robin M.; Grilo, Carlos M.

    2014-01-01

    Recurrent objective bulimic episodes (OBE) are a defining diagnostic characteristic of binge eating disorder (BED) and bulimia nervosa (BN). OBEs are characterized by experiencing loss of control (LOC) while eating an unusually large quantity of food. Despite nosological importance and complex heterogeneity across patients, measurement of LOC has been assessed dichotomously (present/absent). This study describes the development and initial validation of the Eating Loss of Control Scale (ELOCS), a self-report questionnaire that examines the complexity of the LOC construct. Participants were 168 obese treatment-seeking individuals with BED who completed the Eating Disorder Examination interview and self-report measures. Participants rated their LOC-related feelings or behaviors on continuous Likert-type scales and reported the number of LOC episodes in the past 28 days. Principal component analysis identified a single-factor, 18-item scale, which demonstrated good internal reliability (α=0.90). Frequency of LOC episodes was significantly correlated with frequency of OBEs and subjective bulimic episodes. The ELOCS demonstrated good convergent validity and was significantly correlated with greater eating pathology, greater emotion dysregulation, greater depression, and lower self-control, but not with BMI. The findings suggest that the ELOCS is a valid self-report questionnaire that may provide important clinical information regarding experiences of LOC in obese persons with BED. Future research should examine the ELOCS in other eating disorders and non-clinical samples. PMID:24219700

  7. Development and validation of Neonatal Satisfaction Survey--NSS-13.

    Science.gov (United States)

    Hagen, Inger H; Vadset, Tove B; Barstad, Johan; Svindseth, Marit F

    2015-06-01

    The purpose of this study was to develop and validate a survey to investigate parents' satisfaction with neonatal wards in a population of parents of children with a gestation age of ≥24 weeks to 3 months after full-term birth. We explored the literature and conducted three focus groups: two with expert health personnel and one with parents. We tested the survey in a parent population (N = 105) and report the different stages in the validation process along with the full survey, the Neonatal Satisfaction Survey - 13 categories (NSS-13). We found 13 subcategories in the Neonatal Satisfaction Survey. The subcategories measure parents' satisfaction with neonatal units based on staff, admission, nurses, anxiety, siblings (parents' perceptions of caring for the siblings of the newborn), information, timeout, doctors, facilities, nutrition, preparation for discharge, trust and visitors. Each subcategory showed acceptable internal consistency. The full version of the Neonatal Satisfaction Survey presents 69 items, and each subcategory contains two to eleven items. The Neonatal Satisfaction Survey seems suitable to measure parents' satisfaction with neonatal units and can be used in full, but it can also measure subcategories. Parents' satisfaction with neonatal units can be used to improve the quality in such wards. We consider this study as the first in a series to validate the NSS-13. The full survey with subcategories is presented in this paper. © 2014 Nordic College of Caring Science.

  8. Development and validation of the Smartphone Addiction Inventory (SPAI).

    Science.gov (United States)

    Lin, Yu-Hsuan; Chang, Li-Ren; Lee, Yang-Han; Tseng, Hsien-Wei; Kuo, Terry B J; Chen, Sue-Huei

    2014-01-01

    The aim of this study was to develop a self-administered scale based on the special features of smartphone. The reliability and validity of the Smartphone Addiction Inventory (SPAI) was demonstrated. A total of 283 participants were recruited from Dec. 2012 to Jul. 2013 to complete a set of questionnaires, including a 26-item SPAI modified from the Chinese Internet Addiction Scale and phantom vibration and ringing syndrome questionnaire. There were 260 males and 23 females, with ages 22.9 ± 2.0 years. Exploratory factor analysis, internal-consistency test, test-retest, and correlation analysis were conducted to verify the reliability and validity of the SPAI. Correlations between each subscale and phantom vibration and ringing were also explored. Exploratory factor analysis yielded four factors: compulsive behavior, functional impairment, withdrawal and tolerance. Test-retest reliabilities (intraclass correlations  = 0.74-0.91) and internal consistency (Cronbach's α = 0.94) were all satisfactory. The four subscales had moderate to high correlations (0.56-0.78), but had no or very low correlation to phantom vibration/ringing syndrome. This study provides evidence that the SPAI is a valid and reliable, self-administered screening tool to investigate smartphone addiction. Phantom vibration and ringing might be independent entities of smartphone addiction.

  9. Development and validation of the Smartphone Addiction Inventory (SPAI.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lin

    Full Text Available OBJECTIVE: The aim of this study was to develop a self-administered scale based on the special features of smartphone. The reliability and validity of the Smartphone Addiction Inventory (SPAI was demonstrated. METHODS: A total of 283 participants were recruited from Dec. 2012 to Jul. 2013 to complete a set of questionnaires, including a 26-item SPAI modified from the Chinese Internet Addiction Scale and phantom vibration and ringing syndrome questionnaire. There were 260 males and 23 females, with ages 22.9 ± 2.0 years. Exploratory factor analysis, internal-consistency test, test-retest, and correlation analysis were conducted to verify the reliability and validity of the SPAI. Correlations between each subscale and phantom vibration and ringing were also explored. RESULTS: Exploratory factor analysis yielded four factors: compulsive behavior, functional impairment, withdrawal and tolerance. Test-retest reliabilities (intraclass correlations  = 0.74-0.91 and internal consistency (Cronbach's α = 0.94 were all satisfactory. The four subscales had moderate to high correlations (0.56-0.78, but had no or very low correlation to phantom vibration/ringing syndrome. CONCLUSION: This study provides evidence that the SPAI is a valid and reliable, self-administered screening tool to investigate smartphone addiction. Phantom vibration and ringing might be independent entities of smartphone addiction.

  10. The Online Social Support Scale: Measure development and validation.

    Science.gov (United States)

    Nick, Elizabeth A; Cole, David A; Cho, Sun-Joo; Smith, Darcy K; Carter, T Grace; Zelkowitz, Rachel L

    2018-05-21

    A new measure, the Online Social Support Scale, was developed based on previous theory, research, and measurement of in-person social support. It includes four subscales: Esteem/Emotional Support, Social Companionship, Informational Support, and Instrumental Support. In college and community samples, factor analytic and item response theory results suggest that subtypes of in-person social support also pertain in the online world. Evidence of reliability, convergent validity, and discriminant validity provide excellent psychometric support for the measure. Construct validity accrues to the measure vis-à-vis support for three hypotheses: (a) Various broad types of Internet platforms for social interactions are differentially associated with online social support and online victimization; (b) similar to in-person social support, online social support offsets the adverse effect of negative life events on self-esteem and depression-related outcome; and (c) online social support counteracts the effects of online victimization in much the same way that in-person friends in one social niche counterbalance rejection in other social niches. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Development and Validation of the Smartphone Addiction Inventory (SPAI)

    Science.gov (United States)

    Lin, Yu-Hsuan; Chang, Li-Ren; Lee, Yang-Han; Tseng, Hsien-Wei; Kuo, Terry B. J.; Chen, Sue-Huei

    2014-01-01

    Objective The aim of this study was to develop a self-administered scale based on the special features of smartphone. The reliability and validity of the Smartphone Addiction Inventory (SPAI) was demonstrated. Methods A total of 283 participants were recruited from Dec. 2012 to Jul. 2013 to complete a set of questionnaires, including a 26-item SPAI modified from the Chinese Internet Addiction Scale and phantom vibration and ringing syndrome questionnaire. There were 260 males and 23 females, with ages 22.9±2.0 years. Exploratory factor analysis, internal-consistency test, test-retest, and correlation analysis were conducted to verify the reliability and validity of the SPAI. Correlations between each subscale and phantom vibration and ringing were also explored. Results Exploratory factor analysis yielded four factors: compulsive behavior, functional impairment, withdrawal and tolerance. Test–retest reliabilities (intraclass correlations  = 0.74–0.91) and internal consistency (Cronbach's α = 0.94) were all satisfactory. The four subscales had moderate to high correlations (0.56–0.78), but had no or very low correlation to phantom vibration/ringing syndrome. Conclusion This study provides evidence that the SPAI is a valid and reliable, self-administered screening tool to investigate smartphone addiction. Phantom vibration and ringing might be independent entities of smartphone addiction. PMID:24896252

  12. A Measure of Perceived Chronic Social Adversity: Development and Validation

    Directory of Open Access Journals (Sweden)

    Jingqiu Zhang

    2017-12-01

    Full Text Available The goal of this study was to develop a measure that assesses negative daily social encounters. Specifically, we examined the concept of perceived chronic social adversity and its assessment, the Perceived Chronic Social Adversity Questionnaire (PCSAQ. The PCSAQ focused on the subjective processing of daily social experiences. Psychometric properties were examined within two non-clinical samples (N = 331 and N = 390 and one clinical sample (N = 86. Exploratory and confirmatory factor analyses supported a three-factor model of the PCSAQ, which corresponds to three types of daily social stressors. The final 28-item PCSAQ was shown to be internally consistent, and to have good construct validity in terms of factor structure and group differences. It was also shown to have good concurrent validity in terms of association with outcome variables (sense of control, happiness, and mood and anxiety symptoms. Perceived chronic social adversity was also shown to be correlated with PTSD severity. Taken together, these findings suggest that the PCSAQ is a reliable, valid, and useful measure that can be used to assess negative social and clinical aspects of personal experiences. This study is an important exploratory step in improving our understanding of the relationship between the cumulative effect of negative social encounters and psychological difficulty.

  13. Development, Validation, and Implementation of a Medical Judgment Metric

    Directory of Open Access Journals (Sweden)

    Rami A. Ahmed DO, MHPE

    2017-06-01

    Full Text Available Background: Medical decision making is a critical, yet understudied, aspect of medical education. Aims: To develop the Medical Judgment Metric (MJM, a numerical rubric to quantify good decisions in practice in simulated environments; and to obtain initial preliminary evidence of reliability and validity of the tool. Methods: The individual MJM items, domains, and sections of the MJM were built based on existing standardized frameworks. Content validity was determined by a convenient sample of eight experts. The MJM instrument was pilot tested in four medical simulations with a team of three medical raters assessing 40 participants with four levels of medical experience and skill. Results: Raters were highly consistent in their MJM scores in each scenario (intraclass correlation coefficient 0.965 to 0.987 as well as their evaluation of the expected patient outcome (Fleiss’s Kappa 0.791 to 0.906. For each simulation scenario, average rater cut-scores significantly predicted expected loss of life or stabilization (Cohen’s Kappa 0.851 to 0.880. Discussion : The MJM demonstrated preliminary evidence of reliability and validity.

  14. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  15. Is it sensible to “deform” dose? 3D experimental validation of dose-warping

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Supple, J. R.; Smith, R. L.; Dunn, L.; Kron, T.; Franich, R. D.

    2012-01-01

    Purpose: Strategies for dose accumulation in deforming anatomy are of interest in radiotherapy. Algorithms exist for the deformation of dose based on patient image sets, though these are sometimes contentious because not all such image calculations are constrained by physical laws. While tumor and organ motion has been a key area of study for a considerable amount of time, deformation is of increasing interest. In this work, we demonstrate a full 3D experimental validation of results from a range of dose deformation algorithms available in the public domain. Methods: We recently developed the first tissue-equivalent, full 3D deformable dosimetric phantom—“DEFGEL.” To assess the accuracy of dose-warping based on deformable image registration (DIR), we have measured doses in undeformed and deformed states of the DEFGEL dosimeter and compared these to planned doses and warped doses. In this way we have directly evaluated the accuracy of dose-warping calculations for 11 different algorithms. We have done this for a range of stereotactic irradiation schemes and types and magnitudes of deformation. Results: The original Horn and Schunck algorithm is shown to be the best performing of the 11 algorithms trialled. Comparing measured and dose-warped calculations for this method, it is found that for a 10 × 10 mm 2 square field, γ 3%/3mm = 99.9%; for a 20 × 20 mm 2 cross-shaped field, γ 3%/3mm = 99.1%; and for a multiple dynamic arc (0.413 cm 3 PTV) treatment adapted from a patient treatment plan, γ 3%/3mm = 95%. In each case, the agreement is comparable to—but consistently ∼1% less than—comparison between measured and calculated (planned) dose distributions in the absence of deformation. The magnitude of the deformation, as measured by the largest displacement experienced by any voxel in the volume, has the greatest influence on the accuracy of the warped dose distribution. Considering the square field case, the smallest deformation (∼9 mm) yields

  16. Development and Validation of the Consumer Health Activation Index.

    Science.gov (United States)

    Wolf, Michael S; Smith, Samuel G; Pandit, Anjali U; Condon, David M; Curtis, Laura M; Griffith, James; O'Conor, Rachel; Rush, Steven; Bailey, Stacy C; Kaplan, Gordon; Haufle, Vincent; Martin, David

    2018-04-01

    Although there has been increasing interest in patient engagement, few measures are publicly available and suitable for patients with limited health literacy. We sought to develop a Consumer Health Activation Index (CHAI) for use among diverse patients. Expert opinion, a systematic literature review, focus groups, and cognitive interviews with patients were used to create and revise a potential set of items. Psychometric testing guided by item response theory was then conducted among 301 English-speaking, community-dwelling adults. This included differential item functioning analyses to evaluate item performance across participant health literacy levels. To determine construct validity, CHAI scores were compared to scales measuring similar personality constructs. Associations between the CHAI and physical and mental health established predictive validity. A second study among 9,478 adults was used to confirm CHAI associations with health outcomes. Exploratory factor analyses revealed a single-factor solution with a 10-item scale. The CHAI showed good internal consistency (alpha = 0.81) and moderate test-retest reliability (ICC = 0.53). Reading grade level was found to be at the 6 th grade. Moderate to strong correlations were found with similar constructs (Multidimensional Health Locus of Control, r = 0.38, P measures (depression, r = -0.28, P < 0.001; anxiety, r = -0.22, P < 0.001; and physical functioning, r = 0.22, P < 0.001). In the validation sample, the CHAI was significantly associated with self-reported physical and mental health ( r = 0.31 and 0.32 respectively; both P < 0.001). The CHAI appears to be a valid, reliable, and easily administered tool that can be used to assess health activation among adults, including those with limited health literacy. Future studies should test the tool in actual use and explore further applications.

  17. Social anxiety questionnaire (SAQ): Development and preliminary validation.

    Science.gov (United States)

    Łakuta, Patryk

    2018-05-30

    The Social Anxiety Questionnaire (SAQ) was designed to assess five dimensions of social anxiety as posited by the Clark and Wells' (1995; Clark, 2001) cognitive model. The development of the SAQ involved generation of an item pool, followed by a verification of content validity and the theorized factor structure (Study 1). The final version of the SAQ was then assessed for reliability, temporal stability (test re-test reliability), and construct, criterion-related, and contrasted-group validity (Study 2, 3, and 4). Following a systematic process, the results provide support for the SAQ as reliable, and both theoretically and empirically valid measure. A five-factor structure of the SAQ verified and replicated through confirmatory factor analyses reflect five dimensions of social anxiety: negative self-processing; self-focused attention and self-monitoring; safety behaviours; somatic and cognitive symptoms; and anticipatory and post-event rumination. Results suggest that the SAQ possesses good psychometric properties, while recognizing that additional validation is a required future research direction. It is important to replicate these findings in diverse populations, including a large clinical sample. The SAQ is a promising measure that supports social anxiety as a multidimensional construct, and the foundational role of self-focused cognitive processes in generation and maintenance of social anxiety symptoms. The findings make a significant contribution to the literature, moreover, the SAQ is a first instrument that offers to assess all, proposed by the Clark-Wells model, specific cognitive-affective, physiological, attitudinal, and attention processes related to social anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Development and validation of a multidimensional measure of lean manufacturing

    Directory of Open Access Journals (Sweden)

    Juan A. Marin-Garcia

    2010-02-01

    Full Text Available In the last 30 years of research of lean manufacturing many different questionnaires was proposed to check the degree of the use of the concept. The set of the items used changed considerably from one investigation to another one. Until now isn’t appreciate a movement that converge towards the use, by the investigators, of a few instruments whose validity and reliability have been compared in different surroundings. In fact, the majority of investigations are based on ad-hoc questionnaires and a few of them present the questionnaire validation checking only the unidimensionality and -Cronbach. Nevertheless it seems to have a consensus in identifying 5 big constructs that compose the lean manufacturing (TQM, JIT, TPM, supply chain management and high-involvement. Our research has consisted of identifying and summarizing the models that have been published previously to add the items in constructs or sub-scales of constructs. Later we developed an integrating questionnaire, starting off of the items that appeared in previous investigations. Finally we realized the sub-scales and models validation through a confirmatory factorial analysis, using date of a sample of Spanish Sheltered Work Centre’s (N=128. Of all proposed models, the best an adjustment takes place with the first order model with 20 sub-scales. Our investigation contributes to an integrating vision of the published models and the lean manufacturing sub-scales validity and reliability verification raised by other investigators. Due to his confirming approach, it can serve as generalization of studies that had been realized in contexts with different samples to which we have used for the replication.

  19. The development and validation of the speech quality instrument.

    Science.gov (United States)

    Chen, Stephanie Y; Griffin, Brianna M; Mancuso, Dean; Shiau, Stephanie; DiMattia, Michelle; Cellum, Ilana; Harvey Boyd, Kelly; Prevoteau, Charlotte; Kohlberg, Gavriel D; Spitzer, Jaclyn B; Lalwani, Anil K

    2017-12-08

    Although speech perception tests are available to evaluate hearing, there is no standardized validated tool to quantify speech quality. The objective of this study is to develop a validated tool to measure quality of speech heard. Prospective instrument validation study of 35 normal hearing adults recruited at a tertiary referral center. Participants listened to 44 speech clips of male/female voices reciting the Rainbow Passage. Speech clips included original and manipulated excerpts capturing goal qualities such as mechanical and garbled. Listeners rated clips on a 10-point visual analog scale (VAS) of 18 characteristics (e.g. cartoonish, garbled). Skewed distribution analysis identified mean ratings in the upper and lower 2-point limits of the VAS (ratings of 8-10, 0-2, respectively); items with inconsistent responses were eliminated. The test was pruned to a final instrument of nine speech clips that clearly define qualities of interest: speech-like, male/female, cartoonish, echo-y, garbled, tinny, mechanical, rough, breathy, soothing, hoarse, like, pleasant, natural. Mean ratings were highest for original female clips (8.8) and lowest for not-speech manipulation (2.1). Factor analysis identified two subsets of characteristics: internal consistency demonstrated Cronbach's alpha of 0.95 and 0.82 per subset. Test-retest reliability of total scores was high, with an intraclass correlation coefficient of 0.76. The Speech Quality Instrument (SQI) is a concise, valid tool for assessing speech quality as an indicator for hearing performance. SQI may be a valuable outcome measure for cochlear implant recipients who, despite achieving excellent speech perception, often experience poor speech quality. 2b. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System.

    Science.gov (United States)

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-09-14

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  1. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Directory of Open Access Journals (Sweden)

    Joel Reis

    2016-09-01

    Full Text Available This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  2. Development and Validation of the Bicultural Youth Acculturation Questionnaire.

    Science.gov (United States)

    Kukaswadia, Atif; Janssen, Ian; Pickett, William; Bajwa, Jasmine; Georgiades, Katholiki; Lalonde, Richard N; Quon, Elizabeth C; Safdar, Saba; Pike, Ian

    2016-01-01

    Acculturation is a multidimensional process involving changes in behaviour and beliefs. Questionnaires developed to measure acculturation are typically designed for specific ethnic populations and adult experiences. This study developed a questionnaire that measures acculturation among ethnically diverse populations of youth that can be included as a module in population surveys. Questionnaires measuring acculturation in youth were identified in the literature. The importance of items from the existing questionnaires was determined using a Delphi process and this informed the development of our questionnaire. The questionnaire was then pilot tested using a sample of 248 Canadians aged 18-25 via an online system. Participants identified as East and South East Asian (27.8%), South Asian (17.7%) and Black (13.7%). The majority were 1st (33.5%) or 2nd generation immigrants (52.0%). After redundant items were eliminated, exploratory factor analysis grouped items into domains, and, for each domain, internal consistency, and convergent validity with immigrant generation then age at immigration estimated. A subset of participants re-completed the questionnaire for reliability estimation. The literature review yielded 117 articles that used 13 questionnaires with a total of 440 questions. The Delphi process reduced these to 32 questions. Pilot testing occurred in 248 Canadians aged 18-25. Following item reduction, 16 questions in three domains remained: dominant culture, heritage language, and heritage culture. All had good internal consistency (Cronbach's alphas > .75). The mean dominant domain score increased with immigrant generation (1st generation: 3.69 (95% CI: 3.49-3.89), 2nd: 4.13 (4.00-4.26), 3rd: 4.40 (4.19-4.61)), and mean heritage language score was higher among those who immigrated after age 12 than before (p = .0001), indicative of convergent validity. This Bicultural Youth Acculturation Questionnaire has demonstrated validity. It can be incorporated into

  3. Development and Validation of the Masculine Attributes Questionnaire.

    Science.gov (United States)

    Cho, Junhan; Kogan, Steven M

    2017-07-01

    The present study describes the development and validation of the Masculine Attributes Questionnaire (MAQ). The purpose of this study was to develop a theoretically and empirically grounded measure of masculine attributes for sexual health research with African American young men. Consistent with Whitehead's theory, the MAQ items were hypothesized to comprise two components representing reputation-based and respect-based attributes. The sample included 505 African American men aged 19 to 22 years ( M = 20.29, SD = 1.10) living in resource-poor communities in the rural South. Convergent and discriminant validity of the MAQ were assessed by examining the associations of masculinity attributes with psychosocial factors. Criterion validity was assessed by examining the extent to which the MAQ subscales predicted sexual risk behavior outcomes. Consistent with study hypotheses, the MAQ was composed of (a) reputation-based attributes oriented toward sexual prowess, toughness, and authority-defying behavior and (b) respect-based attributes oriented toward economic independence, socially approved levels of hard work and education, and committed romantic relationships. Reputation-based attributes were associated positively with street code and negatively related to academic orientation, vocational engagement, and self-regulation, whereas respect-based attributes were associated positively with academic and vocational orientations and self-regulation. Finally, reputation-based attributes predicted sexual risk behaviors including concurrent sexual partnerships, multiple sexual partners, marijuana use, and incarceration, net of the influence of respect-based attributes. The development of the MAQ provides a new measure that permits systematic quantitative investigation of the associations between African American men's masculinity ideology and sexual risk behavior.

  4. Underwater behaviour of bitumen coated radioactive wastes: experimental validation of the Colonbo degradation model; Comportement sous eau des dechets radioactifs bitumes: validation experimentale du modele de degradation Colonbo

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, B

    2004-03-01

    In the release scenario considered for geologic repository, water is thought to be the main aggressive agent with regards to bituminized radioactive waste (composed in general of 60 weight % of bitumen, 40% of soluble/insoluble salts and a few ppm of radionuclides). Since liquid water can diffuse in pure bitumen, leaching of bituminized waste results in the dissolution of the most soluble salts and leads to the development of a more or less concentrated saline solution-filled pore structure (called permeable layer). In consequence of the generation of a porous layer in the bituminized waste, leaching of salts and radionuclides can then take place. Research performed at the Atomic Energy Commission (CEA) aims therefore at understanding the consequences of ground-water immersion on the transport properties and radionuclides leaching of bituminized waste materials. To this end, a constitutive model (called COLONBO) which describes mathematically the leaching of bituminized waste has been developed. The COLONBO model is based on the following assumptions: 1. Water and dissolved salts migrate in the permeable layer according to Fick's first law. The diffusion of water and salts are quantified by effective diffusion coefficients which are unknown. 2. The mechanical properties of the bitumen matrix are not considered during leaching (free swelling). Up to now, the COLONBO model has been used only to model experimental water uptake and salt leach curves, leading (theoretical) estimates of the effective diffusion coefficients of water and salts in the permeable layer. The aim of this work was to validate experimentally the numerical results obtained with the COLONBO model. First, the correspondence between experimental and simulated water uptake and salt leach rates obtained on various bituminized waste materials is checked, leading estimates of the effective diffusion coefficients of water and salts in the permeable layer. Second, the evolution of the thickness and of

  5. DEVELOPING VISUAL PRESENTATION ATTITUDE RUBRIC: VALIDITY AND RELIABILITY STUDY

    OpenAIRE

    ATEŞ, Hatice KADIOĞLU; ADA, Sefer; BAYSAL, Z. Nurdan

    2015-01-01

    Abstract The aim of this study is to develop visual presentation attitude rubric which is valid and reliable for the 4th grade students. 218 students took part in this study from Engin Can Güre which located in Istanbul, Esenler. While preparing this assessment tool with 34 criterias , 6 university lecturers view have been taken who are experts in their field. The answer key sheet has 4 (likert )type options. The rubric has been first tested by Kaiser-Meyer Olkin and Bartletts tests an...

  6. Stepwise Procedure for Development and Validation of a Multipesticide Method

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    The stepwise procedure for development and the validation of so called multi-pesticide methods are described. Principles, preliminary actions, criteria for the selection of chromatographic separation, detection and performance verification of multi-pesticide methods are outlined. Also the long term repeatability and reproducibility, as well as the necessity for the documentation of laboratory work are highlighted. Appendix I hereof describes in detail the calculation of calibration parameters, whereas Appendix II focuses on the calculation of the significance of differences of concentrations obtained on two different separation columns. (author)

  7. Development and Validation of Videogame Addiction Scale for Children (VASC)

    OpenAIRE

    Y?lmaz, Ey?p; Griffiths, Mark D.; Kan, Adnan

    2017-01-01

    The aim of the present study was to develop a valid and reliable Videogame Addiction Scale for Children (VASC). The data were derived from 780 children who completed the Videogame Addiction Scale (405 girls and 375 boys; 48.1% ranging in age from 9 to 12?years). The sample was randomly split into two different sub-samples (sample 1, n?=?400; sample 2, n?=?380). Sample 1 was used to perform exploratory factor analysis (EFA) to define the factorial structure of VASC. As a result of EFA, a four-...

  8. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  9. Experimental validation of calculated capture rate for nucleus involved in fuel cycle

    International Nuclear Information System (INIS)

    Benslimane-Bouland, A.

    1997-09-01

    The framework of this study was the evaluation of the nuclear data requirements for Actinides and Fission Products applied to current nuclear reactors as well as future applications. This last item includes extended irradiation campaigns, 100 % Mixed Oxide fuel, transmutation or even incineration. The first part of this study presents different types of integral measurements which are available for capture rate measurements, as well as the methods used for reactor core calculation route design and nuclear data library validation. The second section concerns the analysis of three specific irradiation experiments. The results have shown the extent of the current knowledge on nuclear data as well as the associated uncertainties. The third and last section shows both the coherency between all the results, and the statistical method applied for nuclear data library adjustment. A relevant application of this method has demonstrated that only specifically chosen integral experiments can be of use for the validation of nuclear data libraries. The conclusion is reached that even if co-ordinated efforts between reactor and nuclear physicists have made possible a huge improvement in the knowledge of capture cross sections of the main nuclei such as uranium and plutonium, some improvements are currently necessary for the minor actinides (Np, Am and Cm). Both integral and differential measurements are recommended to improve the knowledge of minor actinide cross sections. As far as integral experiments are concerned, a set of criteria to be followed during the experimental conception have been defined in order to both reduce the number of required calculation approximations, and to increase as much as possible the maximum amount of extracted information. (author)

  10. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  11. Development and validation of a remote home safety protocol.

    Science.gov (United States)

    Romero, Sergio; Lee, Mi Jung; Simic, Ivana; Levy, Charles; Sanford, Jon

    2018-02-01

    Environmental assessments and subsequent modifications conducted by healthcare professionals can enhance home safety and promote independent living. However, travel time, expense and the availability of qualified professionals can limit the broad application of this intervention. Remote technology has the potential to increase access to home safety evaluations. This study describes the development and validation of a remote home safety protocol that can be used by a caregiver of an elderly person to video-record their home environment for later viewing and evaluation by a trained professional. The protocol was developed based on literature reviews and evaluations from clinical and content experts. Cognitive interviews were conducted with a group of six caregivers to validate the protocol. The final protocol included step-by-step directions to record indoor and outdoor areas of the home. The validation process resulted in modifications related to safety, clarity of the protocol, readability, visual appearance, technical descriptions and usability. Our final protocol includes detailed instructions that a caregiver should be able to follow to record a home environment for subsequent evaluation by a home safety professional. Implications for Rehabilitation The results of this study have several implications for rehabilitation practice The remote home safety evaluation protocol can potentially improve access to rehabilitation services for clients in remote areas and prevent unnecessary delays for needed care. Using our protocol, a patient's caregiver can partner with therapists to quickly and efficiently evaluate a patient's home before they are released from the hospital. Caregiver narration, which reflects a caregiver's own perspective, is critical to evaluating home safety. In-home safety evaluations, currently not available to all who need them due to access barriers, can enhance a patient's independence and provide a safer home environment.

  12. Full-scale experimental validation of decentralized damage identification using wireless smart sensors

    International Nuclear Information System (INIS)

    Jang, Shinae; Sim, Sung-Han; Jo, Hongki; Spencer Jr, Billie F

    2012-01-01

    Wireless smart sensor networks (WSSN) facilitate a new paradigm for structural health monitoring (SHM) of civil infrastructure. Conventionally, SHM systems employing wired sensors and centralized data acquisition have been used to characterize the state of a structure; however, widespread implementation has been limited due to high costs and difficulties in installation. WSSN offer a unique opportunity to overcome such difficulties. Recent developments have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both economical and feasible. Wireless smart sensors (WSS) have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification using on-board computation capability in a WSSN, a primary objective of SHM, has yet to reach its full potential. This paper presents full-scale validation of a damage identification strategy using a decentralized network of Imote2 nodes on a historic steel truss bridge. A total of 24 WSS nodes with 144 sensor channels are deployed on the bridge to validate the developed damage identification software. The performance of this decentralized damage identification strategy is demonstrated on the WSSN by comparing its results with those from the traditional centralized approach, as well as visual inspection. (paper)

  13. Experimental validation of a kilovoltage x-ray source model for computing imaging dose

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Yannick, E-mail: yannick.poirier@cancercare.mb.ca [CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Manitoba R3E 0V9 (Canada); Kouznetsov, Alexei; Koger, Brandon [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Tambasco, Mauro, E-mail: mtambasco@mail.sdsu.edu [Department of Physics, San Diego State University, San Diego, California 92182-1233 and Department of Physics and Astronomy and Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2014-04-15

    computed counterparts resulting in an agreement within 2.5%, 5%, and 8% within solid water, bone, and lung, respectively. Conclusions: The proposed virtual point source model and characterization method can be used to compute absorbed dose in both the homogeneous and heterogeneous block phantoms within of 2%–8% of measured values, depending on the phantom and the beam quality. The authors’ results also provide experimental validation for their kV dose computation software, kVDoseCalc.

  14. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  15. Development and validation of the Attitudes Towards Police Legitimacy Scale.

    Science.gov (United States)

    Reynolds, Joshua J; Estrada-Reynolds, Victoria; Nunez, Narina

    2018-04-01

    Although there is a substantial body of work examining attitudes towards the police, no measure has been developed to consistently capture citizens' beliefs regarding police legitimacy. Given that police conduct has garnered a great deal of attention, particularly in the last few years, the current research sought to develop a scale measuring perceptions of police legitimacy. Across multiple studies, items were created and the scale's factor structure explored (Study 1 and Study 2), the factor structure was confirmed (Study 3a), and the predictive validity of the scale was tested (Studies 3b-3d). Results provided evidence for a reliable and valid 34-item scale with a single-factor solution that predicted multiple outcomes, including justification of a police shooting (Study 3b) and resource allocation to a police charity (Study 3c), as well as correlations with self-reported criminal activity, right-wing authoritarianism, and social dominance orientation (Study 3d). We hope this scale will be useful in the study of police legitimacy, expanding the current literature, and improving police-community relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Optimization and Validation of the Developed Uranium Isotopic Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    γ-ray spectroscopy is a representative non-destructive assay for nuclear material, and less time-consuming and less expensive than the destructive analysis method. The destructive technique is more precise than NDA technique, however, there is some correction algorithm which can improve the performance of γ-spectroscopy. For this reason, an analysis code for uranium isotopic analysis is developed by Applied Nuclear Physics Group in Seoul National University. Overlapped γ- and x-ray peaks in the 89-101 keV X{sub α}-region are fitted with Gaussian and Lorentzian distribution peak functions, tail and background functions. In this study, optimizations for the full-energy peak efficiency calibration and fitting parameters of peak tail and background are performed, and validated with 24 hour acquisition of CRM uranium samples. The optimization of peak tail and background parameters are performed with the validation by using CRM uranium samples. The analysis performance is improved in HEU samples, but more optimization of fitting parameters is required in LEU sample analysis. In the future, the optimization research about the fitting parameters with various type of uranium samples will be performed. {sup 234}U isotopic analysis algorithms and correction algorithms (coincidence effect, self-attenuation effect) will be developed.

  17. Medical staff organization in nursing homes: scale development and validation.

    Science.gov (United States)

    Katz, Paul R; Karuza, Jurgis; Intrator, Orna; Zinn, Jacqueline; Mor, Vincent; Caprio, Thomas; Caprio, Anthony; Dauenhauer, Jason; Lima, Julie

    2009-09-01

    To construct a multidimensional self-report scale to measure nursing home (NH) medical staff organization (NHMSO) dimensions and then pilot the scale using a national survey of medical directors to provide data on its psychometric properties. Instrument development process consisting of the proceedings from the Nursing Home Physician Workforce Conference and focus groups followed by cognitive interviews, which culminated in a survey of a random sample of American Medical Directors Association (AMDA) affiliated medical directors. Analyses were conducted on surveys matched to Online Survey Certification and Reporting (OSCAR) data from freestanding nonpediatric nursing homes. A total of 202 surveys were available for analysis and comprised the final sample. Dimensions were identified that measured the extent of medical staff organization in nursing homes and included staff composition, appointment process, commitment (physiciancohesion; leadership turnover/capability), departmentalization (physician supervision, autonomy and interdisciplinary involvement), documentation, and informal dynamics. The items developed to measure each dimension were reliable (Cronbach's alpha ranged from 0.81 to 0.65).Intercorrelations among the scale dimensions provided preliminary evidence of the construct validity of the scale. This report, for the first time ever, defines and validates NH medical staff organization dimensions, a critical first step in determining the relationship between physician practice and the quality of care delivered in the NH.

  18. Development and validation of a Chinese music quality rating test.

    Science.gov (United States)

    Cai, Yuexin; Zhao, Fei; Zheng, Yiqing

    2013-09-01

    The present study aims to develop and validate a Chinese music quality rating test (MQRT). In Experiment 1, 22 music pieces were initially selected and paired as a 'familiar music piece' and 'unfamiliar music piece' based on familiarities amongst the general public in the categories of classical music (6), Chinese folk music (8), and pop music (8). Following the selection criteria, one pair of music pieces from each music category was selected and used for the MQRT in Experiment 2. In Experiment 2, the MQRT was validated using these music pieces in the categories 'Pleasantness', 'Naturalness', 'Fullness', 'Roughness', and 'Sharpness'. Seventy-two adult participants and 30 normal-hearing listeners were recruited in Experiments 1 and 2, respectively. Significant differences between the familiar and unfamiliar music pieces were found in respect of pleasantness rating for folk and pop music pieces as well as in sharpness rating for pop music pieces. The comparison of music category effect on MQRT found significant differences in pleasantness, fullness, and sharpness ratings. The Chinese MQRT developed in the present study is an effective tool for assessing music quality.

  19. Experimental Validation Of An Innovative Procedure For The Rolling Noise Correction

    Directory of Open Access Journals (Sweden)

    Viscardi Massimo

    2017-01-01

    Full Text Available Among the wide contest of the train vehicles rolling noise evaluation, the aim of the paper is the development, implementation and experimental testing of a new method for roughness calculation according to FprCEN/TR 16891:2015 and the successive evaluation of the correction parameters of the measured rolling noise due to the presence of not compliant rail roughness. It is, in-fact, a very often operative condition, the execution of rolling noise tests over standard in-operation rails that are characterized by roughness profiles very different from standard one as those prescribed within the ISO 3095 procedure. Very often, this difference lead to the presence of an exceeding noise that needs to be evaluated and revised for a correct definition of the phenomena. Within the paper, the procedure implementation is presented and later on verified in operative experimental contest; forecasted and measured data are compared and successively commented.

  20. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  1. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  2. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  3. Screening for postdeployment conditions: development and cross-validation of an embedded validity scale in the neurobehavioral symptom inventory.

    Science.gov (United States)

    Vanderploeg, Rodney D; Cooper, Douglas B; Belanger, Heather G; Donnell, Alison J; Kennedy, Jan E; Hopewell, Clifford A; Scott, Steven G

    2014-01-01

    To develop and cross-validate internal validity scales for the Neurobehavioral Symptom Inventory (NSI). Four existing data sets were used: (1) outpatient clinical traumatic brain injury (TBI)/neurorehabilitation database from a military site (n = 403), (2) National Department of Veterans Affairs TBI evaluation database (n = 48 175), (3) Florida National Guard nonclinical TBI survey database (n = 3098), and (4) a cross-validation outpatient clinical TBI/neurorehabilitation database combined across 2 military medical centers (n = 206). Secondary analysis of existing cohort data to develop (study 1) and cross-validate (study 2) internal validity scales for the NSI. The NSI, Mild Brain Injury Atypical Symptoms, and Personality Assessment Inventory scores. Study 1: Three NSI validity scales were developed, composed of 5 unusual items (Negative Impression Management [NIM5]), 6 low-frequency items (LOW6), and the combination of 10 nonoverlapping items (Validity-10). Cut scores maximizing sensitivity and specificity on these measures were determined, using a Mild Brain Injury Atypical Symptoms score of 8 or more as the criterion for invalidity. Study 2: The same validity scale cut scores again resulted in the highest classification accuracy and optimal balance between sensitivity and specificity in the cross-validation sample, using a Personality Assessment Inventory Negative Impression Management scale with a T score of 75 or higher as the criterion for invalidity. The NSI is widely used in the Department of Defense and Veterans Affairs as a symptom-severity assessment following TBI, but is subject to symptom overreporting or exaggeration. This study developed embedded NSI validity scales to facilitate the detection of invalid response styles. The NSI Validity-10 scale appears to hold considerable promise for validity assessment when the NSI is used as a population-screening tool.

  4. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  5. Mini-channel flow experiments and CFD validation analyses with the IFMIF Thermo- Hydraulic Experimental facility (ITHEX)

    International Nuclear Information System (INIS)

    Arbeiter, F.; Heinzel, V.; Leichtle, D.; Stratmanns, E.; Gordeev, S.

    2006-01-01

    The design of the IFMIF High Flux Test Module (HFTM) is based on the predictions for the heat transfer in narrow channels conducting helium flow of 50 o C inlet temperature at 0.3 MPa. The emerging helium flow conditions are in the transition regime of laminar to turbulent flow. The rectangular cooling channels are too short for the full development of the coolant flow. Relaminarization along the cooling passage is expected. At the shorter sides of the channels secondary flow occurs, which may have an impact on the temperature field inside the irradiation specimen's stack. As those conditions are not covered by available experimental data, the dedicated gas loop ITHEX has been constructed to operate up to a pressure of 0.42 MPa and temperatures of 200 o C. It's objective is to conduct experiments for the validation of the STAR-CD CFD code used for the design of the HFTM. As a first stage, two annular test-sections with hydraulic diameter of 1.2 mm have been used, where the experiments have been varied with respect to gas species (N 2 , He), inlet pressure, dimensionless heating span and Reynolds number encompassing the range of operational parameters of the HFTM. Local friction factors and Nusselt numbers have been obtained giving evidence that the transition regime will extend to Reynolds 10,000. For heating rates comparable to the HFTM filled with RAFM steels, local heat transfer coefficients are in consistence with the measured friction data. To validate local velocity profiles the ITHEX facility was further equipped with a flat rectangular test-section and a Laser Doppler Anemometry (LDA) system. An appropriate optical system has been developed and tested for the tiny observation volume of 40 μm diameter. Velocity profiles as induced by the transition of a wide inlet plenum to the flat mini-channels have been measured. Whereas the CFD models were able to reproduce the patterns far away from the nozzle, they show some disagreement for the conditions at the

  6. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  7. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    Science.gov (United States)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  8. Optimal Control of Diesel Engines: Numerical Methods, Applications, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jonas Asprion

    2014-01-01

    become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.

  9. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  10. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    Science.gov (United States)

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  11. Time Reversal UWB Communication System: A Novel Modulation Scheme with Experimental Validation

    Directory of Open Access Journals (Sweden)

    Khaleghi A

    2010-01-01

    Full Text Available A new modulation scheme is proposed for a time reversal (TR ultra wide-band (UWB communication system. The new modulation scheme uses the binary pulse amplitude modulation (BPAM and adds a new level of modulation to increase the data rate of a TR UWB communication system. Multiple data bits can be transmitted simultaneously with a cost of little added interference. Bit error rate (BER performance and the maximum achievable data rate of the new modulation scheme are theoretically analyzed. Two separate measurement campaigns are carried out to analyze the proposed modulation scheme. In the first campaign, the frequency responses of a typical indoor channel are measured and the performance is studied by the simulations using the measured frequency responses. Theoretical and the simulative performances are in strong agreement with each other. Furthermore, the BER performance of the proposed modulation scheme is compared with the performance of existing modulation schemes. It is shown that the proposed modulation scheme outperforms QAM and PAM for in an AWGN channel. In the second campaign, an experimental validation of the proposed modulation scheme is done. It is shown that the performances with the two measurement campaigns are in good agreement.

  12. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  13. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    Science.gov (United States)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  14. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    Science.gov (United States)

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  15. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    Science.gov (United States)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2014-01-01

    Full Text Available A fault-tolerant permanent-magnet vernier (FT-PMV machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs. This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM, the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  17. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  18. Spatiotemporally Representative and Cost-Efficient Sampling Design for Validation Activities in Wanglang Experimental Site

    Directory of Open Access Journals (Sweden)

    Gaofei Yin

    2017-11-01

    Full Text Available Spatiotemporally representative Elementary Sampling Units (ESUs are required for capturing the temporal variations in surface spatial heterogeneity through field measurements. Since inaccessibility often coexists with heterogeneity, a cost-efficient sampling design is mandatory. We proposed a sampling strategy to generate spatiotemporally representative and cost-efficient ESUs based on the conditioned Latin hypercube sampling scheme. The proposed strategy was constrained by multi-temporal Normalized Difference Vegetation Index (NDVI imagery, and the ESUs were limited within a sampling feasible region established based on accessibility criteria. A novel criterion based on the Overlapping Area (OA between the NDVI frequency distribution histogram from the sampled ESUs and that from the entire study area was used to assess the sampling efficiency. A case study in Wanglang National Nature Reserve in China showed that the proposed strategy improves the spatiotemporally representativeness of sampling (mean annual OA = 74.7% compared to the single-temporally constrained (OA = 68.7% and the random sampling (OA = 63.1% strategies. The introduction of the feasible region constraint significantly reduces in-situ labour-intensive characterization necessities at expenses of about 9% loss in the spatiotemporal representativeness of the sampling. Our study will support the validation activities in Wanglang experimental site providing a benchmark for locating the nodes of automatic observation systems (e.g., LAINet which need a spatially distributed and temporally fixed sampling design.

  19. Development of an experimental apparatus for boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.

    1984-04-01

    The nucleate boiling is the most interesting boiling regime for practical appliccations, including nuclear reactor engineering. such regime is characterized by very high heat transfer rates with only small surface superheating. An experimental apparatus is developed for studying parameters which affect nucleate boiling. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of experimental apparatus is analysed by results and by problems raised by the oeration of setup. (Author) [pt

  20. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    Science.gov (United States)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in