WorldWideScience

Sample records for developing mouse pancreas

  1. Is pancreas development abnormal in the non-obese diabetic mouse, a spontaneous model of type I diabetes?

    Directory of Open Access Journals (Sweden)

    F. Homo-Delarche

    2001-04-01

    Full Text Available Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1 higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2 high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3 elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4 abnormalities of extracellular matrix (ECM protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling, some ECM proteins (particularly, fibronectin and collagen I, antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s may play a key role.

  2. Vascular development in the vertebrate pancreas

    Science.gov (United States)

    Azizoglu, D. Berfin; Chong, Diana C.; Villasenor, Alethia; Magenheim, Judith; Barry, David M.; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-01-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. PMID:27789228

  3. Vascular development in the vertebrate pancreas.

    Science.gov (United States)

    Azizoglu, D Berfin; Chong, Diana C; Villasenor, Alethia; Magenheim, Judith; Barry, David M; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-12-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis

    Science.gov (United States)

    Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori

    2012-01-01

    Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325

  5. Pancreas

    Science.gov (United States)

    ... Page Transplant Living > Organ facts and surgeries > Pancreas Pancreas Beneath your ribs, you’ll find the pancreas, ... shape. Location of the pancreas How does the pancreas work? The pancreas controls your sugar levels and ...

  6. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Evan Manuel

    2014-01-01

    The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells (1). The whole embryonic organ can be cultured at multiple stages...... expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how...... cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess...

  7. Hippo Signaling Regulates Pancreas Development through Inactivation of Yap

    Science.gov (United States)

    Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.

    2012-01-01

    The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096

  8. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  9. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.

    Science.gov (United States)

    Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A

    2017-08-19

    We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.

  10. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    Science.gov (United States)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  11. [Pancreas and biliary tract: recent developments].

    Science.gov (United States)

    de-Madaria, Enrique

    2014-09-01

    Acute pancreatitis (AP) is a common disease that is associated with significant morbidity and considerable mortality. In this article, developments relating to this disease that were presented in DDW 2014 are reviewed. Pancreatic steatosis could be a cause of recurrent AP. Patients with DM have an increased incidence of AP and pancreatic cancer. The use of anti-TNF drugs in inflammatory bowel disease may protect against the occurrence of AP. The presence of pancreas divisum protects against acute biliary pancreatitis. The PANCODE system for describing local complications of AP has good interobserver agreement, when the new definitions of the revised Atlanta classification are applied. The use of prophylactic antibiotics in early-stage AP predisposes the development of intra-abdominal fungal infections. Fluid sequestration in AP is linked with young age, alcoholism and indicators of systemic inflammatory response syndrome. The most common cause of mortality in AP is early onset of multiple organ failure, not pancreatic necrosis infection. Patients with AP and vitamin D deficiency could benefit from taking vitamin D supplements. Moderate fluid administration in emergencies (500-1000 mL) could be associated with better AP development. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  12. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    OpenAIRE

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  13. Structural similarities and differences between the human and the mouse pancreas

    Science.gov (United States)

    Dolenšek, Jurij; Rupnik, Marjan Slak; Stožer, Andraž

    2015-01-01

    Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application. PMID:26030186

  14. Effect of thyroid hormone on the protein turnover rate of mouse pancreas

    International Nuclear Information System (INIS)

    He Xinjun; Zhou Hui; Wang Shizhen; Zhou Zhonming; Li Liangxue; Wei Huaiwei; Sun Xiaomiao; Wang Yanli

    1986-01-01

    The effects of thyroid hormone on the protein turnover of pancreas in mice were studied using labelled amino acid incorporation, double isotopic and labelled protein decay methods. After injection of L-thyroxine (100 μ g/mouse) for 5 days, the amino acid incorporation into pancreatic proteins of mice was profoundly decreased, the ratio of 3 H/ 14 C in labelled proteins and the fractional turnover rate of pancreatic proteins were also decreased, the protein half-lives being consequently prolonged. These findings suggest that large doses of thyroid hormone may reduce the trunover rate of pancreatic proteins, by inhibiting not only the synthesis but also the degradation

  15. Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices.

    Directory of Open Access Journals (Sweden)

    Andraž Stožer

    Full Text Available In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future.

  16. MicroRNA signature of the human developing pancreas

    Directory of Open Access Journals (Sweden)

    Correa-Medina Mayrin

    2010-09-01

    Full Text Available Abstract Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga, was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in

  17. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  18. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  19. A Standardized Method for In Vivo Mouse Pancreas Imaging and Semiquantitative β Cell Mass Measurement by Dual Isotope SPECT

    NARCIS (Netherlands)

    Mathijs, I.; Xavier, C.; Peleman, C.; Caveliers, V.; Brom, M.; Gotthardt, M.; Herrera, P.L.; Lahoutte, T.; Bouwens, L.

    2015-01-01

    In order to evaluate future β cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective β cell tracer within the pancreas.2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and [Lys(40)([(111)In]DTPA)]exendin-3 ([(111)In]Ex3) pancreatic

  20. A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT

    NARCIS (Netherlands)

    Mathijs, I.; Xavier, C.; Peleman, C.; Caveliers, V.; Brom, M.; Gotthardt, M.; Herrera, P.L.; Lahoutte, T.; Bouwens, L.

    2015-01-01

    PURPOSE: In order to evaluate future beta cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective beta cell tracer within the pancreas. PROCEDURES: 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and

  1. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    Science.gov (United States)

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  2. Endocrine pancreas development at weaning in goat kids

    Directory of Open Access Journals (Sweden)

    Fabia Rosi

    2010-01-01

    Full Text Available Eighteen three-day old Saanen goat kids were divided into MILK and WEAN groups. MILK kids received goat milk to age 48 days; WEAN kids were initially fed milk but started weaning at 25 days and were completely weaned by 40 days. Total intake per group was recorded daily. On day 25, 40 and 48, body weights were recorded, and plasma samples were taken and analyzed for glucose, free amino-acids and insulin. On day 48, all animals were slaughtered and pancreas samples were analyzed for total DNA and RNA content. Histological sections of pancreas were examined by light microscope and images analyzed by dedicated software. Seven days after the beginning of the weaning program, dry matter intake in the WEAN group began to decrease compared to the MILK one. Nonetheless, body weight did not differ throughout the study period. Weaning significantly decreased plasma levels of glucose, amino-acids and insulin. No difference was observed in pancreatic DNA and RNA content. Histological analysis of pancreas showed that the size of pancreatic islets was not different, but islet number per section was lower in the pancreas of WEAN animals. In conclusion, weaning affects glucose and amino-acid metabolism and influences endocrine pancreas activity and morphology.

  3. Developing a robotic pancreas program: the Dutch experience.

    Science.gov (United States)

    Nota, Carolijn L; Zwart, Maurice J; Fong, Yuman; Hagendoorn, Jeroen; Hogg, Melissa E; Koerkamp, Bas Groot; Besselink, Marc G; Molenaar, I Quintus

    2017-01-01

    Robot-assisted surgery has been developed to overcome limitations of conventional laparoscopy aiming to further optimize minimally invasive surgery. Despite the fact that robotics already have been widely adopted in urology, gynecology, and several gastro-intestinal procedures, like colorectal surgery, pancreatic surgery lags behind. Due to the complex nature of the procedure, surgeons probably have been hesitant to apply minimally invasive techniques in pancreatic surgery. Nevertheless, the past few years pancreatic surgery has been catching up. An increasing number of procedures are being performed laparoscopically and robotically, despite it being a highly complex procedure with high morbidity and mortality rates. Since the complex nature and extensiveness of the procedure, the start of a robotic pancreatic program should be properly prepared and should comply with several conditions within high-volume centers. Robotic training plays a significant role in the preparation. In this review we discuss the different aspects of preparation when working towards the start of a robotic pancreas program against the background of our nationwide experience in the Netherlands.

  4. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development.

    Science.gov (United States)

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2012-01-15

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Artifical Pancreas

    Science.gov (United States)

    Fei, Jiangfeng

    2013-03-01

    In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.

  6. Stimulus-secretion coupling in the developing exocrine pancreas

    International Nuclear Information System (INIS)

    Chang, A.Y.S.

    1986-01-01

    Acinar cells of the embryonic pancreas are filled with zymogen granules containing, among others, the secretory protein, cholecystokinin (CCK) α-amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas was increased 4- to 8-fold above that seen in the embryonic gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the level of 125 I-CCK octapeptide specifically bound/cell equivalent or a change in the affinity of binding. Light microscopic autoradiography revealed a similar 125 I-CCK-33 labeling pattern in pancreatic lobules from both ages with autoradiographic grains specifically localized at the periphery of acinar cells. In order to determine whether CCK binding is coupled to a rise in the cytosolic Ca ++ concentration, [Ca ++ ]c, in the embryonic pancreas, 45 Ca ++ efflux from tracer-loaded lobules was measured. Efflux of 45 Ca ++ from both embryonic and neonatal pancreas was comparably increased in the presence of CCK

  7. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    International Nuclear Information System (INIS)

    Wan Haiyan; Korzh, Svitlana; Li Zhen; Mudumana, Sudha Puttur; Korzh, Vladimir; Jiang Yunjin; Lin Shuo; Gong Zhiyuan

    2006-01-01

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development

  8. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell......-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However......, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell...

  9. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    Science.gov (United States)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  10. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    Science.gov (United States)

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  11. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  12. Pancreas Transplantation

    Science.gov (United States)

    The pancreas is a gland behind your stomach and in front of your spine. It produces the juices that ... hormones that help control blood sugar levels. A pancreas transplant is surgery to place a healthy pancreas ...

  13. [DEVELOPMENT OF FUNCTIONAL AND MORPHOLOGICAL CHANGES OF A PANCREAS DEPENDING ON THE DURATION OF OBSTRUCTIVE CHOLESTASIS].

    Science.gov (United States)

    Belyaev, A N; Kostin, S V; Belyaev, S A

    2015-01-01

    To study the severity and timing of the development of functional (reversible) and morphological (irreversible) disturbances in the pancreas, depending on the duration of obstructive cholestasis. Obstructive jaundice in the experiment 18 dogs modeled by applying the loop stranglehold on the common bile duct, followed by observation for 30 days. We measured total bilirubin and fractions aspartate aminotransferase activity (AST) and alanine aminotransferase (ALT), the contents alpha-amylase, pancreatic lipase, glucose, histological examination of the pancreas (magnification of 100 times and 400). On day 3 the common bile duct obstruction bilirubin increased from 7.1 to 286.8 μmol/l, ALT--from 0.17 to 4.18 μmol*h/l, alpha-amylase from 89 to 186 U/L and lipase--to 68 to 179 U/L. Then there was a slight decrease in the parameters studied with repeated their increase to 15 hours. Morphological changes in the first three days were characterized by reversible (swelling), impaired organ that 14-16 days passed in organic (irreversible) changes. Dynamics of fluctuations in the level of liver enzymes in the pancreas and obstructive cholestasis correlates with morphological abnormalities in the pancreas and fit into the concept of general biological organism's reaction to injury.

  14. The early effects of radiation on in vitro explants of mouse pancreas. A morphological and immunocytochemical study

    International Nuclear Information System (INIS)

    Kosanlavit, R.

    2001-01-01

    Prodromal radiation sickness involving the digestive system may occur less than an hour following whole-body or abdominal irradiation, and may be of such severity as to prevent cancer patients from completing their course of radiotherapy. The contribution of radiation-induced pancreatic damage to radiation sickness is poorly understood. This study seeks to demonstrate the early effects of X-rays (0.5-10 Gy) on mouse pancreas in vitro. The response of exocrine acinar cells, and endocrine cells from the islets of Langerhans was examined using immunocytochemistry, light and transmission electron microscopy, and morphometric analysis. There was an approximate 50% decrease in the mean number of zymogen granules in acinar cells following 10 Gy irradiation at 1 hour, which may have been due to the acceleration of enzyme secretion or the interruption of enzyme synthesis or a combination of both. The frequency distributions of zymogen granules diameter showed minor change. The gross structure of acinar cells appeared not to be affected by irradiation at the doses and times used. Following 5 and 10 Gy irradiation a few pancreatic endocrine cells within each islet lost their chromogranin A-immunoreactivity whereas other islet cells showed more intense immunostaining for chromogranin A. A dose of 10 Gy significantly decreased the volume density of glucagon-containing cells at 1 hour. Doses of 5 and 10 Gy slightly decreased the volume density of somatostatin-containing cells from 30 minutes to 3 hours. Such changes in the expression of endocrine products from these cells are likely to have profound physiological effects. Radiation induced no changes in the volume density of insulin and PP-containing cells. The results of the present study suggest that X-irradiation induce changes to exocrine and endocrine pancreatic cells, and that this may contribute to some of the symptoms of radiation sickness. (author)

  15. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

    OpenAIRE

    Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.

    2017-01-01

    Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring...

  16. Detection of expressional changes induced by intrauterine growth restriction in the developing rat pancreas.

    Science.gov (United States)

    Zhang, Lin; Chen, Wei; Dai, Yuee; Zhu, Ziyang; Liu, Qianqi

    2016-07-01

    Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. © 2016 by the Society for Experimental Biology and Medicine.

  17. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer.

    Directory of Open Access Journals (Sweden)

    Marzieh Ebrahimie

    Full Text Available An attractive approach to replace the destroyed insulin-producing cells (IPCs is the generation of functional β cells from stem cells. Embryonal carcinoma (EC stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1-2 weeks old mouse pancreas extract (MPE. Since, mouse pancreatic islets undergo further remodeling and maturation for 2-3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml. The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1 during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid

  18. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy

    Directory of Open Access Journals (Sweden)

    A.L. Márquez-Aguirre

    2015-01-01

    Full Text Available Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis, and converting non-β cells within the pancreas to β cells (transdifferentiation are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.

  19. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  20. Pancreas preservation for pancreas and islet transplantation

    Science.gov (United States)

    Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.

    2010-01-01

    Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343

  1. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  2. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    Science.gov (United States)

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  3. What Is the Pancreas?

    Science.gov (United States)

    ... Pancreas Function of the Pancreas What is the pancreas? The pancreas is a long flattened gland located ... controller of blood sugar levels. Where is the pancreas? The pancreas is located deep in the abdomen. ...

  4. Radiology of the pancreas

    International Nuclear Information System (INIS)

    Baert, A.L.; Delorme, G.

    1994-01-01

    This book, written by internationally recognized experts, fully illustrates the diagnosis of both common and rarer diseases of the pancreas, the latest technical developments in relevant imaging modalities are thoroughly discussed and appraised with respect to the pancreas. The book will appeal to both clinicians and researchers in radiology and oncology. (orig.)

  5. Development and results of a novel pancreas transplant program in Spain: the surgeon's point of view.

    Science.gov (United States)

    Muñoz-Bellvis, Luis; Esteban, María Del Carmen; Iglesias, Manuel; González, Luis; González-Muñoz, Juan Ignacio; Muñoz-González, Cristina; E Quiñones, José; Tabernero, Guadalupe; Iglesias, Rosa Ana; Sayagués, José María; Fraile, Pilar

    2018-04-01

    Simultaneous kidney-pancreas transplantation for patients with type 1 diabetes and end-stage chronic renal disease is widely performed. However, the rate of surgical morbidity from pancreatic complications remains high. The aim of this study was to describe the development and results of a new program, from the point of view of the pancreatic surgeon. We analyzed 53 simultaneous kidney-pancreas transplantations performed over a period of seven years (2009-2016), with a median follow up of 39 months (range: 1-86 months). Out of the total of this series, two patients died: one patient because of cardiac arrest immediately after surgery; and another patient due to traffic accident, complicated by pneumonia. Among the 51 living patients, two grafts were lost: one due to chronic rejection four years after transplantation; and the other due to arterial thrombosis 20 days after transplantation (the only case requiring transplantectomy). In ten patients, one or more re-operations were necessary due to the following: graft pancreatitis (n=4), small intestinal obstruction (n=4), arterial thrombosis (n=1), fistula (n=1) and hemoperitoneum (n=1). Overall patient and graft survival rates after 1, 3 and 5 years were 98, 95 and 95% and 96, 93 and 89%, respectively. This study has shown that the results of a new pancreas transplant program, which relies on the previous experience of other groups, do not demonstrate a learning curve. Adequate surgeon education and training, as well as the proper use of standardized techniques, should ensure optimal results. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Challenges and Recent Progress in the Development of a Closed-loop Artificial Pancreas.

    Science.gov (United States)

    Bequette, B Wayne

    2012-12-01

    Pursuit of a closed-loop artificial pancreas that automatically controls the blood glucose of individuals with type 1 diabetes has intensified during the past six years. Here we discuss the recent progress and challenges in the major steps towards a closed-loop system. Continuous insulin infusion pumps have been widely available for over two decades, but "smart pump" technology has made the devices easier to use and more powerful. Continuous glucose monitoring (CGM) technology has improved and the devices are more widely available. A number of approaches are currently under study for fully closed-loop systems; most manipulate only insulin, while others manipulate insulin and glucagon. Algorithms include on-off (for prevention of overnight hypoglycemia), proportional-integral-derivative (PID), model predictive control (MPC) and fuzzy logic based learning control. Meals cause a major "disturbance" to blood glucose, and we discuss techniques that our group has developed to predict when a meal is likely to be consumed and its effect. We further examine both physiology and device-related challenges, including insulin infusion set failure and sensor signal attenuation. Finally, we discuss the next steps required to make a closed-loop artificial pancreas a commercial reality.

  7. The Normal Fetal Pancreas.

    Science.gov (United States)

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells

    International Nuclear Information System (INIS)

    Pessina, A.; Eletti, B.; Croera, C.; Savalli, N.; Diodovich, C.; Gribaldo, L.

    2004-01-01

    Haematopoietic system represents the main source of haematopoietic stem cells and probably of multipotential adult progenitor cells and mesenchimal stem cells at first described as colony forming unit-fibroblast. Whereas there are many studies on the gene expression profile of the different precursors along their haematopoietic differentiation, few data (sometimes conflicting) have been reported about the phenotype of the cells (present in bone marrow and possibly in cord blood) able to differentiate into non-haematopoietic cells. As both postnatal bone marrow and umbilical cord blood contain nestin positive cells able to proliferate and differentiate into the main neural phenotype (neuron, astroglia and oligodendroglia) many authors considered nestin a neuroepithelial precursor marker that seems to be essential also in multipotential progenitor cells of pancreas present both in rat and in human pancreatic islets (called nestin positive islet derived progenitors). Although the importance of nestin in these cells appears to be evident, it remains yet to clarify the number and the sequential expression of the genes coding all the transcription factors essential for beta cells differentiation and therefore the conditions able to induce the expression of many important transcription factors genes such as isl-1, pax-4, pdx-1 and ngn-3. Among them pdx-1 is a gene essential for pancreas development which is able to control ngn-3 in activating the expression of other differentiation factors for endocrine cells. Here, we describe for the first time in human umbilical cord blood cells (UCB) the pattern of expression of a panel of markers (nestin, CK-8, CK-18) and transcription factors (Isl-1, Pdx-1, Pax-4, Ngn-3) considered important for beta cells differentiation. Our data demonstrate that UCB contains a cell population having a phenotype very similar to endocrine cell precursors in transition to beta cells

  9. A 3D reconstruction of pancreas development in the human embryos during embryonic period (Carnegie stages 15-23).

    Science.gov (United States)

    Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D

    2010-01-01

    The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.

  10. Clinicopathologic assessment of pancreatic ductal carcinoma located at the head of the pancreas, in relation to embryonic development.

    Science.gov (United States)

    Okamura, Yukiyasu; Fujii, Tsutomu; Kanzaki, Akiyuki; Yamada, Suguru; Sugimoto, Hiroyuki; Nomoto, Shuji; Takeda, Shin; Nakao, Akimasa

    2012-05-01

    Pancreaticoduodenectomy is performed for pancreatic head cancer that originated from the dorsal or ventral primordium. Although the extent of lymph node (LN) dissection is the same irrespective of the origin, the lymphatic continuities may differ between the 2 primordia. Between March 2003 and September 2010, 152 patients underwent pancreaticoduodenectomy for pancreatic cancer. One hundred six patients were assigned into 2 groups according to tumor location on preoperative computed tomography, and their clinical and pathological features were retrospectively analyzed in view of the embryonic development of the pancreas. Sixty of 106 patients were classified with tumors that were derived from the dorsal pancreas (D group) and 46 from the ventral pancreas (V group). The frequency of LN involvement around the middle colic artery (LN 15) in the D group was higher than in the V group (P = 0.008). The rate of additional resection of the pancreas tended to be higher in the D group (P = 0.067). The present study showed the detailed pattern of spread of pancreatic ductal carcinoma to the LNs and provided important information for determining the optimal surgical strategy.

  11. Pax4 acts as a key player in pancreas development and plasticity.

    Science.gov (United States)

    Napolitano, Tiziana; Avolio, Fabio; Courtney, Monica; Vieira, Andhira; Druelle, Noémie; Ben-Othman, Nouha; Hadzic, Biljana; Navarro, Sergi; Collombat, Patrick

    2015-08-01

    The embryonic development of the pancreas is orchestrated by a complex and coordinated transcription factor network. Neurogenin3 (Neurog3) initiates the endocrine program by activating the expression of additional transcription factors driving survival, proliferation, maturation and lineage allocation of endocrine precursors. Among the direct targets of Neurog3, Pax4 appears as one of the key regulators of β-cell specification. Indeed, mice lacking Pax4 die a few days postpartum, as they develop severe hyperglycemia due to the absence of mature pancreatic β-cells. Pax4 also directly regulates the expression of Arx, a gene that plays a crucial role in α-cell specification. Comparative analysis of Pax4 and Arx mutants, as well as Arx/Pax4 double mutants, showed that islet subtype destiny is mainly directed by cross-repression of the Pax4 and Arx factors. Importantly, the ectopic expression of Pax4 in α-cells was found sufficient to induce their neogenesis and conversion into β-like cells, not only during development but also in adult rodents. Therefore, differentiated endocrine α-cells can be considered as a putative source for insulin-producing β-like cells. These findings have clearly widened our understanding regarding pancreatic development, but they also open new research avenues in the context of diabetes research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse.

    Science.gov (United States)

    Schulte, B A; Spicer, S S

    1983-12-01

    Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal alpha-N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate beta-galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20-50% of these cells in all glands contained terminal N-acetylglucosamine residues. In contrast, terminal alpha-N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.

  13. Blood Sugar, Your Pancreas, and Unicorns: The Development of Health Education Materials for Youth With Prediabetes.

    Science.gov (United States)

    Yazel-Smith, Lisa G; Pike, Julie; Lynch, Dustin; Moore, Courtney; Haberlin, Kathryn; Taylor, Jennifer; Hannon, Tamara S

    2018-05-01

    The obesity epidemic has led to an increase in prediabetes in youth, causing a serious public health concern. Education on diabetes risk and initiation of lifestyle change are the primary treatment modalities. There are few existing age-appropriate health education tools to address diabetes prevention for high-risk youth. To develop an age-appropriate health education tool(s) to help youth better understand type 2 diabetes risk factors and the reversibility of risk. Health education tool development took place in five phases: exploration, design, analysis, refinement, and process evaluation. The project resulted in (1) booklet designed to increase knowledge of risk, (2) meme generator that mirrors the booklet graphics and allows youth to create their own meme based on their pancreas' current mood, (3) environmental posters for clinic, and (4) brief self-assessment that acts as a conversation starter for the health educators. Patients reported high likability and satisfaction with the health education tools, with the majority of patients giving the materials an "A" rating. The process evaluation indicated a high level of fidelity and related measures regarding how the health education tools were intended to be used and how they were actually used in the clinic setting.

  14. Pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Kato, Hirotoshi; Hara, Ryusuke

    2006-01-01

    Adenocarcinoma of the pancreas continues to be a significant source of cancer mortality in Japan, resulting in approximately 19,000 deaths a year. It is the fifth leading cause of cancer-related deaths in Japan, with a less than 5% 5-year expected survival rate. About 70-75% of patients with pancreas cancer present with locally advanced disease or distant metastases and have a median survival time of only 6 months. For unresectable pancreas cancer, the median survival time with external beam radiation (EBRT) was better than with surgical bypass or stents alone. The median survival of EBRT alone was 4 to 7 months. The median survival with combined EBRT and chemotherapy for locally unresectable tumor are 8 to 10 months and better than with the EBRT alone. Local failure of these combined therapies was still 26 to 48%. On the other hand, surgery with curative intent is undertaken in 15-20% of patients. Even after resection, the predicted 5-year survival rates are still less than 20%. Local recurrences in the pancreatic bed are seen in 50% of the patients undergoing presumed curative resection. We examined the effect of carbon ion therapy in terms of reducing the rate of local recurrence in patients with locally advanced adenocarcinoma of the pancreas or undergoing resection for adenocarcinoma of the pancreas. (author)

  15. Transcriptional regulation of pancreas development and β-cell function [Review].

    Science.gov (United States)

    Fujitani, Yoshio

    2017-05-30

    A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.

  16. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  17. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  18. Development of the Rabbit Pancreas with Particular Regard to the Argyrophilic Cells

    Directory of Open Access Journals (Sweden)

    M. Titlbach

    2007-01-01

    Full Text Available The aim of the study was the description of the prenatal development of rabbit pancreas, cell modifications, and changes in their volume and mitotic activity. Immunohistochemical, light and electron microscopic procedures were employed. Stereological methods were used for estimation of cellular and nuclear volumes. hits on epithelial cells, tubular lumens, and endocrine progenitor cells were counted by systematic field sampling using test grid. Number of mitoses was registered in various cellular types after colchicine treatment. Data obtained were converted to 1 mm3 tissue. First granules were observed in cells on day 10 and 18 hours, however two different granular types are distinguishable by electron microscopy only on day 15, when insulin and glucagon can be detected immunohistochemically. Cellular volume increased remarkably in harmony with findings of granules in serous cells. Number of epithelial cells increased also exponentially. The increase was more rapid between days 13 and 15, later it appeared exponential. Value of mitotic index and length of cell cycle did not change considerably between days 15 and 24. Mitoses were observed in ductal, exocrine, as well as endocrine cells. The dividing endocrine cells were those that contained fine dense granules (progenitor cells. The sub-population of progenitor cells is able to divide, however, this source of cells appears insufficient for exponential growth. Results after colchicine treatment show the increase of cell population but the life-span and a period necessary for volume multiplication vary. Mitoses decrease in both sub-populations during the prenatal period. The progenitor cells arise probably by differentiation from the ducts, because their number increases proportionally to the main cell population.

  19. Normal Pancreas Anatomy

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: ... 1586x1534 View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows ...

  20. Pancreas transplants

    International Nuclear Information System (INIS)

    Chandra, J.; Phillips, R.R.; Boardman, P.; Gleeson, F.V.; Anderson, E.M.

    2009-01-01

    Cadaveric, whole pancreas transplantation has proved an effective therapy in the treatment of long-standing type 1 diabetes mellitus and is capable of achieving an insulin-independent eugyclaemic state. As a result, this procedure is being increasingly performed. However, the surgical procedure is complex and unfamiliar to many radiologists. Imaging with computed tomography (CT) and magnetic resonance imaging (MRI) gives excellent results and can be used confidently to diagnose vascular, enteric, and immune-mediated complications. We present a review of the normal post-transplantation appearance and the features of early and late complications.

  1. Pancreas transplants

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J.; Phillips, R.R.; Boardman, P.; Gleeson, F.V. [Department of Radiology, Churchill Hospital, Headington, Oxford (United Kingdom); Anderson, E.M. [Department of Radiology, Churchill Hospital, Headington, Oxford (United Kingdom)], E-mail: ewan.anderson@orh.nhs.uk

    2009-07-15

    Cadaveric, whole pancreas transplantation has proved an effective therapy in the treatment of long-standing type 1 diabetes mellitus and is capable of achieving an insulin-independent eugyclaemic state. As a result, this procedure is being increasingly performed. However, the surgical procedure is complex and unfamiliar to many radiologists. Imaging with computed tomography (CT) and magnetic resonance imaging (MRI) gives excellent results and can be used confidently to diagnose vascular, enteric, and immune-mediated complications. We present a review of the normal post-transplantation appearance and the features of early and late complications.

  2. Pancreas transplantation

    International Nuclear Information System (INIS)

    Snider, J.F.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Letourneau, J.G.

    1989-01-01

    Pancreas transplantation can be complicated by vascular thrombosis, stenosis, or anastomotic leak, complications that predispose to transplant pancreatectomy. The relative roles of noninvasive radiologic studies in such vascular complications have been correlated with angiographic or pathologic data. The results of 54 scintigraphic studies, 25 CT studies, 16 sonograms, and 23 color Doppler examinations have been correlated with those of 40 angiograms and 28 pathologic studies in a population of 185 recipients. CT (sensitivity, 100%; specificity, 75%; accuracy, 92%) and US (sensitivity, 88%; specificity, 80%; accuracy, 85%) were most helpful in noninvasive screening for vascular complications, while angiography remains nearly definite in the radiographic diagnosis of these problems

  3. Pancreas grafts

    International Nuclear Information System (INIS)

    Hahn, D.; Buell, U.; Land, W.; Unertl, K.

    1981-01-01

    Perfusion studies with sup(99m)Tc-DTPA, which has hitherto been used routinely to investigate renal grafts, have also proved useful for monitoring the perfusion of pancreas grafts. A total perfusion failure is equally reliably demonstrable as in renal grafts. Quantitatively smaller perfusion alterations can be demonstrated by monitoring the course. It seems possible to differentiate the salivary edema of a rejection reaction, well known from animal experiments, with the help of other paramters (e.g. creatinine). Further clinical studies are however necessary to confirm these results. (orig.) [de

  4. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  5. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  6. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  7. Getting a New Pancreas: Facts about Pancreas Transplants

    Science.gov (United States)

    ... 2003 December 2006 March 2012 Getting A New Pancreas Facts About Pancreas Transplants American Society of Transplantation 1120 Route 73, ... the views of the Society. _________________________________________________________________ Getting a New Pancreas Facts About Pancreas Transplants When you get a ...

  8. Pancreas transplantation: an overview

    Directory of Open Access Journals (Sweden)

    Andre Ibrahim David

    2010-12-01

    Full Text Available Pancreas transplantation is the only treatment able to reestablish normal glucose and glycated hemoglobin levels in insulin-dependent diabetic patients without the use of exogenous insulin. The evolution of pancreas transplantation in treatment of diabetes was determined by advances in the fields of surgical technique, organ preservation and immunosuppressants. The main complication leading to graft loss is technical failure followed by acute or chronic rejection. Technical failure means graft loss within the first three months following transplantation due to vascular thrombosis (50%, pancreatitis (20%, infection (18%, fistula (6.5% and bleeding (2.4%. Immunological complications still affect 30% of patients, and rejection is the cause of graft loss in 10% of cases. Chronic rejection is the most common late complication. Cardiovascular diseases are the most common causes of late mortality in pancreas transplantation, so it remains the most effective treatment for type 1 diabetes patients. There is a significant improvement in quality of life and in patient’s survival rates. The development of islet transplantation could eliminate or minimize surgical complications and immunosuppression.

  9. National Pancreas Foundation

    Science.gov (United States)

    ... Stay Informed - Join The Fight Animated Pancreas Patient Animations, Expert and Patient interviews on Pancreas Diseases State ... pancreatic experts at the American Pancreatic Association … Continue Reading More NPF News Social Media Post Read More ...

  10. Pancreas transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100129.htm Pancreas transplant - series—Normal anatomy To use the sharing ... to slide 6 out of 6 Overview The pancreas resides in the back of the abdomen. It ...

  11. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  12. Development of the mouse cochlea database (MCD).

    Science.gov (United States)

    Santi, Peter A; Rapson, Ian; Voie, Arne

    2008-09-01

    The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: (http://mousecochlea.umn.edu). The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice.

  13. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development?

    Science.gov (United States)

    Trevitt, Sara; Simpson, Sue; Wood, Annette

    2016-05-01

    Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. © 2015 Diabetes Technology Society.

  14. Design of a bioartificial pancreas

    Science.gov (United States)

    Pareta, Rajesh A; Farney, Alan C; Opara, Emmanuel C

    2013-01-01

    Summary Islet transplantation has been shown to be a viable treatment option for patients afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles to routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets in hydrogels for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this review article, we will discuss the need for bioartificial pancreas, provide a detailed description of the microencapsulation process, and review the status of the technology in clinical development. We will also critically review the various factors that need to be taken into consideration in order to achieve the ultimate goal of routine clinical application. PMID:23652283

  15. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  16. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    Science.gov (United States)

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  17. Complete agenesis of the dorsal pancreas: Case report with ...

    African Journals Online (AJOL)

    pancreatic head and uncinate process were normal, but the distal neck, body ... The neck, body, tail, and cephalic aspects of the head of the pancreas originate from the .... Embryology, normal variation, and congenital anomalies of the pancreas. ... M. A 3D reconstruction of pancreas development in the human embryos.

  18. A mouse model for monitoring islet cell genesis and developing therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Yoshinori Shimajiri

    2011-03-01

    Transient expression of the transcription factor neurogenin-3 marks progenitor cells in the pancreas as they differentiate into islet cells. We developed a transgenic mouse line in which the surrogate markers secreted alkaline phosphatase (SeAP and enhanced green florescent protein (EGFP can be used to monitor neurogenin-3 expression, and thus islet cell genesis. In transgenic embryos, cells expressing EGFP lined the pancreatic ducts. SeAP was readily detectable in embryos, in the media of cultured embryonic pancreases and in the serum of adult animals. Treatment with the γ-secretase inhibitor DAPT, which blocks Notch signaling, enhanced SeAP secretion rates and increased the number of EGFP-expressing cells as assayed by fluorescence-activated cell sorting (FACS and immunohistochemistry in cultured pancreases from embryos at embryonic day 11.5, but not in pancreases harvested 1 day later. By contrast, treatment with growth differentiation factor 11 (GDF11 reduced SeAP secretion rates. In adult mice, partial pancreatectomy decreased, whereas duct ligation increased, circulating SeAP levels. This model will be useful for studying signals involved in islet cell genesis in vivo and developing therapies that induce this process.

  19. Prophylactic effects of triptolide on colon cancer development in ...

    African Journals Online (AJOL)

    tumor development in an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of colon ... pancreas, the expression levels of peroxisome ... diterpenoid molecule [16-18]. Biological investigations of triptolide have revealed its.

  20. Pancreas Center Data Profile

    Science.gov (United States)

    ... Composite Allograft Organ Transport Living Donation Informing Patients Ethics Guidance Calendar of Events Glossary Organ Procurement and Transplantation Network Pancreas Home Data Organ Datasource ...

  1. Development of gamma emitting receptor-binding radiotracers for imaging the brain and pancreas. Progress report, February 1983-September 1984

    International Nuclear Information System (INIS)

    Reba, R.C.

    1984-01-01

    The possibility of measuring the change in receptor concentration as a function of disease by external imaging was investigated. The structure-binding-relationship which provides optimal localization of radiolabelled antagonist of the muscarinic acetylcholine receptors in the brain was studied. These relationships were also studied with respect to localization in the pancreas

  2. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    International Nuclear Information System (INIS)

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-01-01

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development

  3. Microarray analysis of mandible regionalization during mouse development

    Czech Academy of Sciences Publication Activity Database

    Langová, Petra; Balková, Simona; Buchtová, Marcela

    2015-01-01

    Roč. 159, Suppl 1 (2015), S24-S24 ISSN 1213-8118. [Morphology 2015. International Congress of the Czech Anatomical Society /49./. Lojda Symposium on Histochemistry /52./. 06.09.2015-08.09.2015, Olomouc] R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : mouse development Subject RIV: EA - Cell Biology

  4. Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

    Directory of Open Access Journals (Sweden)

    Gregory E. Bigford

    2013-08-01

    Full Text Available CVD (cardiovascular disease represents a leading cause of mortality in chronic SCI (spinal cord injury. Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immunohistochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin and increased NPY (neuropeptide-Y expression in the hypothalamic ARC (arcuate nucleus and PVN (paraventricular nucleus, 1-month post-SCI. Long-form leptin receptor (Ob-Rb, JAK2 (Janus kinase/STAT3 (signal transducer and activator of transcription 3/p38 and RhoA/ROCK (Rho-associated kinase signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3 inflammasome in VAT (visceral adipose tissue and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

  5. Genomic analysis of mouse retinal development.

    Directory of Open Access Journals (Sweden)

    Seth Blackshaw

    2004-09-01

    Full Text Available The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE. The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length ("noncoding RNAs" were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.

  6. Mybs in mouse hair follicle development

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Šmarda, J.; Matalová, Eva

    2014-01-01

    Roč. 46, č. 5 (2014), s. 352-355 ISSN 0040-8166 R&D Projects: GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : hair follicle * stem cells * c-Myb * B-Myb * development Subject RIV: EA - Cell Biology Impact factor: 1.252, year: 2014

  7. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  8. Serous cystadenocarcinoma of pancreas

    International Nuclear Information System (INIS)

    Rathore, M. U.; Arif, A.; Umair, B.

    2013-01-01

    Serous cystic neoplasms of pancreas are relatively rare tumours. Malignancy in these tumours is even more rare which is confirmed by metastasis to other organs or by perineural, vascular or surrounding soft tissue invasion. A 60 years old lady presented with vague upper abdominal pain. Computed tomography scan showed multiloculated cystic mass in the body of pancreas measuring 9 x 6 x 5 cm and not involving spleen. Pancreatectomy specimen showed a multicystic tumour having sponge-like appearance which showed vascular and soft tissue invasion of surrounding stroma on microscopic examination and was diagnosed as serous cystadenocarcinoma of pancreas. (author)

  9. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  10. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  11. Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2 and MNX1 Mutations as Causes of Neonatal Diabetes in Man

    Science.gov (United States)

    Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.

    2014-01-01

    Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943

  12. Computed tomographic evaluation of the pancreas

    International Nuclear Information System (INIS)

    Stanley, R.J.; Sagel, S.S.

    1979-01-01

    Analysis of the clinical experience in the evaluation of the pancreas with computed tomography (CT) since October 1975 indicates that it is a reliable, often specific and relatively noninvasive method for the detection of pancreatic neoplasms and the varied manifestations of pancreatitis and its complications. The normal pancreas is clearly imaged in all but the leanest or uncooperative patients. Tumors of pancreas are identified as focal alteration in the size or contour of the gland. Obliteration of contiguous fat planes, areas of necrosis within the tumor, and secondary effects on the uninvolved parts of the pancreas and biliary tree can be identified. CBT has substantially reduced the need for pancreatic angiography, percutaneous transhepatic cholangiography, and endoscopic retrograde pancreatocholangiography at this medical center. Although a definitive comparison of ultrasound and CT has not yet been accomplished, initial experience indicates that a complementary rather than competitive relationship will develop between the two imaging methods. (orig.) 891 MG/orig. 892 MB [de

  13. Arterioscanning of pancreas

    International Nuclear Information System (INIS)

    Petrovskij, B.V.; Rabkin, I.Kh.; Matevosov, A.L.

    1980-01-01

    Investigated is the state of precapillary and capillary net of pancreas vessels by way of intra-arterial MAA 1 +H3+H1I injection. Posiible variants of pancreas form, shape and position, and the main sources of blood supply are presented. The knowledge of the above factors is necessary to avoid mistakes in the desiphering of arterioscannograms. Techniques for angiography and arterioscanning in cases of pancreas cancer, benign tumours, pancreas cyst and chronic pancreatitis are described. Arterioscanning is shown to be a valuable addition to angiography, which permits to judge on the angiographically invisible part of the organ arteriolocapillary channel, clarifying the nature of the process and damage length. The summary estimate of results of angiographic and arterioscannographic investigations considerably increases the diagnostic effectiveness

  14. Functional analysis of lysosomes during mouse preimplantation embryo development.

    Science.gov (United States)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  15. Pancreas and cyst segmentation

    Science.gov (United States)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  16. The molecular and morphogenetic basis of pancreas organogenesis

    DEFF Research Database (Denmark)

    Larsen, Hjalte List; Grapin-Botton, Anne

    2017-01-01

    The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling...... review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic...

  17. Dual effects of fluoxetine on mouse early embryonic development

    International Nuclear Information System (INIS)

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-01-01

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K + channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation

  18. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  19. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    Science.gov (United States)

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  20. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  1. Fibromyxoid sarcoma of the pancreas

    Directory of Open Access Journals (Sweden)

    Čolović Radoje

    2008-01-01

    Full Text Available Introduction Fibromyxoid sarcoma is a rare mesenchymal neoplasm, usually appearing in the soft tissue of the extremities, less frequently in the groin, trunk, neck, and upper extremities. Within the abdomen, the tumour is usually localised within the retroperitoneum. Case OutlineWe present a 56-year-old woman in whom, during the routinely performed investigation for atacks of choking with lots of bronchial secretion, and arterial hypertension, an ultrasonographer found a tumour within the head of the pancreas 6×6 cm in diameter. At operation, a dark pink, lobulated soft tumour, surrounded by a tiny capsule, clearly different from the completely normal pancreatic tissue of the posterior side of the head of the pancreas, was easily and ideally excised.The postoperative recovery was stormy. She developed postoperative pancreatitis, temporary biliary and duodenal fistula, which all settled by conservative treatment. The histology of the 80 g weighing tumour showed a circumscribed fibromyxoid sarcoma of low malignancy. Immunohistochemistry showed diffuse vimentin and CD34 strong positivity, as well as focal anti-SMA and anti-EMA immunopositivity. Six months after surgery, she died with signs of cerebrovascular insult, asthmatic status, and recurrent suppurative abdominal fistula, probably related to the previous pancreatitis. Ultrasonography showed a possible liver secondary. The exact cause of death was not confirmed as the autopsy was refused by the family. Conclusion Primary sarcomas of the pancreas are very rare, but should be considered in differential diagnosis of pancreatic neoplasms. To the best of our knowledge, there has been no previously described fibromyxoid sarcoma of the pancreas. .

  2. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...

  3. De novo malignancy after pancreas transplantation in Japan.

    Science.gov (United States)

    Tomimaru, Y; Ito, T; Marubashi, S; Kawamoto, K; Tomokuni, A; Asaoka, T; Wada, H; Eguchi, H; Mori, M; Doki, Y; Nagano, H

    2015-04-01

    Long-term immunosuppression is associated with an increased risk of cancer. Especially, the immunosuppression in pancreas transplantation is more intensive than that in other organ transplantation because of its strong immunogenicity. Therefore, it suggests that the risk of post-transplant de novo malignancy might increase in pancreas transplantation. However, there have been few studies of de novo malignancy after pancreas transplantation. The aim of this study was to analyze the incidence of de novo malignancy after pancreas transplantation in Japan. Post-transplant patients with de novo malignancy were surveyed and characterized in Japan. Among 107 cases receiving pancreas transplantation in Japan between 2001 and 2010, de novo malignancy developed in 9 cases (8.4%): post-transplant lymphoproliferative disorders in 6 cases, colon cancer in 1 case, renal cancer in 1 case, and brain tumor in 1 case. We clarified the incidence of de novo malignancy after pancreas transplantation in Japan. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Portal Annular Pancreas

    Science.gov (United States)

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  5. Glycoconjugates distribution during developing mouse spinal cord motor organizers.

    Science.gov (United States)

    Vojoudi, Elham; Ebrahimi, Vahid; Ebrahimzadeh-Bideskan, Alireza; Fazel, Alireza

    2015-01-01

    The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins were used: N-acetylgalactosamine, including Dolichos biflorus, Wisteria floribunda agglutinin (WFA), Vicia villosa, Glycine max as well as focuse-binding lectins, including tetragonolobus, Ulex europaeus, and Orange peel fungus (OFA). All sections were counterstained with alcian blue (pH 2.5). Our results showed that only WFA and OFA reacted strongly with the floor plate cells from early to late embryonic period of developing spinal cord. The strongest reactions were related to the 14, 15, and 16 days of tissue sections incubated with OFA and WFA lectins. The present study demonstrated that cellular and molecular differentiation of the spinal cord organizers is a wholly regulated process, and α-L-fucose, α-D-GalNAc, and α/β-D-GalNAc terminal sugars play a significant role during the prenatal spinal cord development.

  6. Sonic hedgehog signaling in the development of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2015-01-01

    Full Text Available The expression pattern of Sonic Hedgehog (Shh in the developing hypothalamus changes over time. Shh is initially expressed in the prechordal mesoderm and later in the hypothalamic neuroepithelium-- first medially, and then in two off-medial domains. This dynamic expression suggests that Shh might regulate several aspects of hypothalamic development. To gain insight into them, lineage tracing, (conditional gene inactivation in mouse, in ovo loss- and gain-of-function approaches in chick and analysis of Shh expression regulation have been employed. We will focus on mouse studies and refer to chick and fish when appropriate to clarify. These studies show that Shh-expressing neuroepithelial cells serve as a signaling center for neighboring precursors, and give rise to most of the basal hypothalamus (tuberal and mammillary regions. Shh signaling is initially essential for hypothalamic induction. Later, Shh signaling from the neuroepithelium controls specification of the lateral hypothalamic area and growth-patterning coordination in the basal hypothalamus. To further elucidate the role of Shh in hypothalamic development, it will be essential to understand how Shh regulates the downstream Gli transcription factors.

  7. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  8. A computational clonal analysis of the developing mouse limb bud.

    Directory of Open Access Journals (Sweden)

    Luciano Marcon

    Full Text Available A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis.

  9. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  10. Method of pancreas scintigraphy

    International Nuclear Information System (INIS)

    Michele, E.; Schmidt, H.A.E.

    1976-01-01

    Scintigraphy of the pancreas is important because of a lack of simple internal and x-ray pancreas diagnostic examination methods, non-burdening to the patient, yet providing sufficient evidence. We conceived a double isotope subtraction method aimed at widespread application; financially, it should be within the range even of smaller nuclear medicine departments. A scanner is combined with double impulse processing and a subtraction unit (Picker Dualscanner) and an adapted x-ray unit with the x-ray tube aimed at the scan-field. Commercial sup(Se-75)selenium methionine is used for pancreas imagining. sup(TC-99m)colloidal sulphur is used as a liver indicator. After barium-brei application orally, an x-ray is taken of the gastro-intestinal tract, so as to be able to delineate the pancreas from other epigastric organs also able to accumulate methionine. The subtraction photoscan is then inscribed on this pre-exposed film without any shift of the patient. It is also possible to use two parallel films (x-ray/photoscan) and then to superposition them

  11. Carcinoma of the pancreas

    International Nuclear Information System (INIS)

    Humphrey, L.J.; Hartman, G.V.

    1974-01-01

    Experience with 17 patients with incurable carcinoma of the pancreas treated by radiation therapy and immunotherapy is described. Results observed have prompted a program of aggressive surgery, radiation therapy, immunotherapy, and long-term chemotherapy. Optimism for significant palliation and survival for these patients with curable and incurable pancreatic carcinoma is warranted. (U.S.)

  12. Agenesis of pancreas

    DEFF Research Database (Denmark)

    Voldsgaard, P; Kryger-Baggesen, N; Lisse, I

    1994-01-01

    Complete agenesis of pancreas is a rare and lethal condition. Four cases have previously been reported in combination with other malformations, such as severe intrauterine growth retardation, hyperglycaemia and meconium ileus. We report a case of pancreatic agenesis as a single anomaly. The child...

  13. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    Science.gov (United States)

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation.

  14. Progress and challenges of the bioartificial pancreas

    Science.gov (United States)

    Hwang, Patrick T. J.; Shah, Dishant K.; Garcia, Jacob A.; Bae, Chae Yun; Lim, Dong-Jin; Huiszoon, Ryan C.; Alexander, Grant C.; Jun, Ho-Wook

    2016-11-01

    Pancreatic islet transplantation has been validated as a treatment for type 1 diabetes since it maintains consistent and sustained type 1 diabetes reversal. However, one of the major challenges in pancreatic islet transplantation is the body's natural immune response to the implanted islets. Immunosuppressive drug treatment is the most popular immunomodulatory approach for islet graft survival. However, administration of immunosuppressive drugs gives rise to negative side effects, and long-term effects are not clearly understood. A bioartificial pancreas is a therapeutic approach to enable pancreatic islet transplantation without or with minimal immune suppression. The bioartificial pancreas encapsulates the pancreatic islets in a semi-permeable environment which protects islets from the body's immune responses, while allowing the permeation of insulin, oxygen, nutrients, and waste. Many groups have developed various types of the bioartificial pancreas and tested their efficacy in animal models. However, the clinical application of the bioartificial pancreas still requires further investigation. In this review, we discuss several types of bioartificial pancreases and address their advantages and limitations. We also discuss recent advances in bioartificial pancreas applications with microfluidic or micropatterning technology.

  15. Subplate in the developing cortex of mouse and human

    DEFF Research Database (Denmark)

    Wang, Wei Zhi; Hoerder-Suabedissen, Anna; Oeschger, Franziska M

    2010-01-01

    Abstract The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among...... several genes that are specifically expressed in the subplate layer of the rodent dorsal cortex. Here we examined the human subplate for some of these markers. In the human dorsal cortex, connective tissue growth factor-positive neurons can be seen in the ventricular zone at 15-22 postconceptional weeks...... growth factor- and nuclear receptor-related 1-positive cells are two distinct cell populations of the human subplate. Furthermore, our microarray analysis in rodent suggested that subplate neurons produce plasma proteins. Here we demonstrate that the human subplate also expresses alpha2zinc...

  16. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  17. Requirement of mouse BCCIP for neural development and progenitor proliferation.

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Huang

    Full Text Available Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.

  18. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  19. Retinoic acid modulates chondrogenesis in the developing mouse cranial base.

    Science.gov (United States)

    Kwon, Hyuk-Jae; Shin, Jeong-Oh; Lee, Jong-Min; Cho, Kyoung-Won; Lee, Min-Jung; Cho, Sung-Won; Jung, Han-Sung

    2011-12-15

    The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  20. Distribution of syndecan-1 protein in developing mouse teeth

    Directory of Open Access Journals (Sweden)

    Anna eFilatova

    2015-01-01

    Full Text Available Syndecan-1 is a cell surface proteoglycan involved in the regulation of various biological processes such as proliferation, migration, condensation and differentiation of cells, intercellular communication and morphogenesis. The extracellular domain of syndecan-1 can bind to extracellular matrix components and signalling molecules, while its intracellular domain interacts with cytoskeletal proteins, thus allowing the transfer of information about extracellular environment changes into the cell that consequently affect cellular behaviour. Although previous studies have shown syndecan-1 expression during precise stages of tooth development, there is no equivalent study regrouping the expression patterns of syndecan-1 during all stages of odontogenesis. Here we examined the distribution of syndecan-1 protein in embryonic and postnatal developing mouse molars and incisors. Syndecan-1 distribution in mesenchymal tissues such as dental papilla and dental follicle was correlated with proliferating events and its expression was often linked to stem cell niche territories. Syndecan-1 was also expressed in mesenchymal cells that will differentiate into the dentin producing odontoblasts, but not in differentiated functional odontoblasts. In the epithelium, syndecan-1 was detected in all cell layers, by the exception of differentiated ameloblasts that form the enamel. Furthermore, syndecan-1 was expressed in osteoblast precursors and osteoclasts of the alveolar bone that surrounds the developing tooth germs. Taken together these results show the dynamic nature of syndecan-1 expression during odontogenesis and suggest its implication in various processes of tooth development and homeostasis.

  1. Development of gamma emitting receptor binding radiotracers for imaging the brain and pancreas. Final technical progress report, March 1, 1988--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This document give paragraph synopses of results in research on brain and pancreas imaging, using radiotracers. General catagories of research included chemistry, pharmacology, imaging physics, and kinetic modeling. A list of publications is included

  2. Multi-slice CT features of annular pancreas in neonates

    International Nuclear Information System (INIS)

    He Mingqing; Zhu Youzhi; Hu Kefei; Yin Chuangao; Hu Jun; Wang Song; Li Xu; Lu Zhongbin; Wang Yue; Liu Xiang

    2013-01-01

    Objective: To investigate the MSCT manifestations and their values in the diagnosis of annular pancreas in neonates. Methods: Retrospective analysis of clinical and CT findings in 27 cases with surgery-proved annular pancreas in neonates was made. The unenhanced and contrast-enhanced CT images were obtained in 20 patients. Two experienced radiologists determined the site and degree of obstruction, the relationship between the head of the pancreas and the obstruction point, and the surrounding tissue structure. Results: The direct signs included the fluid-filled or gas-filled bowel in the head of pancreas in 4 cases, the enhancement of surrounding soft tissue as enhanced pancreas in 17 cases, disappearance of the fat gap between the intestinal wall and the annular pancreas in 17 cases. The indirect signs included intestinal obstruction in 20 cases, 'single-bubble sign' in 2 cases, 'double-bubble sign' in 18 cases, the distal bowel without gas in 5 cases, small amount of gas in the distal bowel in 15 cases. In 12 of 18 cases showing 'double-bubble sign', the ratio of duodenal bubble diameter (Dd) to stomach bubble diameter (Ds)was over 1.0. The site of obstruction was located in the descending duodenum in 20 cases. The form of obstructed point presented with 'nipple sign' in 15 cases, with 'the mouse tail' in 5 cases. The expansion bowel was located in the head of pancreas in 1 case. Gas was found in the pancreatic duct in 1 case, and 'swirl sign' was shown in 2 cases. Conclusions: MSCT combined with three-dimensional reconstruction techniques can clearly demonstrate the annular pancreas' s shape, the site and degree of obstruction and other malformations. It can provide important information for clinical treatment. (authors)

  3. Nrl-Cre transgenic mouse mediates loxP recombination in developing rod photoreceptors.

    Science.gov (United States)

    Brightman, Diana S; Razafsky, David; Potter, Chloe; Hodzic, Didier; Chen, Shiming

    2016-03-01

    The developing mouse retina is a tractable model for studying neurogenesis and differentiation. Although transgenic Cre mouse lines exist to mediate conditional genetic manipulations in developing mouse retinas, none of them act specifically in early developing rods. For conditional genetic manipulations of developing retinas, a Nrl-Cre mouse line in which the Nrl promoter drives expression of Cre in rod precursors was created. The results showed that Nrl-Cre expression was specific to the retina where it drives rod-specific recombination with a temporal pattern similar to endogenous Nrl expression during retinal development. This Nrl-Cre transgene does not negatively impact retinal structure and function. Taken together, the data suggested that the Nrl-Cre mouse line was a valuable tool to drive Cre-mediated recombination specifically in developing rods. © 2016 Wiley Periodicals, Inc.

  4. Dual-phase CT of the liver and the pancreas

    International Nuclear Information System (INIS)

    Dragiyski, B.; Velkova, K.

    2004-01-01

    This survey covers the introduction of Spiral CT in the diagnostics of lesions of the liver and the pancreas. It describes the possibility to display separate images of the arterial and portal-venous phases of saturation of the liver and the pancreas. It also considers the indications leading to use of dual-phase Spiral CT on the liver and the pancreas. We trace the development of the dual-phase Spiral CT in visualization of the structure of blood vessels in the area of liver and pancreas. The survey puts forward the potential of the dual-phase method to improve the diagnostics and description of many primary and secondary malignant tumors of the liver and the pancreas, their differentiation from benign neoplasm, as well as the existing problems and some controversial aspects of its application

  5. Functional imaging of the pancreas

    International Nuclear Information System (INIS)

    Nakanishi, Fumiko

    1984-01-01

    An image processing technique for functional imaging of the pancreas was developed and is here reported. In this paper, clinical efficacy of the technique for detecting pancreatic abnormality is evaluated in comparison with conventional pancreatic scintigraphy and CT. For quantitative evaluation, functional rate, i.e. the rate of normal functioning pancreatic area, was calculated from the functional image and subtraction image. Two hundred and ninety-five cases were studied using this technique. Conventional image had a sensitivity of 65 % and a specificity of 78 %, while the use of functional imaging improved sensitivity to 88 % and specificity to 88 %. The mean functional rate in patients with pancreatic disease was significantly lower (33.3+-24.5 in patients with chronic pancreatitis, 28.1+-26.9 in patients with acute pancreatitis, 43.4+-22.3 in patients with diabetes mellitus, 20.4+-23.4 in patients with pancreatic cancer) than the mean functional rate in cases without pancreatic disease (86.4+-14.2). It is suggested that functional image of the pancreas reflecting pancreatic exocrine function and functional rate is a useful indicator of pancreatic exocrine function. (author)

  6. CT diagnosis of annular pancreas

    International Nuclear Information System (INIS)

    Ueno, Eiko; Isobe, Yoshinori; Niimi, Akiko; Shimizu, Yasushi; Yamada, Akiyoshi; Hanyu, Fujio

    1987-01-01

    CT scan was performed in two cases of annular pancreas which could be found in one case preoperatively and in the other case retrospectively. CT scan demonstrated secondary changes of annular pancreas such as medial displacement and dilatation of the duodenal bulb in the former case and stenosis of the duodenal loop and thickened soft tissue density around the narrow segment of the duodenal loop in the latter case, although it failed to demonstrate the peninsular protrusion of the parenchyma of the pancreas head. These findings suggest high possibility of diagnosing annular pancreas by CT scan. (author)

  7. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  8. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  9. Complete pancreas traumatic transsection

    Directory of Open Access Journals (Sweden)

    H. Hodžić

    2005-02-01

    Full Text Available This report presents a case of a twenty-year old male with complete pancreas breakdown in the middle of its corpus, which was caused by a strong abdomen compression, with injuries of the spleen, the firstjejunumcurve,mesocolon transversum, left kidney, and appereance of retroperitoneal haemathoma. Surgical treatment started 70 minutes after the injury. The treatment consisted of left pancreatectomy with previous spleenectomy, haemostasis of ruptured mesocolon transversum blood vessels, left kidney exploration, suturing of the firstjejunumcurvelession and double abdomen drainage. Posttraumatic pancreatitis which appeared on the second postoperative day and prolonged drain secretion were successfully solved by conservative treatment.

  10. Stochastic Differential Equations in Artificial Pancreas Modelling

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine

    Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump and a contin......Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump...... of the insulin pump and the CGM has paved the way for a fully automatic treatment regime, the artificial pancreas. The idea is to connect the CGM with the insulin pump via a control algorithm running on e.g. the patients smart phone. The CGM observations are sent to the smart phone and based on this information...... of the system directly. The purpose of this PhD-project was to investigate the potential of SDEs in the artificial pancreas development. Especially, the emerging continuous monitoring of glucose levels makes SDEs highly applicable to this field. The current thesis aims at demonstrating and discussing...

  11. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  12. Ectopic Overexpression of Sonic Hedgehog (Shh Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas

    Directory of Open Access Journals (Sweden)

    Volker Fendrich

    2011-10-01

    Full Text Available Ligand-dependent activation of the Hedgehog (Hh signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC. Prior studies in genetically engineered mouse models (GEMMs have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh. We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo. Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.

  13. Disorders of the pediatric pancreas: imaging features

    International Nuclear Information System (INIS)

    Nijs, Els; Callahan, Michael J.; Taylor, George A.

    2005-01-01

    The purpose of this manuscript is to provide an overview of the normal development of the pancreas as well as pancreatic pathology in children. Diagnostic imaging plays a major role in the evaluation of the pancreas in infants and children. Familiarity with the range of normal appearance and the diseases that commonly affect this gland is important for the accurate and timely diagnosis of pancreatic disorders in the pediatric population. Normal embryology is discussed, as are the most common congenital anomalies that occur as a result of aberrant development during embryology. These include pancreas divisum, annular pancreas, agenesis of the dorsal pancreatic anlagen and ectopic pancreatic tissue. Syndromes that can manifest pancreatic pathology include: Beckwith Wiedemann syndrome, von Hippel-Lindau disease and autosomal dominant polycystic kidney disease. Children and adults with cystic fibrosis and Shwachman-Diamond syndrome frequently present with pancreatic insufficiency. Trauma is the most common cause of pancreatitis in children. In younger children, unexplained pancreatic injury must always alert the radiologist to potential child abuse. Pancreatic pseudocysts are a complication of trauma, but can also be seen in the setting of acute or chronic pancreatitis from other causes. Primary pancreatic neoplasms are rare in children and are divided into exocrine tumors such as pancreatoblastoma and adenocarcinoma and into endocrine or islet cell tumors. Islet cell tumors are classified as functioning (insulinoma, gastrinoma, VIPoma and glucagonoma) and nonfunctioning tumors. Solid-cystic papillary tumor is probably the most common pancreatic tumor in Asian children. Although quite rare, secondary tumors of the pancreas can be associated with certain primary malignancies. (orig.)

  14. Disorders of the pediatric pancreas: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Nijs, Els [University Hospital Gasthuisberg, Department of Radiology, Leuven (Belgium); Callahan, Michael J.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States)

    2005-04-01

    The purpose of this manuscript is to provide an overview of the normal development of the pancreas as well as pancreatic pathology in children. Diagnostic imaging plays a major role in the evaluation of the pancreas in infants and children. Familiarity with the range of normal appearance and the diseases that commonly affect this gland is important for the accurate and timely diagnosis of pancreatic disorders in the pediatric population. Normal embryology is discussed, as are the most common congenital anomalies that occur as a result of aberrant development during embryology. These include pancreas divisum, annular pancreas, agenesis of the dorsal pancreatic anlagen and ectopic pancreatic tissue. Syndromes that can manifest pancreatic pathology include: Beckwith Wiedemann syndrome, von Hippel-Lindau disease and autosomal dominant polycystic kidney disease. Children and adults with cystic fibrosis and Shwachman-Diamond syndrome frequently present with pancreatic insufficiency. Trauma is the most common cause of pancreatitis in children. In younger children, unexplained pancreatic injury must always alert the radiologist to potential child abuse. Pancreatic pseudocysts are a complication of trauma, but can also be seen in the setting of acute or chronic pancreatitis from other causes. Primary pancreatic neoplasms are rare in children and are divided into exocrine tumors such as pancreatoblastoma and adenocarcinoma and into endocrine or islet cell tumors. Islet cell tumors are classified as functioning (insulinoma, gastrinoma, VIPoma and glucagonoma) and nonfunctioning tumors. Solid-cystic papillary tumor is probably the most common pancreatic tumor in Asian children. Although quite rare, secondary tumors of the pancreas can be associated with certain primary malignancies. (orig.)

  15. Revisiting mouse peritoneal macrophages: heterogeneity, development and function

    Directory of Open Access Journals (Sweden)

    Alexandra Dos Anjos Cassado

    2015-05-01

    Full Text Available Tissue macrophages play a crucial role in the maintenance of tissue homeostasis and also contribute to inflammatory and reparatory responses during pathogenic infection and tissue injury. The high heterogeneity of these macrophages is consistent with their adaptation to distinct tissue environments and specialization to develop niche-specific functions. Although peritoneal macrophages are one of best-studied macrophage populations, only recently it was demonstrated the co-existence of two subsets in mouse PerC, which exhibit distinct phenotypes, functions and origins. These macrophage subsets have been classified according to their morphology as LPMs (large peritoneal macrophages and SPMs (small peritoneal macrophages. LPMs, the most abundant subset under steady-state conditions, express high levels of F4/80 and low levels of class II molecules of the major histocompatibility complex (MHC. LPMs appear to be originated from embriogenic precursors, and their maintenance in PerC is regulated by expression of specific transcription factors and tissue-derived signals. Conversely, SPMs, a minor subset in unstimulated PerC, have a F4/80lowMHC-IIhigh phenotype and are generated from bone-marrow-derived myeloid precursors. In response to infectious or inflammatory stimuli, the cellular composition of PerC is dramatically altered, where LPMs disappear and SPMs become the prevalent population together with their precursor, the inflammatory monocyte. SPMs appear to be the major source of inflammatory mediators in PerC during infection whereas LPMs contribute for gut-associated lymphoid tissue (GALT-independent and retinoic acid-dependent IgA production by peritoneal B-1 cells. In the last years, considerable efforts have been made to broaden our understanding of LPM and SPM origin, transcriptional regulation and functional profile. This review addresses these issues, focusing on the impact of tissue-derived signals and external stimulation in the complex

  16. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    Science.gov (United States)

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  17. Measure of pancreas transection and postoperative pancreatic fistula.

    Science.gov (United States)

    Takahashi, Shinichiro; Gotohda, Naoto; Kato, Yuichiro; Konishi, Masaru

    2016-05-15

    In pancreaticoduodenectomy (PD), a standard protocol for pancreas transection has not been established although the method of pancreas transection might be involved in the occurrence of postoperative pancreatic fistula (POPF). This study aimed to compare whether pancreas transection by ultrasonically activated shears (UAS) or that by scalpel contributed more to POPF development. A prospective database of 171 patients who underwent PD for periampullary tumor at National Cancer Center Hospital East between January 2010 and June 2013 was reviewed. Among the 171 patients, 93 patients with soft pancreas were specifically included in this study. Surgical results and background were compared between patients with pancreas transection by UAS and scalpel to evaluate the effectiveness of UAS on reducing POPF. Body mass index, main pancreatic duct diameter, or other clinicopathologic factors that have been reported as predictive factors for POPF were not significantly different between the two groups. The incidence of all grades of POPF and that of grade B were significantly lower in the scalpel group (52%, 4%) than in the UAS group (74%, 42%). Postoperative complications ≥ grade III were also significantly fewer in the scalpel group. Scalpel transection was less associated with POPF than UAS transection in patients who underwent PD for soft pancreas. The method of pancreas transection plays an important role in the prevention of clinical POPF. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. In Vitro-Produced Pancreas Organogenesis Models In Three Dimensions

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Grapin-Botton, Anne

    2015-01-01

    of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focusses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human...... pancreas development and function as well as to develop diabetes models and therapeutic cells. Stem Cells 2014....

  19. ZNF 197L is dispensable in mouse development

    African Journals Online (AJOL)

    Jane

    2011-07-27

    protein interactions (Kim et al., 1996; Friedman et .... A fragment of pU17 vector was used as a probe to detect the trapping ... RNA was isolated from adult mouse brain, heart, lung, .... Zinc finger peptides for the regulation of gene.

  20. Intraoperative radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Nagai, Toshihiro; Tobe, Takayoshi; Shibamoto, Yuta; Takahashi, Masaharu; Abe, Mitsuyuki

    1985-01-01

    Seven patients treated by intraoperative radiotherapy for cancer of the pancreas were evaluated. Three patients undergoing pancreaticoduodenectomy for cancer of the head of the pancreas received a dose of 2,500--3,000 rad (6--10 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 2,520 rad (10 MeV lineac X-ray). One patient developed radiation pancreatitis and died 0.8 month after surgery. Autopsy revealed the degeneration of cancer cells in the involved superior mesenteric artery. One died of hepatic metastasis 8.5 months after surgery, however, recurrence was not found in the irradiation field. The other patient who had external beam irradiation combined with intraoperative radiotherapy is alive 7.5 months after surgery. Four patients with unresectable cancer of the body of the pancreas received a dose of 2,500--3,000 rad (13--18 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 1,500--5,520 rad (10 MeV lineac X-ray). One patient died of peritonitis carcinomatosa 3.0 months after surgery. One patient died of DIC 0.6 month after surgery. Two patients are alive 1.0 and 6.5 months after surgery. In these patients with intraoperative radiotherapy for unresectable cancer of the pancreas, remarkable effects on relief of pain and shrinkage of tumor were obtained. Further pursuit of intraoperative and external beam radiotherapies in combination with pancreatectomy should be indicated in an attempt to prolong survival of patient with cancer of the pancreas. (author)

  1. Proteomic analysis of pancreas derived from adult cloned pig

    International Nuclear Information System (INIS)

    Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun; Kim, Jin-Hoi; Han, Yong-Mahn; Koo, Deog-Bon; Lee, Kyung-Kwang

    2008-01-01

    The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreas were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis

  2. Computed tomography of the pancreas

    International Nuclear Information System (INIS)

    Kolmannskog, F.; Kolbenstvedt, A.; Aakhus, T.; Bergan, A.; Fausa, O.; Elgjo, K.

    1980-01-01

    The findings by computed tomography in 203 cases of suspected pancreatic tumours, pancreatitis or peripancreatic abnormalities were evaluated. The appearances of the normal and the diseased pancreas are described. Computed tomography is highly accurate in detecting pancreatic masses, but can not differentiate neoplastic from inflammatory disease. The only reliable signs of pancreatic carcinoma are a focal mass in the pancreas, together with liver metastasis. When a pancreatic mass is revealed by computed tomography, CT-guided fine-needle aspiration biopsy of the pancreas is recommended. Thus the need for more invasive diagnostic procedures and explorative laparotomy may be avoided in some patients. (Auth.)

  3. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    Science.gov (United States)

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  4. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes

    Czech Academy of Sciences Publication Activity Database

    Morovic, M.; Strejček, F.; Nakagawa, S.; Deshmukh, R.S.; Murin, M.; Benc, M.; Fulka, Helena; Kyogoku, H.; Pendovski, L.; Fulka, J.; Laurinčik, Jozef

    2017-01-01

    Roč. 25, č. 6 (2017), s. 675-685 ISSN 0967-1994 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:68378050 ; RVO:67985904 Keywords : Embryo * Interspecies nucleolar transfer * Mouse * Nucleolus * Olcytes * Pig Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3); Developmental biology (UZFG-Y) Impact factor: 1.053, year: 2016

  5. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  6. FA1 immunoreactivity in endocrine tumours and during development of the human fetal pancreas; negative correlation with glucagon expression

    DEFF Research Database (Denmark)

    Tornehave, D; Jensen, Charlotte Harken; Teisner, B

    1996-01-01

    Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to the Drosophila homeotic...... proteins delta and notch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine...... tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing...

  7. Computerized tomography of the pancreas

    International Nuclear Information System (INIS)

    Dondelinger, R.; Campos, R.O.; Lamarque, J.L.

    1979-01-01

    Pancreatic anatomy is briefly reviewed. Tomographic images from normal pancreas and from pathological states (different kinds of pancreatitis; pancreatic tumors) of this organ are discussed. (M.A.) [pt

  8. Endoscopic ultrasound and pancreas divisum

    DEFF Research Database (Denmark)

    Rana, Surinder S; Gonen, Can; Vilmann, Peter

    2012-01-01

    Pancreas divisum is the most common congenital anatomic variation of the pancreatic ductal anatomy and in most of the individuals it is asymptomatic. However, in minority of individuals it is presumed to cause recurrent acute pancreatitis and chronic pancreatitis. Endoscopic retrograde cholangiop......Pancreas divisum is the most common congenital anatomic variation of the pancreatic ductal anatomy and in most of the individuals it is asymptomatic. However, in minority of individuals it is presumed to cause recurrent acute pancreatitis and chronic pancreatitis. Endoscopic retrograde...... of the parenchyma also. Therefore EUS, both radial and linear, has potential for being a minimally invasive diagnostic modality for pancreas divisum. A number of EUS criteria have been suggested for the diagnosis of pancreas divisum. These criteria have varying sensitivity and specificity and hence there is a need...

  9. Development of a metastatic fluorescent Lewis Lung carcinoma mouse model

    DEFF Research Database (Denmark)

    Rask, Lene; Fregil, Marianne; Høgdall, Estrid

    2013-01-01

    Cancer metastasis is the foremost cause of death in cancer patients. A series of observable pathological changes takes place during progression and metastasis of cancer, but the underlying genetic changes remain unclear. Therefore, new approaches are required, including insights from cancer mouse...... and the model is well suited for the identification of novel microRNAs and mRNAs involved in malignant progression. Our results suggest that increases in metalloproteinase expression and impairment of microRNA processing are involved in the acquirement of metastatic ability....

  10. Expression of the metastasis-associated mts1 gene during mouse development

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Ambartsumian, N S; Lukanidin, E M

    1997-01-01

    motility. In order to understand the function of this gene, we studied the expression of the mts1 mRNA and protein in vivo during mouse development. Both mRNA and protein were present in high concentrations from 12.5 to 18.5 days post coitum (dpc) in a variety of developing embryonic tissue of mesodermal....... In developing bone, Mts1 was expressed in invasive mesenchymal cells and in osteoclasts. The results presented here suggest that Mtsl plays an important role in mouse development during differentiation and function of macrophages and might be involved in different processes associated with mesenchymal...

  11. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis

    Science.gov (United States)

    Huch, Meritxell; Bonfanti, Paola; Boj, Sylvia F; Sato, Toshiro; Loomans, Cindy J M; van de Wetering, Marc; Sojoodi, Mozhdeh; Li, Vivian S W; Schuijers, Jurian; Gracanin, Ana; Ringnalda, Femke; Begthel, Harry; Hamer, Karien; Mulder, Joyce; van Es, Johan H; de Koning, Eelco; Vries, Robert G J; Heimberg, Harry; Clevers, Hans

    2013-01-01

    Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality. PMID:24045232

  12. An artificial pancreas for automated blood glucose control in patients with Type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Ranjan, Ajenthen

    2015-01-01

    Automated glucose control in patients with Type 1 diabetes is much-coveted by patients, relatives and healthcare professionals. It is the expectation that a system for automated control, also know as an artificial pancreas, will improve glucose control, reduce the risk of diabetes complications...... and markedly improve patient quality of life. An artificial pancreas consists of portable devices for glucose sensing and insulin delivery which are controlled by an algorithm residing on a computer. The technology is still under development and currently no artificial pancreas is commercially available....... This review gives an introduction to recent progress, challenges and future prospects within the field of artificial pancreas research....

  13. Clinical imaging of the pancreas

    International Nuclear Information System (INIS)

    May, G.; Gardiner, R.

    1987-01-01

    Featuring more than 300 high-quality radiographs and scan images, clinical imaging of the pancreas systematically reviews all appropriate imaging modalities for diagnosing and evaluating a variety of commonly encountered pancreatic disorders. After presenting a succinct overview of pancreatic embryology, anatomy, and physiology, the authors establish the clinical indications-including postoperative patient evaluation-for radiologic examination of the pancreas. The diagnostic capabilities and limitations of currently available imaging techniques for the pancreas are thoroughly assessed, with carefully selected illustrations depicting the types of images and data obtained using these different techniques. The review of acute and chronic pancreatitis considers the clinical features and possible complications of their variant forms and offers guidance in selecting appropriate imaging studies

  14. Microcystic adenoma of the pancreas

    Directory of Open Access Journals (Sweden)

    Čolović Radoje B.

    2002-01-01

    Full Text Available Microcystic adenoma of the pancreas is a rare benign tumour of the pancreas without malignant potential which usually appears in older women. Pain weight loss, palpable mass and jaundice (if the tumor is localized in the head of the pancreas are the main symptoms. Thanks to the modern imaging techniques (US, CT, FNB the tumor is discovered and with rising frequency exactly preoperatively diagnosed. Surgical excision is the treatment of choice. In risk patients without symptoms surgery is not necessary but patients have to be regularly followed-up. The authors present a 70-year old woman in whom, because of constant epigastric pain, a multicystic mass of the pancreatic body, 58 x 40 mm in diameter, was discovered and removed by distal pancreatectomy. The spleen could not be saved. Histologic examination showed a microcystic adenoma. Three years after surgery the patient is symptom-free with normal ultra-sonographic findings.

  15. The economics of pancreas surgery.

    Science.gov (United States)

    Vollmer, Charles M

    2013-06-01

    Pancreas surgery is a paradigm for high-acuity surgical specialization. Given the current intrigue over containing health care expenditures, pancreas surgery provides an ideal model to investigate the cost of care. This article explores the economics of this field from literature accrued over the last 2 decades. The cost of performing a pancreatic resection is established and then embellished with a discussion of the effects of clinical care paths. Then the influence of complications on costs is explored. Next, cost is investigated as an emerging outcome metric regarding variations in pancreatic surgical care. Finally, the societal-level fiscal impact is considered. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Tachykinins in the porcine pancreas

    DEFF Research Database (Denmark)

    Schmidt, P T; Tornøe, K; Poulsen, Steen Seier

    2000-01-01

    The localization, release, and effects of substance P and neurokinin A were studied in the porcine pancreas and the localization of substance P immunoreactive nerve fibers was examined by immunohistochemistry. The effects of electrical vagus stimulation and capsaicin infusion on tachykinin release...... and the effects of substance P and neurokinin A infusion on insulin, glucagon, somatostatin, and exocrine secretion were studied using the isolated perfused porcine pancreas with intact vagal innervation. NK-1 and NK-2 receptor antagonists were used to investigate receptor involvement. Substance P immunoreactive...

  17. Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1

    Directory of Open Access Journals (Sweden)

    Courtoy Pierre J

    2009-12-01

    Full Text Available Abstract Background The exocrine pancreas is composed of a branched network of ducts connected to acini. They are lined by a monolayered epithelium that derives from the endoderm and is surrounded by mesoderm-derived mesenchyme. The morphogenic mechanisms by which the ductal network is established as well as the signaling pathways involved in this process are poorly understood. Results By morphological analyzis of wild-type and mutant mouse embryos and using cultured embryonic explants we investigated how epithelial morphogenesis takes place and is regulated by chemokine signaling. Pancreas ontogenesis displayed a sequence of two opposite epithelial transitions. During the first transition, the monolayered and polarized endodermal cells give rise to tissue buds composed of a mass of non polarized epithelial cells. During the second transition the buds reorganize into branched and polarized epithelial monolayers that further differentiate into tubulo-acinar glands. We found that the second epithelial transition is controlled by the chemokine Stromal cell-Derived Factor (SDF-1. The latter is expressed by the mesenchyme, whereas its receptor CXCR4 is expressed by the epithelium. Reorganization of cultured pancreatic buds into monolayered epithelia was blocked in the presence of AMD3100, a SDF-1 antagonist. Analyzis of sdf1 and cxcr4 knockout embryos at the stage of the second epithelial transition revealed transient defective morphogenesis of the ventral and dorsal pancreas. Reorganization of a globular mass of epithelial cells in polarized monolayers is also observed during submandibular glands development. We found that SDF-1 and CXCR4 are expressed in this organ and that AMD3100 treatment of submandibular gland explants blocks its branching morphogenesis. Conclusion In conclusion, our data show that the primitive pancreatic ductal network, which is lined by a monolayered and polarized epithelium, forms by remodeling of a globular mass of non

  18. MR imaging of pancreas in cystic fibrosis

    International Nuclear Information System (INIS)

    Murayama, S.; Robinson, A.E.; Mulvihill, D.M.; Stallworth, J.M.; Goyco, P.G.; Beckerman, R.C.; Hines, M.R.

    1990-01-01

    The pancreatic regions of 18 patients with cystic fibrosis were analyzed with a 1.5 Tesla MR unit. Signal intensity of the pancreas was correlated with clinical data and ultrasound. A hyperintense pancreas on T1-weighted image was consistent with fatty replacement of pancreatic insufficiency. A pancreas of normal soft tissue intensity was found in two asymptomatic and one symptomatic patient. A very hypointense pancreas on any pulse sequence was considered to be an intermediate stage of pancreatic degeneration. (orig.)

  19. A COMPARATIVE STUDY OF HUMAN PANCREAS WITH OTHER MAMMALIAN PANCREAS

    Directory of Open Access Journals (Sweden)

    Jyotsna Bhuyan

    2016-09-01

    Full Text Available Human pancreas is the largest digestive gland in the body. It has both endocrine and exocrine functions. Pancreas secretes the hormones insulin and glucagon. Insulin keeps the body in euglycaemic state as the main function of insulin is metabolism of carbohydrate. Diabetes is a disease of altered carbohydrate metabolism. At present, pancreatic transplantation is the only definitive therapy that can establish a euglycaemic state. AIM AND OBJECTIVE Keeping the importance of pancreatic hormones in human, the present study was carried out where we compared the pancreatic morphology of human with that of pig and goat in terms of length, breadth and weight. MATERIALS AND METHODS This study was conducted in the Department of Anatomy, Assam Medical College, Dibrugarh. A total of 90 specimens were included in the study and these were obtained from human, pig and goat. The human specimen (30 in number were collected from the Forensic Medicine Department of AMCH after fulfilling the official requirements. The specimen of pig and goat (30 each in number were collected from the local slaughter house after obtaining ethical clearance from the concerned authority. In all specimens, the length, breadth and weight was recorded with the help of measuring tape, vernier callipers and electronic weighing machine. INCLUSION AND EXCLUSION CRITERIA Specimen showing signs of putrefaction, any cut or crush injury and congenital anomalies were excluded from the study. RESULT AND OBSERVATIONS In human, the length of the pancreas ranged from 12.11 to 15.09 cm. Maximum breadth of the human pancreas ranged from 4.03 to 5.12 cm and the weight ranged from 79.13 to 102.22 gram. In goat, the length of the pancreas ranged from 12.43 to 13.79 cm, the breadth ranged from 3.03 to 4.93 cm and the weight ranged from 48.43 to 70.03 gram. In pig, the length of the pancreas ranged from 12.46 to 15.87 cm. Maximum breadth of pig pancreas ranged from 3.76 to 4.78 cm and the weight ranged

  20. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Tae Woo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  1. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  2. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  3. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization.

    Directory of Open Access Journals (Sweden)

    Osamu Kikuchi

    Full Text Available Genetic studies revealed that the ablation of insulin/IGF-1 signaling in the pancreas causes diabetes. FoxO1 is a downstream transcription factor of insulin/IGF-1 signaling. We previously reported that FoxO1 haploinsufficiency restored β cell mass and rescued diabetes in IRS2 knockout mice. However, it is still unclear whether FoxO1 dysregulation in the pancreas could be the cause of diabetes. To test this hypothesis, we generated transgenic mice overexpressing constitutively active FoxO1 specifically in the pancreas (TG. TG mice had impaired glucose tolerance and some of them indeed developed diabetes due to the reduction of β cell mass, which is associated with decreased Pdx1 and MafA in β cells. We also observed increased proliferation of pancreatic duct epithelial cells in TG mice and some mice developed a polycystic pancreas as they aged. Furthermore, TG mice exhibited islet hypervascularities due to increased VEGF-A expression in β cells. We found FoxO1 binds to the VEGF-A promoter and regulates VEGF-A transcription in β cells. We propose that dysregulation of FoxO1 activity in the pancreas could account for the development of diabetes and pancreatic cysts.

  4. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  5. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    Science.gov (United States)

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  6. Development and Characterization of Mouse Monoclonal Antibodies Reactive with Chicken CD83

    Science.gov (United States)

    This study was carried out to develop and characterize mouse monoclonal antibodies (mAbs) against chicken CD83 (chCD83), a membrane-bound glycoprotein belonging to the immunoglobulin superfamily that is primarily expressed on mature dendritic cells (DCs). A recombinant chCD83/IgG4 fusion protein con...

  7. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    Science.gov (United States)

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  8. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  9. Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex

    OpenAIRE

    Pilaz, Louis-Jan; Silver, Debra L.

    2014-01-01

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixe...

  10. Abdominal MR: liver and pancreas

    International Nuclear Information System (INIS)

    Bartolozzi, C.; Lencioni, R.; Donati, F.; Cioni, D.

    1999-01-01

    Following the introduction of rapid, high-quality scan techniques and the development of new, tissue-specific contrast agents, the applications of MRI for abdominal imaging are experiencing unprecedented growth. This article examines the current status of liver and pancreatic MRI, highlighting technical and methodological approach, use of contrast agents, and main clinical applications. The MRI technique appears to be the ideal diagnostic tool for detection and characterization of benign and malignant liver neoplasms, and for evaluating tumor response after nonsurgical treatments. Dynamic imaging after bolus injection of a gadolinium chelate is currently a fundamental component of an MRI examination of the liver in many instances. Optimal dynamic scanning depends on the use of a multisection spoiled gradient-echo technique that allows one to image the entire region of interest during a single suspended respiration. Images are obtained during four phases relative to the injection of the contrast agent: precontrast, arterial (pre-sinusoidal), portal (sinusoidal), and delayed (extracellular) phase. Liver-specific contrast agents, including hepatobiliary agents and reticuloendothelial system-targeted iron oxide particles, however, may offer advantages over gadolinium chelates in some clinical settings. Computed tomography is still preferred to MRI for imaging the pancreas. However, state-of-the-art MRI may currently be at least as accurate as spiral CT for depiction of inflammatory and neoplastic pancreatic diseases. Moreover, MRI has the advantage of allowing simultaneous investigation of the biliary tree, owing to cholangiopancreatography techniques. Hence, a comprehensive assessment of most pancreatic diseases can be achieved with a single examination. (orig.)

  11. Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation

    International Nuclear Information System (INIS)

    Yamamoto, Kaoru; Miyatsuka, Takeshi; Tanaka, Ayako; Toyoda, Shuichi; Kato, Ken; Shiraiwa, Toshihiko; Fujitani, Yoshio; Yamasaki, Yoshimitsu; Hori, Masatsugu; Matsuhisa, Munehide; Matsuoka, Taka-aki; Kaneto, Hideaki

    2007-01-01

    It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed in pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun flox/flox mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun flox/flox and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun flox/flox and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated

  12. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  13. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    OpenAIRE

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndr...

  14. Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development.

    Directory of Open Access Journals (Sweden)

    Aurore Carre

    Full Text Available Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis. To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1(-/- mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05 at E9.5 and at E11.5. Moreover, Hes1(-/- mouse embryos showed a significantly smaller total thyroid surface area (-40 to -60% compared to wild type mice at all study time points (E9.5-E16.5. In both Hes1(-/- and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1(-/- mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice. After fusion of thyroid anlages, hypoplastic Hes1(-/- thyroids revealed a significantly decreased labelling area for T4 (-78% and calcitonin (-65% normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (-69%. These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells.

  15. Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse.

    Science.gov (United States)

    Kang, Heekyoung; Seong, Gi-Sang; Sohn, Hae-Jin; Kim, Jong-Hyun; Lee, Sang-Eun; Park, Mi Yeoun; Lee, Won-Ja; Shin, Ho-Joon

    2015-10-01

    Increasing numbers of Primary Amoebic Meningoencephalitis (PAM) cases due to Naegleria fowleri are becoming a serious issue in subtropical and tropical countries as a Neglected Tropical Disease (NTD). To establish a rapid and effective diagnostic tool, a PCR-based detection technique was developed based on previous PCR methods. Four kinds of primer pairs, Nfa1, Nae3, Nf-ITS, and Naegl, were employed in the cultured amoebic trophozoites and a mouse with PAM experimentally developed by N. fowleri inoculation (PAM-mouse). For the extraction of genomic DNA from N. fowleri trophozoites (1×10(6)), simple boiling with 10μl of PBS (pH 7.4) at 100°C for 30min was found to be the most rapid and efficient procedure, allowing amplification of 2.5×10(2) trophozoites using the Nfa-1 primer. The primers Nfa1 and Nae3 amplified only N. fowleri DNA, whereas the ITS primer detected N. fowleri and N. gruberi DNA. Using the PAM-mouse brain tissue, the Nfa1 primer was able to amplify the N. fowleri DNA 4 days post infection with 1ng/μl of genomic DNA being detectable. Using the PAM-mouse CSF, amplification of the N. fowleri DNA with the Nae3 primer was possible 5 days post infection showing a better performance than the Nfa1 primer at day 6. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  17. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  18. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  19. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...

  20. Genetic regulation of pituitary gland development in human and mouse.

    Science.gov (United States)

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  1. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Issa, Radwan, E-mail: rabuissa@umich.edu

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  2. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    International Nuclear Information System (INIS)

    Abu-Issa, Radwan

    2015-01-01

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development

  3. Stem cells and the pancreas: from discovery to clinical approach

    Directory of Open Access Journals (Sweden)

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  4. Pig Pancreas Anatomy: Implications for Pancreas Procurement, Preservation, and Islet Isolation

    Science.gov (United States)

    Ferrer, Joana; Scott, William E; Weegman, Bradley P; Suszynski, Thomas M; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2009-01-01

    Background Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. The limited human islet supply from cadavers and poor islet yield and quality remain substantial impediments to progress in the field. Use of porcine islets holds great promise for large-scale application of islet transplantation. Consistent isolation of porcine islets is dependent on advances in pancreas procurement and preservation, and islet isolation requiring detailed knowledge of the porcine pancreatic anatomy. The primary aim of this study was to describe the vascular and ductal anatomy of the porcine pancreas in order to guide and improve organ preservation and enzyme perfusion. Methods Pancreata were removed by en bloc viscerectomy from 65 female Landrace pigs. Results 15% of organs exhibited inconsistent vascular branching from the celiac trunk. All organs had uniform patterns of branching at the superior mesenteric artery. The superior and inferior mesenteric veins (IMV) merged to become the portal vein in all but one case in which the IMV drained into the splenic vein. 97% of pancreata had three lobes: duodenal (DL), connecting (CL), and splenic (SL); 39% demonstrated ductal communication between the CL and the other two lobes; 50% had ductal communication only between the CL and DL; and 11% presented other types of ductal delineation. Conclusions Accounting for the variations in vascular and ductal anatomy, as detailed in this study, will facilitate development of protocols for preservation, optimal enzyme administration, and pancreas distention and digestion, and ultimately lead to substantial improvements in isolation outcomes. PMID:19077881

  5. Live imaging of mitosis in the developing mouse embryonic cortex.

    Science.gov (United States)

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  6. Detrimental effects of microgravity on mouse preimplantation development in vitro.

    Directory of Open Access Journals (Sweden)

    Sayaka Wakayama

    Full Text Available Sustaining life beyond Earth either on space stations or on other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction. However, because of the difficulty of doing such experiments in mammals, most studies of reproduction in space have been carried out with other taxa, such as sea urchins, fish, amphibians or birds. Here, we studied the possibility of mammalian fertilization and preimplantation development under microgravity (microG conditions using a three-dimensional (3D clinostat, which faithfully simulates 10(-3 G using 3D rotation. Fertilization occurred normally in vitro under microG. However, although we obtained 75 healthy offspring from microG-fertilized and -cultured embryos after transfer to recipient females, the birth rate was lower than among the 1G controls. Immunostaining demonstrated that in vitro culture under microG caused slower development and fewer trophectoderm cells than in 1G controls but did not affect polarization of the blastocyst. These results suggest for the first time that fertilization can occur normally under microG environment in a mammal, but normal preimplantation embryo development might require 1G.

  7. Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas

    Science.gov (United States)

    Opara, Emmanuel C.; McQuilling, John P.; Farney, Alan C.

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process. PMID:23494435

  8. Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development

    NARCIS (Netherlands)

    Vernet, Nadege; Mahadevaiah, Shantha K.; Decarpentrie, Fanny; Longepied, Guy; de Rooij, Dirk G.; Burgoyne, Paul S.; Mitchell, Michael J.

    2016-01-01

    A previous study indicated that genetic information encoded on the mouse Y chromosome short arm (Yp) is required for efficient completion of the second meiotic division (that generates haploid round spermatids), restructuring of the sperm head, and development of the sperm tail. Using mouse models

  9. Computed tomography in pancreas cancer

    International Nuclear Information System (INIS)

    Fujita, Nobuyuki; Matsuoka, Yoshisuke; Choji, Kiyoshi; Mizuo, Hideyo; Shinohara, Masahiro; Morita, Yutaka; Irie, Goro

    1985-01-01

    We reviewed CT pictures of 31 cases of pancreas cancer to examine detectability of vascular involvement. To demonstrate vascular abnormalities distinctly, we performed bolus injection of contrast medium, followed by drip infusion. The vessels included in this study were portal vein, superior mesenteric vein, and splenic vein. We concluded as below, 1) CT is valuable tool for detection of the vascular abnormality, and can demonstrate vascular involvement distinctly in a case of pancreas cancer. 2) The detectability of the vascular abnormality was correlated well with the result of angiography. 3) The differentiation between stenosis and obstruction was thought to be impossible only with the local vascular changes. But with an information of the collateral pathway, the diagnosis of obstruction was possible. CT can demonstrate these collaterals in 7 of 8 cases. (author)

  10. Neuroendocrine tumors of the pancreas

    International Nuclear Information System (INIS)

    Holzapfel, Konstantin; Rummeny, Ernst J.; Gaertner, Florian C.

    2011-01-01

    Neuroendocrine tumors (NET) of the pancreas are rare entities. Functioning tumors tend to present early with specific symptoms and typical abnormalities in laboratory values. In contrast, non-functioning NET are often diagnosed with delay and become evident by tumor-related symptoms like pain, weight-loss or jaundice. The role of imaging is to localize and delineate the primary tumor and to detect metastases. In the diagnosis of NET radiologic techniques like computed tomography (CT) and magnetic resonance imaging (MRI) are applied. In certain cases nuclear medicine techniques like somatostatin receptor scintigraphy (SRS) and positron emission tomography (PET) using radioactively labelled somatostatin analogues are used. The present article reviews characteristic imaging findings of both functioning and non-functioning NET of the pancreas. (orig.)

  11. Ultrasonography of the canine pancreas

    Directory of Open Access Journals (Sweden)

    Michelle L Avante

    2018-01-01

    Full Text Available This study describes the ultrasonographic techniques currently used in the evaluation of the canine pancreas. Ultrasonography was the first method to enable direct visualization of the pancreas in humans and it has been subsequently applied to animals. Currently, it is the method of choice for pancreatic evaluation and is essential as a diagnostic tool in the detection of abnormalities, especially tumors. Innovative equipment technology has led to the emergence of techniques complementary to B-mode ultrasound; such as Doppler, elastography, and contrast-enhanced ultrasonography, which have enabled more accurate diagnosis. Doppler provides information on vascular architecture and the hemodynamic aspect of blood vessels in multiple organs. ARFI elastography provides detailed images of the alterations detected by conventional examination (qualitative method and assists in differentiating between benign and malignant processes (quantitative method. Microbubble contrast agents determine parameters related to homogeneous and heterogeneous filling of organs with microbubbles, mainly nodular areas, thus defining high and low intensity patterns.

  12. A New Technique for Scanning the Pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Ephraiem, K. H. [Rotterdamsch Radio-Therapeutisch Instituut, Rotterdam (Netherlands)

    1969-05-15

    The difficulties in visualizing the pancreas are partly caused by the high uptake of seleno-methionine in the liver. A simple technique has been developed to prevent data registration during the time the detector is moving above the liver. The technique is based on the fact that both {sup 75}Se and {sup 99m}Tc emit gamma rays of 140-keV energy. The pulses, normally going from the single-channel analyser to the registrating units, are deviated through a ratemeter to an API contactless optical meter relay (model API-compack I) and then passed on to the registrating units. The patient is given the normal dose of Se-methionine and everything is prepared for normal pancreas scanning with only one exception: The window of the single-channel analyser is tuned in on the 140-keV photopeak. The patient is given 2 mCi of {sup 99m}Tc colloid intravenously and the controls on the meter relay are adjusted in such a way that no pulse from the single-channel analyser passes to the registrating units unless the activity is beneath the activity level in the liver. Then the scanning machine is started. The author developed this inexpensive technique to help smaller clinical isotope laboratories which cannot afford the combination of a gamma camera with a special-purpose computer. (author)

  13. "Ductal adenocarcinoma in anular pancreas".

    Science.gov (United States)

    Benassai, Giacomo; Perrotta, Stefano; Furino, Ermenegildo; De Werra, Carlo; Aloia, Sergio; Del Giudice, Roberto; Amato, Bruno; Vigliotti, Gabriele; Limite, Gennaro; Quarto, Gennaro

    2015-09-01

    The annular pancreas is a congenital anomaly in which pancreatic tissue partially or completely surrounds the second portion of the duodenum. Its often located above of papilla of Vater (85%), rarely below (15%). This pancreatic tissue is often easily dissociable to the duodenum but there is same cases where it the tissue is into the muscolaris wall of the duodenum. We describe three case of annular pancreas hospitalized in our facility between January 2004 and January 2009. There were 2 male 65 and 69 years old respectively and 1 female of 60 years old, presented complaining of repeated episodes of mild epigastric pain. Laboratory tests (including tumor markers), a direct abdomen X-ray with enema, EGDS and total body CT scan were performed to study to better define the diagnosis. EUS showed the presence of tissue infiltrating the muscle layer all around the first part of duodenum. Biopsies performed found the presence of pancreatic tissue with focal areas of adenocarcinoma. Subtotal gastrectomy with Roux was performed. The histological examinations shows an annular pancreas of D1 with multiple focal area of adenocarcinoma. (T1aN0M0). We performed a follow up at 5 years. One patients died after 36 months for cardiovascular hit. Two patients, one male and one female, was 5-years disease-free. Annular pancreas is an uncommon congenital anomaly which usually presents itself in infants and newborn. Rarely it can present in late adult life with wide range of clinical severities thereby making its diagnosis difficult. Pre-operative diagnosis is often difficult. CT scan can illustrate the pancreatic tissue encircling the duodenum. ERCP and MRCP are useful in outlining the annular pancreatic duct. Surgery still remains necessary to confirm diagnosis and bypassing the obstructed segment. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  14. PPARγ regulates exocrine pancreas lipase.

    Science.gov (United States)

    Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth

    2016-12-01

    Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Physiology of fish endocrine pancreas.

    Science.gov (United States)

    Plisetskaya, E M

    1989-06-01

    From the very beginning of physiological studies on the endocine pancreas, fish have been used as experimental subjects. Fish insulin was one of the first vertebrate insulins isolated and one of the first insulins whose primary and then tertiary structures were reported. Before a second pancreatic hormone, glucagon, was characterized, a physiologically active 'impurity', similar to that in mammalian insulin preparations, was found in fish insulins.Fish have become the most widely used model for studies of biosynthesis and processing of the pancreatic hormones. It seems inconceivable, therefore, that until the recent past cod and tuna insulins have been the only purified piscine islet hormones available for physiological experiments. The situation has changed remarkably during the last decade.In this review the contemporary status of physiological studies on the fish pancreas is outlined with an emphasis on the following topics: 1) contents of pancreatic peptides in plasma and in islet tissue; 2) actions of piscine pancreatic hormones in fish; 3) specific metabolic consequences of an acute insufficiency of pancreatic peptides; 4) functional interrelations among pancreatic peptides which differ from those of mammals. The pitfalls, lacunae and the perspectives of contemporary physiological studies on fish endocrine pancreas are outlined.

  16. Agenesis of the dorsal pancreas

    Science.gov (United States)

    Schnedl, Wolfgang J; Piswanger-Soelkner, Claudia; Wallner, Sandra J; Krause, Robert; Lipp, Rainer W

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al (World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal pancreas in humans. Agenesis of the dorsal pancreas, a rare congenital pancreatic malformation, is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation, hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families, more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease. PMID:19140241

  17. Cystic tumors of the pancreas

    International Nuclear Information System (INIS)

    Brambs, H.J.; Juchems, M.

    2008-01-01

    Cystic lesions of the pancreas encompass a broad spectrum of benign, premalignant, and malignant tumors which are primarily cystic or result from cystic necroses of solid neoplasms. Because of the wide use of cross-sectional imaging techniques they are increasingly being identified in asymptomatic patients as well as in patients presenting with abdominal pain, jaundice or pancreatitis. Among these lesions, intraductal papillary mucinous neoplasms, serous cystic neoplasms and mucinous cystic neoplasms represent the majority of cases. With increasing experience with these tumors, a refinement of our understanding of their morphology and of their natural course has emerged. It is important to be familiar with the CT and MR imaging features of these lesions to differentiate these tumors and to orient the diagnosis towards benign or malignant forms. Because characterization of cystic tumors of the pancreas can sometimes be difficult due to overlapping imaging features, additional criteria such as clinical symptoms, localization, age and gender have to be taken into account. If appropriately treated, these tumors can usually be cured by resection and the decreasing risk of pancreatic surgery has led to an increasing number of resections of pancreatic tumors. The management of cystic tumors of the pancreas has not yet been standardized and the correct evaluation and subsequent management of the disease in asymptomatic patients have not been fully defined. (orig.) [de

  18. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    Science.gov (United States)

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.

  19. Congenital anomalies, hereditary diseases of the pancreas, acute and chronic pancreatitis

    International Nuclear Information System (INIS)

    Brambs, Hans-Juergen; Juchems, Markus

    2011-01-01

    The most important congenital anomalies include pancreas divisum, annular pancreas and ectopic pancreas. Patients with pancreas divisum may be more susceptible to acute or chronic pancreatitis and patients with an annular pancreas may develop duodenal stenosis. In pancreas divisum the key finding is the visualization of the main duct draining into the duodenum via the small papilla, separated from the common bile duct. Annular pancreas may show as a well defined ring of pancreatic tissue that encircles the duodenum. Ectopic pancreas is usually asymptomatic but may give rise to abdominal complaints and may be confused with submucosal tumors. Acute pancreatitis is classified as mild or severe. In mild forms ultrasound is the imaging modality of choice whereas in severe forms with extensive pancreatic and peripancreatic necroses computed tomography is the favored method. It is crucial to identify signs and criteria that come along with an increased risk of infection of the necroses. MRI plays an inferior role in the assessment of acute pancreatitis. Chronic pancreatitis is a longstanding inflammatory and fibrosing process causing pain and loss of function. Cross-section imaging is particularly in demand for the detection of complications and the differentiation from pancreatic cancer. Autoimmune pancreatitis is a unique form of chronic pancreatitis characterized by lymphoplasmacytic infiltration and fibrosis, and favourable response to corticosteroid treatment. (orig.)

  20. Imaging of the pancreas using dynamic positron emission tomography with N-13 ammonia

    International Nuclear Information System (INIS)

    Hayashi, N.; Tamaki, N.; Yonekura, Y.; Adachi, H.; Senda, M.; Saji, H.; Torizuka, K.

    1985-01-01

    This study was undertaken to develop a new imaging technique of the pancreas. Dynamic positron emission tomography (PET) was performed in 3 normal volunteers, 9 patient without the evidence of pancreatic diseases, 2 patients with adenocarcinoma of the pancreatic head and one patient with islet cell carcinoma. Immediately after the intravenous injection of 10-20mCi of N-13 ammonia, data were obtained every 150 seconds for 30 minutes using a multi-slice whole-body PET scanner. In two cases of adenocarcinoma, the pancreas was not imaged, probably because the nontumorous portion of the pancreas was also suffered from severe pancreatitis due to the duct obstruction at the pancreatic head. In the case with islet cell carcinoma, the radionuclide was accumulated in the tumor and pancreas similarly. Thus, both of them were visualized but not separated. The central necrosis of the tumor showed poor radioactivity. The mechanism of the radionuclide accumulation in the pancreas is not well understood. However, the authors also studied the biodistribution of N-13 ammonia in mice and confirmed that there is an early and high accumulation of the radionuclide in the murine pancreas. These preliminary results of this paper suggest that the dynamic PET study may be useful for the imaging of the pancreas as well as for the further study of the blood supply and metabolism of the pancreas

  1. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  2. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  3. Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning.

    Science.gov (United States)

    Shetty, Ronak; Joshi, Divyesh; Jain, Mamta; Vasudevan, Madavan; Paul, Jasper Chrysolite; Bhat, Ganesh; Banerjee, Poulomi; Abe, Takaya; Kiyonari, Hiroshi; VijayRaghavan, K; Inamdar, Maneesha S

    2018-04-04

    Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein that promotes directional cell migration and angiogenesis in vitro and is implicated in human carcinomas and coronary artery disease. To study the role of Rudhira during development in vivo, we generated the first knockout mouse for rudhira and show that Rudhira is essential for mouse development. Rudhira null embryos die at embryonic day (E) 9.5 accompanied by severe vascular patterning defects in embryonic and extra-embryonic tissues. To identify the molecular processes downstream of rudhira, we analyzed the transcriptome of intact knockout yolk sacs. Genome-wide transcriptome analysis showed that Rudhira functions in angiogenesis and its related processes such as cell adhesion, extracellular matrix organization, peptidase activity and TGFβ signaling. Since Rudhira is also expressed in endothelial cells (ECs), we further generated Tie2Cre-mediated endothelial knockout (CKO) of rudhira. CKO embryos survive to E11.5 and similar to the global knockout, display gross vascular patterning defects, showing that endothelial Rudhira is vital for development. Further, Rudhira knockdown ECs in culture fail to sprout in a spheroid-sprouting assay, strongly supporting its role in vascular patterning. Our study identifies an essential role for Rudhira in blood vessel remodeling and provides a mouse model for cardiovascular development.

  4. eHistology image and annotation data from the Kaufman Atlas of Mouse Development.

    Science.gov (United States)

    Baldock, Richard A; Armit, Chris

    2017-12-20

    "The Atlas of Mouse Development" by Kaufman is a classic paper atlas that is the de facto standard for the definition of mouse embryo anatomy in the context of standard histological images. We have re-digitised the original H&E stained tissue sections used for the book at high resolution and transferred the hand-drawn annotations to digital form. We have augmented the annotations with standard ontological assignments (EMAPA anatomy) and made the data freely available via an online viewer (eHistology) and from the University of Edinburgh DataShare archive. The dataset captures and preserves the definitive anatomical knowledge of the original atlas, provides a core image set for deeper community annotation and teaching, and delivers a unique high-quality set of high-resolution histological images through mammalian development for manual and automated analysis. © The Authors 2017. Published by Oxford University Press.

  5. AP@home: The Artificial Pancreas Is Now at Home

    NARCIS (Netherlands)

    Heinemann, Lutz; Benesch, Carsten; DeVries, J. Hans

    2016-01-01

    In the past years the development of an artificial pancreas (AP) has made great progress and many activities are ongoing in this area of research. The major step forward made in the last years was moving the evaluation of AP systems from highly controlled experimental conditions to daily life

  6. Ochratoxin A Inhibits Mouse Embryonic Development by Activating a Mitochondrion-Dependent Apoptotic Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan-Der Hsuuw

    2013-01-01

    Full Text Available Ochratoxin A (OTA, a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development.

  7. Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Victoriano Pérez-Vázquez

    2014-05-01

    Full Text Available Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. Twenty five proteins were identified by matrix-assisted laser desorption/ionization (MALDI time-of-flight (TOF and their interactions were analyzed using search tool for the retrieval of interacting genes/proteins (STRING and database for annotation, visualization and integrated discovery (DAVID. Some of these proteins were Pancreatic α-amylase, Cytochrome b5, Lithostathine-1, Lithostathine-2, Chymotrypsinogen B, Peroxiredoxin-4, Aspartyl aminopeptidase, Endoplasmin, and others, which are involved in the metabolism of carbohydrates and proteins, as well as in oxidative stress, and inflammation. Remarkably, these are mostly endoplasmic reticulum proteins related to peptidase activity, i.e., they are involved in proteolysis, glucose catabolism and in the tumor necrosis factor-mediated signaling pathway. These results suggest mechanisms for insulin resistance, and the chronic inflammatory state observed in diabetes.

  8. Annular pancreas in adult: a case report

    International Nuclear Information System (INIS)

    Moreira Neto, M.

    1992-01-01

    A case of a patient complaining of recurrent symptomatology of the upper abdomen and sub occlusion of the gastrointestinal tract with stenosis of the second portion of duodenum and mass evolving the head of pancreas at echographic study, confirmed by CT is presented. Contrasted oral studies confirmed that the mass evolved the stenotic segment, suggesting annular pancreas. Surgery confirmed the presence of annular pancreas surrounding the second portion of duodenum. (author)

  9. Development and matching of binocular orientation preference in mouse V1.

    Science.gov (United States)

    Bhaumik, Basabi; Shah, Nishal P

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  10. Development and Matching of Binocular Orientation Preference in Mouse V1

    Directory of Open Access Journals (Sweden)

    Basabi eBhaumik

    2014-07-01

    Full Text Available Eye-specific thalamic inputs converge in the primary visual cortex (V1 and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalmo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  11. Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi

    Directory of Open Access Journals (Sweden)

    Bell Graham

    2005-12-01

    Full Text Available Abstract Background Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. Results We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. Conclusion Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.

  12. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2 tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.

  13. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  14. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  15. [Computer program "PANCREAS"].

    Science.gov (United States)

    Jakubowicz, J; Jankowski, M; Szomański, B; Switka, S; Zagórowicz, E; Pertkiewicz, M; Szczygieł, B

    1998-01-01

    Contemporary computer technology allows precise and fast large database analysis. Widespread and common use depends on appropriate, user friendly software, usually lacking in special medical applications. The aim of this work was to develop an integrated system designed to store, explore and analyze data of patients treated for pancreatic cancer. For that purpose the database administration system MS Visual Fox Pro 3.0 was used and special application, according to ISO 9000 series has been developed. The system works under MS Windows 95 with possibility of easy adaptation to MS Windows 3.11 or MS Windows NT by graphic user's interface. The system stores personal data, laboratory results, visual and histological analyses and information on treatment course and complications. However the system archives them and enables the preparation reports of according to individual and statistical needs. Help and security settings allow to work also for one not familiar with computer science.

  16. Distinct spatiotemporal expression of ISM1 during mouse and chick development.

    Science.gov (United States)

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.

  17. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    Science.gov (United States)

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    Science.gov (United States)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  19. Genetics Home Reference: Pearson marrow-pancreas syndrome

    Science.gov (United States)

    ... Health Conditions Pearson marrow-pancreas syndrome Pearson marrow-pancreas syndrome Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Pearson marrow-pancreas syndrome is a severe disorder that usually begins ...

  20. Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development

    Science.gov (United States)

    Carre, Aurore; Rachdi, Latif; Tron, Elodie; Richard, Bénédicte; Castanet, Mireille; Schlumberger, Martin; Bidart, Jean-Michel

    2011-01-01

    Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1 −/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1 −/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1 −/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1 −/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1 −/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells. PMID:21364918

  1. The pancreas from Aristotle to Galen.

    Science.gov (United States)

    Tsuchiya, Ryoichi; Kuroki, Tamotsu; Eguchi, Susumu

    2015-01-01

    The first description of the pancreas in literature is found in Aristotle's Historia Animalium, but it is modified by "so-called". Therefore, the origin is pursued more extensively. The Greek-English Lexicon recommends three treatises as a possible original source. These three and Galen's other papers are investigated. In 2005, Sachs et al. suggested an origin of the pancreas might have derived from the intestinal divination using the avian pancreas. This report is evaluated. The avian pancreas which is the intraperitoneal organ, might have been well known by the intestinal divination, and people have called the organ pankreas or kallikreas. Anatomical dissection on human body was not accepted before the Aristotle's time. "So-called pancreas" in Historia must have been interpolated by Theophrastus. He was the most faithful and reliable disciple of Aristotle and succeeded the Aristotle's school. He and Macedonian ruler of Egypt Ptolemy I had known each other and there had been a strong link between them. The contemporary Herophilus performed many public dissections on both human and animal bodies in Alexandria. He named the various parts of the human body and designated the beginning intestine as duodenum. Yet in his extant works, the pancreas is not found. It is surmised that Herophilus may be the first to recognize the human pancreas, which is fixed with retroperitoneal tissue, and he named it "so-called pancreas". Theophrastus might have interpolated Herophilus' designation in Historia Animalium. Galen also uses "so-called pancreas" to designate the human pancreas. Galen's descriptions, that is, "Nature created 'so-called pancreas 'and spread it beneath all vessels" are not generally acceptable but propose the very rare portal vein anomalies. Since the early years of the 20th century, cases with a preduodenal portal vein or a prepancreatic portal vein have been reported. Although the incidence is very rare, its surgical importance is emphasized. Copyright © 2014

  2. CT-arteriography of pancreas

    International Nuclear Information System (INIS)

    Yoshikawa, Jun; Matsui, Osamu; Kitagawa, Kiyohide; Kamimura, Ryoichi; Kadoya, Masumi; Suzuki, Masayuki; Takashima, Tutomu

    1985-01-01

    To evaluate diagnostic effectiveness of CT-arteriography (CTA) in pancreatic disease, the pictures of pancreatic CTA were analysed in 50 cases without pancreatic disease. In the pancreatic body, irregular spotty stain was seen in 15 out of 50 cases(30%). Especially, in patients who had dorsal pancreatic artery arising from superior mesenteric artery, this stain was seen in 9 out of 13 cases(69%) and its mechanism was considered to be double blood supply both from celiac artery and superior mesenteric artery. As a consequence, we think that CTA of pancreas is unusefull in diagnosis of pancreatic insulinomas or carcinomas. (author)

  3. Physiology of the endocrine pancreas.

    Science.gov (United States)

    Engelking, L R

    1997-11-01

    The endocrine pancreas is composed of nests of cells called the islets of Langerhans, which comprise only about 20% of pancreatic cell mass and secrete insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin is anabolic, increasing storage of glucose, fatty acids and amino acids, while glucagon namely stimulates hepatic glycogenolysis, gluconeogenesis, and ketogenesis. Somatostatin acts as a paracrine agent to inhibit both insulin and glucagon release, and, therefore, to modulate their output. This article explores factors controlling release of these hormones, as well as the way in which they affect fuel metabolism in the whole animal.

  4. Diagnostic imaging of the pancreas

    International Nuclear Information System (INIS)

    Araki, Tsutomu; Itai, Yuji

    1981-01-01

    Diagnostic imaging of the pancreas, ultrasonography (US), computed tomography (CT), radionuclide (RN) scintigraphy, angiography, and endoscopic retrograde pancreaticography (ERP). First three noninvasive methods, were the most effective to diagnose psudo-cyst or cystoadenoma. Especially, CT gives the clear image of inflammation and shows pancreatic stones and calcification, with high sensitivity. As for pancreatic carcinomas there was no noninvasive methods to apply at an early stage. In order to diagnose the cancer the combination of angiography and ERP was preferable. The problem was how to select the candidates for the investigation of combined method out of the patients with negative CT or US. (Tsunoda, M.)

  5. Cybersecurity in Artificial Pancreas Experiments.

    Science.gov (United States)

    O'Keeffe, Derek T; Maraka, Spyridoula; Basu, Ananda; Keith-Hynes, Patrick; Kudva, Yogish C

    2015-09-01

    Medical devices have transformed modern health care, and ongoing experimental medical technology trials (such as the artificial pancreas) have the potential to significantly improve the treatment of several chronic conditions, including diabetes mellitus. However, we suggest that, to date, the essential concept of cybersecurity has not been adequately addressed in this field. This article discusses several key issues of cybersecurity in medical devices and proposes some solutions. In addition, it outlines the current requirements and efforts of regulatory agencies to increase awareness of this topic and to improve cybersecurity.

  6. CT-arteriography of pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Jun; Matsui, Osamu; Kitagawa, Kiyohide; Kamimura, Ryoichi; Kadoya, Masumi; Suzuki, Masayuki; Takashima, Tutomu

    1985-01-01

    To evaluate diagnostic effectiveness of CT-arteriography (CTA) in pancreatic disease, the pictures of pancreatic CTA were analysed in 50 cases without pancreatic disease. In the pancreatic body, irregular spotty stain was seen in 15 out of 50 cases(30%). Especially, in patients who had dorsal pancreatic artery arising from superior mesenteric artery, this stain was seen in 9 out of 13 cases(69%) and its mechanism was considered to be double blood supply both from celiac artery and superior mesenteric artery. As a consequence, we think that CTA of pancreas is unusefull in diagnosis of pancreatic insulinomas or carcinomas. (author).

  7. Arteriovenous Malformation of the Pancreas

    Directory of Open Access Journals (Sweden)

    Alexandros Charalabopoulos

    2011-01-01

    Full Text Available Pancreatic arteriovenous malformation (PAVM is a very rare and mostly congenital lesion, with less than 80 cases described in the English-published literature. It is defined as a tumorous vascular abnormality that is constructed between an anomalous bypass anastomosis of the arterial and venous networks within the pancreas. It represents about 5% of all arteriovenous malformations found in the gastrointestinal tract. Herein, we present a 64-year-old patient with symptomatic PAVM involving the body and tail of the organ, which was successfully treated by transcatheter arterial embolization. The disease spectrum and review of the literature are also presented.

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. Alcohol and the pancreas.

    Science.gov (United States)

    Schenker, S; Montalvo, R

    1998-01-01

    Alcoholic pancreatitis may be one of the most serious adverse consequences of alcohol abuse. Its diagnosis, as it has for many years, depends primarily on clinical acumen in interpreting properly the symptoms and signs of abdominal distress, buttressed by elevated pancreatic enzymes (amylase and lipase). More recently, the use of computerized tomography (CT) in selected situations has been both of confirmatory and prognostic value. Severity of abnormality by CT correlates reasonably well with a variety of clinical-laboratory clusters (APACHE system, Ranson's criteria, etc.) and aids in therapy. The pathogenesis of alcoholic pancreatitis is not fully defined. The ultimate picture is one of tissue autolysis by activated proteolytic enzymes. The triggers for such activation, however, are still not known. They are represented by three main theories: (1) large duct obstruction and/or increased permeability relative to pancreatic secretion, (2) small duct obstruction due to proteinaceous precipitates, and (3) a direct toxic-metabolic effect of ethanol on pancreatic acinar cells. While not mutually exclusive, we favor the last hypothesis as being most consistent with the effects of ethanol on other organ systems. The direct effects of ethanol and/or its metabolites may be mediated, at least in part, via oxidative stress or the generation of fatty acid ethyl esters. Autolysis (regardless of proximate mechanism(s)) leads to inflammation likely mediated via release of various cytokines. It also should be appreciated that "acute" pancreatitis (the topic of this chapter) likely represents an acute process within a chronic pancreatic exposure and injury from alcoholic abuse. The key question of why pancreatitis develops in only a small number of alcohol abusers is not resolved. Therapy depends on the severity of alcoholic pancreatitis, which is defined by clinical-laboratory and often CT criteria. Mild pancreatitis usually resolves acutely with alcohol abstention and supportive

  10. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  11. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  12. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  13. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  14. Essential roles of BCCIP in mouse embryonic development and structural stability of chromosomes.

    Directory of Open Access Journals (Sweden)

    Huimei Lu

    2011-09-01

    Full Text Available BCCIP is a BRCA2- and CDKN1A(p21-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU, yet the induction of sister chromatid exchanges (SCE was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division.

  15. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering

    Science.gov (United States)

    Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita

    2013-01-01

    Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110

  16. A Review of Safety and Design Requirements of the Artificial Pancreas.

    Science.gov (United States)

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J Hans

    2016-11-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an artificial pancreas are, however, lacking. This review aims to provide an overview and discussion of safety and design requirements of the artificial pancreas. We performed a structured literature search based on three search components-type 1 diabetes, artificial pancreas, and safety or design-and extended the discussion with our own experiences in developing artificial pancreas systems. The main hazards of the artificial pancreas are over- and under-dosing of insulin and, in case of a bi-hormonal system, of glucagon or other hormones. For each component of an artificial pancreas and for the complete system we identified safety issues related to these hazards and proposed control measures. Prerequisites that enable the control algorithms to provide safe closed-loop control are accurate and reliable input of glucose values, assured hormone delivery and an efficient user interface. In addition, the system configuration has important implications for safety, as close cooperation and data exchange between the different components is essential.

  17. Ectopic pancreas with pseudocyst and pseudoaneurysm formation

    International Nuclear Information System (INIS)

    Surov, A.; Hainz, M.; Hinz, L.; Holzhausen, H.-J.; Finke, R.; Spielmann, R.-P.; Kunze, C.

    2009-01-01

    Ectopic pancreas is a rare congenital anomaly. It is usually asymptomatic, or presents with non specific gastrointestinal symptoms. We describe here a case of ectopic pancreas in the gastric antrum, with pseudocyst and pseudoaneurysm formation. This entity has not been reported previously in the literature.

  18. Ectopic pancreas in a giant mediastinal cyst

    NARCIS (Netherlands)

    Li, Wilson W.; van Boven, Wim Jan; Jurhill, Roy R.; Bonta, Peter I.; Annema, Jouke T.; de Mol, Bas A.

    2016-01-01

    Ectopic pancreas located in the mediastium is an extremely rare anomaly. We present a case of an ectopic pancreas located in a giant mediastinal cyst in an 18-year-old man. He presented with symptoms of dyspnea due to external compression of the cyst on the left main bronchus. Complete surgical

  19. Developmental biology of the Psammomys obesus pancreas

    DEFF Research Database (Denmark)

    Vedtofte, Louise; Bödvarsdóttir, Thóra B; Karlsen, Allan E

    2007-01-01

    The desert gerbil Psammomys obesus, an established model of type 2 diabetes (T2D), has previously been shown to lack pancreatic and duodenal homeobox gene 1 (Pdx-1) expression. Pdx-1 deficiency leads to pancreas agenesis in both mice and humans. We have therefore further examined the pancreas of ...

  20. Primary hydatid cysts of the pancreas

    African Journals Online (AJOL)

    Kurt

    Hydatid cysts of the pancreas are rare. The reported incidence varies from 0.1% to 2% of patients with hydatid disease.4-7. Management may be diffi- cult as a hydatid cyst in the head of the pancreas may closely simulate a cystic tumour. In this study we report 4 cases of primary hydatid cysts involving the head of the ...

  1. Resection for secondary malignancy of the pancreas.

    Science.gov (United States)

    Hung, Jui-Hsia; Wang, Shin-E; Shyr, Yi-Ming; Su, Cheng-Hsi; Chen, Tien-Hua; Wu, Chew-Wun

    2012-01-01

    This study tried to clarify the role of pancreatic resection in the treatment of secondary malignancy with metastasis or local invasion to the pancreas in terms of surgical risk and survival benefit. Data of secondary malignancy of the pancreas from our 19 patients and cases reported in the English literature were pooled together for analysis. There were 329 cases of resected secondary malignancy of the pancreas, including 241 cases of metastasis and 88 cases of local invasion. The most common primary tumor metastatic to the pancreas and amenable to resection was renal cell carcinoma (RCC) (73.9%). More than half (52.3%) of the primary cancers with local invasion to the pancreas were colon cancer, and nearly half (40.9%) were stomach cancer. The median metastatic interval was 84 months (7 years) for overall primary tumors and 108 months (9 years) for RCC. The 5-year survival for secondary malignancy of the pancreas after resection was 61.1% for metastasis and 58.9% for local invasion, with 72.8% for RCC metastasis, 69.0% for colon cancer, and 43.8% for stomach cancer with local invasion to the pancreas. Pancreatic resection should not be precluded for secondary malignancy of the pancreas because long-term survival could be achieved with acceptable surgical risk in selected patients.

  2. Minimally Invasive Management of Ectopic Pancreas.

    Science.gov (United States)

    Vitiello, Gerardo A; Cavnar, Michael J; Hajdu, Cristina; Khaykis, Inessa; Newman, Elliot; Melis, Marcovalerio; Pachter, H Leon; Cohen, Steven M

    2017-03-01

    The management of ectopic pancreas is not well defined. This study aims to determine the prevalence of symptomatic ectopic pancreas and identify those who may benefit from treatment, with a particular focus on robotically assisted surgical management. Our institutional pathology database was queried to identify a cohort of ectopic pancreas specimens. Additional clinical data regarding clinical symptomatology, diagnostic studies, and treatment were obtained through chart review. Nineteen cases of ectopic pancreas were found incidentally during surgery for another condition or found incidentally in a pathologic specimen (65.5%). Eleven patients (37.9%) reported prior symptoms, notably abdominal pain and/or gastrointestinal bleeding. The most common locations for ectopic pancreas were the duodenum and small bowel (31% and 27.6%, respectively). Three out of 29 cases (10.3%) had no symptoms, but had evidence of preneoplastic changes on pathology, while one harbored pancreatic cancer. Over the years, treatment of ectopic pancreas has shifted from open to laparoscopic and more recently to robotic surgery. Our experience is in line with existing evidence supporting surgical treatment of symptomatic or complicated ectopic pancreas. In the current era, minimally invasive and robotic surgery can be used safely and successfully for treatment of ectopic pancreas.

  3. Postoperative CT in pancreas transplantation

    International Nuclear Information System (INIS)

    Powell, F.E.; Harper, S.J.F.; Callaghan, C.J.; Shaw, A.; Godfrey, E.M.; Bradley, J.A.; Watson, C.J.E.; Pettigrew, G.J.

    2015-01-01

    Aim: To examine the usage and value of computed tomography (CT) following simultaneous pancreas and kidney (SPK) transplantation. Materials and methods: Indications for postoperative CT, key findings, and their influence on management were determined by retrospective analysis. Results: Ninety-eight patients underwent 313 CT examinations. Common indications for the examinations included suspected intra-abdominal collection (31.1%) and elevated serum amylase/lipase (24.1%). CT findings most frequently showed non-specific mild inflammation (27.6%), a normal scan (17.1%) and fluid collections (16.3%). High capillary blood glucose (CBG) was associated with resultant CT demonstration of graft vascular abnormalities, but otherwise, particular clinical indications were not associated with specific CT findings. Conclusion: Clinical findings in patients with SPK transplants are non-specific. The pattern of abnormalities encountered is significantly different to those seen in native pancreatic disease and demands a tailored protocol. CT enables accurate depiction of vascular abnormalities and fluid collections, thus reducing the number of surgical interventions that might otherwise be required. Elevated CBG should prompt urgent CT to exclude potentially reversible vascular complications. - Highlights: • The value of CT following simultaneous pancreas and kidney transplantation was assessed. • 313 CT scans were performed on 98 patients between January 2005 and August 2010. • Elevated blood glucose was associated with CT findings of graft vascular anomalities. • CT was particularly useful in directing operative versus non-operative intervention.

  4. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  5. Adolescent Mouse Takes on An Active Transcriptomic Expression During Postnatal Cerebral Development

    KAUST Repository

    Xu, Wei

    2014-06-01

    Postnatal cerebral development is a complicated biological process precisely controlled by multiple genes. To understand the molecular mechanism of cerebral development, we compared dynamics of mouse cerebrum transcriptome through three developmental stages using high-throughput RNA-seq technique. Three libraries were generated from the mouse cerebrum at infancy, adolescence and adulthood, respectively. Consequently, 44,557,729 (infancy), 59,257,530 (adolescence) and 72,729,636 (adulthood) reads were produced, which were assembled into 15,344, 16,048 and 15,775 genes, respectively. We found that the overall gene expression level increased from infancy to adolescence and decreased later on upon reaching adulthood. The adolescence cerebrum has the most active gene expression, with expression of a large number of regulatory genes up-regulated and some crucial pathways activated. Transcription factor (TF) analysis suggested the similar dynamics as expression profiling, especially those TFs functioning in neurogenesis differentiation, oligodendrocyte lineage determination and circadian rhythm regulation. Moreover, our data revealed a drastic increase in myelin basic protein (MBP)-coding gene expression in adolescence and adulthood, suggesting that the brain myelin may be generated since mouse adolescence. In addition, differential gene expression analysis indicated the activation of rhythmic pathway, suggesting the function of rhythmic movement since adolescence; Furthermore, during infancy and adolescence periods, gene expression related to axon. repulsion and attraction showed the opposite trends, indicating that axon repulsion was activated after birth, while axon attraction might be activated at the embryonic stage and declined during the postnatal development. Our results from the present study may shed light on the molecular mechanism underlying the postnatal development of the mammalian cerebrum. © 2014 .

  6. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  7. Radiology of the pancreas. 2. rev. ed.

    International Nuclear Information System (INIS)

    Baert, A.L.; Van Hoe, L.; Delorme, G.

    1999-01-01

    Radiology of the Pancreas discusses the diagnostic role of the various imaging modalities currently available for the assessment of pancreatic anatomy and disease. In comparison with the first edition, new technical developments (helical CT, ultrafast magnetic resonance imaging, color Doppler ultrasound, laparoscopic ultrasound), have been included, and several chapters have been significantly expanded. With the aid of numerous illustrations, the normal radiological anatomy, anatomical variants, the typical and atypical radiological features of both common and uncommon diseases, and potential pitfalls are considered in depth. All of the chapters have been written by recognized experts in the field, and the book should be of value to all radiologists and other specialists who treat patients with pancreatic disease or who have an interest in the subject. (orig.)

  8. Imaging of the pancreas using positron emission tomography with N-13 ammonia

    International Nuclear Information System (INIS)

    Hayashi, N.; Tamaki, N.; Yamamoto, K.; Senda, M.; Yonekura, Y.; Saji, H.; Nishizawa, S.; Adachi, H.; Torizuka, K.

    1986-01-01

    A new technique for imaging the pancreas was developed using positron emission tomography (PET) with N-13 ammonia. Four healthy volunteers and 15 patients with pancreatic diseases were studied. After intravenous injection of 10-20 mCi of N-13 ammonia, serial PET scans were obtained every 150 seconds. In the healthy subjects, the pancreas was clearly visualized from the earliest scan. Scans in all ten patients with pancreatic cancer were abnormal. In five patients tumors were visualized as hot spots. When there was severe associated pancreatitis due to pancreatic duct obstruction by tumor, the radionuclide accumulation in the pancreas was remarkably low

  9. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development.

    Science.gov (United States)

    McCann, Matthew R; Tamplin, Owen J; Rossant, Janet; Séguin, Cheryle A

    2012-01-01

    Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.

  10. Clinical significance of circumportal pancreas, a rare congenital anomaly, in pancreatectomy.

    Science.gov (United States)

    Ohtsuka, Takao; Mori, Yasuhisa; Ishigami, Kousei; Fujimoto, Takaaki; Miyasaka, Yoshihiro; Nakata, Kohei; Ohuchida, Kenoki; Nagai, Eishi; Oda, Yoshinao; Shimizu, Shuji; Nakamura, Masafumi

    2017-08-01

    Circumportal pancreas is a rare congenital pancreatic anomaly. The aim of this study was to clarify the clinical characteristics of patients with circumportal pancreases undergoing pancreatectomy. The medical records of 508 patients who underwent pancreatectomy were retrospectively reviewed. The prevalence of circumportal pancreas and related anatomical variations were assessed. Surgical procedures and postoperative outcomes were compared in patients with and without circumportal pancreas. Circumportal pancreas was observed in 9 of the 508 patients (1.7%). In all nine patients, the portal vein was completely encircled by the pancreatic parenchyma above the level of the splenoportal junction, and the main pancreatic duct ran dorsal to the portal vein. The rate of variant hepatic artery did not differ significantly in patients with and without circumportal pancreas. Pancreatic fistula developed more frequently in patients with than without circumportal pancreas (44% vs. 14%, p = 0.03), but other clinical parameters did not differ significantly in these two groups. Despite being rare, circumportal pancreas may increase the risk of postoperative pancreatic fistula in patients undergoing pancreatectomy. However, a prospective, large-cohort study is necessary to determine the real incidence of relevant anatomical variations and the definitive clinical significance of this rare anomaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.

    Science.gov (United States)

    Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry

    2017-05-19

    Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.

  12. Injurious Effects of Curcumin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2012-04-01

    Full Text Available Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.

  13. Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Yu, Song-Hee; Jang, Yu-Jin; Lee, Eun-Shil; Hwang, Dong-Youn; Jeon, Chang-Jin

    2010-01-01

    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

  14. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    Science.gov (United States)

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.

  15. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    Directory of Open Access Journals (Sweden)

    Julien Ackermann

    2011-04-01

    Full Text Available The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  16. Immunohistochemical Examination for the Distribution of Podoplanin-Expressing Cells in Developing Mouse Molar Tooth Germs

    Science.gov (United States)

    Imaizumi, Yuri; Amano, Ikuko; Tsuruga, Eichi; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-01-01

    We recently reported the expression of podoplanin in the apical bud of adult mouse incisal tooth. This study was aimed to investigate the distribution of podoplanin-expressing cells in mouse tooth germs at several developing stages. At the bud stage podoplanin was expressed in oral mucous epithelia and in a tooth bud. At the cap stage podoplanin was expressed on inner and outer enamel epithelia but not in mesenchymal cells expressing the neural crest stem cell marker nestin. At the early bell stage nestin and podoplanin were expressed in cervical loop and odontoblasts. At the root formation stage both nestin and podoplanin were weakly expressed in odontoblasts generating radicular dentin. Podoplanin expression was also found in the Hertwig epithelial sheath. These results suggest that epithelial cells of developing tooth germ acquire the ability to express nestin, and that tooth germ epithelial cells maintain the ability to express podoplanin in oral mucous epithelia. The expression of podoplanin in odontoblasts was induced as tooth germ development advanced, but was suppressed with the completion of the primary dentin, suggesting that podoplanin may be involved in the cell growth of odontoblasts. Nestin may function as an intermediate filament that binds podoplanin in odontoblasts. PMID:21060740

  17. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Karl B Shpargel

    2012-09-01

    Full Text Available UTX (KDM6A and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27 demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X(Utx- Y(+ mutant male embryos should phenocopy homozygous X(Utx- X(Utx- females. However, X(Utx- Y(+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X(+ Y(Uty- mutant males are viable. In contrast, compound hemizygous X(Utx- Y(Uty- males phenocopy homozygous X(Utx- X(Utx- females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.

  18. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain.

    Science.gov (United States)

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here, we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (Ndp(AP)). In the CNS, Ndp(AP) expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of Ndp(AP) expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, Ndp(AP) expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  20. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Directory of Open Access Journals (Sweden)

    Justyna Nitarska

    2016-11-01

    Full Text Available Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.

  1. A critical review and analysis of ethical issues associated with the artificial pancreas.

    Science.gov (United States)

    Quintal, A; Messier, V; Rabasa-Lhoret, R; Racine, E

    2018-04-25

    The artificial pancreas combines a hormone infusion pump with a continuous glucose monitoring device, supported by a dosing algorithm currently installed on the pump. It allows for dynamic infusions of insulin (and possibly other hormones such as glucagon) tailored to patient needs. For patients with type 1 diabetes the artificial pancreas has been shown to prevent more effectively hypoglycaemic events and hyperglycaemia than insulin pump therapy and has the potential to simplify care. However, the potential ethical issues associated with the upcoming integration of the artificial pancreas into clinical practice have not yet been discussed. Our objective was to identify and articulate ethical issues associated with artificial pancreas use for patients, healthcare professionals, industry and policymakers. We performed a literature review to identify clinical, psychosocial and technical issues raised by the artificial pancreas and subsequently analysed them through a common bioethics framework. We identified five sensitive domains of ethical issues. Patient confidentiality and safety can be jeopardized by the artificial pancreas' vulnerability to security breaches or unauthorized data sharing. Public and private coverage of the artificial pancreas could be cost-effective and warranted. Patient selection criteria need to ensure equitable access and sensitivity to patient-reported outcomes. Patient coaching and support by healthcare professionals or industry representatives could help foster realistic expectations in patients. Finally, the artificial pancreas increases the visibility of diabetes and could generate issues related to personal identity and patient agency. The timely consideration of these issues will optimize the technological development and clinical uptake of the artificial pancreas. Copyright © 2018. Published by Elsevier Masson SAS.

  2. Cystic tumours of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Y. [Dept. of Radiology, Inst. of Clinical Medicine, Tsukuba Univ. (Japan); Ohtomo, K. [Univ. of Tokyo Hospital, Tokyo (Japan)

    1996-12-01

    In this pictorial essay we present the typical appearances of cystic pancreatic tumours, the wide spectrum of their features, and differential features among cystic pancreatic masses with an emphasis on CT. Pseudocysts are the most common cystic lesion in the pancreas and can be induced by pancreatitis, trauma or surgery. Pseudocysts appear as a round cystic mass with a definite wall. However, they can mimic cystic tumours associated with internal septation and/or necrotic mass of various shapes. Conversely, cystic tumours can appear as a simple cyst lacking any thickening of wall, septation or mural nodule. Pancreatic carcinoma not infrequently induces secondary cysts upstream of the obstructed pancreatic duct. The cysts are pseudocysts or retention cysts in nature. When cysts are formed in the pancreatic parenchyma or adjacent to pancreatic carcinoma they may mimic cystic tumour. (orig./VHE)

  3. Cystic tumours of the pancreas

    International Nuclear Information System (INIS)

    Itai, Y.; Ohtomo, K.

    1996-01-01

    In this pictorial essay we present the typical appearances of cystic pancreatic tumours, the wide spectrum of their features, and differential features among cystic pancreatic masses with an emphasis on CT. Pseudocysts are the most common cystic lesion in the pancreas and can be induced by pancreatitis, trauma or surgery. Pseudocysts appear as a round cystic mass with a definite wall. However, they can mimic cystic tumours associated with internal septation and/or necrotic mass of various shapes. Conversely, cystic tumours can appear as a simple cyst lacking any thickening of wall, septation or mural nodule. Pancreatic carcinoma not infrequently induces secondary cysts upstream of the obstructed pancreatic duct. The cysts are pseudocysts or retention cysts in nature. When cysts are formed in the pancreatic parenchyma or adjacent to pancreatic carcinoma they may mimic cystic tumour. (orig./VHE)

  4. Robotic surgery of the pancreas

    Science.gov (United States)

    Joyce, Daniel; Morris-Stiff, Gareth; Falk, Gavin A; El-Hayek, Kevin; Chalikonda, Sricharan; Walsh, R Matthew

    2014-01-01

    Pancreatic surgery is one of the most challenging and complex fields in general surgery. While minimally invasive surgery has become the standard of care for many intra-abdominal pathologies the overwhelming majority of pancreatic surgery is performed in an open fashion. This is attributed to the retroperitoneal location of the pancreas, its intimate relationship to major vasculature and the complexity of reconstruction in the case of pancreatoduodenectomy. Herein, we describe the application of robotic technology to minimally invasive pancreatic surgery. The unique capabilities of the robotic platform have made the minimally invasive approach feasible and safe with equivalent if not better outcomes (e.g., decreased length of stay, less surgical site infections) to conventional open surgery. However, it is unclear whether the robotic approach is truly superior to traditional laparoscopy; this is a key point given the substantial costs associated with procuring and maintaining robotic capabilities. PMID:25356035

  5. Pancreas Transplantation With Portal-Enteric Drainage for Patients With Endocrine and Exocrine Insufficiency From Extensive Pancreatic Resection

    Directory of Open Access Journals (Sweden)

    Andrew S. Barbas, MD

    2017-09-01

    Full Text Available Abstract. Although the primary indication for pancreas transplantation is type I diabetes, a small number of patients requires pancreas transplantation to manage combined endocrine and exocrine insufficiency that develops after extensive native pancreatic resection. The objective of this case report was to describe the operative and clinical course in 3 such patients and present an alternative technical approach.

  6. Pancreas Transplantation With Portal-Enteric Drainage for Patients With Endocrine and Exocrine Insufficiency From Extensive Pancreatic Resection.

    Science.gov (United States)

    Barbas, Andrew S; Al-Adra, David P; Goldaracena, Nicolas; Dib, Martin J; Selzner, Markus; Sapisochin, Gonzalo; Cattral, Mark S; McGilvray, Ian D

    2017-09-01

    Although the primary indication for pancreas transplantation is type I diabetes, a small number of patients requires pancreas transplantation to manage combined endocrine and exocrine insufficiency that develops after extensive native pancreatic resection. The objective of this case report was to describe the operative and clinical course in 3 such patients and present an alternative technical approach.

  7. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Geuskens, M.; Alexandre, H. (Universite Libre de Bruxelles (Belgium). Dep. de Biologie Moleculaire)

    1984-06-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with (/sup 3/H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min (/sup 3/H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with (/sup 3/H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed.

  8. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Geuskens, M.; Alexandre, H.

    1984-01-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with ( 3 H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min ( 3 H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with ( 3 H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed. (author)

  9. Golga5 is dispensable for mouse embryonic development and postnatal survival.

    Science.gov (United States)

    McGee, Lynessa J; Jiang, Alex L; Lan, Yu

    2017-07-01

    Golgins are a family of coiled-coil proteins located at the cytoplasmic surface of the Golgi apparatus and have been implicated in maintaining Golgi structural integrity through acting as tethering factors for retrograde vesicle transport. Whereas knockdown of several individual golgins in cultured cells caused Golgi fragmentation and disruption of vesicle trafficking, analysis of mutant mouse models lacking individual golgins have discovered tissue-specific developmental functions. Recently, homozygous loss of function of GOLGA2, of which previous in vitro studies suggested an essential role in maintenance of Golgi structure and in mitosis, has been associated with a neuromuscular disorder in human patients, which highlights the need for understanding the developmental roles of the golgins in vivo. We report here generation of Golga5-deficient mice using CRISPR/Cas9-mediated genome editing. Although knockdown studies in cultured cells have implicated Golga5 in maintenance of Golgi organization, we show that Golga5 is not required for mouse embryonic development, postnatal survival, or fertility. Moreover, whereas Golga5 is structurally closely related to Golgb1, we show that inactivation of Golga5 does not enhance the severity of developmental defects in Golgb1-deficient mice. The Golga5-deficient mice enable further investigation of the roles and functional specificity of golgins in development and diseases. © 2017 Wiley Periodicals, Inc.

  10. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Directory of Open Access Journals (Sweden)

    Piltz Sandra

    2011-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5 mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.

  11. Adult Intussusception Caused by Heterotopic Pancreas

    Directory of Open Access Journals (Sweden)

    Va-Kei Kok

    2007-05-01

    Full Text Available Heterotopic pancreas causing small bowel intussusception is rare. We report the case of a 24-year-old woman who presented with intermittent episodes of abdominal cramping and pain that had persisted for 10 days. A target-shaped lesion consisting of multiple concentric rings was found on the left side on contrast-enhanced computed tomography. Surgical intervention demonstrated jejunal intussusception caused by a jejunal heterotopic pancreas. Microscopically, several nesidioblastoses of pancreas were identified. Although very rare, small intestinal pancreatic rests may cause subacute bowel obstruction.

  12. Heterotaxy syndrome with associated agenesis of dorsal pancreas and polysplenia: A case report

    Directory of Open Access Journals (Sweden)

    Syed Althaf Ali1

    2015-01-01

    Full Text Available Heterotaxy syndrome is a rare embryological disorder comprising of polysplenia, partial agenesis of dorsal pancreas, malrotation of gut, cardiac and vascular anomalies resulting from failure of development of the usual left–right asymmetry of organs. We report a rare case of heterotaxy syndrome with polysplenia, partial agenesis of dorsal pancreas and malrotation of gut in a 28 year female presenting with subacute intestinal obstruction along with imaging illustrations, brief discussion and thorough review of literature.

  13. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    Science.gov (United States)

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  14. Rapamycin Influences the Efficiency of Fertilization and Development in the Mouse: A Role for Autophagic Activation

    Directory of Open Access Journals (Sweden)

    Geun-Kyung Lee

    2016-08-01

    Full Text Available The mammalian target of rapamycin (mTOR regulates cellular processes such as cell growth, metabolism, transcription, translation, and autophagy. Rapamycin is a selective inhibitor of mTOR, and induces autophagy in various systems. Autophagy contributes to clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified-warmed mouse oocytes show acute increases in autophagy during warming, and suggested that it is a natural response to cold stress. In this follow-up study, we examined whether the modulation of autophagy influences survival, fertilization, and developmental rates of vitrified-warmed mouse oocytes. We used rapamycin to enhance autophagy in metaphase II (MII oocytes before and after vitrification. The oocytes were then subjected to in vitro fertilization (IVF. The fertilization and developmental rates of vitrified-warmed oocytes after rapamycin treatment were significantly lower than those for control groups. Modulation of autophagy with rapamycin treatment shows that rapamycin-induced autophagy exerts a negative influence on fertilization and development of vitrified-warmed oocytes.

  15. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage

    Science.gov (United States)

    Leloup, Corinne; Hopkins, Kevin M.; Wang, Xiangyuan; Zhu, Aiping; Wolgemuth, Debra J.; Lieberman, Howard B.

    2010-01-01

    RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b−/− embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b+/− embryos exhibit abnormal neural tube closure. Mrad9b−/− mouse embryonic fibroblasts are not viable. Mrad9b−/− ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b+/+ controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b−/− cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents. PMID:20842695

  16. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse.

    Directory of Open Access Journals (Sweden)

    Helen Waller-Evans

    2010-11-01

    Full Text Available Adhesion-GPCRs provide essential cell-cell and cell-matrix interactions in development, and have been implicated in inherited human diseases like Usher Syndrome and bilateral frontoparietal polymicrogyria. They are the second largest subfamily of seven-transmembrane spanning proteins in vertebrates, but the function of most of these receptors is still not understood. The orphan Adhesion-GPCR GPR126 has recently been shown to play an essential role in the myelination of peripheral nerves in zebrafish. In parallel, whole-genome association studies have implicated variation at the GPR126 locus as a determinant of body height in the human population. The physiological function of GPR126 in mammals is still unknown. We describe a targeted mutation of GPR126 in the mouse, and show that GPR126 is required for embryonic viability and cardiovascular development.

  17. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    Science.gov (United States)

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  18. Detection of experimental pancreas necrosis by DNA-ase labelled with radioiodine

    International Nuclear Information System (INIS)

    Tihanyi, Tibor; Duffek, Laszlo; Balint, Istvan; Flautner, Lajos

    1986-01-01

    Detection of pancreas necrosis was attempted in dog experiments. Strong association between pancreatic DNA-ase and actin molecules in vitro provided the theoretical basis for the procedure. Pancreatic DNA-ase labelled with 125 I was administered intravenously to dogs in which experimental pancreas necrosis was elicited. Accumulation ratio of radioactivity was above 20 in the necrotic pancreas whereas it varied between 1.6 and 5.6 in other tissues. After administration of 37 MBq 131 I labelled DNA-ase, accumulation of radioactivity could be clearly visualized in the necrotic portions of the removed pancreas by a gamma camera. The investigations will be extended in order to develop a clinically utilizable test. (L.E.)

  19. Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Huang

    2017-09-01

    Full Text Available Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5–20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5–20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1, IL-1 β and IL-8, were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has

  20. Case Study: Pancreas cancer with Whipple's operation

    African Journals Online (AJOL)

    Keywords: pancreas cancer, Whipple procedure, SASPEN case study ..... Grade A. Grade B. Grade C. Nasogastric tube required. 4-7 days or reinserted > postoperative day 3 .... malabsorption and vitamin and mineral deficiencies are the most.

  1. Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms

    OpenAIRE

    Doyle, Francis J.; Huyett, Lauren M.; Lee, Joon Bok; Zisser, Howard C.; Dassau, Eyal

    2014-01-01

    In this two-part Bench to Clinic narrative, recent advances in both the preclinical and clinical aspects of artificial pancreas (AP) development are described. In the preceding Bench narrative, Kudva and colleagues provide an in-depth understanding of the modified glucoregulatory physiology of type 1 diabetes that will help refine future AP algorithms. In the Clinic narrative presented here, we compare and evaluate AP technology to gain further momentum toward outpatient trials and eventual a...

  2. Characterisation of microRNA expression in post-natal mouse mammary gland development

    Directory of Open Access Journals (Sweden)

    Karagavriilidou Konstantina

    2009-11-01

    Full Text Available Abstract Background The differential expression pattern of microRNAs (miRNAs during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development. We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. Results One third (n = 102 of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. Conclusion MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.

  3. Rybp, a polycomb complex-associated protein, is required for mouse eye development

    Directory of Open Access Journals (Sweden)

    Schreiber-Agus Nicole

    2007-04-01

    Full Text Available Abstract Background Rybp (Ring1 and YY1 binding protein is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of Rybp in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for Rybp in ocular development using four in vivo mouse models which resulted in either the ablation or overexpression of Rybp. Results Our results demonstrate that loss of a single Rybp allele in conventional knockout mice often resulted in retinal coloboma, an incomplete closure of the optic fissure, characterized by perturbed localization of Pax6 but not of Pax2. In addition, about one half of Rybp-/- Rybp+/+ chimeric embryos also developed retinal colobomas and malformed lenses. Tissue-specific transgenic overexpression of Rybp in the lens resulted in abnormal fiber cell differentiation and severe lens opacification with increased levels of AP-2α and Sox2, and reduced levels of βA4-crystallin gene expression. Ubiquitous transgenic overexpression of Rybp in the entire eye caused abnormal retinal folds, corneal neovascularization, and lens opacification. Additional changes included defects in anterior eye development. Conclusion These studies establish Rybp as a novel gene that has been associated with coloboma. Other genes linked to coloboma encode various classes of transcription factors such as BCOR, CBP, Chx10, Pax2, Pax6, Six3, Ski, Vax1 and Vax2. We propose that the multiple functions for Rybp in regulating mouse retinal and lens development are mediated by genetic, epigenetic and physical interactions between these genes and proteins.

  4. Solitary pancreas retransplant: Study of 22 cases

    Directory of Open Access Journals (Sweden)

    Tércio Genzini

    2006-03-01

    Full Text Available Objective: To present our experience with pancreas retransplantin patients previously submitted to simultaneous pancreas-kidneytransplant, pancreas after kidney transplant and pancreastransplant alone. Methods: Between January/1996 and December/2005, 330 pancreas transplants were performed: 308 primarytransplants and 22 (6% retransplants of solitary pancreas. Thefollowing variables were analyzed: patient age; time elapsedbetween the first and the second transplant; causes of loss of thefirst graft; technical characteristics of the transplant andretransplant and the criteria for selecting donors for retransplant.These clinical data were submitted to statistical analysis. Results:The mean age of patients was 34.3 years and the mean elapsedtime between the first and second transplant was 19.3 months.The causes of the first graft loss were venous (8; 35% and arterial(5; 23% thrombosis, chronic rejection (4; 18%, ischemia/reperfusion injury (2, reflux pancreatitis (1, primary non-function(1 and sepsis (1. A second transplant was performed in thesame iliac fossa in 16 patients (72%. Venous drainage wasperformed in the iliac vein in 16 patients (72%, in the inferior venacava in 5 patients (22% and in the portal vein in one patient. 6 allbladder drainage was the technique used in 18 (82% cases andenteric drainage, in 4 patients (18%. Immunosuppressive regimenapplied to all cases was quadruple therapy with antilymphocyteinduction, tacrolimus, mycophenolate mofetil and steroids. Therewas one early death due to sepsis. One-year patient and pancreasgraft survival rates for retransplants were, respectively, 95% and85%. There was no additional risk for removing the pancreas graftat retransplant. Conclusion: Pancreas retransplant was technicallyfeasible in all cases and results similar to those described in theliterature were found for primary pancreas transplant.

  5. Diagnosis and surgical therapy of pancreas tumors

    International Nuclear Information System (INIS)

    Heid, A.

    1981-01-01

    The efficiency of surgery and presurgical diagnosis on several tumorous diseases of the pancreas is investigated. If there is the clinical suspicion of a pancreas carcinoma, sonography computerized tomography, and endoscopic-retrograde cholangio-pancreaticography (ERCP) bring the best diagnostic results. In case of pancreatogenic hyperinsulinism a selective angiography should be carried out in any case for an exact presurgical localisation. (orig./MG) [de

  6. Gatekeepers of pancreas: TEAD and YAP

    OpenAIRE

    Rodríguez Seguí, Santiago Andrés; Bessa, José

    2017-01-01

    The pancreas hosts some of the most debilitating and deadly diseases, including pancreatic cancer and diabetes mellitus. In autoimmune diabetes, for example, there is a massive destruction of the insulin producing cells of the pancreas. Pancreatic developmental defects can also result in a deficit of this cell type. To revert these important pancreatic diseases, researchers are currently trying to artificially generate insulin producing beta-cells for implantation and, in this way, suppress i...

  7. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Directory of Open Access Journals (Sweden)

    Scott F Geller

    2009-08-01

    Full Text Available Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3, a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH, laser capture microdissection (LCM, and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal

  8. CT features of gastric heterotopic pancreas

    International Nuclear Information System (INIS)

    Wu Guangyao; Tian Zhixiong; Zhang Zaipeng; Huang Xiong

    2007-01-01

    Objective: To analyze CT findings correlated with pathologic findings in ectopic pancreas of the stomach. Methods: CT scans of 15 surgically proven eases of ectopic pancreas of the stomach were reviewed, and enhanced CT scan was performed in 11 cases. CT findings were correlated with the pathologic findings. Results: All cases had single lesion, and all lesions showed homogeneous density on plain scans without cystic or malignant changes. The size ranged from 1.3 to 3.1 cm, with mean diameter of (1.9±0.2) cm. The lesions were round or oval in shape with broad base against the gastric wall. Two showed central umbilication sign. Only 2 cases were correctly diagnosed prior to operation and the rest were misdiagnosed or diagnosed indistinctly. The locations were in the gastric antrum in 11 cases, in the body in 3, and in fundus in one; The ectopic pancreas located in the greater curvature in 10, and in the lesser curvature in 5. Homogeneous or inhomogeneous strong enhancement similar to the pancreas was seen in 8 cases and they consisted mainly of pancreatic acini with the same histologic features as the pancreas. Three cases showed poor enhancement and consisted mainly of ducts and hypertrophied muscle, pancreatic acini were a minor component. Conclusion: Ectopic pancreas of the stomach showed characteristic locations with the findings of submucosal diseases. Different enhancing patterns were correlated with their pathologic findings. (authors)

  9. Diabetic Foot Complications Despite Successful Pancreas Transplantation.

    Science.gov (United States)

    Seo, Dong-Kyo; Lee, Ho Seong; Park, Jungu; Ryu, Chang Hyun; Han, Duck Jong; Seo, Sang Gyo

    2017-06-01

    It is known that successful pancreas transplantation enables patients with diabetes to maintain a normal glucose level without insulin and reduces diabetes-related complications. However, we have little information about the foot-specific morbidity in patients who have undergone successful pancreas transplantation. The purpose of this study was to investigate the prevalence and predisposing factors for foot complications after successful pancreas transplantation. This retrospective study included 218 patients (91 males, 127 females) who had undergone pancreas transplantation for diabetes. The mean age was 40.7 (range, 15-76) years. Diabetes type, transplantation type, body mass index, and diabetes duration before transplantation were confirmed. After pancreas transplantation, the occurrence and duration of foot and ankle complications were assessed. Twenty-two patients (10.1%) had diabetic foot complications. Fifteen patients (6.9%) had diabetic foot ulcer and 7 patients (3.2%) had Charcot arthropathy. Three patients had both diabetic foot ulcer and Charcot arthropathy. Three insufficiency fractures (1.4%) were included. Mean time of complications after transplantation was 18.5 (range, 2-77) months. Creatinine level 1 year after surgery was higher in the complication group rather than the noncomplication group ( P = .02). Complications of the foot and ankle still occurred following pancreas transplantation in patients with diabetes. Level III, comparative study.

  10. NAD-content and metabolism in the mouse embryo and developing brain

    International Nuclear Information System (INIS)

    Beuningen, M. van; Streffer, C.; Beuningen, D. van

    1986-01-01

    Biochemical studies have shown that NAD is not only the coenzyme of dehydrogenase but also the substrate of poly-(ADPR)-synthetase which is involved in processes of cell proliferation and differentiation. The NAD and protein content was determined in the total embryo and in the CNS 9 to 13 days p.c. The embryos were X-irradiated 9 days p.c. The NAD content increased in the total mouse embryo during the early organogenesis. At the later period a decrease of the NAD content per mg protein was observed. This latter effect was apparently due to an increase of the NAD glycohydrolase activity. This enzyme degrades NAD. A similar development was observed in the developing mouse brain. However, the maximal NAD content per mg protein occurred on day 10 p.c. One of the enzyme activities, which are responsible for NAD synthesis, NMN-pyrophosphorylase, also increased in the brain at the same time. After the injection of C 14-nicotinamide, a precursor of NAD, it was observed that the radioactivity mainly appeared in nicotinamide and NAD. With progressing embryological development less nicotinamide was taken up by the embryonic tissue. When the embryos were X-irradiated on day 9 p.c. with 1.8 Gy the increase of NAD was considerably reduced during the next days, so that also the NAD level per mg protein was reduced. Also the NAD biosynthesis apparently decreased. This was shown again by the reduced NMN-pyrophosphorylase activity. The dose dependance of these effects was studied in the dose range 0.48-1.8 Gy. Two days p.r. most of the radiation effects were normalized again and at later periods even an overshoot of the enzyme activity was observed. The possible relevance of these effects for cell proliferation will be discussed. (orig.)

  11. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes.

    Science.gov (United States)

    Kyogoku, Hirohisa; Fulka, Josef; Wakayama, Teruhiko; Miyano, Takashi

    2014-06-01

    The large, compact oocyte nucleoli, sometimes referred to as nucleolus precursor bodies (NPBs), are essential for embryonic development in mammals; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygote or embryo, leading to developmental failure. It has been convincingly documented that zygotes inherit the oocyte nucleolar material and form NPBs again in pronuclei. It is commonly accepted that during early embryonic development, the original compact zygote NPBs gradually transform into reticulated nucleoli of somatic cells. Here, we show that zygote NPBs are not required for embryonic and full-term development in the mouse. When NPBs were removed from late-stage zygotes by micromanipulation, the enucleolated zygotes developed to the blastocyst stage and, after transfer to recipients, live pups were obtained. We also describe de novo formation of nucleoli in developing embryos. After removal of NPBs from zygotes, they formed new nucleoli after several divisions. These results indicate that the zygote NPBs are not used in embryonic development and that the nucleoli in developing embryos originate from de novo synthesized materials. © 2014. Published by The Company of Biologists Ltd.

  12. The physiology of rodent beta-cells in pancreas slices.

    Science.gov (United States)

    Rupnik, M

    2009-01-01

    Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.

  13. Congenital anomalies, hereditary diseases of the pancreas, acute and chronic pancreatitis; Entwicklungsstoerungen, angeborene Erkrankungen des Pankreas, akute und chronische Pankreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Brambs, Hans-Juergen; Juchems, Markus [Universitaetsklinikum Ulm (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie

    2011-06-15

    The most important congenital anomalies include pancreas divisum, annular pancreas and ectopic pancreas. Patients with pancreas divisum may be more susceptible to acute or chronic pancreatitis and patients with an annular pancreas may develop duodenal stenosis. In pancreas divisum the key finding is the visualization of the main duct draining into the duodenum via the small papilla, separated from the common bile duct. Annular pancreas may show as a well defined ring of pancreatic tissue that encircles the duodenum. Ectopic pancreas is usually asymptomatic but may give rise to abdominal complaints and may be confused with submucosal tumors. Acute pancreatitis is classified as mild or severe. In mild forms ultrasound is the imaging modality of choice whereas in severe forms with extensive pancreatic and peripancreatic necroses computed tomography is the favored method. It is crucial to identify signs and criteria that come along with an increased risk of infection of the necroses. MRI plays an inferior role in the assessment of acute pancreatitis. Chronic pancreatitis is a longstanding inflammatory and fibrosing process causing pain and loss of function. Cross-section imaging is particularly in demand for the detection of complications and the differentiation from pancreatic cancer. Autoimmune pancreatitis is a unique form of chronic pancreatitis characterized by lymphoplasmacytic infiltration and fibrosis, and favourable response to corticosteroid treatment. (orig.)

  14. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    Science.gov (United States)

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  15. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  16. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  17. Publication rates following pancreas meetings.

    Science.gov (United States)

    Timmer, A; Blum, T; Lankisch, P G

    2001-08-01

    Publication rates and determinants of publication were studied based on abstracts presented at pancreatic meetings. All abstracts presented at the 1994 and 1995 annual meetings of the European Pancreatic Club (EPC) and the American Pancreatic Association (APA) were followed up by searching MEDLINE. Publication rates were compared using log-rank tests and multiple logistic regression. The prestige of the publishing journals was compared using Kruskal-Wallis tests on scientific impact factors (SIF). Overall, 340 abstracts were presented at the EPC, and 254 were presented at the APA. Of these, 203 (59.7%, EPC) and 138 (54.3%, APA) were later published in peer-reviewed journals. Publication rates did not differ by study type or country region of origin. In addition, median SIFs were similar by conference (APA vs. EPC) and research type (basic science vs. clinical studies) (overall, 1.7). However, North American and North/West European articles were published in higher impact journals as compared with those from other countries. Publication rates and median journal SIFs in pancreas research are similar to those reported from other medical specialty meetings. There is no difference by conference, type of research, or origin (North American vs. European).

  18. Giant serous microcystic pancreas adenoma

    Directory of Open Access Journals (Sweden)

    Mustafa Kerem

    2012-10-01

    Full Text Available Serous cystadenomas are rare tumors comprising 1-2% of exocrine pancreas tumors. They are mostly known as benign conditions but malign transformation as serous cystadenocarcinoma is also reported. It is usually seen in females. Non-specific symptoms, such as abdominal pain or symptoms due to mass affect, are usually seen. A 64-year old female patient was investigated for abdominal pain. Physical and laboratory findings were normal. Abdomen ultrasonography confirmed an 11x9.5 cm solid cystic lesion and abdomen computed tomography scan confirmed a 12x11 cm lobulated cystic solid lesion which had central cystic necrotic areas extending from liver hilus inferiorly. Fine needle biopsy confirmed benign cytology and trucut biopsy of the pan creatic mass reported chronic inflamation. Nevertheless, this mass could have malignant contents and transformation potential. A laparatomy was decided due to patient’s symptoms and mass effect. Due to vascular invasion of the tumor, Whipple procedure was performed. The pathology report confirmed serous microcystic adenoma. These rare tumors are usually benign but pre-operative malignity criterias are not identified. There are few differential diagnostic tools for excluding malignity. We suggest surgical resection as best treatment approach for selected cases.

  19. Inhibition of fumonisin B1 cytotoxicity by nanosilicate platelets during mouse embryo development.

    Directory of Open Access Journals (Sweden)

    Yu-Jing Liao

    Full Text Available Nanosilicate platelets (NSP, the form of natural silicate clay that was exfoliated from montmorillonite (MMT, is widely used as a feed additive for its high non-specific binding capacity with mycotoxins such as fumonisin B1 (FB1, and has been evaluated its safety for biomedical use including cytotoxicity, genotoxicity, and lethal dosage (LD. In the study, we further examined its toxicity on the development of CD1 mouse embryos and its capacity to prevent teratogenesis-induced by FB1. In vitro cultures, NSP did not disturb the development and the quality of intact pre-implantation mouse embryos. Further, newborn mice from females consumed with NSP showed no abnormalities. NSP had an unexpected high adsorption capacity in vitro. In contrast to female mice consumed with FB1 only, a very low residual level of FB1 in the circulation, reduced incidence of neutral tube defects and significantly increased fetal weight were observed in the females consumed with FB1 and NSP, suggesting a high alleviation effect of NSP on FB1 in vivo. Furthermore, FB1 treatment disturbed the gene expression of sphingolipid metabolism enzymes (longevity assurance homolog 5, LASS 5; sphingosine kinase 1, Sphk1; sphingosine kinase 2, Sphk2; sphingosine 1- phosphate lyase, Sgpl1; sphingosine 1-phosphate phosphatase, Sgpp1 in the maternal liver, uterus, fetus, and placenta, but NSP administration reversed the perturbations. Based on these findings, we conclude that NSP is a feasible and effective agent for supplementary use in reducing the toxicity of FB1 to animals.

  20. Hypermutability of mouse chromosome 2 during the development of x-ray-induced murine myeloid leukemia

    International Nuclear Information System (INIS)

    Rithidech, K.; Bond, V.P.; Cronkite, E.P.; Thompson, M.H.; Bullis, J.E.

    1995-01-01

    In an effort to identify the precise role of a deletion at regions D-E of mouse chromosome 2 [del2(D-E)] during the development of radiation-induced myeloid leukemia, we conducted a serial sacrifice study in which metaphase chromosomes were examined by the G-banding technique. Such metaphase cells were collected from x-irradiated mice during the period of transformation of some of the normal hematopoietic cells to the fully developed leukemic phenotype. A group of 250 CBA/Ca male mice (10-12 weeks old) were exposed to a single dose of 2 Gy of 250-kilovolt-peak x-rays; 42 age-matched male mice served as controls. Groups of randomly selected mice were sacrificed at 20 hr, 1 week, and then at intervals of 3 months up to 24 months after x-irradiation. Slides for cytogenetic, hematological, and histological examination were prepared for each animal at each sacrifice time. The majority of such lesions were translocations at 2F or 2H, strongly suggesting hyper mutability of these sites on mouse chromosome 2. No lesions were found in control mice. The finding leads to the possibility that genomic lesions close to 2D and 2E are aberrants associated with radiation leukemogenesis, whereas a single clone of cells with a del2(D-E) may lead directly to overt leukemia. The data also indicate that leukemic transformation arises from the cumulative effects of multiple genetic events on chromosome 2, reinforcing the thesis that multiple steps of mutation occur in the pathogenesis of cancer. 15 refs., 1 fig., 2 tabs

  1. Development of a mouse model of neuropathic pain following photochemically induced ischemia in the sciatic nerve.

    Science.gov (United States)

    Hao, J X; Blakeman, K H; Yu, W; Hultenby, K; Xu, X J; Wiesenfeld-Hallin, Z

    2000-05-01

    A mouse model of neuropathic pain was developed by a photochemically induced ischemic nerve injury in normal male C57/BL6 mice. The ischemia was induced by unilateral irradiation of the sciatic nerve with an argon ion laser after intravenous administration of a photosensitizing dye, erythrosin B. The nerve injury resulted in a significant decrease in withdrawal threshold of the hindpaws to mechanical stimulation with von Frey hairs, as well as increased responsiveness to cold and heat stimulation. The mice, however, did not exhibit overt spontaneous pain-like behaviors. The evoked pain-related behaviors were observed bilaterally, although the ipsilateral changes were greater than on the contralateral side. The extent and time course of the behavioral changes were related to the duration of laser irradiation, with 1-min exposure producing the most consistent effect. Morphological examination at the light microscopic level revealed partial demyelination and axonal degeneration of the large myelinated fibers at the epicenter of the lesion 1 week postirradiation. The extent of the damage was correlated with the duration of irradiation. Injury and loss of unmyelinated fibers were also observed at the electronmicroscopic level. We conclude that an intravascular photochemical reaction leading to ischemia results in graded damage to the sciatic nerve in mice. Moreover, the nerve injury is associated with the development of abnormal pain-related behaviors. Both the behavioral and the morphological changes are correlated with the duration of irradiation. These results establish a mouse model of partial nerve injury with neuropathic pain-like behaviors which may be useful in studies using genetically modified mice. Copyright 2000 Academic Press.

  2. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    Science.gov (United States)

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  3. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    Science.gov (United States)

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  4. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines

    DEFF Research Database (Denmark)

    Nielsen, Sonja K; Møllgård, Kjeld; Clement, Christian A

    2008-01-01

    Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct...... adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary...... cilia of PANC-1 and CFPAC-1 cells, which may maintain high levels of nonstimulated Hh pathway activity. These findings indicate that primary cilia are involved in pancreatic development and postnatal tissue homeostasis....

  5. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  6. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  7. Changes in Nuclear Orientation Patterns of Chromosome 11 during Mouse Plasmacytoma Development

    Directory of Open Access Journals (Sweden)

    Ann-Kristin Schmälter

    2015-10-01

    Full Text Available Studying changes in nuclear architecture is a unique approach toward the understanding of nuclear remodeling during tumor development. One aspect of nuclear architecture is the orientation of chromosomes in the three-dimensional nuclear space. We studied mouse chromosome 11 in lymphocytes of [T38HxBALB/c]N mice with a reciprocal translocation between chromosome X and 11 (T38HT(X;11 exhibiting a long chromosome T(11;X and a short chromosome T(X;11 and in fast-onset plasmacytomas (PCTs induced in the same strain. We determined the three-dimensional orientation of chromosome 11 using a mouse chromosome 11 specific multicolor banding probe. We also examined the nuclear position of the small translocation chromosome T(X;11 which contains cytoband 11E2 and parts of E1. Chromosomes can point either with their centromeric or with their telomeric end toward the nuclear center or periphery, or their position is found in parallel to the nuclear border. In T38HT(X;11 nuclei, the most frequently observed orientation pattern was with both chromosomes 11 in parallel to the nuclear border (“PP”. PCT cells showed nuclei with two or more copies of chromosome 11. In PCTs, the most frequent orientation pattern was with one chromosome in parallel and the other pointing with its centromeric end toward the nuclear periphery (“CP”. There is a significant difference between the orientation patterns observed in T38HT(X;11 and in PCT nuclei (P < .0001.

  8. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  9. A chronological expression profile of gene activity during embryonic mouse brain development.

    Science.gov (United States)

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  10. Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development.

    Science.gov (United States)

    Bárez-López, Soledad; Obregon, Maria Jesus; Bernal, Juan; Guadaño-Ferraz, Ana

    2018-05-01

    Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.

  11. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside

    International Nuclear Information System (INIS)

    Platt, J.L.; Brown, D.M.; Granlund, K.; Oegema, T.R.; Klein, D.J.

    1987-01-01

    Morphology and de novo incorporation of [ 35 S]sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO 4 and heparan-SO 4 proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO 4 proteoglycan. Incorporation of [ 35 S]sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan- 35 SO 4 chains. In contrast to dramatic effects on chondroitin-SO 4 synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO 4 synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO 4 proteoglycan and development of the ureter

  12. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  13. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    Science.gov (United States)

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  14. The proliferative activity of testicular cell types and the effect of postnatal X-irradiation in the developing mouse testis

    International Nuclear Information System (INIS)

    Vergouwen, R.P.F.A.; Huiskamp, R.; Davids, J.A.G.; Rooij, D.G. de

    1991-01-01

    The authors describe the effects of x-irradiation on the developing mouse testis, particularly in relation to A spermatogonia, Sertoli cells, Leydig cells and mesenchymal cells commonly regarded as Leydig precursors. It was concluded that radiosensitivity is highest during the first week after birth and decreases thereafter, with the exception of A spermatogonia which are radiosensitive at all ages. (UK)

  15. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  16. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia

    Directory of Open Access Journals (Sweden)

    Claudio Nardiello

    2017-02-01

    Full Text Available Progress in developing new therapies for bronchopulmonary dysplasia (BPD is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2 and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants.

  17. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  18. MR imaging of the normal pancreas

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takahashi, Norio; Uchida, Yoshie; Nakayama, Gen; Bito, Kaoru; Haba, Hirotsugu; Kawamura, Masashi; Kataoka, Masaaki; Hamamoto, Ken.

    1989-01-01

    To evaluate current 1.5-T MR imaging with respiratory ordered phase encoding (ROPE) technique in the identification of pancreatic contour and main pancreatic duct, 100 normal subjects examined with spin echo technique including transaxial scans of T 1 -WI,T 2 -WI, and proton density (PD)-WI were reviewed. The results of MR imaging were then compared with computed tomography (CT). Pancreatic contour was divided into 3 parts; head, body, and tail. T 1 -WI was the best pulse sequence in describing pancreas and the rates of specific identification of head, body, and tail were 69%, 97%, and 92%, respectively. While these rates were 62%, 90%, and 92% with plain CT and 69%, 94%, and 94% with contrast-enhanced CT, respectively. A combination of MR imaging and CT yielded better rates of identification. The main pancreatic duct was visible in 44% as a low intensity line on T 1 -WI and in 16% on plain CT. Dorsal to pancreas, all of the major vessels were seen in every patients. Ventrally, retroperitoneal fat was important, however, it was not a limiting factor. When respiratory compensation using ROPE functioned well, it was possible to differentiate bowel from pancreas in patients with sparse fat because signal intensity of the pancreas tended to be higher than that of gastrointestinal wall and its contents on T 1 -WI. Current MR imaging seemed to be a complementary method with CT in the identification of the pancreas. (author)

  19. Expanding the indications of pancreas transplantation alone.

    Science.gov (United States)

    Mehrabi, Arianeb; Golriz, Mohammad; Adili-Aghdam, Fatemeh; Hafezi, Mohammadreza; Ashrafi, Maryam; Morath, Christian; Zeier, Martin; Hackert, Thilo; Schemmer, Peter

    2014-11-01

    Total pancreatectomy (TP) is associated with postoperative endocrine and exocrine insufficiency. Especially, insulin therapy reduces quality of life and may lead to long-term complications. We review the literature with regard to the potential option of pancreas transplantation alone (PTA) after TP in patients with chronic pancreatitis or benign tumors. A MEDLINE search (1958-2013) using the terminologies pancreas transplantation, pancreas transplantation alone, total pancreatectomy, morbidity, mortality, insulin therapy, and quality of life was performed. In addition, the current book and congress publications were reviewed. Total pancreatectomy after benign and borderline tumors as well as chronic pancreatitis is continuously increasing. Despite improvement of exogenous insulin therapy, more than 50% of these patients experience severe glucose control problems, which cause up to 50% long-term mortality. Pancreas transplantation alone can cure both endocrine and exocrine insufficiency and reduce the associated risks. The 3-year graft and patient survival rates after PTA are up to 73% and 100%, respectively. Pancreas transplantation alone after TP in patients with pancreatitis or benign tumors improves the recipient's quality of life and reduces long-term mortality. Considering the amount of available organs and potential candidates, PTA can be a treatment option for patients after TP with chronic pancreatitis or benign tumors.

  20. The Miracle of an Artificial Pancreas | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Diabetes Follow us The Miracle of an Artificial Pancreas Four NIH-funded Artificial Pancreas Research Efforts Underway Thanks to investments in new ... diabetes are on the horizon, including the artificial pancreas. The artificial pancreas is an integrated system that ...

  1. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    Science.gov (United States)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  2. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    Science.gov (United States)

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  3. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    Science.gov (United States)

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  4. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  5. Development of a Positive-readout Mouse Model of siRNA Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Mark Stevenson

    2013-01-01

    Full Text Available Development of RNAi-based therapeutics has the potential to revolutionize treatment options for a range of human diseases. However, as with gene therapy, a major barrier to progress is the lack of methods to achieve and measure efficient delivery for systemic administration. We have developed a positive-readout pharmacodynamic transgenic reporter mouse model allowing noninvasive real-time assessment of siRNA activity. The model combines a luciferase reporter gene under the control of regulatory elements from the lac operon of Escherichia coli. Introduction of siRNA targeting lac repressor results in increased luciferase expression in cells where siRNA is biologically active. Five founder luciferase-expressing and three founder Lac-expressing lines were generated and characterized. Mating of ubiquitously expressing luciferase and lac lines generated progeny in which luciferase expression was significantly reduced compared with the parental line. Administration of isopropyl β-D-1-thiogalactopyranoside either in drinking water or given intraperitoneally increased luciferase expression in eight of the mice examined, which fell rapidly when withdrawn. Intraperitoneal administration of siRNA targeting lac in combination with Lipofectamine 2000 resulted in increased luciferase expression in the liver while control nontargeting siRNA had no effect. We believe a sensitive positive readout pharmacodynamics reporter model will be of use to the research community in RNAi-based vector development.

  6. Secretin Modulates the Postnatal Development of Mouse Cerebellar Cortex Via PKA- and ERK-dependent Pathways

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Postnatal development of the cerebellum is critical for its intact function such as motor coordination and has been implicated in the pathogenesis of psychiatric disorders. We previously reported that deprivation of secretin (SCT from cerebellar Purkinje neurons impaired motor coordination and motor learning function, while leaving the potential role of SCT in cerebellar development to be determined. SCT and its receptor (SCTR were constitutively expressed in the postnatal cerebellum in a temporal and cell-specific manner. Using a SCT knockout mouse model, we provided direct evidence showing altered developmental patterns of Purkinje cells (PCs and granular cells (GCs. SCT deprivation reduced the PC density, impaired the PC dendritic formation, induced accelerated GC migration and potentiated cerebellar apoptosis. Furthermore, our results indicated the involvement of protein kinase A (PKA and extracellular signal regulated kinase (ERK signaling pathways in SCT-mediated protective effects against neuronal apoptosis. Results of this study illustrated a novel function of SCT in the postnatal development of cerebellum, emphasizing the necessary role of SCT in cerebellar-related functions.

  7. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  8. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  9. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    Full Text Available Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF failure due to poor embryo quality.

  10. The Role of Type IV Collagen in Developing Lens in Mouse Fetuses

    Directory of Open Access Journals (Sweden)

    Mehdi Jalali

    2009-09-01

    Full Text Available Objective(sExtracellular matrix (ECM and basement membrane (BM play important roles in many developmental processes during development and after birth. Among the components of the BM, collagen fibers specially type IV are the most important parts. The aim of this study was to determine the time when collagen type IV appears in the BM of lens structure during mouse embryonic development.Materials and MethodsIn this experimental study, 22 female Balb/C mice were randomly selected and were kept under normal condition, finding vaginal plug was assumed as day zero of pregnancy. From embryonic day 10 to 20, all specimens were sacrificed by cervical dislocation and their heads were fixed, serially sectioned and immunohistochemistry study for tracing collagen type IV in lens were carried out.ResultsOur data revealed that collagen type IV appeared at the early stage of gestation day 12 in BM of anterior epithelial lens cells and the amount of this protein gradually increased until days 15-17 in ECM and posterior capsule epithelium. After this period, severe reaction was not observed in any part of the lens.ConclusionThese findings establish the important role of collagen IV in developing optic cup and any changes during critical period of pregnancy may be result in severe visual system defect

  11. Radiotherapy for cancer of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Tadao; Tobe, Takakichi; Abe, Mitsuyuki; Takahashi, Masaharu; Shibamoto, Yuta

    1984-11-01

    Twelve patiens with cancer of the pancreas underwent intraoperative radiation (n=5) or external radiation (n=7) therapy. Of the five patients with intraoperative radiotheray, three patients who had pancreatectomy received a dose of 2,500--3,000 rad on the 6--10 MeV Betatron. One patient developed radiation pancreatitis and died 0.7 month after the surgery. One died of hepatic metastasis 8.5 months after the surgery, however, recurrence was not found in the radiation field. The other one is alive for 1.5 months after the surgery. For two patients with unresectable cancer, a dose of 2,500--3,000 rad using 13--16 MeV Betatron was irradiated intraoperatively. These two patients are alive for 0.5 and 1.0 months after the surgery. Seven patients were treated with external beam radiation with a dose of 2,800--5,000 rad using 10 MeV lineac x-ray. Of two patients with pancreatectomy, one died of recurrent disease 13.4 months after the surgery and one is alive for 9.5 months after the surgery. In five patients with distant metastases to the liver, lung or peritoneal dissemination, external beam irradiation did not produce any prolongation of their survivals, however, remarkable effects on performance status were obtained (J.P.N.).

  12. Radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Tobe, Takakichi; Abe, Mitsuyuki; Takahashi, Masaharu; Shibamoto, Yuta

    1984-01-01

    Twelve patiens with cancer of the pancreas underwent intraoperative radiation (n=5) or external radiation (n=7) therapy. Of the five patients with intraoperative radiotheray, three patients who had pancreatectomy received a dose of 2,500--3,000 rad on the 6--10 MeV Betatron. One patient developed radiation pancreatitis and died 0.7 month after the surgery. One died of hepatic metastasis 8.5 months after the surgery, however, recurrence was not found in the radiation field. The other one is alive for 1.5 months after the surgery. For two patients with unresectable cancer, a dose of 2,500--3,000 rad using 13--16 MeV Betatron was irradiated intraoperatively. These two patients are alive for 0.5 and 1.0 months after the surgery. Seven patients were treated with external beam radiation with a dose of 2,800--5,000 rad using 10 MeV lineac x-ray. Of two patients with pancreatectomy, one died of recurrent disease 13.4 months after the surgery and one is alive for 9.5 months after the surgery. In five patients with distant metastases to the liver, lung or peritoneal dissemination, external beam irradiation did not produce any prolongation of their survivals, however, remarkable effects on performance status were obtained (J.P.N.)

  13. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  14. Development of teeth in chick embryos after mouse neural crest transplantations.

    Science.gov (United States)

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  15. Endoscopic findings following retroperitoneal pancreas transplantation.

    Science.gov (United States)

    Pinchuk, Alexey V; Dmitriev, Ilya V; Shmarina, Nonna V; Teterin, Yury S; Balkarov, Aslan G; Storozhev, Roman V; Anisimov, Yuri A; Gasanov, Ali M

    2017-07-01

    An evaluation of the efficacy of endoscopic methods for the diagnosis and correction of surgical and immunological complications after retroperitoneal pancreas transplantation. From October 2011 to March 2015, 27 patients underwent simultaneous retroperitoneal pancreas-kidney transplantation (SPKT). Diagnostic oesophagogastroduodenoscopy (EGD) with protocol biopsy of the donor and recipient duodenal mucosa and endoscopic retrograde pancreatography (ERP) were performed to detect possible complications. Endoscopic stenting of the main pancreatic duct with plastic stents and three-stage endoscopic hemostasis were conducted to correct the identified complications. Endoscopic methods showed high efficiency in the timely diagnosis and adequate correction of complications after retroperitoneal pancreas transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Solid and papillary neoplasm of the pancreas

    DEFF Research Database (Denmark)

    Jørgensen, L J; Hansen, A B; Burcharth, F

    1992-01-01

    In two cases of solid and papillary neoplasm of the pancreas (SPN), positive staining for argyrophil granules, chromogranin-A, neuron-specific enolase, chymotrypsin, alpha 1-antitrypsin, vimentin, cytokeratin, and estrogen receptors was present. Ultrastructurally, neurosecretory as well as zymoge......In two cases of solid and papillary neoplasm of the pancreas (SPN), positive staining for argyrophil granules, chromogranin-A, neuron-specific enolase, chymotrypsin, alpha 1-antitrypsin, vimentin, cytokeratin, and estrogen receptors was present. Ultrastructurally, neurosecretory as well...... as zymogenlike granules were demonstrated. Measurements of mean nuclear volume and volume-corrected mitotic index discriminated between SPN and well-differentiated ductal adenocarcinoma of the pancreas, with notably lower values being seen in SPN. Silver-stained nucleolar organizer region counts showed wide...

  17. Evaluation of the pancreas by MRI

    International Nuclear Information System (INIS)

    Imanishi, Yoshimasa; Hou, V.Y.; Chako, A.C.; Tempany, C.M.C.; Herold, C.J.; Zerhouni, E.A.

    1994-01-01

    Using T1-, P- and T2-weighted images of the upper abdomen obtained on 1.5 T MRI system, 18 items on the pancreas were evaluated in 89 controls. The items included pancreas sizes on T1-weighted image, pancreatic intensity compared with those of renal cortex, subcutaneous fat tissue, liver and spleen, obliteration of pancreas margin, and diameter of pancreatic duct on all images. Normal criteria, which were determined from data in the controls, were applied to images in the 40 patients with pancreatic or peripancreatic diseases. All 4 patients with an extrapancreatic tumor had no abnormality of pancreatic intensity, pancreatic margin, and pancreatic duct on T2-weighted image, except for pancreatic sizes and intensities at tumor sites. In contrast, 34 of 36 patients with pancreatic disease had abnormalities which pathologically depended on acute and/or chronic pancreatitis. (orig.)

  18. Fatty Pancreas: Should We Be Concerned?

    Science.gov (United States)

    Majumder, Shounak; Philip, Nissy A; Takahashi, Naoki; Levy, Michael J; Singh, Vijay P; Chari, Suresh T

    The metabolic consequences of visceral fat deposition are well known, and the presence of intrapancreatic fat (IPF) has been recognized for decades. However, our knowledge about the distribution of fat in the pancreas and its clinical implications is in a nascent stage. Various terms have been proposed to describe IPF; for the purpose of this narrative review, we chose the general term fatty pancreas. Herein, we describe the radiologic, endoscopic, and histopathologic aspects of diagnosing fatty pancreas and provide an overview of the diseases associated with this condition. Our purpose is to highlight diagnostic challenges and identify specific clinical questions that would benefit from further study. As evident in this review, IPF is associated with various metabolic diseases, pancreatitis, pancreatic cancer, and precancer-yet establishing causality needs careful, further study.

  19. Cytotoxic Effects of Dillapiole on Embryonic Development of Mouse Blastocysts in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2014-06-01

    Full Text Available We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole.

  20. Effect of Intracytoplasmic Sperm Injection (ICSI on Mouse Embryos Preimplantational Development

    Directory of Open Access Journals (Sweden)

    Claudia Cârstea

    2012-05-01

    Full Text Available It is known that the in vitro culture (IVC of preimplantation embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared the development of mouse blastocysts produced by intracytoplasmic sperm injection (ICSI versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC. At the end of cultivation (96 hrs for blastocyst stage embryos, expanded blastocysts of each group were randomly selected, and ICM and total cells number were differentially stained. The total cell number of blastocysts was estimated by counting the total number of nuclei using DAPI staining. Cell number for inner cell mass (ICM was estimated by counting the OCT4 (POU5FL positive cells. Digitally recombined, composite images were analyzed using the Zeiss Axion Vision software and Zeiss Apotome. All 5–10 optical sections were divided using a standard grid over each layer to count all. Comparing the total cells and the ICM cells number, it appears that each method of fertilization has a unique pattern development. The developmental rate and the total cell number of the blastocyst were significantly lower in ICSI versus in vivo fertilized embryos which affect the embryonic developmental rate and the total cell number of blastocysts.

  1. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  2. CARBOHYDRATES OF CHANGES DURING THE FOLLICULAR DEVELOPMENT IN THE OVARY OF THE MOUSE DEER, TRAGULUS JAVANICUS

    Directory of Open Access Journals (Sweden)

    Hamny -

    2008-03-01

    Full Text Available The data available on the female reproductive organ of mouse deer (Tragulus javanicus is still very limited. A study was therefore conducted to investigate the distribution and the concentration of carbohydrate residues during the development of ovary follicles. An ovary at luteal phase was used in this study. Thin sections of the ovary were prepared occording to the standard methods and they were then histochemically stained with flourecnece-labelled lectins such as peanut agglutinin (PNA, Ricinus communis agglutinin (RCA, Concanavalin A (Con A, Winged bean agglutinin (WGA and Ulex europaeus agglutinin (UEA. The result showed that changes in the distribution and the concentration of carbohydrate occured during the development of the follicle. During the preantral stage, the cytoplasm of oosit contained carbohydrate with the residues of glucosa dan mannosa. Zona pelusida contained carbohydrates with residues of glucosa, mannosa, galactosa dan N-asetylgalactosamine, whereas extracellular matrix contained carbohydrate with the residues of glucosa dan mannosa. In the antral follicle, the cyitoplasm of oocytes contained carbohydarte with the residues of galactosa dan N-asetylgalactosamine, whereas its zona pelusida, extracellular matrix and follicular fluid contained carbohydarte with the residues of fucosa, N-asetylglucosamin and cyalic acid. Diffrences in the types and the distribution pattern of carbohydrates were observed in this study, both in preantral and antral follicles.

  3. Abnormal Development of the Earliest Cortical Circuits in a Mouse Model of Autism Spectrum Disorder.

    Science.gov (United States)

    Nagode, Daniel A; Meng, Xiangying; Winkowski, Daniel E; Smith, Ed; Khan-Tareen, Hamza; Kareddy, Vishnupriya; Kao, Joseph P Y; Kanold, Patrick O

    2017-01-31

    Autism spectrum disorder (ASD) involves deficits in speech and sound processing. Cortical circuit changes during early development likely contribute to such deficits. Subplate neurons (SPNs) form the earliest cortical microcircuits and are required for normal development of thalamocortical and intracortical circuits. Prenatal valproic acid (VPA) increases ASD risk, especially when present during a critical time window coinciding with SPN genesis. Using optical circuit mapping in mouse auditory cortex, we find that VPA exposure on E12 altered the functional excitatory and inhibitory connectivity of SPNs. Circuit changes manifested as "patches" of mostly increased connection probability or strength in the first postnatal week and as general hyper-connectivity after P10, shortly after ear opening. These results suggest that prenatal VPA exposure severely affects the developmental trajectory of cortical circuits and that sensory-driven activity may exacerbate earlier, subtle connectivity deficits. Our findings identify the subplate as a possible common pathophysiological substrate of deficits in ASD. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development.

    Science.gov (United States)

    Swain, J E; Cabrera, L; Xu, X; Smith, G D

    2012-02-01

    Because media osmolality can impact embryo development, the effect of conditions during microdrop preparation on osmolality was examined. Various sizes of microdrops were prepared under different laboratory conditions. Drops were pipetted directly onto a dish and covered by oil (standard method) or pipetted on the dish, overlaid with oil before removing the underlying media and replaced with fresh media (wash-drop method). Drops were made at 23°C or on a heated stage (37°C) and with or without airflow. Osmolality was assessed at 5 min and 24h. The biological impact of osmolality change was demonstrated by culturing 1-cell mouse embryos in media with varying osmolality. Reduced drop volume, increased temperature and standard method were associated with a significant increase in osmolality at both 5 min and 24h (P-values media with elevated osmolality (>310mOsm/kg; P<0.05). Procedures in the IVF laboratory can alter osmolality and impact embryo development. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Clinical evaluation of computed tomography of the pancreas

    International Nuclear Information System (INIS)

    Miura, Takashi; Nakao, Morio; Takayasu, Yukio; Inamoto, Kazuo; Yamazaki, Hideo

    1980-01-01

    The pancreas was observed from many directions on conventional CT images and reconstructed coronal and sagittal tomograms. Absorbed values of x-ray in the pancreas were also counted by setting ROI on conventional CT images. The subjects were 37 patients with pancreatic diseases or normal pancreas. Equipments used were Somatom SD and Evaluskop for analysis of images. Slice width and feed for reconstruction of CT images were 4 mm and 3 mm, respectively. Absorbed values of x-ray was significantly lower in patients with pancreatic carcinoma than in patients with normal pancreas. Slightly low absorbed values of x-ray in pancreas tail could suggest small carcinoma of pancreas even when CT images could not visualize it clearly. There was not a significant difference in absorbed values between chronic pancreatitis and normal pancreas, but their variations were big. Observation of the pancreas from many directions on reconstructed CT images were very useful for the diagnosis of pancreatic diseases. (Tsunoda, M.)

  6. Power of Your Pancreas: Keep Your Digestive Juices Flowing

    Science.gov (United States)

    ... 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing En español Send ... in Check Better Check Your Bowels Wise Choices Pancreas Problems? Talk to your doctor if you have ...

  7. Spatiotemporal proteomic analyses during pancreas cancer progression identifies serine/threonine stress kinase 4 (STK4) as a novel candidate biomarker for early stage disease.

    Science.gov (United States)

    Mirus, Justin E; Zhang, Yuzheng; Hollingsworth, Michael A; Solan, Joell L; Lampe, Paul D; Hingorani, Sunil R

    2014-12-01

    Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue markers that could serve as signatures of disease stage, including early (resectable), and therefore clinically meaningful, stages. © 2014 by The American Society for

  8. Krüppel-like factor 2 is required for normal mouse cardiac development.

    Directory of Open Access Journals (Sweden)

    Aditi R Chiplunkar

    Full Text Available Krüppel-like factor 2 (KLF2 is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5 in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2-/- embryos die earlier, by E11.5. E9.5 FVB/N KLF2-/- hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2-/- AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT. E10.5 FVB/N KLF2-/- hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2-/- AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2-/- embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2-/- hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2-/- embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (Ugdh, Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and Ugdh promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. In conclusion, KLF2-/- heart phenotypes are genetic background-dependent. KLF2 plays a role in EMT through its regulation of important cardiovascular genes.

  9. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  10. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  11. Long non-coding RNA expression profiling of mouse testis during postnatal development.

    Directory of Open Access Journals (Sweden)

    Jin Sun

    Full Text Available Mammalian testis development and spermatogenesis play critical roles in male fertility and continuation of a species. Previous research into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small non-coding RNAs, such as microRNAs and piRNAs. Recently, it has become apparent that large numbers of long (>200 nt non-coding RNAs (lncRNAs are transcribed from mammalian genomes and that lncRNAs perform important regulatory functions in various developmental processes. However, the expression of lncRNAs and their biological functions in post-natal testis development remain unknown. In this study, we employed microarray technology to examine lncRNA expression profiles of neonatal (6-day-old and adult (8-week-old mouse testes. We found that 8,265 lncRNAs were expressed above background levels during post-natal testis development, of which 3,025 were differentially expressed. Candidate lncRNAs were identified for further characterization by an integrated examination of genomic context, gene ontology (GO enrichment of their associated protein-coding genes, promoter analysis for epigenetic modification, and evolutionary conservation of elements. Many lncRNAs overlapped or were adjacent to key transcription factors and other genes involved in spermatogenesis, such as Ovol1, Ovol2, Lhx1, Sox3, Sox9, Plzf, c-Kit, Wt1, Sycp2, Prm1 and Prm2. Most differentially expressed lncRNAs exhibited epigenetic modification marks similar to protein-coding genes and tend to be expressed in a tissue-specific manner. In addition, the majority of differentially expressed lncRNAs harbored evolutionary conserved elements. Taken together, our findings represent the first systematic investigation of lncRNA expression in the mammalian testis and provide a solid foundation for further research into the molecular mechanisms of lncRNAs function in mammalian testis development and spermatogenesis.

  12. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U

    2008-01-01

    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real-time monit......While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  13. Torsion of wandering spleen and distal pancreas

    International Nuclear Information System (INIS)

    Sheflin, J.R.; Lee, C.M.; Kretchmar, K.A.

    1984-01-01

    Wandering spleen is the term applied to the condition in which a long pedicle allows the spleen to lie in an abnormal location. Torsion of a wandering spleen is an unusual cause of an acute abdomen and is rarely diagnosed preoperatively. Associated torsion of the distal pancreas is even more uncommon. The authors describe a patient with torsion of a wandering spleen and distal pancreas, who was correctly diagnosed, and define the merits of the imaging methods used. The initial examination should be 99 /sup m/Tc-sulfur colloid liner-spleen scanning

  14. Academic Pancreas Centers of Excellence: Guidance from a multidisciplinary chronic pancreatitis working group at PancreasFest

    Science.gov (United States)

    Sheth, Sunil G.; Conwell, Darwin L.; Whitcomb, David C.; Alsante, Matthew; Anderson, Michelle A.; Barkin, Jamie; Brand, Randall; Cote, Gregory A.; Freedman, Steven D.; Gelrud, Andres; Gorelick, Fred; Lee, Linda S.; Morgan, Katherine; Pandol, Stephen; Singh, Vikesh K.; Yadav, Dhiraj; Mel Wilcox, C.; Hart, Phil A.

    2017-01-01

    Chronic pancreatitis (CP) is a progressive inflammatory disease, which leads to loss of pancreatic function and other disease-related morbidities. A group of academic physicians and scientists developed comprehensive guidance statements regarding the management of CP that include its epidemiology, diagnosis, medical treatment, surgical treatment, and screening. The statements were developed through literature review, deliberation, and consensus opinion. These statements were ultimately used to develop a conceptual framework for the multidisciplinary management of chronic pancreatitis referred to as an academic pancreas center of excellence (APCOE). PMID:28268158

  15. Effect of increased urea levels on mouse preimplantation embryos develop in vivo and in vitro

    Czech Academy of Sciences Publication Activity Database

    Bystriansky, J.; Burkuš, J.; Juhás, Štefan; Fabian, D.; Koppel, J.

    2012-01-01

    Roč. 56, č. 2 (2012), s. 211-216 ISSN 0042-4870 Institutional support: RVO:67985904 Keywords : mouse * preimplantation embryo * urea Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.377, year: 2012

  16. Radiologic findings of annular pancreas divisum : a case report

    International Nuclear Information System (INIS)

    Choi, Dong Sik; Lee, Dong Ho; Ko, Young Tae; Han, Tae Il; Yoon, Youp; Dong, Suk Ho

    1996-01-01

    Annular pancreas divisum is a very rare congenital anomaly involving the coexistence of an annular pancreas and pancreatic divisum in one pancreas, and showing characteristic radiologic findings of ring-like pancreatic tissue surrounding the second portion of the duodenum and no evidence of connection between ventral and dorsal ductal systems. We described the radiologic findings of annular pancreas divisum, diagnosed by hypotonic duodenography, CT and ERCP

  17. Development of teeth in chick embryos after mouse neural crest transplantations

    OpenAIRE

    Mitsiadis, Thimios A.; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-01-01

    Teeth were lost in birds 70–80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick ...

  18. Organizational effects of the antiandrogen, Vinclozolin, on penis development in the mouse.

    Science.gov (United States)

    Amato, Ciro M; Boyd, Morgan; Yang, Joshua; McCoy, Krista A

    2018-04-14

    Endocrine disrupting chemicals (EDCs) are pollutants found throughout the environment that disrupt normal endocrine processes. In mice, penis development is thought to be most susceptible to EDCs during a critical developmental window occurring on embryonic days (E) 15.5-17.5. However, androgen signaling begins on E13.5 when Androgen Receptor (AR) protein is found in the genitalia and testosterone is circulating. We hypothesize that disrupting androgen signaling prior to the established critical window sensitizes the penis to future androgen disruption. To test this hypothesis, CD1 dams were exposed to Vinclozolin or a corn oil solvent control on E13.5 and E14.5 and AR levels were measured with immunohistochemistry on E14.5. Early antiandrogen exposure reduced AR within nuclei and decreased intensity of AR expression within E14.5 genitalia. To evaluate the influence of antiandrogen exposure before the known critical window of penis development, two groups of pregnant dams (n = 3) were exposed to Vinclozolin starting at either E13.5 or E14.5 and continued exposure through E16.5. Histology and M.O.U.S.E. scoring were used to quantify penis abnormalities. To account for differences in total doses mice experienced due to differences in length of dosing time, we compared animals that received the same total doses. Exposure to antiandrogens on E13.5 exacerbated malformations when exposure was continued through sexually dimorphic development. Both exposure time and Vinclozolin dose are important for severity of Vinclozolin-induced penis abnormalities in mice. This work shows, antiandrogen exposure prior to sensitive periods can exacerbate the effects of later antiandrogen exposure on reproductive development.

  19. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced

  20. Analysed cap mesenchyme track data from live imaging of mouse kidney development

    Directory of Open Access Journals (Sweden)

    James G. Lefevre

    2016-12-01

    Full Text Available This article provides detailed information on manually tracked cap mesenchyme cells from timelapse imaging of multiple ex vivo embryonic mouse kidneys. Cells were imaged for up to 18 h at 15 or 20 min intervals, and multiple cell divisions were tracked. Positional data is supplemented with a range of information including the relative location of the closest ureteric tip and a correction for drift due to bulk movement and tip growth. A subset of tracks were annotated to indicate the presence of processes attached to the ureteric epithelium. The calculations used for drift correction are described, as are the main methods used in the analysis of this data for the purpose of describing cap cell motility. The outcomes of this analysis are discussed in “Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip” (A.N. Combes, J.G. Lefevre, S. Wilson, N.A. Hamilton, M.H. Little, 2016 [1].

  1. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    Science.gov (United States)

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  2. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    Directory of Open Access Journals (Sweden)

    Melissa Gamat

    Full Text Available The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their

  3. Localization of trefoil factor family peptide 3 (TFF3) in epithelial tissues originating from the three germ layers of developing mouse embryo.

    Science.gov (United States)

    Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela

    2017-08-20

    Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  4. Localization of trefoil factor family peptide 3 (TFF3 in epithelial tissues originating from the three germ layers of developing mouse embryo

    Directory of Open Access Journals (Sweden)

    Nikola Bijelić

    2017-08-01

    Full Text Available Trefoil factor family (TFF peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  5. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    Directory of Open Access Journals (Sweden)

    Patrick Arbogast

    Full Text Available A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2 and cone densities of 3000-6500/mm(2. Two cone opsins, shortwave sensitive (S and middle-to-longwave sensitive (M, are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones. In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2. Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.

  6. MR imaging in pancreas head cancer

    International Nuclear Information System (INIS)

    Yokota, Hajime; Yamanouchi, Baisetsu; Takarada, Akira; Tonami, Hisao; Okimura, Tetsuro; Miyamura, Toshio; Yamamoto, Itaru; Kinami, Yoshio

    1989-01-01

    To reduce artifacts associated with MRI, we used abdominal belts and anticholinergic during the examinations in patients with pancreas head cancer. In selected cases, foric pyrophosphate was injected into the common bile duct as a contrast medium. We made a comparative study of the results of MRI with those of CT with regard to lesion detectability and diagnostic ability of tumor invasion. MR examinations were performed at 0.5 Tesla superconducting unit using spin-echo (SE) pulse sequences. Eleven patients with pancreas head cancer were enrolled in this study. As to the lesion detectability, eight cases (73%) were detected clearly or moderately clearly on MRI, almost corresponding to 9 cases (82%) on CT. With regard to the neoplastic infiltration to the surrounding area, MRI and CT were almost equally efficient as to the capsular and the arterial invasion. However, as to the invasion to the posterion surface of pancreas and the portal system, MRI was a little superior to CT. In patients to whom foric pyrophosphate was injected, the choledochal duct was clearly separated from the tumor. In conclusion, our results suggest that MRI using abdominal belts, anticholinergic and foric pyrophosphate solution is extremely effective in the diagnosis of pancreas head cancer and is almost as efficient as CT. (author)

  7. Periduodenal Tuberculosis masquerading as Annular Pancreas ...

    African Journals Online (AJOL)

    We report a patient who succumbed to an isolated mid duodenal tuberculosis, diagnosed at laparatomy, whose clinical presentation, endoscopy and computerised tomography scans resembled annular pancreas. The limitations of clinical evaluation, endoscopy and radiology are highlighted as the importance of diagnostic ...

  8. The cystic fibrosis of exocrine pancreas

    DEFF Research Database (Denmark)

    Wilschanski, Michael; Novak, Ivana

    2013-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is highly expressed in the pancreatic duct epithelia and permits anions and water to enter the ductal lumen. This results in an increased volume of alkaline fluid allowing the highly concentrated proteins secreted by the acina...... (CF) and pancreatitis, and outline present and potential therapeutic approaches in CF treatment relevant to the pancreas....

  9. The artificial pancreas : From logic to life

    NARCIS (Netherlands)

    Kropff, J.

    2017-01-01

    In this thesis we investigated the efficacy of real-life use of an artificial pancreas starting with use of these systems in a hotel setting and finally 24/7 long-term use at home. We investigated the accuracy of continuous glucose monitoring (CGM) systems that act as input for the artificial

  10. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    ATP and other nucleotides are released from various cells, but the pathway and physiological stimulus for ATP release are often unclear. The focus of our studies is the understanding of ATP release and signaling in rat exocrine pancreas. In acinar suspension mechanical stimulation, hypotonic shock...

  11. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  12. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-01-01

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  13. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  14. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development.

    Directory of Open Access Journals (Sweden)

    Debora Schmitz-Rohmer

    Full Text Available Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis.

  15. Dynamic expression of Lgr6 in the developing and mature mouse cochlea

    Science.gov (United States)

    Zhang, Yanping; Chen, Yan; Ni, Wenli; Guo, Luo; Lu, Xiaoling; Liu, Liman; Li, Wen; Sun, Shan; Wang, Lei; Li, Huawei

    2015-01-01

    The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea. PMID:26029045

  16. Dynamic Expression of Lgr6 in the Developing and Mature Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yanping eZhang

    2015-05-01

    Full Text Available The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5. From E18.5 to postnatal day 3 (P3, the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs. From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs. At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea.

  17. Laparoscopic removal of a needle from the pancreas

    Directory of Open Access Journals (Sweden)

    Amit Jain

    2013-01-01

    Full Text Available Foreign bodies inside the pancreas are rare and usually occur after the ingestion of sharp objects like fish bone, sewing needle and toothpick. Most of the ingested foreign bodies pass spontaneously through the anus without being noticed but about 1% of them can perforate through the wall of stomach or duodenum to reach solid organs like pancreas or liver. Once inside the pancreas they can produce complications like abscess, pseudoaneurysm or pancreatits. Foreign bodies of pancreas should be removed by endoscopic or surgical methods. We hereby report our experience of successful removal one a sewing needle from pancreas.

  18. [Exocrine function of the pancreas in rats with experimental obesity].

    Science.gov (United States)

    Leshchenko, I V; Shevchuk, V H; Savcheniuk, O A; Falalieieva, T M; Sukhodolia, S A; Berehova, T V

    2014-01-01

    The influence of neonatal administration of hyperosmolar sodium chloride and sodium glutamate on the exocrine function of the pancreas in rats has been investigated. It was observed the development of acute pancreatitis under experimental obesity. The cross-section area of acini reduced by 12%, the cross-section area of acinocytes nuclei increased by 10%, the length between the lobes of the gland has grown by 48%. The level of amylase was increased by 43%, the levels of pancreatic amylase and lipase were increased by 68% and 24%, respectively.

  19. Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation.

    Science.gov (United States)

    Chaigne, Benjamin; Geneugelijk, Kirsten; Bédat, Benoît; Ahmed, Mohamed Alibashe; Hönger, Gideon; De Seigneux, Sophie; Demuylder-Mischler, Sandrine; Berney, Thierry; Spierings, Eric; Ferrari-Lacraz, Sylvie; Villard, Jean

    2016-11-01

    The aim of the current study was to characterize the anti-HLA antibodies before and after pancreatic islet or pancreas transplantation. We assessed the risk of anti-donor-specific antibody (DSA) sensitization in a single-center, retrospective clinical study at Geneva University Hospital. Data regarding clinical characteristics, graft outcome, HLA mismatch, donor HLA immunogenicity, and anti-HLA antibody characteristics were collected. Between January 2008 and July 2014, 18 patients received islet transplants, and 26 patients received a pancreas transplant. Eleven out of 18 patients (61.1%) in the islet group and 12 out of 26 patients (46.2%) in the pancreas group had anti-HLA antibodies. Six patients (33.3%) developed DSAs against HLA of the islets, and 10 patients (38.4%) developed DSAs against HLA of the pancreas. Most of the DSAs were at a low level. Several parameters such as gender, number of times cells were transplanted, HLA mismatch, eplet mismatch and PIRCHE-II numbers, rejection, and infection were analyzed. Only the number of PIRCHE-II was associated with the development of anti-HLA class II de novo DSAs. Overall, the development of de novo DSAs did not influence graft survival as estimated by insulin independence. Our results indicated that pretransplant DSAs at low levels do not restrict islet or pancreas transplantation [especially islet transplantation (27.8% vs. 15.4.%)]. De novo DSAs do occur at a similar rate in both pancreas and islet transplant recipients (mainly of class II), and the immunogenicity of donor HLA is a parameter that should be taken into consideration. When combined with an immunosuppressive regimen and close follow-up, development of low levels of DSAs was not found to result in reduced graft survival or graft function in the current study.

  20. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    Science.gov (United States)

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  1. Single cell analysis of caspase-3 in apoptotic and non-apoptotic cells during mouse limb development

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Klepárník, Karel; Matalová, E.

    2014-01-01

    Roč. 3, - (2014), PP58 ISSN 2052-1219. [European Calcified Tissue Society Congress /41./. 17.05.2014-20.05.2014, Praha] R&D Projects: GA ČR GAP206/11/2377; GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : single cell analysis * caspase-3 * mouse limb development Subject RIV: CB - Analytical Chemistry, Separation

  2. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    International Nuclear Information System (INIS)

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M.

    1990-01-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation

  3. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model.

    Science.gov (United States)

    Benrick, Anna; Chanclón, Belén; Micallef, Peter; Wu, Yanling; Hadi, Laila; Shelton, John M; Stener-Victorin, Elisabet; Wernstedt Asterholm, Ingrid

    2017-08-22

    Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R , suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.

  4. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    Science.gov (United States)

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  5. HCC development is associated to peripheral insulin resistance in a mouse model of NASH.

    Directory of Open Access Journals (Sweden)

    Samuele De Minicis

    Full Text Available NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC, even in the absence of cirrhosis, that makes NAFLD of such clinical importance.we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC.mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA or its control (CSAA diet and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis.CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2 and Osteopontin (SPP-1 were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors.the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.

  6. HCC development is associated to peripheral insulin resistance in a mouse model of NASH.

    Science.gov (United States)

    De Minicis, Samuele; Agostinelli, Laura; Rychlicki, Chiara; Sorice, Gian Pio; Saccomanno, Stefania; Candelaresi, Cinzia; Giaccari, Andrea; Trozzi, Luciano; Pierantonelli, Irene; Mingarelli, Eleonora; Marzioni, Marco; Muscogiuri, Giovanna; Gaggini, Melania; Benedetti, Antonio; Gastaldelli, Amalia; Guido, Maria; Svegliati-Baroni, Gianluca

    2014-01-01

    NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.

  7. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  9. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  10. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development.

    Science.gov (United States)

    Sherman-Baust, Cheryl A; Kuhn, Elisabetta; Valle, Blanca L; Shih, Ie-Ming; Kurman, Robert J; Wang, Tian-Li; Amano, Tomokazu; Ko, Minoru S H; Miyoshi, Ichiro; Araki, Yoshihiko; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G; Morin, Patrice J

    2014-07-01

    Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter. Histological analysis of the fallopian tubes of mogp-TAg mice identified a variety of neoplastic lesions analogous to those described as precursors to ovarian HGSC. We identified areas of normal-appearing p53-positive epithelium that are similar to 'p53 signatures' in the human fallopian tube. More advanced proliferative lesions with nuclear atypia and epithelial stratification were also identified that were morphologically and immunohistochemically reminiscent of human serous tubal intraepithelial carcinoma (STIC), a potential precursor of ovarian HGSC. Beside these non-invasive precursor lesions, we also identified invasive adenocarcinoma in the ovaries of 56% of the mice. Microarray analysis revealed several genes differentially expressed between the fallopian tube of mogp-TAg and wild-type (WT) C57BL/6. One of these genes, Top2a, which encodes topoisomerase IIα, was shown by immunohistochemistry to be concurrently expressed with elevated p53 and was specifically elevated in mouse STICs but not in the surrounding tissues. TOP2A protein was also found elevated in human STICs, low-grade and high-grade serous carcinoma. The mouse model reported here displays a progression from normal tubal epithelium to invasive HGSC in the ovary, and therefore closely simulates the current emerging model of human ovarian HGSC pathogenesis. This mouse therefore has the potential to be a very useful new model for elucidating the mechanisms of serous ovarian tumourigenesis, as well as

  11. Australia and New Zealand Islets and Pancreas Transplant Registry Annual Report 2017—Pancreas Waiting List, Recipients, and Donors

    Science.gov (United States)

    Webster, Angela C; Hedley, James; Patekar, Abhijit; Robertson, Paul; Kelly, Patrick J

    2017-01-01

    Abstract This is a registry report from the Australia and New Zealand Islet and Pancreas Transplant Registry. We report data for all solid organ pancreas transplant activity from inception in 1984 to end of 2016. Data analysis was performed using Stata Software version 14 (StataCorp, College Station, Tex). From 1984 to 2016 a total of 756 solid organ pancreas transplants have been performed in Australia and New Zealand, in 738 individuals. In 2016, 55 people received a pancreas transplant. These transplants were performed in Auckland (4), Monash (22), and Westmead (29). In 2016, 50 transplants were simultaneous pancreas kidney, 4 were pancreas after kidney, and 1 was a pancreas transplant alone. PMID:29026874

  12. Sequential Shh expression in the development of the mouse upper functional incisor

    Czech Academy of Sciences Publication Activity Database

    Hovořáková, Mária; Smrčková, Lucie; Lesot, H.; Lochovská, Kateřina; Peterka, Miroslav; Peterková, Renata

    2013-01-01

    Roč. 320, č. 7 (2013), s. 455-464 ISSN 1552-5007 R&D Projects: GA ČR GA304/09/1579; GA ČR(CZ) GAP305/12/1766 Institutional support: RVO:68378041 Keywords : mouse * craniofacial * ED13.5 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.876, year: 2013

  13. Tbx3 Promotes Liver Bud Expansion During Mouse Development by Suppression of Cholangiocyte Differentiation

    NARCIS (Netherlands)

    Lüdtke, Timo H.-W.; Christoffels, Vincent M.; Petry, Marianne; Kispert, Andreas

    2009-01-01

    After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor

  14. Imaging dynamics of CD11c+ cells and Foxp3+ cells in progressive autoimmune insulitis in the NOD mouse model of type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt-Christensen, Anja; Hansen, Lisbeth; Ilegems, Erwin

    2013-01-01

    the endocrine pancreas during initiation and progression of insulitis in the NOD mouse. Individual, ACE-transplanted islets of Langerhans were longitudinally and repetitively imaged by stereomicroscopy and two-photon microscopy to follow fluorescently labelled leucocyte subsets. Results We demonstrate that......, in spite of the immune privileged status of the eye, the ACE-transplanted islets develop infiltration and beta cell destruction, recapitulating the autoimmune insulitis of the pancreas, and exemplify this by analysing reporter cell populations expressing green fluorescent protein under the Cd11c or Foxp3......Aims/hypothesis The aim of this study was to visualise the dynamics and interactions of the cells involved in autoimmune-driven inflammation in type 1 diabetes. Methods We adopted the anterior chamber of the eye (ACE) transplantation model to perform non-invasive imaging of leucocytes infiltrating...

  15. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  16. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  17. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  18. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  19. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  20. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  1. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-01-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  2. Distribution of ELOVL4 in the Developing and Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    David M. Sherry

    2017-05-01

    Full Text Available ELOngation of Very Long chain fatty acids (ELOVL-4 is essential for the synthesis of very long chain-fatty acids (fatty acids with chain lengths ≥ 28 carbons. The functions of ELOVL4 and its very long-chain fatty acid products are poorly understood at present. However, mutations in ELOVL4 cause neurodevelopmental or neurodegenerative diseases that vary according to the mutation and inheritance pattern. Heterozygous inheritance of different ELOVL4 mutations causes Stargardt-like Macular Dystrophy or Spinocerebellar Ataxia type 34. Homozygous inheritance of ELOVL4 mutations causes more severe disease characterized by seizures, intellectual disability, ichthyosis, and premature death. To better understand ELOVL4 and very long chain fatty acid function in the brain, we examined ELOVL4 expression in the mouse brain between embryonic day 18 and postnatal day 60 by immunolabeling using ELOVL4 and other marker antibodies. ELOVL4 was widely expressed in a region- and cell type-specific manner, and was restricted to cell bodies, consistent with its known localization to endoplasmic reticulum. ELOVL4 labeling was most prominent in gray matter, although labeling also was present in some cells located in white matter. ELOVL4 was widely expressed in the developing brain by embryonic day 18 and was especially pronounced in regions underlying the lateral ventricles and other neurogenic regions. The basal ganglia in particular showed intense ELOVL4 labeling at this stage. In the postnatal brain, cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, midbrain, pons, and medulla all showed prominent ELOVL4 labeling, although ELOVL4 distribution was not uniform across all cells or subnuclei within these regions. In contrast, the basal ganglia showed little ELOVL4 labeling in the postnatal brain. Double labeling studies showed that ELOVL4 was primarily expressed by neurons, although presumptive oligodendrocytes located in white matter tracts also showed

  3. Exposure to perfluoroundecanoic acid (PFUnDA accelerates insulitis development in a mouse model of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    Full Text Available Perfluoralkylated substances (PFAS are classified as persistent, bioaccumulative and toxic substances and are widespread environmental contaminants. Humans are exposed through food, drinking water and air. We have previously reported that bisphenol A accelerates spontaneous diabetes development in non-obese diabetic (NOD mice and observed in the present study that perfluoroundecanoic acid, PFUnDA, increased insulitis development, a prerequisite for diabetes development in NOD mice. We exposed NOD mice to PFUnDA in drinking water (3, 30 and 300 μg/l at mating, during gestation and lactation and until 30 weeks of age. After 300 μg/l PFUnDA exposure, we report (i increased pancreatic insulitis, (ii increased number of apoptotic cells in pancreatic islets prior to insulitis and (iii decreased phagocytosis in peritoneal macrophages. There was also a trend of decreased number of tissue resident macrophages in pancreatic islets prior to insulitis after exposure to 300 μg/l, and altered cytokine secretion in activated splenocytes after exposure to 3 μg/l PFUnDA. Although insulitis is a prerequisite for autoimmune diabetes, the accelerated insulitis was not associated with accelerated diabetes development. Instead, the incidence of diabetes tended to be reduced in the animals exposed to 3 and 30 μg/l PFUnDA, suggesting a non-monotonic dose response. The effects of PFUnDA exposure on increased apoptosis in pancreas and reduced macrophage function as well as accelerated insulitis development in NOD mice, may also be relevant for human insulitis. Further observational autoimmune diabetes clinical cohort studies and animal experiments for PFUnDA as well as other PFASs are therefore encouraged. Keywords: Perfluoralkylated substances, PFUnDA, T1DM, Diabetes, NOD mice, Insulitis

  4. Protogenin, a new member of the immunoglobulin superfamily, is implicated in the development of the mouse lower first molar

    Directory of Open Access Journals (Sweden)

    Wada Hiroko

    2010-11-01

    Full Text Available Abstract Background Protogenin (Prtg has been identified as a gene which is highly expressed in the mouse mandible at embryonic day 10.5 (E10.5 by a cDNA subtraction method between mandibles at E10.5 and E12.0. Prtg is a new member of the deleted in colorectal carcinoma (DCC family, which is composed of DCC, Neogenin, Punc and Nope. Although these members play an important role in the development of the embryonic central nervous system, recent research has also shed on the non-neuronal organization. However, very little is known regarding the fetal requirement of the non-neuronal organization for Prtg and how this may be associated with the tooth germ development. This study examined the functional implications of Prtg in the developing tooth germ of the mouse lower first molar. Results Ptrg is preferentially expressed in the early stage of organogenesis. Prtg mRNA and protein were widely expressed in the mesenchymal cells in the mandible at E10.5. The oral epithelial cells were also positive for Prtg. The expression intensity of Prtg after E12.0 was markedly reduced in the mesenchymal cells of the mandible, and was restricted to the area where the tooth bud was likely to be formed. Signals were also observed in the epithelial cells of the tooth germ. Weak signals were observed in the inner enamel epithelial cells at E16.0 and E18.0. An inhibition assay using a hemagglutinating virus of Japan-liposome containing Prtg antisense-phosphorothioated-oligodeoxynucleotide (AS-S-ODN in cultured mandibles at E10.5 showed a significant growth inhibition in the tooth germ. The relationship between Prtg and the odontogenesis-related genes was examined in mouse E10.5 mandible, and we verified that the Bmp-4 expression had significantly been decreased in the mouse E10.5 mandible 24 hr after treatment with Prtg AS-S-ODN. Conclusion These results indicated that the Prtg might be related to the initial morphogenesis of the tooth germ leading to the

  5. The cannabinoid receptor CB1 contributes to the development of ectopic lesions in a mouse model of endometriosis.

    Science.gov (United States)

    Sanchez, Ana-Maria; Quattrone, Federica; Pannese, Maria; Ulisse, Adele; Candiani, Massimo; Diaz-Alonso, Javier; Velasco, Guillermo; Panina-Bordignon, Paola

    2017-01-01

    Does signaling via the cannabinoid (CB 1 ) receptor play a role in the pathogenesis of endometriosis in a mouse model? Mice treated with a CB 1 agonist developed larger ectopic lesions, while less severe lesions developed in the absence of functional CB 1 expression. The expression of components of the endocannabinoid system has been demonstrated in both mouse and human uteri. CB 1 receptors are expressed in human epithelial and stromal cell lines derived from eutopic endometrium and deep infiltrating endometriosis nodules. This was a randomized study in a mouse model of endometriosis. In a first set of experiments, mice with endometriosis were treated with the CB 1 receptor agonist methanandamide (MET) (5 mg/kg, n = 20) on Days 1-5 and 8-12. In a second set of experiments, endometriosis development was evaluated in CB 1 -/- mice and in their wild-type (WT) littermates. Endometriosis-like lesions were induced in Balb/c and C57/Bl6 mice. Two weeks after disease induction, the lesions were counted, measured and either included for immunohistochemistry analysis or frozen for gene expression profiling by semi-quantitative real-time PCR. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. The lesion total volume was significantly higher in MET-treated compared with vehicle-treated mice (P endometriosis in a mouse model. However, the relative contribution of the CB 1 -mediated signaling pathways active in inflammatory, uterine and peritoneal cells remains to be ascertained. Since the study was performed in a mouse model, the significance of the findings in the human system warrants further investigation. Clarifying the function and regulation of CB 1 and its molecular interactions with endogenous ligands, and how endocannabinoids levels are regulated in women with endometriosis, represent critical areas of research for the potential development of a novel medical treatment of the disease. A

  6. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Directory of Open Access Journals (Sweden)

    Marina E Tourlakis

    2015-06-01

    Full Text Available Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis

  7. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency

    Science.gov (United States)

    Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.

    2015-01-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  8. Pancreas retransplantation: a second chance for diabetic patients?

    Science.gov (United States)

    Buron, Fanny; Thaunat, Olivier; Demuylder-Mischler, Sandrine; Badet, Lionel; Brunet, Maria; Ber, Charles-Eric; Thivolet, Charles; Martin, Xavier; Berney, Thierry; Morelon, Emmanuel

    2013-01-27

    If pancreas transplantation is a validated alternative for type 1 diabetic patients with end-stage renal disease, the management of patients who have lost their primary graft is poorly defined. This study aims at evaluating pancreas retransplantation outcome. Between 1976 and 2008, 569 pancreas transplantations were performed in Lyon and Geneva, including 37 second transplantations. Second graft survival was compared with primary graft survival of the same patients and the whole population. Predictive factors of second graft survival were sought. Patient survival and impact on kidney graft function and survival were evaluated. Second pancreas survival of the 17 patients transplanted from 1995 was close to primary graft survival of the whole population (71% vs. 79% at 1 year and 59% vs. 69% at 5 years; P=0.5075) and significantly better than their first pancreas survival (71% vs. 29% at 1 year and 59% vs. 7% at 5 years; P=0.0008) regardless of the cause of first pancreas loss. The same results were observed with all 37 retransplantations. Survival of second simultaneous pancreas and kidney transplantations was better than survival of second pancreas after kidney. Patient survival was excellent (89% at 5 years). Pancreas retransplantation had no impact on kidney graft function and survival (100% at 5 years). Pancreas retransplantation is a safe procedure with acceptable graft survival that should be proposed to diabetic patients who have lost their primary graft.

  9. Comparative functional scintigraphic and angiographic examination in pancreas diseases

    International Nuclear Information System (INIS)

    Mendizov, A.; Brilski, V.; Bozhiyanov, A.; Romanova, A.; Mardzhanov, I.; Glavincheva, I.; Meditsinska Akademiya, Sofia

    1979-01-01

    Pancreas scintigraphy with 75 seleno-methionine, pancreocimine-secretine test and selective abdominal angiography was carried out in patients with chronic pancreatitis, pancreas carcinoma and subjects without any pancreas diseases. Scintigraphic changes in pancreas was found in 95,6 per cent of the patients with chronic pancreatitis (136 patients), in 92 per cent of them with pancreas carcinoma (25 patients) and in 53,4 per cent from the subjects without pancreas diseases (30 examined). Pathological changes in pancreatic secretion was found in 93,4 per cent of the patients with chronic pancreatitis (105 patients), in 93,8 per cent of the subjects with pancreas carcinoma (32 patients) and only in 3,9 per cent from the examined without pancreatic diseases. The angiographic examination is informative mainly in case of tumours and cysts of the pancreas. The diagnostic potentialities of the separate methods for pancreas examination were critically assessed. The basic diagnostic problems in pancreas diseases are solved to a great extent with the combined examination with scintigraphy pancreocimine test and angiography (76 patients). (author)

  10. Annular pancreas causing extrahepatic biliary obstruction

    International Nuclear Information System (INIS)

    Ogulin, M.; Jamar, B.

    2004-01-01

    Background. Annular pancreas is an uncommon congenital abnormality, consisting of a flat band of pancreatic tissue, which encircles duodenum or extrahepatic biliary duct. We present a case of obstructive jaundice, caused by annular pancreas. Case report. A 46 years old female was admitted because of a sudden onset of abdominal pain, vomiting and jaundice. For the last six years she occasionally noticed her skin was light yellow, in the last year she felt distension in the upper abdomen, especially after fatty meals. Conclusions. Two US examinations, the first one six months before the admission, showed dilated hepatic ducts. The reason of dilatation was unclear, even after the endoscopic US examination. At operation an almost complete obstruction of the common hepatic duct was found, caused by a narrow band of pancreatic tissue. (author)

  11. Solid pseudopapillary pancreas tumors. Often neglected

    International Nuclear Information System (INIS)

    Herrmann, K.A.; Reiser, M.F.; Zech, C.J.; Helmberger, T.; Bruns, C.

    2008-01-01

    Solid pseudopapillary tumors of the pancreas (SPTP) are rare tumors of the pancreas with low malignancy potential and a very good prognostic outcome after surgery. They typically occur in young women or adolescents and consist of solid, cystic and cystic-hemorrhagic components. Imaging findings in these tumors are characteristic and include a fibrotic capsule with a clear delineation and exhibit solid and cystic-hemorrhagic signal and density characteristics. Calcifications may be present in the periphery of the tumor. The tumor capsule shows contrast enhancement, the solid components in the periphery enhance in the early phase and gradually and inhomogeneously in late phases. MRI is superior to CT and other imaging modalities for characterization of SPTP. Awareness and knowledge of this tumor entity with an excellent prognosis is crucial to guide the patient towards effective, predominantly organ-sparing surgical treatment. (orig.) [de

  12. The Effects of Alpha Interferon on the Development of Autoimmune Thyroiditis in the NOD H2h4 Mouse

    Directory of Open Access Journals (Sweden)

    Yael Oppenheim

    2003-01-01

    Full Text Available Alpha interferon (αIFN therapy is known to induce thyroid autoimmunity in up to 40% of patients. The mechanism is unknown, but Th1 switching has been hypothesized. The aim of our study was to examine whether αIFN accelerated the development of thyroiditis in genetically susceptible mice. We took advantage of NOD-H2h4, a genetically susceptible animal model, which develops thyroiditis when fed a high iodine diet. Six to eight week old male NOD H2h4 mice were injected with mouse αIFN (200 units or with saline three times a week for 8 weeks. All mice drank iodinated water (0.15%. Mice were sacrificed after 8 weeks of injection. Their thyroids were examined for histology and blood was tested for antithyroglobulin antibody levels. T4 and glucose levels were also assessed. In the IFN-injected group, 6/13 (46.2% developed thyroiditis and/or thyroid antibodies while in the saline-injected group, only 4/13 (30.8% developed thyroiditis and/or thyroid antibodies (p=0.4. The grade of thyroiditis was not different amongst the two groups. None of the mice developed clinical thyroiditis or diabetes mellitus. Our results showed that αIFN treatment did not accelerate thyroiditis in this mouse model. This may imply that αIFN induces thyroiditis in a non-genetically dependent manner, and this would not be detected in a genetically susceptible mouse model if the effect were small. Alternatively, it is possible that αIFN did not induce thyroiditis in mice because, unlike in humans, in mice αIFN does not induce Th1 switching.

  13. Altered volume, morphology and composition of the pancreas in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Mavin Macauley

    Full Text Available Although impairment in pancreatic insulin secretion is known to precede the clinical diagnosis of type 2 diabetes by up to a decade, fasting blood glucose concentration only rises abnormally once the impairment reaches a critical threshold. Despite its centrality to the pathogenesis of type 2 diabetes, the pancreas is the least studied organ due to its inaccessible anatomical position. Previous ultrasound and CT studies have suggested a possible decrease in pancreatic volume in type 2 diabetes. However, ultrasound techniques are relatively insensitive while CT uses ionizing radiation, making these modalities unsuitable for precise, longitudinal studies designed to explore the underlying mechanisms of type 2 diabetes. Hence there is a need to develop a non-invasive, safe and precise method to quantitate pancreas volume.We developed and applied magnetic resonance imaging at 3.0T to obtain balanced turbo field echo (BTFE structural images of the pancreas, together with 3-point Dixon images to quantify pancreatic triglyceride content. Pancreas volume, morphology and triglyceride content was quantified in a group of 41 subjects with well-controlled type 2 diabetes (HbA1c ≤ 7.6% taking only metformin (duration of T2DM 5.7 ± 0.7 years, and a control group of 14 normal glucose tolerance subjects matched for age, weight and sex.The mean pancreatic volume was found to be 33% less in type 2 diabetes than in normal glucose tolerant subjects (55.5 ± 2.8 vs. 82.6 ± 4.8 cm3; p < 0.0001. Pancreas volume was positively correlated with HOMA-β in the type 2 diabetes subjects (r = 0.31; p = 0.03 and controls (r = 0.46; p = 0.05 considered separately; and in the whole population studied (r = 0.37; p = 0.003. In type 2 diabetes, the pancreas was typically involuted with a serrated border. Pancreatic triglyceride content was 23% greater (5.4 ± 0.3 vs. 4.4 ± 0.4%; p = 0.02 in the type 2 diabetes group.This study describes for the first time gross abnormalities

  14. Altered Volume, Morphology and Composition of the Pancreas in Type 2 Diabetes

    Science.gov (United States)

    Macauley, Mavin; Percival, Katie; Thelwall, Peter E.; Hollingsworth, Kieren G.; Taylor, Roy

    2015-01-01

    Objective Although impairment in pancreatic insulin secretion is known to precede the clinical diagnosis of type 2 diabetes by up to a decade, fasting blood glucose concentration only rises abnormally once the impairment reaches a critical threshold. Despite its centrality to the pathogenesis of type 2 diabetes, the pancreas is the least studied organ due to its inaccessible anatomical position. Previous ultrasound and CT studies have suggested a possible decrease in pancreatic volume in type 2 diabetes. However, ultrasound techniques are relatively insensitive while CT uses ionizing radiation, making these modalities unsuitable for precise, longitudinal studies designed to explore the underlying mechanisms of type 2 diabetes. Hence there is a need to develop a non-invasive, safe and precise method to quantitate pancreas volume. Methods We developed and applied magnetic resonance imaging at 3.0T to obtain balanced turbo field echo (BTFE) structural images of the pancreas, together with 3-point Dixon images to quantify pancreatic triglyceride content. Pancreas volume, morphology and triglyceride content was quantified in a group of 41 subjects with well-controlled type 2 diabetes (HbA1c ≤ 7.6%) taking only metformin (duration of T2DM 5.7±0.7years), and a control group of 14 normal glucose tolerance subjects matched for age, weight and sex. Results The mean pancreatic volume was found to be 33% less in type 2 diabetes than in normal glucose tolerant subjects (55.5±2.8 vs. 82.6±4.8cm3; pPancreas volume was positively correlated with HOMA-β in the type 2 diabetes subjects (r = 0.31; p = 0.03) and controls (r = 0.46; p = 0.05) considered separately; and in the whole population studied (r = 0.37; p = 0.003). In type 2 diabetes, the pancreas was typically involuted with a serrated border. Pancreatic triglyceride content was 23% greater (5.4±0.3 vs. 4.4±0.4%; p = 0.02) in the type 2 diabetes group. Conclusion This study describes for the first time gross

  15. Metastatic Renal Cell Carcinoma to the Pancreas: A Review.

    Science.gov (United States)

    Cheng, Shaun Kian Hong; Chuah, Khoon Leong

    2016-06-01

    The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.

  16. [Investigation of follicular development and oocyte maturation after cryopreservation and xenograft of newborn mouse ovaries].

    Science.gov (United States)

    Qin, Bo-Lin; Chen, Xue-Jin; Shi, Zhen-Dan; Li, Wan-Li; Tian, Yun-Bo

    2006-02-25

    breakdown (GVBD) and among which 89.02% proceeded to the metaphase II (MII) stage as indicated by exclusion of the first polar body. The remaining oocytes were further cultured and 50.83% of which initiated GVBD by 20~21 h of culture, but only 21.40% of which proceeded to MII. The above results demonstrated that the primordial follicles in newborn mouse ovaries were capable of sustaining freezing and thawing, and reinitiating development following xenograft into kidney capsule in adult recipient female mice. Production of mature oocytes from such re-developed follicles following gonadotrophin priming and the subsequent oocyte in vitro maturation implied immense prospect of application of this method to preserve female germ cells, conserve endangered species, establish animal gene stock, and utilize oocytes in assisted reproductive techniques.

  17. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration

    DEFF Research Database (Denmark)

    Bruun, Susanne W.; Josefsen, Knud; Tanassi, Julia T

    2016-01-01

    secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally...

  18. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    Science.gov (United States)

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  19. A Review of Safety and Design Requirements of the Artificial Pancreas

    NARCIS (Netherlands)

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J. Hans

    2016-01-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an

  20. Resection of tumors of the neck of the pancreas with venous invasion: the "Whipple at the Splenic Artery (WATSA)" procedure.

    Science.gov (United States)

    Strasberg, Steven M; Sanchez, Luis A; Hawkins, William G; Fields, Ryan C; Linehan, David C

    2012-05-01

    Tumors of the neck of the pancreas may involve the superior mesenteric and portal veins as well as the termination of the splenic vein. This presents a difficult problem since the pancreas cannot be transected through the neck as is standard in a Whipple procedure. Here, we present our method of resecting such tumors, which we term "Whipple at the Splenic Artery (WATSA)". The superior mesenteric and portal veins are isolated below and above the pancreas, respectively. The pancreas and splenic vein are divided just to the right of the point that the splenic artery contacts the superior border of the pancreas. This plane of transection is approximately 2 cm to the left of the pancreatic neck and away from the tumor. The superior mesenteric artery is cleared from the left side of the patient. With the specimen remaining attached only by the superior mesenteric and portal veins, these structures are clamped and divided. Reconstruction is performed with or without a superficial femoral vein graft. The splenic vein is not reconstructed. Ten cases have been performed to date without mortality. We have previously shown that the pattern of venous collateral development following occlusion of the termination of the splenic vein in the manner described is not similar to that of cases of sinistral (left sided) portal hypertension. Whipple at the splenic artery (WATSA) is a safe method for resection of tumors of the neck of the pancreas with vein involvement. It should be performed in high-volume pancreatic surgery centers.

  1. Laparoscopic robot-assisted pancreas transplantation: first world experience.

    Science.gov (United States)

    Boggi, Ugo; Signori, Stefano; Vistoli, Fabio; D'Imporzano, Simone; Amorese, Gabriella; Consani, Giovanni; Guarracino, Fabio; Marchetti, Piero; Focosi, Daniele; Mosca, Franco

    2012-01-27

    Surgical complications are a major disincentive to pancreas transplantation, despite the undisputed benefits of restored insulin independence. The da Vinci surgical system, a computer-assisted electromechanical device, provides the unique opportunity to test whether laparoscopy can reduce the morbidity of pancreas transplantation. Pancreas transplantation was performed by robot-assisted laparoscopy in three patients. The first patient received a pancreas after kidney transplant, the second a simultaneous pancreas kidney transplantation, and the third a pancreas transplant alone. Operations were carried out through an 11-mm optic port, two 8-mm operative ports, and a 7-cm midline incision. The latter was used to introduce the grafts, enable vascular cross-clamping, and create exocrine drainage into the jejunum. The two solitary pancreas transplants required an operating time of 3 and 5 hr, respectively; the simultaneous pancreas kidney transplantation took 8 hr. Mean warm ischemia time of the pancreas graft was 34 min. All pancreatic transplants functioned immediately, and all recipients became insulin independent. The kidney graft, revascularized after 35 min of warm ischemia, also functioned immediately. No patient had complications during or after surgery. At the longer follow-up of 10, 8, and 6 months, respectively, all recipients are alive with normal graft function. We have shown the feasibility of laparoscopic robot-assisted solitary pancreas and simultaneous pancreas and kidney transplantation. If the safety and feasibility of this procedure can be confirmed by larger series, laparoscopic robot-assisted pancreas transplantation could become a new option for diabetic patients needing beta-cell replacement.

  2. Solitary Fibrous Tumor of the Pancreas: Imaging Findings

    International Nuclear Information System (INIS)

    Kwon, Heon Ju; Byun, Jae Ho; Kang, Jun; Park, Seong Ho; Lee, Moon Gyu

    2008-01-01

    We report here a case of a pathologically proven solitary fibrous tumor of the pancreas. A 54-year-old man was referred to our hospital for further evaluation of a pancreatic mass that was found incidentally. CT, MR imaging, and endoscopic ultrasonography showed a well-defined, enhancing mass with cystic portions of the pancreas body. MR cholangiopancreatography showed no pancreatic duct dilatation. A solitary fibrous tumor of the pancreas is a very rare lesion

  3. MicroRNA Dysregulation in Liver and Pancreas of CMP-Neu5Ac Hydroxylase Null Mice Disrupts Insulin/PI3K-AKT Signaling

    Directory of Open Access Journals (Sweden)

    Deug-Nam Kwon

    2014-01-01

    Full Text Available CMP-Neu5Ac hydroxylase (Cmah-null mice fed with a high-fat diet develop fasting hyperglycemia, glucose intolerance, and pancreatic β-cell dysfunction and ultimately develop characteristics of type 2 diabetes. The precise metabolic role of the Cmah gene remains poorly understood. This study was designed to investigate the molecular mechanisms through which microRNAs (miRNAs regulate type 2 diabetes. Expression profiles of miRNAs in Cmah-null mouse livers were compared to those of control mouse livers. Liver miFinder miRNA PCR arrays (n=6 showed that eight miRNA genes were differentially expressed between the two groups. Compared with controls, seven miRNAs were upregulated and one miRNA was downregulated in Cmah-null mice. Specifically, miR-155-5p, miR-425-5p, miR-15a-5p, miR-503-5p, miR-16-5p, miR-29a-3p, and miR-29b-3p were significantly upregulated in the liver and pancreas of Cmah-null mice. These target miRNAs are closely associated with dysregulation of insulin/PI3K-AKT signaling, suggesting that the Cmah-null mice could be a useful model for studying diabetes.

  4. Result of radiation therapy for inoperable pancreas cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Ikeda, Michio; Tazaki, Eisei; Kaneda, Koichi; Tsuya, Akira.

    1978-01-01

    Twenty cases of the pancreas cancer were treated by means of 60 Co γ or Linac x-rays during the period between 1958 and 1977 at the Cancer Institute Hospital and Tokyo Women's Medical College. 11 were irradiated by external radiation and 9 by intraoperative radiation. Pancreas irradiation was indicated for relief of pain and alleviation of jaundice although the effect was symptomatic. 2500 rad of intraoperative radiation was reasonable dose in about 10 x 10 cm radiation field. Radical curative irradiation for pancreas cancer might be rarely indicated. Radiotherapy of pancreas cancer should be considered in conjunction with multimodal treatment in the future. (author)

  5. Human pancreas scintigraphy using iodine-123-labeled HIPDM and SPECT

    International Nuclear Information System (INIS)

    Yamamoto, K.; Shibata, T.; Saji, H.; Kubo, S.; Aoki, E.; Fujita, T.; Yonekura, Y.; Konishi, J.; Yokoyama, A.

    1990-01-01

    The pancreatic affinity of iodine-123-labeled HIPDM (N,N,N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3-propane diamine) ([ 123 I]HIPDM) was studied in 18 cases (5 normal volunteers, 7 cases with pancreas cancer, and 6 with chronic pancreatitis). In the normal cases, the pancreas was visualized in the planar images as early as 3 hr, and again at 20 hr postinjection. Single-photon emission computed tomography (SPECT) performed following 3-hr planar scintigraphy, provided excellent pancreas images without an overlap of activity in the liver or spleen. The mean pancreas-to-liver (P/L) ratio was 1.26 +/- 0.22 in normal controls. With the exception of one case of massive calcification in the pancreas, the entire pancreas could be observed in the cases with chronic pancreatitis, but the P/L ratio was 0.74 +/- 0.15, significantly lower than that of normal cases. Defective areas of the distal portion of the pancreas were clearly seen in those with cancer of the pancreas. The results of our study indicate that [ 123 I] HIPDM may have clinical potential as a human pancreas imaging agent

  6. CLINICAL AND FUNCTIONAL FEATURES OF PANCREAS STATE IN RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    O. O. Basieva

    2000-01-01

    Full Text Available Aim of study: complex pancreas study in rheumatoid arthritis (RA. Material and methods: 120 RA pts were examined clinically Pancreas US-and biochemical study (level of a-amylase and lipase of blood serum by kinetic-calorimetric method was performed in this grouh. Results: 50.8% of pts demonstrated increase of pancreas echo, in 23.3%- widened Wirsung s duct, in 45%- single small focal indurations, more often in the body and cauda pancreatis. Decrease of lipolitic and amylolytic pancreas activity is characteristic for RA, especially in systemic process and long-term disease. Clinical and functional disturbances are connected with morphological changes.

  7. A Study on Pancreas Scanning with Selenium75-Selenomethionine

    International Nuclear Information System (INIS)

    Shin, Hyun Chan; Toh, Sang Hee; Ra, Woo Youn; Suh, Chul Sung

    1968-01-01

    Radiographic visualization of the pancreas is a difficult problem, but the direct visualization of the pancreas is possible by the injection of the amino-acid methionine tagged with selenium 75 (Se 75 ). In order to know the diagnostic value of pancreas scanning, scans were performed on 23 cases using selenium 75 -Selenomethionine. These cases were also given egg white, probanthine and morphine. 1) Good visualization of the pancreas scanning was observed on 19 cases, presumably with normal pancreas. 2) A case which showed diffusely decreased uptake on pancreas scanning was proven to have lesions in the bile duct and the gall bladder. 3) Of those two cases which showed localized cold area, one had pancreas cyst and the other one was not explored. 4) A case which showed no visualization of the pancreas was proven to have pancreatic carcinoma. 5) Two cases which showed widened duodenal loop by upper gastro-intestinal series revealed normal pancreas scanning, and no pancreatic disease was found in both cases.

  8. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation.

    Science.gov (United States)

    Mariani, Margherita; Viganò, Paola; Gentilini, Davide; Camisa, Barbara; Caporizzo, Elvira; Di Lucia, Pietro; Monno, Antonella; Candiani, Massimo; Somigliana, Edgardo; Panina-Bordignon, Paola

    2012-07-01

    Endometriosis, which is characterized by the growth of endometrial tissue at ectopic locations as well as vascular development and inflammation, is still an unmet clinical need since an optimal drug that allows for both pain and infertility management does not exist. Since both the eutopic and the ectopic endometrium express the vitamin D receptor (VDR), and VDR agonists are endowed with anti-proliferative and anti-inflammatory properties, we evaluated the effect of elocalcitol, a VDR agonist with low calcaemic liability, in a mouse model of experimentally induced endometriosis. Endometriosis was induced by injection of syngeneic endometrial tissue fragments into adult Balb/c female mice. After having confirmed by immunohistochemistry that endometriotic lesions developing in mice expressed VDR, the mice were administered with elocalcitol (100 μg/kg) or vehicle orally, once a day, for various durations of time. In this model, elocalcitol was able to reduce total lesion weight up to 70% upon treatment for 1 week before and 2 weeks after disease induction. Interestingly, a therapeutic effect was also observed on already established lesions. Elocalcitol was shown to reduce the capacity of mouse endometrial cells to adhere to collagen. In addition in treated mice, a decreased state of peritoneal inflammation was demonstrated by the inhibition of macrophage recruitment and inflammatory cytokine secretion. The VDR agonist elocalcitol inhibits lesion development in a validated mouse model of endometriosis, and exerts a protective effect on both the implantation and organization of transferred endometrial tissue. These preliminary data in mice provide a sound rationale for further testing in primate models and eventually in humans.

  9. Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    Science.gov (United States)

    Calder, Michele D; Watson, Patricia H; Watson, Andrew J

    2011-11-01

    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.

  10. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors

    Czech Academy of Sciences Publication Activity Database

    Fišerová, A.; Richter, J.; Čapková, K.; Bieblová, Jana; Mikyšková, Romana; Reiniš, Milan; Indrová, Marie

    2016-01-01

    Roč. 49, č. 2 (2016), s. 763-772 ISSN 1019-6439 R&D Projects: GA ČR(CZ) GA14-10100S; GA MŠk(CZ) LM2011032; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : novel mouse strains * NKC domain * TC-1/A9 * B16F10 * MCB8 * colorectal cancer * cancer development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.079, year: 2016

  11. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor β2.

    Science.gov (United States)

    Long, Qiqi; Liu, Xishi; Qi, Qiuming; Guo, Sun-Wei

    2016-11-01

    Does chronic stress in mice accelerate the development of endometriosis, and, if so, through what mechanism? Exposure to chronic stress accelerates the development of endometriosis and exacerbates the endometriosis-associated generalized hyperalgesia, most likely through activation of the adrenoceptor β2 (ADRB2) and cAMP responsive element-binding protein (CREB). Women with endometriosis tend to have higher levels of psychological stress, which is known to impact negatively on health in general and to promote tumor growth and metastasis in particular. Exposure to chronic stress before and after the induction of endometriosis is reported to increase lesion sizes in rodents, but it is unclear whether adrenoceptors are involved or not in the stress-promoted development of endometriosis. Three independent, prospective, randomized mouse experimentations. A total of 184 virgin female Balb/C mice were used. In Experiment 1, the mice were randomly divided into four groups: the control group, which received no stress; the before, after and both groups, which received immobilization stress before, after and both before and after the induction of endometriosis, respectively. In Experiment 2, mice were randomly divided into four groups one day after the induction of endometriosis: phosphate buffer saline (PBS) and propranolol (PROP) groups, which received the mini-pump containing, respectively, PBS only and propranolol (a non-selective ADRB antagonist) but no stress, STR+PROP and STR+PBS groups, which received stress and the mini-pump containing, respectively, propranolol and PBS. The immobilization stress started after the insertion of mini-pumps. In Experiment 3, mice were induced with endometriosis. Three days after the induction, they were randomly divided into four groups: control, ADRAa, ADRB2a, and ADRBa, which received the mini-pump containing solution only, metaraminol (a non-specific α adrenoceptor agonist), tebutaline (a specific ADRB2 agonist), or isoproterenol

  12. Apoptosis induced by glufosinate ammonium in the neuroepithelium of developing mouse embryos in culture.

    Science.gov (United States)

    Watanabe, T

    1997-01-24

    Glufosinate ammonium structurally resembles glutamate and blocks glutamine synthetase. Glufosinate was recently found to be dysmorphogenic in mammals in vitro. The present study examined the cell death induced specifically by glufosinate in the neuroepithelium of mouse embryos. Electron micrograph revealed characteristic chromatin condensation and segregation, extracellular apoptotic bodies, and cell fragments phagocytosed in macrophages in the neuroepithelium of the brain vesicle and neural tube. Moreover neuroepithelial cells undergoing DNA fragmentation were histochemically identified. DNA gel electrophoresis of the neuroepithelial layer revealed a DNA ladder. These observations demonstrate that glufosinate specifically induced apoptosis in the neuroepithelium of embryos.

  13. Developing Novel Automated Apparatus for Studying Battery of Social Behaviors in Mutant Mouse Models for Autism

    Science.gov (United States)

    2013-06-01

    coloured blobs ) and RFID data (open circles) are then independently processed offline to extract the X–Y coordinates of each identified mouse within the...such as in most rodents, fish and insects. Radio-frequency identified (RFID) tagging has been success- fully applied to track the position of uniquely...large animal groups (for example, insect colonies, fish schools)40. Methods Animals. Adult male and female mice from the C57BL/6Jx129sv and BTBR Toþ4

  14. Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma.

    Directory of Open Access Journals (Sweden)

    Rebecca King

    2018-01-01

    Full Text Available Central corneal thickness (CCT is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG. The present study uses the BXD Recombinant Inbred (RI strains to identify novel quantitative trait loci (QTLs modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60-100 days of age. The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org. The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2 contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2, with the highest significance level of p = 10-6 for

  15. Computed tomography of pancreas in diabetic patients in relation to diabetic retinopathy

    International Nuclear Information System (INIS)

    Katsumata, K.; Katsumata, Y.; Sakuma, S.; Kaii, O.; Shimamoto, K.; Hirabayashi, N.; Nakagawa, T.

    1987-01-01

    Lipomatous pancreas is hardly diagnosed in living humans and usually recognized at autopsy. In the present work, it is proposed that lipomatous pancreas can be diagnosed in living humans by computed tomography (CT) of the pancreas. 2 refs.; 1 figure

  16. File list: Pol.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_pancreas.bed ...

  17. File list: Unc.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Embryonic_pancreas.bed ...

  18. File list: Unc.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Embryonic_pancreas.bed ...

  19. File list: Pol.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.10.AllAg.Embryonic_pancreas.bed ...

  20. File list: Unc.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Embryonic_pancreas.bed ...

  1. File list: Pol.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_pancreas.bed ...

  2. File list: Unc.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Embryonic_pancreas.bed ...

  3. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  4. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Miao Chen

    Full Text Available Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP in one subset of cone bipolar cells (type 7 into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.

  5. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside

  6. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  7. Neuroendocrine tumors of the pancreas.

    LENUS (Irish Health Repository)

    Davies, Karen

    2009-04-01

    Pancreatic endocrine tumors are rare neoplasms accounting for less than 5% of pancreatic malignancies. They are broadly classified into either functioning tumors (insulinomas, gastrinomas, glucagonomas, VIPomas, and somatostatinomas) or nonfunctioning tumors. The diagnosis of these tumors is difficult and requires a careful history and examination combined with laboratory tests and radiologic imaging. Signs and symptoms are usually related to hormone hypersecretion in the case of functioning tumors and to tumor size or metastases with nonfunctioning tumors. Surgical resection remains the treatment of choice even in the face of metastatic disease. Further development of novel diagnostic and treatment modalities offers potential to greatly improve quality of life and prolong disease-free survival for patients with pancreatic endocrine tumors.

  8. Neuroendocrine tumors of the pancreas.

    LENUS (Irish Health Repository)

    Davies, Karen

    2012-02-01

    Pancreatic endocrine tumors are rare neoplasms accounting for less than 5% of pancreatic malignancies. They are broadly classified into either functioning tumors (insulinomas, gastrinomas, glucagonomas, VIPomas, and somatostatinomas) or nonfunctioning tumors. The diagnosis of these tumors is difficult and requires a careful history and examination combined with laboratory tests and radiologic imaging. Signs and symptoms are usually related to hormone hypersecretion in the case of functioning tumors and to tumor size or metastases with nonfunctioning tumors. Surgical resection remains the treatment of choice even in the face of metastatic disease. Further development of novel diagnostic and treatment modalities offers potential to greatly improve quality of life and prolong disease-free survival for patients with pancreatic endocrine tumors.

  9. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    Science.gov (United States)

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary.

  10. Computer tomography (CT) finding of normal pancreas

    International Nuclear Information System (INIS)

    Cho, Chi Ja; Kim, Byung Tae; Lee, Jeung Suk

    1983-01-01

    Conventional radiology of the pancreas are too often unsatisfactory. It is well known that the whole body CT is very useful in identifying retroperitoneal pathology. The authors intended to present normal pancreatic morphology and data for preparation of basis for interpretation of abnormalities. We results were as follows; 1. There were 36 male and 24 female patients, and their ages ranged from 7 to 78 years. 2. 1) The organs adjacent pancreas were stomach, inferior vena cava, duodenum, caudate lobe of the liver left kidney, left adrenal gland, superior mesenteric vessels, spleen. 2) In 19 patients, pancreatic tail at the level of left kidney in the transverse plane, it was either ventral in 13 (68%), ventromedial in 2 (19%), ventrolateral in 4 (21%) to left kidney, in the other 41 patients, it was cranial to the upper pole of left kidney, ventral in 25 (61%), ventromedial in 1 (2%), ventrolateral in 15 (37%). 3) Pancreatic tail was cranial to the pancreatic body, 3 cm cranial in 2 (4%), 2-3 cm in 5 (8%), 1-2 cm in 6 (10%), less than 1 cm in 11 (18%). In the other, caudal in 3 (5%). 4) Pancreatic tail was cranial to the level of the splenic hilum in 36 (60%), 0-2 cm caudal in 24 (40%). 3. Pancreatic shape was uniform tapering form in 37 (62%), lobulated form in 23 (38%). 4. Pancreatic orientation was horizontal in 13 (22%), vertical 56 (76%), S-shaped in 1 (2%). 5. Pancreatic margin was smooth in 22 (37%), lobulated in 38 (63%). 6. In most patients, pancreas was uniform in density. 7. Pancreatic size was 0.5 ± 0.1 in measurement ratio of the head in 48 (80%), 0.4 ± 0.1 of the body in 49 (88%), 0.5 ± 0.1 of the tail in 47 (78%)

  11. Well differentiated endocrine carcinomas of the pancreas

    Directory of Open Access Journals (Sweden)

    Čolović Radoje

    2011-01-01

    Full Text Available Introduction. For the difference from poorly differentiated, well differentiated endocrine carcinomas of the pancreas are the tumours in whom with aggressive surgery and chemotherapy fair results can be achieved. Objective. The aim of the study was to point out the importance of such treatment. Methods. Over a 6-year period eight patients (seven female and one male of average age 51 years (ranging from 23 to 71 years were operated on for well differentiated endocrine carcinoma: six of the head and two of the tail of the pancreas. There were two functional and six nonfunctional tumours. Pain in the upper part of the abdomen in seven, mild loss in weight in two, strong heartburn in two, obstructive jaundice in three, diarrhoea in one, sudden massive bleeding from gastric varicosities due to prehepatic portal hypertension caused by pancreatic head tumour in one, and bruise in one patient were registered preoperatively. US and CT in all, angiography in one, octreoscan in two and PET scan in one patient were performed. Whipple’s procedure was performed in six and distal pancreatectomy in two patients, as well as systemic lymphadenectomy in all and excision of liver secondary tumours in two patients. In the patient with massive gastric bleeding a total gastrectomy was performed first, followed by Whipple’s procedure a month later. Results. R0 resection was achieved in all patients. Lymph nodes metastases were found in six patients. Six patients were given chemotherapy. One patient died 3 years after surgery, seven are still alive, on average 2.5 years. A local recurrence after distal pancreatectomy that occurred 5 years after surgery was successfully reresected and the patient is on peptide-receptor radiotherapy. In other six patients there were no local recurence or distant metastases. Conclusion. With aggressive surgery and chemotherapy fair results can be achieved in well differentiated endocrine carcinomas of the pancreas.

  12. Intraoperative radiotherapy for adenocarcinoma of the pancreas

    International Nuclear Information System (INIS)

    Yasue, Mitsunori; Yasui, Kenzo; Morimoto, Takeshi; Miyaishi, Seiichi; Morita, Kozo

    1986-01-01

    Thirty-six patients were given intraoperative radiotherapy for adenocarcinoma of the pancreas between April 1980 and March 1986. Twenty-six of those with well-advanced cancer underwent palliative intraoperative radiotherapy of their main primary lesions (1,500 to 3,000 rads). Fourteen of the 19 patients in this group who had intractable back pain before surgery achieved relief within one week after treatment. Of the remaining 10 patients who underwent pancreatectomy and received adjuvant intraoperative radiotherapy (2,000 to 3,000 rads), two remain clinically free of disease five years and six months and four years and six months after palliative distal pancreatectomy. (author)

  13. A Case of Successful Simultaneous Pancreas-Kidney Transplantation Using the Injured Pancreas Graft.

    Science.gov (United States)

    Miyagi, S; Shimizu, K; Miyazawa, K; Nakanishi, W; Hara, Y; Tokodai, K; Nakanishi, C; Satomi, S; Goto, M; Unno, M; Kamei, T

    2017-12-01

    Graft injuries sometimes occur and may cause complications such as the leakage of pancreatic secretions, which is often lethal. We report our experience of a case of successful simultaneous pancreas-kidney transplantation using injured pancreas graft. The recipient was a 57-year-old woman with type 1 diabetes mellitus, and the donor was a 30-year-old man with a brain injury. In the donation, the pancreas parenchyma, splenic artery, and gastroduodenal artery were injured iatrogenically. We therefore reconstructed these arteries using vessel grafts and then performed simultaneous pancreas-kidney transplantation. Five days after transplantation, we noted a high titer of amylase in the ascites; therefore, we performed an urgent laparotomy. The origin of the amylase was the injured pancreatic parenchyma, and continued washing and drainage were carried out. We reconstructed the duodenojejunostomy using the Roux-en-Y technique to separate the passage of food from the pancreas graft to prevent injury to other organs due to exposure to pancreatic secretions. Thereafter, we inserted a decompression tube into the anastomosis thorough the blind end of the jejunum. Finally, we inserted 3 drainage tubes for lavage. Following this procedure, the patient recovered gradually and no longer required hemodialysis and insulin therapy. She was discharged from our hospital 56 days after transplantation. The restoration of the injured graft was possible by management of pancreatic secretions and use of the donor's vessel grafts. Shortage of donors is a problem throughout the world; thus, it is important to use injured grafts for transplantation if possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  15. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.

    Science.gov (United States)

    Fuchs, Claudia; Rimondini, Roberto; Viggiano, Rocchina; Trazzi, Stefania; De Franceschi, Marianna; Bartesaghi, Renata; Ciani, Elisabetta

    2015-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. Copyright © 2015. Published by Elsevier Inc.

  16. A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development.

    Directory of Open Access Journals (Sweden)

    Christine P Diggle

    Full Text Available Tubulin alpha 8 (Tuba8 is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.

  17. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  18. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  19. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Science.gov (United States)

    Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  20. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  1. CT of the pancreas with a fat-density oral contrast medium

    International Nuclear Information System (INIS)

    Raptopoulos, V.; Davidoff, A.; Davis, M.A.; Coolbaugh, B.L.; Smith, E.H.

    1987-01-01

    Visualization of the head of the pancreas on CT was evaluated in three groups, each consisting of 100 patients without pancreatic pathology who received a fat-density oral preparation. The corn oil emulsion was tolerated well by the patients and allowed consistently superior discrimination of the head of the pancreas from the duodenal C-loop as compared to the other two control groups. A score was developed for the CT discrimination of duodenum from pancreas. The average score for corn oil emulsion was .94, as opposed to .74 for the high-density agents and .76 for patients who did not receive any oral preparation. Until further experience is acquired, the authors do not recommend the use of corn oil in patients thought to have pancreatic pseudocysts or abscesses. In addition, the use of fat-containing oral agents may be contraindicated in patients with acute pancreatitis. For routine CT evaluation of the pancreas and upper abdomen, the authors consider corn oil emulsion superior to the other oral regimens

  2. Ectopic pancreas causing partial gastric outlet obstruction: a case ...

    African Journals Online (AJOL)

    Ectopic pancreas causing partial gastric outlet obstruction: a case report and review of literature. ... Nigerian Journal of Surgery ... Gastric outlet obstruction resulting from ectopic pancreas in an adult is the first of its kind in our center; we, therefore, present this case to describe the challenges faced with diagnosis, treatment, ...

  3. Lymphoepithelial cyst of the pancreas: a case report

    International Nuclear Information System (INIS)

    Joo, Seung Ho; Kim, Myeong Jin; Kim, Ki Whang; Park, Young Nyun; Shim, Hyp Sup; Lim, Joon Seok

    2005-01-01

    We present a case of lymphoepithelial cyst of the pancreas. The cyst showed moderate echogenicity, mimicking a solid lesion on ultrasonography (US), and had a cystic appearance on computed tomography (CT). This ambivalent finding may be a distinctive feature of lymphoepithelial cysts of the pancreas

  4. Pancreas preserving total duodenectomy for complex duodenal injury.

    Science.gov (United States)

    Wig, Jai Dev; Kudari, Ashwinikumar; Yadav, Thakur Deen; Doley, Rudra Prasad; Bharathy, Kishore Gurumoorthy Subramanya; Kalra, Naveen

    2009-07-06

    To assess the feasibility and safety of a pancreas-preserving total duodenectomy in the management of severe duodenal injury caused by abdominal trauma. Two patients with both extensive injury of the duodenum and diffuse peritonitis underwent pancreas preserving total duodenectomy at our tertiary care centre. These two young male patients (age 20 and 22 years) presented 2 days and 6 hours respectively following blunt abdominal trauma. The duodenum was almost completely separated from the pancreas. Ampulla was seen as a button on the pancreas. Following total duodenectomy, reconstruction was performed by suturing the jejunum to the head of the pancreas anteriorly and posteriorly away from the ampulla (invagination of the pancreas into the jejunum). There were no complications attributable to the procedure. Both patients are well on follow up. A Pancreas-preserving total duodenectomy offers a safe alternative to the Whipple procedure in managing complex duodenal injury. This procedure avoids unnecessary resection of the adjacent pancreas and anastomosis to undilated hepatic and pancreatic ducts.

  5. Huge mucinous cystadenoma of the pancreas mistaken for a ...

    African Journals Online (AJOL)

    Cystic tumors of the pancreas are rare and can be confused with pseudocysts.We present a 50 year old woman with a huge mucinous cystadenoma of the pancreas initially diagnosed and managed with a cystojejunostomy and cyst wall biopsy. She required another laparotomy and tumor excision after histological ...

  6. Ectopic Pancreas Causing Partial Gastric Outlet Obstruction: A Case ...

    African Journals Online (AJOL)

    Ectopic pancreas is a rare cause of gastric outlet obstruction, perhaps rarer still among Africans. Although the entity is known, the diagnostic challenges are enormous, especially in the poor‑resource environment. Gastric outlet obstruction resulting from ectopic pancreas in an adult is the first of its kind in our center;.

  7. Dopamine receptor and Gα(olf expression in DYT1 dystonia mouse models during postnatal development.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated.We used Dyt1 knock out (Dyt1 KO, Dyt1 ΔGAG knock-in (Dyt1 KI, and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT or human ΔGAG mutant allele (DYT1 hMT. D1R, D2R, and Gα(olf protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60 male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14 male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice.We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology.

  8. Nocardiosis in a Kidney-Pancreas Transplant

    Directory of Open Access Journals (Sweden)

    I. Fontana

    2010-01-01

    Full Text Available 34-year-old man with chronic renal and pancreas failure in complicated diabetic disease received a kidney-pancreas transplantation. On the 32nd postoperative day, an acute kidney rejection occurred and resolved with OKT3 therapy. The patient also presented refractory urinary infection by E. Fecalis and M. Morganii, and a focal bronchopneumonia in the right-basal lobe resolved with elective chemotherapy. During the 50th post-operative day, an intense soft tissue inflammation localized in the first left metatarsal-phalangeal articulation occurred (Figure 1 followed by an abscess with a cutaneous fistula and extension to the almost totality of foot area. The radiological exam revealed a small osteo-lacunar image localized in the proximal phalanx head of the first finger foot. From the cultural examination of the purulent material, N. Asteroides was identified. An amoxicillin-based treatment was started and continued for three months, with the complete resolution of infection This case is reported for its rarity in our casuistry, and for its difficult differential diagnosis with other potentially serious infections.

  9. Proglucagon processing in porcine and human pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Bersani, M; Johnsen, A H

    1994-01-01

    In the pancreas proglucagon (PG), a peptide precursor of 160 amino acids is cleaved to produce glucagon and a 30-amino acid N-terminal flanking peptide, but the fate of the C-terminal flanking peptide (99 amino acids) is incompletely known. We subjected acid ethanol extracts of human and porcine...... pancreases to gel filtration and analyzed the fractions with specific radioimmunoassays for the following regions of proglucagon: PG 62-69, PG 72-81, PG 78-87, PG 98-107 amide, PG 126-134, and PG 149-158. Based on these assays and successive purifications by high performance liquid chromatography we isolated...... PG 72-158 = 9971) was isolated from human pancreas together with small amounts of a peptide corresponding to PG 72-107 amide. Thus, the pancreatic processing of the C-terminal flanking peptide in proglucagon includes the formation of equimolar (to glucagon) amounts of PG 64-69 and PG 72-158 (major...

  10. Long-term Outcomes for Living Pancreas Donors in the Modern Era.

    Science.gov (United States)

    Kirchner, Varvara A; Finger, Erik B; Bellin, Melena D; Dunn, Ty B; Gruessner, Rainer W G; Hering, Bernhard J; Humar, Abhinav; Kukla, Aleksandra K; Matas, Arthur J; Pruett, Timothy L; Sutherland, David E R; Kandaswamy, Raja

    2016-06-01

    Living donor segmental pancreas transplants (LDSPTx) have been performed selectively to offer a preemptive transplant option for simultaneous pancreas-kidney recipients and to perform a single operation decreasing the cost of pancreas after kidney transplant. For solitary pancreas transplants, this option historically provided a better immunologic match. Although short-term donor outcomes have been documented, there are no long-term studies. We studied postdonation outcomes in 46 segmental pancreas living donors. Surgical complications, risk factors (RF) for development of diabetes mellitus (DM) and quality of life were studied. A risk stratification model (RSM) for DM was created using predonation and postdonation RFs. Recipient outcomes were analyzed. Between January 1, 1994 and May 1, 2013, 46 LDSPTx were performed. Intraoperatively, 5 (11%) donors received transfusion. Overall, 9 (20%) donors underwent splenectomy. Postoperative complications included: 6 (13%) peripancreatic fluid collections and 2 (4%) pancreatitis episodes. Postdonation, DM requiring oral hypoglycemics was diagnosed in 7 (15%) donors and insulin-dependent DM in 5 (11%) donors. RSM with three predonation RFs (oral glucose tolerance test, basal insulin, fasting plasma glucose) and 1 postdonation RF, greater than 15% increase in body mass index from preoperative (Δ body mass index >15), predicted 12 (100%) donors that developed postdonation DM. Quality of life was not significantly affected by donation. Mean graft survival was 9.5 (±4.4) years from donors without and 9.6 (±5.4) years from donors with postdonation DM. LDSPTx can be performed with good recipient outcomes. The donation is associated with donor morbidity including impaired glucose control. Donor morbidity can be minimized by using RSM and predonation counseling on life style modifications postdonation.

  11. Is a dynamic MRI examination of the pancreas still necessary?

    International Nuclear Information System (INIS)

    Morakkabati-Spitz, N.; Willinek, W.A.; Falkenhausen, M. von; Flacke, S.; Schild, H.; Kreft, B.

    2002-01-01

    Purpose: Evaluation of the diagnostic potential of a dynamic MR examination of the pancreas. Material and Methods: Retrospective study on 49 patients who underwent MRI of the pancreas (2 insulinomas, 2 cystadenomas, 19 pancreatic carcinomas, 26 patients with chronic pancreatitis). Interpretation was done in two steps: Initial evaluation of T 2 -weighted TSE-sequences, T 1 -weighted gradient echo sequences before and after injection of Gadolinium-DTPA i.v. Afterwards, additional evaluation of a dynamic contrast-enhanced MRI series of the pancreas with four dynamic scans. Result: Dynamic MR examination of the pancreas is useful in case of insulinomas. However, in case of pancreatic cancer an additional dynamic MR examination of the pancreas does not provide further clinically relevant information. Conclusion: In patients with a suspicion of pancreatic cancer, the injection of contrast material should preferably be used for the performance of a contrast-enhanced MR angiography at the expense of a dynamic MR examination. (orig.) [de

  12. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea.

    Science.gov (United States)

    Chen, Qianqian; Quan, Yizhou; Wang, Naitao; Xie, Chengying; Ji, Zhongzhong; He, Hao; Chai, Renjie; Li, Huawei; Yin, Shankai; Chin, Y Eugene; Wei, Xunbin; Gao, Wei-Qiang

    2017-07-11

    Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment. Copyright © 2017 International Society for Stem Cell Research. Published by Elsevier Inc. All rights reserved.

  13. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    Science.gov (United States)

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  14. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  15. Dose dependent qualitative analysis of the effects of tritiated water (HTO) on the developing mouse cerebellum from 15th day Post - Coitum

    International Nuclear Information System (INIS)

    Jain, N.; Bhatia, A.L.

    1994-01-01

    An evaluation of tritium toxicity in the developing mouse brain has demonstrated that the cerebellum is fairly vulnerable to tritium exposure even in young adult mice. Tritium toxicity in the postnatally developing mouse cerebellum with respect to the radiopathological changes has also been reported. In the absence of adequate dose response data on inhaled beta emitting radionuclides in man, it is necessary to obtain such information in experimental animals. This presentation is an attempt to look into the toxicity of tritium on the cerebellum of developing Swiss albino mice and hence, to collect such dose response data which are necessary to establish the safety standards for the personnel involved with radiation protection programs

  16. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas.

    Science.gov (United States)

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better.

  17. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas

    Science.gov (United States)

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better. PMID:28012279

  18. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    Directory of Open Access Journals (Sweden)

    Beatriz López-Escobar

    2015-02-01

    Full Text Available Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1 and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos.

  19. Cripto-1 Ablation Disrupts Alveolar Development in the Mouse Mammary Gland through a Progesterone Receptor–Mediated Pathway

    Science.gov (United States)

    Klauzinska, Malgorzata; McCurdy, David; Rangel, Maria Cristina; Vaidyanath, Arun; Castro, Nadia P.; Shen, Michael M.; Gonzales, Monica; Bertolette, Daniel; Bianco, Caterina; Callahan, Robert; Salomon, David S.; Raafat, Ahmed

    2016-01-01

    Cripto-1, a member of the epidermal growth factor–Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both in vitro and in vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells ex vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways. PMID:26429739

  20. Comparison of pre- and postimplantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation

    DEFF Research Database (Denmark)

    Vanden Meerschaut, Frauke; Nikiforaki, D.; De Roo, C.

    2013-01-01

    STUDY QUESTION Does the application of three different artificial activating stimuli lead to a difference in pre- and post-implantation embryo development in the wobbler mouse, a mouse model with oocyte activation deficient round-headed sperm cells similar to human globozoospermia? SUMMARY ANSWER...... fertilized by wobbler and wild-type (WT) sperm following ICSI with or without three different artificial activating agents. Preimplantation development was assessed on 70 injected oocytes on average per group. On average, 10 foster mothers were used per activating group to compare post......-implantation development. PARTICIPANTS/MATERIALS, SETTING, METHODS We used the wobbler mouse model that possesses oocyte activation deficient round-headed sperm cells. First, the calcium release following ICSI using wobbler sperm was compared with that of WT sperm. Outcome measures were the percentage of oocytes...

  1. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    Science.gov (United States)

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  3. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, C.; Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T.

    2015-10-01

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM B RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM B RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse phantoms

  4. FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models

    Science.gov (United States)

    Martínez-Abadías, Neus; Heuzé, Yann; Wang, Yingli; Jabs, Ethylin Wang; Aldridge, Kristina; Richtsmeier, Joan T.

    2011-01-01

    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development. PMID:22053191

  5. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Abadías

    Full Text Available The fibroblast growth factor and receptor system (FGF/FGFR mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular. In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W and Fgfr2(+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI, which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  6. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model.

    Directory of Open Access Journals (Sweden)

    Kenji Sato

    Full Text Available TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE to soluble form, which exerts a number of biological activities. EGF receptor (EGFR ligands, including heparin-binding EGF-like growth factor (HB-EGF, amphiregulin and transforming growth factor (TGF-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF, one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.

  7. Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications.

    Science.gov (United States)

    Rezvani, Maryam; Menias, Christine; Sandrasegaran, Kumaresan; Olpin, Jeffrey D; Elsayes, Khaled M; Shaaban, Akram M

    2017-01-01

    Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.

  8. Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.

    Science.gov (United States)

    Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui

    2017-01-01

    The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.

  9. Computed tomography of the pancreas and gallbladder

    International Nuclear Information System (INIS)

    Onizuka, Hideo; Matsuura, Keiichi

    1982-01-01

    The authors viewed the present status of CT diagnosis in pancreatic and biliary diseases, referring to its future. CT imaged neither normal intrahepatic biliary ducts nor normal pancreatic ducts because of a relatively low resolution. The accuracy of CT in diagnosing obstructive jaundice has been 85 - 100%. CT showed a higher reproducibility than that of ultrasound in follow-up of intrahepatic gallstones. On the other hand, ultrasound was superior to CT in detecting gallstones. Diagnosis of cholecystitis by CT was usually impossible. Detecting early stage of gallbladder cancer by CT is very rarely, but it was of value for investigating the extent of advanced cancers. This tendency was also observed in biliary duct carcinoma, acute and chronic pancreatitis, and carcinoma of the pancreas. Consequently, it was concluded that CT is not appropriate for the purpose of early detection of pancreatic and other cancers. The use of CT with NMR is expected in future. (Ueda, J.)

  10. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.

    Directory of Open Access Journals (Sweden)

    Tiziano Pramparo

    2011-03-01

    Full Text Available Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε, and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can

  11. A novel mouse model of tuberous sclerosis complex (TSC): eye-specific Tsc1-ablation disrupts visual-pathway development.

    Science.gov (United States)

    Jones, Iwan; Hägglund, Anna-Carin; Törnqvist, Gunilla; Nord, Christoffer; Ahlgren, Ulf; Carlsson, Leif

    2015-12-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multi-organ disorder results from inactivating point mutations in either the TSC1 or the TSC2 genes and consequent activation of the canonical mammalian target of rapamycin complex 1 signalling (mTORC1) pathway. Because lesions to the eye are central to TSC diagnosis, we report here the generation and characterisation of the first eye-specific TSC mouse model. We demonstrate that conditional ablation of Tsc1 in eye-committed progenitor cells leads to the accelerated differentiation and subsequent ectopic radial migration of retinal ganglion cells. This results in an increase in retinal ganglion cell apoptosis and consequent regionalised axonal loss within the optic nerve and topographical changes to the contra- and ipsilateral input within the dorsal lateral geniculate nucleus. Eyes from adult mice exhibit aberrant retinal architecture and display all the classic neuropathological hallmarks of TSC, including an increase in organ and cell size, ring heterotopias, hamartomas with retinal detachment, and lamination defects. Our results provide the first major insight into the molecular etiology of TSC within the developing eye and demonstrate a pivotal role for Tsc1 in regulating various aspects of visual-pathway development. Our novel mouse model therefore provides a valuable resource for future studies concerning the molecular mechanisms underlying TSC and also as a platform to evaluate new therapeutic approaches for the treatment of this multi-organ disorder. © 2015. Published by The Company of Biologists Ltd.

  12. Sonographic evaluation of retroperitoneal pancreas transplants and their complications

    International Nuclear Information System (INIS)

    Rao, B.K.; Rosnberg, R.; McDermott, J.C.; Sollinger, H.W.; Belzer, F.O.

    1986-01-01

    Pancreas transplantation is an experimental procedure performed to restore insulin secretion in patients with diabetes mellitus. The authors reviewed 65 real-time sonograms in 42 kidney transplant recipients who also had a homologous pancreas transplanted into the retroperitoneum. Sonograms were analyzed for size of the pancreas transplant, its echo texture, size of the pancreatic duct, fluid collections around the pancreas transplant, vascular pulsations, and anastomotic site between the pancreatic duct and the urinary bladder. A normal pancreas transplant is moderately echogenic and may have small hypoechoic areas (possibly representing fibrosis or infarcts) in the early postsurgical period (based on findings in 14 of 42 patients). Dilation of the pancreatic duct (3-9 mm) and air in the pancreatic duct were common postoperatively. Pancreatitis was also common (36 patients) and was recognized by an increase in the size of the pancreas transplant and by a focally or diffusely hypoechoic texture. Rejection of the pancreas transplant was uncommon (six patients) and was detected on the basis of reduced vascular flow, an increase in size of the pancreas transplant, and a nonhomogeneous echotexture. Infraction of the transplant was rare and had an irregular, nonhomogeneously hypoechoic appearance (two patients). Seromas (eight patients), abscesses (three), and hematomas (two) were detected on the basis of septa, floating debris, mural nodules, and irregular thick walls. Enzymatic fat necrosis was recognized from floating echogenic fat debris (two patients). Air-containing abscesses were identified and confirmed on CT or US-guided aspiration (three patients). US was extremely useful for detecting, localizing, and characterizing fluid collections and provided guidance for aspiration. It is the imaging modality of choice for screening pancreas transplant recipients for postoperative changes

  13. A study of MRI-guided diffuse fluorescence molecular tomography for monitoring PDT effects in pancreas cancer

    Science.gov (United States)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.

  14. Clinical Application of 18F-FDG PET in Pancreas Cancer

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2008-01-01

    The prevalence of pancreas cancer is increasing. Due to difficulty in detecting early stage disease, the prognosis of pancreas cancer is known to be poor. Clinical use of FDG PET in pancreas has been reported. FDG PET showed good performance in diagnosing pancreas cancer, and is expected to be useful in staging and detecting recurrence

  15. File list: ALL.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX347280,SRX134735,S...71,SRX342269,SRX188948,SRX188958 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.05.AllAg.Pancreas.bed ...

  16. File list: Unc.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.10.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125798 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.10.AllAg.Pancreas.bed ...

  17. File list: ALL.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383750,SRX672452 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreas.bed ...

  18. File list: Oth.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreas.bed ...

  19. File list: ALL.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Pancreas.bed ...

  20. File list: Oth.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.AllAg.Pancreas.bed ...