WorldWideScience

Sample records for developing dual polarization

  1. Utilizing Four Dimensional Lightning and Dual-Polarization Radar to Develop Lightning Initiation Forecast Guidance

    Science.gov (United States)

    2015-03-26

    lightning based on size and composite Z alone. Since the focus was airmass thunderstorms, any days with complex areas or lines of thunder - storms...Doppler radar signatures of developing thunder - storms and their potential to indicate the onset of cloud-to-ground lightning . Mon. Wea. Rev., 122...UTILIZING FOUR DIMENSIONAL LIGHTNING AND DUAL-POLARIZATION RADAR TO DEVELOP LIGHTNING INITIATION FORECAST GUIDANCE THESIS Andrew J. Travis, Captain

  2. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  3. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  4. Dual-band dual-polarized array for WLAN applications

    CSIR Research Space (South Africa)

    Steyn, JM

    2009-01-01

    Full Text Available Paper presents a dual-band dual-polarized antenna array design for WLAN applications. Four double-dipole elements are orthogonally interleaved to facilitate operation in both the standard WLAN frequency bands (IEEE 802.11b and IEEE 802.11a...

  5. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset includes brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  6. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  7. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  8. Polarization-beam-splitter-less integrated dual-polarization coherent receiver.

    Science.gov (United States)

    Alonso-Ramos, C; Reyes-Iglesias, P J; Ortega-Moñux, A; Pérez-Galacho, D; Halir, R; Molina-Fernández, I

    2014-08-01

    Conventional dual-polarization coherent receivers require polarization beam splitters for either the signal or the local oscillator path. This severely hinders monolithic integration, since integrated polarization splitting devices often exhibit stringent fabrication tolerances. Here we propose a dual-polarization monolithically integrated coherent receiver architecture that completely avoids the use of polarization splitting elements. Polarization management is instead achieved by adequately engineering the birefringence of the interconnecting waveguides. The resultant receiver is highly tolerant to fabrication deviations and thus offers a completely new route for monolithic integration of dual-polarization receivers without any type of active tuning.

  9. Cross-polarization and sidelobe suppression in dual linear polarization antenna arrays

    DEFF Research Database (Denmark)

    Woelders, Kim; Granholm, Johan

    1997-01-01

    In recent years, there has been an increasing interest in dual linear polarization antennas for various purposes, e.g. polarimetric synthetic aperture radar (SAR) imaging. A key design goal for dual polarization antennas is to obtain a high cross-polarization suppression. When using standard tech...

  10. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    Science.gov (United States)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the

  11. Dual-Polarization Observations of Precipitation: State of the Art in Operational and Research Applications

    Science.gov (United States)

    Chandra, C. V.; Moisseev, D. N.; Baldini, L.; Bechini, R.; Cremonini, R.; Wolff, D. B.; Petersen, W. A.; Junyent, F.; Chen, H.; Beauchamp, R.

    2016-12-01

    Dual-polarization weather radars have been widely used for rainfall measurement applications and studies of the microphysical characteristics of precipitation. Ground-based, dual-polarization radar systems form the cornerstones of national severe weather warning and forecasting infrastructure in many developed countries. As a result of the improved performance of dual-polarization radars for these applications, large scale dual-polarization upgrades are being planned for India and China. In addition to national forecast and warning operations, dual-polarization radars have also been used for satellite ground validation activities. The operational Dual-Polarization radars in the US are mostly S band systems whereas in Europe are mostly C band systems. In addition a third class of systems is emerging in urban regions where networks of X band systems are being deployed operationally. There are successful networks planned or already deployed in big cities such as Dallas Fort Worth, Tokyo or Beijing. These X band networks are developing their own operational domain. In summary a large infrastructure in terms of user specified products and dual use of operational research applications are also emerging in these systems. This paper will discuss some of the innovative uses of the operational dual-polarization radar networks for research purposes, with references to calibration, hydrometeor classification and quantitative precipitation estimation. Additional application to the study of precipitation processes will also be discussed.

  12. Dual Polarized Waveguide Phased Array for SAR Application

    NARCIS (Netherlands)

    Chan, K.K.; Visser, H.J.; Keizer, W.P.M.N.; Turner, R.M.

    1994-01-01

    A modal technique is employed to evaluate the suitability of a square waveguide element for use in a dual polarized phased array. The element is found to possess low active reflection coefficient and high cross-polar isolation over the bandwith and scan volume that are typically required for SAR

  13. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  14. Polarization diverse antenna for dual-band WLAN applications

    CSIR Research Space (South Africa)

    Steyn, JM

    2009-10-01

    Full Text Available the robustness and capacity of the whole system. Polarization diversity or dual-polarized configurations can assist in realizing bandwidth efficient schemes such as the MIMO-OFDM (Multiple-Input-Multiple- Output – Orthogonal Frequency Division Multiplexing...) scheme, by increasing the system capacity without adding additional antennas at the receiver and transmitter. Various adaptive modulation and demodulation methods have been proposed in conjunction with the OFDM scheme [2] to provide a potentially more...

  15. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  16. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  17. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) GCPEx dataset was collected from January 13, 2012 to February 29, 2012 at the CARE site...

  18. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  19. GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation OLYMPEX Dual-frequency Dual-polarized Doppler Radar (D3R) dataset contains radar reflectivity and doppler velocity measurements. The D3R...

  20. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) GCPEx and IFloodS data sets contain radar reflectivity and doppler velocity measurements....

  1. Photonic Choke-Joints for Dual Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2014-01-01

    A waveguide structure for a dual polarization waveguide includes a first flange member, a second flange member, and a waveguide member disposed in each of the first flange member and second flange member. The first flange member and the second flange member are configured to be coupled together in a spaced-apart relationship separated by a gap. The first flange member has a substantially smooth surface, and the second flange member has an array of two-dimensional pillar structures formed therein.

  2. Dual HF radar study of the subauroral polarization stream

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2008-01-01

    Full Text Available The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER system often observe localized high-velocity F-region plasma flows (≥1500 m/s in the midnight sector (20:00–02:00 MLT at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm

  3. Dual HF radar study of the subauroral polarization stream

    Science.gov (United States)

    Makarevich, R. A.; Dyson, P. L.

    2007-12-01

    The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER) system often observe localized high-velocity F-region plasma flows (≥1500 m/s) in the midnight sector (20:00-02:00 MLT) at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from -5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm injection. The ion injection

  4. Dual HF radar study of the subauroral polarization stream

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2007-01-01

    Full Text Available The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER system often observe localized high-velocity F-region plasma flows (≥1500 m/s in the midnight sector (20:00–02:00 MLT at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm

  5. Dual Polarized Monopole Patch Antennas for UWB Applications with Elimination of WLAN Signals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2016-05-01

    Full Text Available This paper presents the design, fabrication and measurement of dual polarized microstrip patch antennas for ultra wideband (UWB applications with notch at 5-6 GHz band. The proposed antenna rejects the wireless local area network (WLAN signals and work properly in the entire remaining ultra-wideband. Two antennas are designed for two different frequency bands of ultra wideband and both antennas together produce the entire ultra wideband with notch at 5-6 GHz band. The antennas are fed by a 50 coaxial probe and the entire design is optimized using CST Microwave Studio. The bandwidth of 3.1-5 GHz is achieved by the optimized design of Antenna-1 and the bandwidth of 6 -10.6 GHz is achieved by the optimized design of Antenna-2. The bandwidth of the optimized combined antenna is 3.1-10.6 GHz with elimination of the 5-6 GHz band. Both antennas are simulated, developed and measured. The simulated and measured results are presented. The two designed dual polarized antennas i.e. Antenna-1 and Antenna-2 can be used for 3.1-5 GHz band and 6-10.6 GHz band dual polarized applications, respectively, and the combined antenna structure can be used for UWB dual polarized applications with elimination of 5-6 GHz band signals.

  6. Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks

    Directory of Open Access Journals (Sweden)

    Syed Daniyal Ali Shah

    2017-12-01

    Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.

  7. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  8. GPM GROUND VALIDATION DUAL POLARIZED C-BAND DOPPLER RADAR KING CITY GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarized C-Band Doppler Radar King City GCPEx dataset has special Range Height Indicator (RHI) and sector scans of several dual...

  9. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  10. Dual-Polarized Planar Phased Array Analysis for Meteorological Applications

    Directory of Open Access Journals (Sweden)

    Chen Pang

    2015-01-01

    Full Text Available This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR mode and the simultaneously transmitting and simultaneously receiving (STSR mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.

  11. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  12. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  13. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described....

  14. Probabilistic Coexistence and Throughput of Cognitive Dual-Polarized Networks

    Directory of Open Access Journals (Sweden)

    J.-M. Dricot

    2010-01-01

    Full Text Available Diversity techniques for cognitive radio networks are important since they enable the primary and secondary terminals to efficiently share the spectral resources in the same location simultaneously. In this paper, we investigate a simple, yet powerful, diversity scheme by exploiting the polarimetric dimension. More precisely, we evaluate a scenario where the cognitive terminals use cross-polarized communications with respect to the primary users. Our approach is network-centric, that is, the performance of the proposed dual-polarized system is investigated in terms of link throughput in the primary and the secondary networks. In order to carry out this analysis, we impose a probabilistic coexistence constraint derived from an information-theoretic approach, that is, we enforce a guaranteed capacity for a primary terminal for a high fraction of time. Improvements brought about by the use of our scheme are demonstrated analytically and through simulations. In particular, the main simulation parameters are extracted from a measurement campaign dedicated to the characterization of indoor-to-indoor and outdoor-to-indoor polarization behaviors. Our results suggest that the polarimetric dimension represents a remarkable opportunity, yet easily implementable, in the context of cognitive radio networks.

  15. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  16. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS dataset was collected from May 9, 2013 to June 13, 2013 as a part of the GPM...

  17. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  18. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  19. Dual-Polarization Ku-Band Compact Spaceborne Antenna Based on Dual-Reflectarray Optics.

    Science.gov (United States)

    Tienda, Carolina; Encinar, Jose A; Barba, Mariano; Arrebola, Manuel

    2018-04-05

    This article demonstrated an accurate analysis technique for dual-reflectarray antennas that take into account the angle of incidence of the impinging electric field on the main reflectarray cells. The reflected field on the sub and the main reflectarray surfaces is computed using Method of Moments in the spectral domain and assuming local periodicity. The sub-reflectarray is divided into groups of elements and the field radiated by each group is used to compute the incident and reflected field on the main reflectarray cells. A 50-cm demonstrator in Ku-band that provides European coverage has been designed, manufactured and tested to validate the analysis technique. The measured radiation patterns match the simulations and they fulfill the coverage requirements, achieving a cross-polar discrimination better than 25 dB in the frequency range: 12.975-14.25 GHz.

  20. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR

    Directory of Open Access Journals (Sweden)

    Kefeng Ji

    2015-06-01

    Full Text Available Dual polarization is a typical operational mode of polarimetric synthetic aperture radar (SAR. However, few studies have considered the scattering mechanism extraction of dual-polarization SARs. A modified Cloude-Pottier decomposition is proposed to investigate the performance of the scattering mechanism extraction of dual-polarization SARs. It is theoretically demonstrated that only HH-VV SAR can discriminate the three canonical scattering mechanisms from an isotropic surface, horizontal dipole, and isotropic dihedral. Various experiments are conducted using 21 scenes from real datasets acquired by AIRSAR, Convair-580 SAR, EMISAR, E-SAR, Pi-SAR, and RADARSAT-2. Division of the dual-polarization H-α plane is experimentally obtained. The lack of cross-polarization induces the diffusion of scattering mechanisms and their overlap in the HH-VV H-α plane. However, the performance of HH-VV SAR for extracting scattering mechanisms is acceptable. Thus, HH-VV SAR is a suitable alternative to full-polarization SAR in certain cases. Meanwhile, the extraction performance of the other two dual-polarization SARs is badly degraded due to the lack of co-polarization. Therefore, HH-HV and HV-VV SARs cannot effectively extract the scattering mechanisms in the H-α plane.

  1. Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Hader, Joerg; Zakharian, Aramais R; Moloney, Jerome V; Stolz, Wolfgang; Koch, Stephan W; Bedford, Robert; Murray, James T

    2007-01-01

    The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an optically pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted Fabry-Perot...

  2. All-Metal Dual-Polarized W-band Patch Element for Phased Array Antenna Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to design and demonstrate an interlaced patch array aperture for transmission and reception of dual-polarized radar signals at 94 GHz...

  3. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    Science.gov (United States)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh; Attah, Isaac K.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-07-01

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented.

  4. Video Tracking Using Dual-Tree Wavelet Polar Matching and Rao-Blackwellised Particle Filter

    Directory of Open Access Journals (Sweden)

    Sze Kim Pang

    2009-01-01

    Full Text Available We describe a video tracking application using the dual-tree Polar Matching Algorithm. We develop the dynamical and observation models in a probabilistic setting and study the empirical probability distribution of the Polar Matching output. We model the visible and occluded target statistics using Beta distributions. This is incorporated into a Track-Before-Detect (TBD solution for the overall observation likelihood of each video frame and provides a principled derivation of the observation likelihood. Due to the nonlinear nature of the problem, we design a Rao-Blackwellised Particle Filter (RBPF for the sequential inference. Computer simulations demonstrate the ability of the algorithm to track a simulated video moving target in an urban environment with complete and partial occlusions.

  5. A Differentially Driven Dual-Polarized Dual-Wideband Complementary Antenna for 2G/3G/LTE Applications

    Directory of Open Access Journals (Sweden)

    Botao Feng

    2014-01-01

    Full Text Available A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layer η-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz with a stable gain of 7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz with a gain of 9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.

  6. Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data

    Science.gov (United States)

    Pallardy, Quinn; Fox, Neil I.

    2018-02-01

    Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.

  7. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    Science.gov (United States)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  8. Dual-Polarized Crossed Bowtie Dipole Array for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ya Zhang

    2014-01-01

    Full Text Available A dual-polarized array with downtilted radiation patterns is proposed for wireless communication applications. The proposed dual-polarized antenna element achieves an enhanced impedance bandwidth and compact dimensions by introducing a parasitic circular patch and vertical metal cylinders, which is a good candidate for radiating elements in base station antennas. By optimizing the amplitude and phase distribution along the feed, a radiation pattern with a downtilted angle is obtained. The dual-polarized array antenna achieves an impedance bandwidth for VSWR ≤ 1.5, covering the frequency bands for 3G/LTE systems. Moreover, the proposed array achieves high port isolation, the stable antenna gain over the entire operating band. Therefore, the proposed array antenna is very suitable for potential wireless communication applications. A prototype has been manufactured and measured. The measurements, that match the design objectives, are also presented.

  9. Leads Detection Using Mixture Statistical Distribution Based CRF Algorithm from Sentinel-1 Dual Polarization SAR Imagery

    Science.gov (United States)

    Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting

    2017-04-01

    Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a

  10. Dual-Polarized Indoor Propagation at 26 GHz

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    This work presents results based on wideband radio channel measurements at 26 GHz. Three widely different indoor environments were measured; a cluttered laboratory, a corridor with a bend, and a large entrance hall. Power angular spectra were obtained for both vertical polarization (VP) and horiz......) and horizontal polarization (HP) at many different Rx locations, using both VP or HP for the fixed Tx. The results show that a quite rich channel may exist with several propagation paths. Further, coupling between the VP and HP was found in a non line of sight (NLOS) scenario....

  11. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  12. Time Skew Estimator for Dual-Polarization QAM Transmitters

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Da Ros, Francesco; Jones, Rasmus Thomas

    2017-01-01

    A simple method for joint estimation of transmitter’s in-phase/quadrature and inter-polarization time skew is proposed and experimentally demonstrated. The method is based on clock tone extraction of a photodetected signal and genetic algorithm. The maximum estimation error was 0.5 ps....

  13. Change detection in multi-temporal dual polarization Sentinel-1 data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Canty, Morton J.; Skriver, Henning

    2017-01-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution with an associated p-value and a factorization of this test statistic, change analysis in a time series of 19 multilook, dual polarization Sentinel...

  14. Operational Cloud-to-Ground Lightning Initiation Forecasting Utilizing S-Band Dual-Polarization Radar

    Science.gov (United States)

    2014-03-27

    Kumjian, 2013a; 2013c). 2.6 Dual-Polarization Studies of Lightning Initiation Since the implementation of DP radar, meteorologist and...Course in Cloud Physics. Butterworth- Heinmann Pub. Rinehart, R. E., 2010: Radar for Meteorologists . 5th ed. Rinehart. Rutledge, S. A., and W. A

  15. Characterization of a Dual-Polarized Connected-Dipole Array for Ku-Band Mobile Terminals

    NARCIS (Netherlands)

    Bolt, R.J.; Cavallo, D.; Gerini, G.; Deurloo, D.; Grooters, R.; Neto, A.; Toso, G.

    2016-01-01

    In this paper, we present the characterization of a Ku-band connected-dipole array for mobile Satcom application. The prototype array consists of 2 × 256 dipole radiators arranged in a square grid, to form 16 × 16 dual-polarized cells. It has been designed to operate over a wideband ranging from

  16. Study of the Colocated Dual-Polarized MIMO Capacity Composed of Dipole and Loop Antennas

    Directory of Open Access Journals (Sweden)

    Dazhi Piao

    2015-01-01

    Full Text Available The colocated dual-polarized dipole (DPD and dual-polarized loop (DPL MIMO channel performances are compared. Computation results show that, for the ideal electric and magnetic dipoles, the dual-polarized MIMO systems have identical channel capacity. But the contour plots of the capacity gain of the realistic DPD and DPL are different, due to the difference in antenna patterns. The cumulative distribution function (CDF of the capacity gain in the two-mirror (TM channel shows that, for small distance, the capacity gain obtained by the DPD is obviously smaller than that of the DPL, but, with the increase of the distance, the difference gets smaller. A DPL with low mutual coupling is fabricated. Measured results show that high MIMO capacities can be obtained by this DPL in both the anechoic chamber (AC and the realistic office room. The capacity gain of the DPL antenna is 1.5–1.99, which basically coincides with the theoretical and numerical results. Furthermore, the capacity of the virtual DPL antenna with no mutual couplings is also investigated. It is shown that, in the AC, the mutual coupling will generally decrease the dual-polarized MIMO capacity; however, in the office room, the effect of mutual coupling is not always negative.

  17. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    Science.gov (United States)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  18. A C/X Dual-band Wide-angle Reflective Polarization Rotation Metasurface

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2017-09-01

    Full Text Available In this paper, a C/X dual-band wide-angle re¬flective polarization rotation metasurface (PRMS with high rotation efficiency is proposed and realized. Aiming to miniaturize the size of the unit cell, a metallic flower-like shape ring is selected to extend the current path and the 45 degree slanting stitch along diagonal direction is used to form the asymmetric structure. The simulated results show that the proposed PRMS achieves polarization rotation at 4.61 GHz and 8.67 GHz with high efficiency, at which the linear polarization incident wave is converted into its orthogonal polarization after reflection. Furthermore, the high polarization rotation efficiency of the proposed PRMS is maintained under an oblique incident direction from 0° to 60°. To verify the simulated results, the proposed PRMS is fabricated and measured. The measured results are in good accordance with the simulated ones.

  19. Dual arm master controller development

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab

  20. Ku-Band Dual-Polarized Array of Connected Dipoles for Satcom Terminals : Theory and Hardware Validation

    NARCIS (Netherlands)

    Gerini, G.; Bolt, R.J.; Deurloo, D.; Grooters, R.; Neto, A.; Toso, G.; Midthassel, R.

    2013-01-01

    We present a Ku-band dual-polarized phased array demonstrator for satellite communications. The prototype array is composed by 512 connected-dipole elements, 16x16 for each polarization, arranged in an egg-crate configuration. A loop-shaped feed structure is used to maintain good polarization purity

  1. DUAL POLARIZATION ANTENNA ARRAY WITH VERY LOW CROSS POLARIZATION AND LOW SIDE LOBES

    DEFF Research Database (Denmark)

    1997-01-01

    formation of grating lobes are inhibited in selected directions of the radiation and cross polarization within the main lobe is suppressed at least 30 dB below the main lobe peak value. According to a preferred embodiment of the invention, the antenna elements of the antenna array comprise probe-fed patches......The present invention relates to an antenna array adapted to radiate or receive electromagnetic waves of one or two polarizations with very low cross polarization and low side lobes. An antenna array comprising many antenna elements, e.g. more than ten antenna elements, is provided in which...

  2. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  3. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  4. Ship Detection in High-Resolution Dual-Polarization SAR Amplitude Images

    Directory of Open Access Journals (Sweden)

    Gui Gao

    2013-01-01

    Full Text Available A constant false alarm rate (CFAR detecting method for ships in high-resolution dual-polarization synthetic aperture radar (SAR amplitude images has been proposed in this paper. First, by the production of amplitude images from two polarimetric channels, a novel detector simply called the PMA detector has been constructed. We testified that the PMA detector could improve the signal-to-clutter ratio (SCR and make the discrimination of a ship from clutter more easily. Second, the PMA detector’s statistical model has been described by the well-known distribution when facing complex sea background. The experiments performed on measured dual-polarization TerraSAR-X images demonstrate the good performance of the proposed CFAR detecting method.

  5. An integrated approach to monitoring the calibration stability of operational dual-polarization radars

    Directory of Open Access Journals (Sweden)

    M. Vaccarono

    2016-11-01

    Full Text Available The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetric radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish

  6. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  7. Egalitarian norms, economic development, and ethnic polarization

    NARCIS (Netherlands)

    Haagsma, R.; Mouche, van P.H.M.

    2013-01-01

    Economic development generally implies that traditional egalitarian norms and beliefs are replaced by modern individualistic values. Particularly when opportunities for advancement are unequally presented to people, this transformation may be accompanied by polarization and violent conflict. We

  8. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  9. Dual Arm Work Module Development and Appplications

    Energy Technology Data Exchange (ETDEWEB)

    Noakes, M.W.

    1999-04-25

    The dual arm work module (DAWM) was developed at Oak Ridge National Laboratory (ORNL) by the Robotics Technology Development Program (RTDP) as a development test bed to study issues related to dual arm manipulation, including platform cotilguration, controls, automation, operations, and tooling. The original platform was based on two Schilling Titan II manipulators mounted to a 5-degree-of- freedom (DOF) base fabricated by RedZone Robotics, Inc. The 5-DOF articulation provided a center torso rotation, linear actuation to change the separation between the arms, and arm base rotation joints to provide "elbows up," elbows down," or "elbows out" orientation. A series of tests were conducted on operations, tooling, and task space scene analysis (TSSA)-driven robotics for overhead transporter- mounted and crane hook-deployed scenarios. A concept was developed for DAWM deployment from a large remote work vehicle, but the project was redirected to support dismantlement of the Chicago Pile #5 (CP-5) reactor at Argonne National Laboratory in fiscal year (FY) 1997. Support of CP-5 required a change in focus of the dual arm technology from that of a development test bed to a system focussed for a specific end user. ORNL teamed with the Idaho National Environmental ,Engineering Laboratory, Sandia National Laboratory, and the Savannah River Technology Center to deliver a crane-deployed derivative of the DAWM, designated the dual arm work platform (DAWP). RTDP staff supported DAWP at CP-5 for one FY; Argonne staff continued operation through to dismantlement of the reactor internals. Lessons learned from this interaction were extensive. Beginning in FY 1999, dual arm development activities are again being pursued in the context of those lessons learned. This paper describes the progression of philosophy of the DAWM from initial test bed to lessons learned through interaction at CP-5 and to the present investigation of telerobotic assist of teleoperation and TSSA- driven robotics.

  10. Robustness against attacks of dual polarization encryption using the Stokes–Mueller formalism

    International Nuclear Information System (INIS)

    Dubreuil, Matthieu; Alfalou, Ayman; Brosseau, Christian

    2012-01-01

    The security of our recently proposed dual polarization encryption scheme of images is evaluated by numerical simulations. This consists of testing the resistance of the scheme against brute force, known-plaintext, chosen-plaintext and video sequence attacks. While some attacks are ineffective (brute force, video sequence) others are effective (known-plaintext, chosen-plaintext), but only under certain assumptions. An optimization of the setup, which is based on a regular rotation of polarization optics angles (polarizers, wave plates), is proposed associating the use of a high dynamic range for the key image, or the use of a phase-only spatial light modulator in the target and in the key image channel. The possibility of the attacker decrypting an unknown image is thus strongly reduced. The precision required for optical specifications is also evaluated, in order to ensure a good decryption for an authorized user. (paper)

  11. Robustness against attacks of dual polarization encryption using the Stokes-Mueller formalism

    Science.gov (United States)

    Dubreuil, Matthieu; Alfalou, Ayman; Brosseau, Christian

    2012-09-01

    The security of our recently proposed dual polarization encryption scheme of images is evaluated by numerical simulations. This consists of testing the resistance of the scheme against brute force, known-plaintext, chosen-plaintext and video sequence attacks. While some attacks are ineffective (brute force, video sequence) others are effective (known-plaintext, chosen-plaintext), but only under certain assumptions. An optimization of the setup, which is based on a regular rotation of polarization optics angles (polarizers, wave plates), is proposed associating the use of a high dynamic range for the key image, or the use of a phase-only spatial light modulator in the target and in the key image channel. The possibility of the attacker decrypting an unknown image is thus strongly reduced. The precision required for optical specifications is also evaluated, in order to ensure a good decryption for an authorized user.

  12. Dual-Polarized Cross Bowtie Dipole for 3G and LTE Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ya Zhang

    2013-01-01

    Full Text Available A dual-polarized cross bowtie dipole element with parasitical circular patch and vertical metal cylinders for base station antennas is presented. A pair of orthogonal cross bowtie dipoles, with a reflector ground plane, is used to obtain the two linear polarizations. Besides two inverted L-shaped feed strips and two shorted feed baluns, parasitical circular patch is introduced to improve the impendence bandwidth and vertical metal cylinders are employed to decrease the lateral dimensions of the antenna. A wideband impedance characteristic of about 45.6% for VSWR ≤ 1.5 (+45° polarization and VSWR ≤ 1.5 (−45° polarization ranging from 1.76 to 2.80 GHz is obtained. Moreover, the stable peak gain, unidirectional radiation patterns, high isolation between the two orthogonal polarizations, and low cross-polarization over the whole operating band are also achieved. The proposed antenna is very suitable for potential base station applications in mobile communication such as TD-SCDMA, WCDMA, and CDMA2000 and LTE applications.

  13. Particle type identification for C-band dual-polarization radar in Darwin, Australia

    Science.gov (United States)

    Wen, G.; Protat, A.

    2017-12-01

    The distribution and structure of particle types, such as rain, snow and hail, are of fundamental significance for cloud microphysical studies, quantitative precipitation estimation, and severe weather forecasting. In literature, particle type identification often adopts a fuzzy-logic based method, however, the construction of membership functions in this method heavily relies on empirical relations. We have developed a Bayesian method for particle type identification using C-band dual-polarization weather radar. In this method, the probability density function of polarimetric radar measurements given particle types is investigated by using an Expectation-Maximization clustering technique based on Gaussian Mixture Models, while the prior probability is modelled as a Markov random field. This method has been used to analyze the microphysical characteristics of tropical precipitating clouds in Darwin, Australia. This method can provide accurate particle types for the study of cloud and precipitation formation process, and it can also improve the understanding of weather modification, quantitative precipitation estimation, and numerical weather prediction.

  14. An Objective Prototype-Based Method for Dual-Polarization Radar Clutter Identification

    Directory of Open Access Journals (Sweden)

    Guang Wen

    2017-04-01

    Full Text Available A prototype-based method is developed to discriminate different types of clutter (ground clutter, sea clutter, and insects from weather echoes using polarimetric measurements and their textures. This method employs a clustering algorithm to generate data groups from the training dataset, each of which is modeled as a weighted Gaussian distribution called a “prototype.” Two classification algorithms are proposed based on the prototypes, namely maximum prototype likelihood classifier (MPLC and Bayesian classifier (BC. In the MPLC, the probability of a data point with respect to each prototype is estimated to retrieve the final class label under the maximum likelihood criterion. The BC models the probability density function as a Gaussian mixture composed by the prototypes. The class label is obtained under the maximum a posterior criterion. The two algorithms are applied to S-band dual-polarization CP-2 weather radar data in Southeast Queensland, Australia. The classification results for the test dataset are compared with the NCAR fuzzy-logic particle identification algorithm. Generally good agreement is found for weather echo and ground clutter; however, the confusion matrix indicates that the techniques tend to differ from each other on the recognition of insects.

  15. ON THE USE OF DUAL-CO-POLARIZED TERRASAR-X DATA FOR WETLAND MONITORING

    Directory of Open Access Journals (Sweden)

    A. Schmitt

    2012-08-01

    Full Text Available Today's SAR sensors provide a variety of different image modes particularly with regard to multipolarised acquisitions. Until now, each polarisation mode requires a special decomposition which is a severe drawback when designing processing chains. Therefore, a new description for multipolarized SAR data based on the well-known Kennaugh matrix was developed that enables the uniform description and processing of SAR data independent of its polarisation by separating backscattering strength from polarimetric information. This mathematical approach subsequently is extended to the processing of multitemporal SAR data in order to stabilize the polarimetric information over longer periods of time and to enhance temporal changes in the polarimetric backscattering. Because of the high sensitivity of the Kennaugh elements a novel multilooking technique based on the Gaussian pyramid is used that locally adapts the look factor and thus selects the optimal balance between radiometric accuracy and geometric resolution. This methodology is applied to two dual-co-polarized TerraSAR-X acquisitions over the RAMSAR testsite "Upper Rhine" in order to generate value-added products that help to map land cover and land cover changes in consequence of water level changes. The first results are very promising although the interpretation of the observed polarimetric changes is not yet validated. The aim of this paper is to present a further application of the (Differential Kennaugh matrix which will be the kernel of a polarimetry and change detection processor to be implemented in the coming years.

  16. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    Science.gov (United States)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  17. Error and Uncertainty Quantification in Precipitation Retrievals from GPM/DPR Using Ground-based Dual-Polarization Radar Observations

    Science.gov (United States)

    Chandra, Chandrasekar V.; Chen*, Haonan; Petersen, Walter

    2017-04-01

    The active Dual-frequency Precipitation Radar (DPR) and passive radiometer onboard Global Precipitation Measurement (GPM) mission's Core Observatory extend the observation range attained by Tropical Rainfall Measuring Mission (TRMM) from tropical to most of the globe [1]. Through improved measurements of precipitation, the GPM mission is helping to advance our understanding of Earth's water and energy cycle, as well as climate changes. Ground Validation (GV) is an indispensable part of the GPM satellite mission. In the pre-launch era, several international validation experiments had already generated a substantial dataset that could be used to develop and test the pre-launch GPM algorithms. After launch, more ground validation field campaigns were conducted to further evaluate GPM precipitation data products as well as the sensitivities of retrieval algorithms. Among various validation equipment, ground based dual-polarization radar has shown great advantages to conduct precipitation estimation over a wide area in a relatively short time span. Therefore, radar is always a key component in all the validation field experiments. In addition, the radar polarization diversity has great potential to characterize precipitation microphysics through the identification of raindrop size distribution and different hydrometeor types [2]. Currently, all the radar sites comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88DP) network are operating in dual-polarization mode. However, most of the operational radar based precipitation products are produced at coarse resolution typically on 1 km by 1 km spatial grids, focusing on precipitation accumulations at temporal scales of 1-h, 3-h, 6-h, 12-h, and/or 24-h (daily). Their capability for instantaneous GPM product validation is severely limited due to the spatial and temporal mismatching between observations from the ground and space. This paper first presents the rationale and

  18. Polarized H- source development at BNL

    International Nuclear Information System (INIS)

    Alessi, J.G.; Hershcovitch, A.; Kponou, A.; Niinikoski, T.; Sluyters, T.

    1986-01-01

    The AGS polarized H - source (PONI-1) now produces currents of 25-40 μA, and has operated reliably during polarized physics runs. A new polarized source, having as its goal mA's of H-vector, is now under development. An atomic hydrogen beam has been cooled to about 20 K with a forward flux of approx.10 19 atoms/s/sr. A superconducting solenoid having a calculated acceptance angle of 0.1 sr for the cold H 0 beam, is now being built. An ionizer for the resulting polarized H 0 beam based on resonant charge exchange of H 0 with D - , is being tested. 500 μA of H - have been produced by ionizing an unpolarized H 0 beam using this ionizer

  19. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  20. Impact of dual-polarization radar technology and Twitter on the Hattiesburg, Mississippi tornado.

    Science.gov (United States)

    Cates, Alexis L; Arnold, Brent W; Cooper, Guy Paul; Yeager, Violet; Stake, Josh; Ali, Mohammed; Calderone, Richard C; Wilkinson, James; Hsu, Edbert; Parrillo, Steven; Piper, Steven; Subbarao, Italo

    2013-12-01

    Dual-Polarization Radar and Twitter were analyzed to determine the impact on injuries sustained by the Hattiesburg EF-4 tornado. Tracking data provided from the Dual-Pol radar systems in National Weather Service Jackson were reviewed. Twitter data from four local Twitter handles were obtained. The change in tweets and followers for the day of the storm were compared to historical averages. A Student t-test was utilized in determining statistical significance (ptornado. An Injury Severity Score (ISS) was calculated for trauma records related to the tornado. Radar detection of the tornado gave approximately 30 minutes of advanced warning time. Statistical significance in follower growth was seen in all four Twitter handles. Out of 50 patients, the average ISS was 3.9 with a range of 1 to 29. There were zero fatalities. An ISS average of 3.9 was significantly less than two previous tornadoes of similar strength that occurred prior to increased usage of Dual-pol radar and Twitter as a means for communicating severe weather information. Early detection from Dual-pol radar improved warning time. Tweets informed citizens to seek appropriate shelter. (Disaster Med Public Health Preparedness. 2013;7:585-592).

  1. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  2. Development of Dual Power Multirotor System

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2017-01-01

    Full Text Available Vertical take-off and landing (VTOL aircraft has good flight characteristics and system performance without runway. The multirotor system has been tried to expand into larger size for longer endurance or higher payload. But the motor power to endurance ratio has been limited. Due to the specific energy of gasoline being much higher than battery, introducing gasoline engine into multirotor system can be considered. This paper proposes a dual power multirotor system to combine a quadrotor using gasoline engines to provide major lift in shorter arm with another quadrotor using brushless DC motors to offer most controllable force with longer arm. System design, fabrication, and verification of the proposed dual power multirotor system development are presented. Preliminary flights have achieved 16 kg payload for long endurance flight. This is useful for various applications with advanced improvements.

  3. Development of Hardware Dual Modality Tomography System

    Directory of Open Access Journals (Sweden)

    R. M. Zain

    2009-06-01

    Full Text Available The paper describes the hardware development and performance of the Dual Modality Tomography (DMT system. DMT consists of optical and capacitance sensors. The optical sensors consist of 16 LEDs and 16 photodiodes. The Electrical Capacitance Tomography (ECT electrode design use eight electrode plates as the detecting sensor. The digital timing and the control unit have been developing in order to control the light projection of optical emitters, switching the capacitance electrodes and to synchronize the operation of data acquisition. As a result, the developed system is able to provide a maximum 529 set data per second received from the signal conditioning circuit to the computer.

  4. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  5. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  6. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  7. Adaptive Countering Technique for Angle Deception Based on Dual Polarization Radar Seeker

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-01-01

    Full Text Available Angle deception jamming makes the monopulse radar seeker track to itself but not the real target, which is catastrophic for the guidance radar. In this paper, an adaptive technique based on dual polarization radar is presented to counter it. How angle deception jamming acts on the monopulse tracking radar is first investigated. An angle estimation technique of the real target is then derived from the conventional monopulse method, although it is being interfered with by angle deception jamming. Meanwhile, the polarization ratio characteristic of the angle deception jamming could be adaptively estimated in current practical scene. Furthermore, the similar characteristic of Jones vectors is defined as the rule to judge whether the target is being interfered with by jamming. It can make the radar seeker select different techniques for angle estimation adaptively. Finally, two major factors of angle estimation accuracy are analyzed by simulation and the effectiveness of the proposed technique is proved through experiments.

  8. Tunable 13C/1H dual channel matching circuit for dynamic nuclear polarization system with cross-polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    In this paper we report initial results of design and practical implementation of tuning and matching circuit to estimate a performance of Dynamic Nuclear Polarization (DNP) at a magnetic field of 6.7 T. It is shown that developed circuit for signal observation is compact, easy to make and provides...

  9. A 640×512-20μm dual-polarity ROIC for MWIR and LWIR hybrid FPAs

    Science.gov (United States)

    Eminoglu, Selim; Incedere, O. Samet; Bayhan, Nusret; Isikhan, Murat; Soyer, S. T.; Ustundag, C. M. B.; Kocak, Serhat; Turan, Ozge; Eksi, Umut; Akin, Tayfun

    2016-05-01

    This paper reports the development of a new dual-polarity Direct-Injection (DI) Readout Integrated Circuit (ROIC), called MT6420DDA, designed to support back-to-back connected photodiodes with a single contact per pixel using dual pixel input circuitries suitable for both p-on-n and n-on-p type detectors. The ROIC has a format of 640 × 512 (VGA) and a pixel pitch of 20μm, and can be used to build dual-color or dual-band FPAs working in the MWIR and/or LWIR bands. The ROIC supports snapshot operation with Integrate-then-Read (ITR) and Integrate-while-Read modes (IWR). MT6420DDA has a system-on-chip architecture, with programmable biasing, timing, and configuration. The ROIC supports 2, 4, and 8-output modes at pixel output rates up to 12.5 MHz per output. It runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 135 mW in the 4-output mode at 10 MHz. The ROIC has separate programmable full well capacitance values of 1.5 Me-, 3.0 Me-, and 6.0 Me- for both polarities in the high-gain (HG), mid-gain (MG), and low-gain (LG) modes. The ROIC supports two type of polarity switching modes as PSBF (Polarity Switching between Frames) and PSWF (Polarity Switching within Frames). In the PSBF modes, an alternating input polarity is used for each detector type for each frame during each integration period, possibly with different full-well and integration time settings. In the PSWF mode, both type of pixels are exposed almost simultaneously, where detector current is integrated in a time multiplexed manner using the two separate integration capacitors of the pixel input circuitry. The PSBF mode is simple, but the time stamp for each image frame is different. The PSWF mode is complex, but results in a pseudo simultaneous registration of images for each color or spectral band. The ROIC has been developed for cryogenic operation down to 65K with an input referred noise level of less than 470 e- rms in the low-gain (LG) mode at 77K. The MT6420DDA ROIC has been

  10. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.

    Science.gov (United States)

    Gabella, Marco; Leuenberger, Andreas

    2017-05-22

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.

  11. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  12. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre

    International Nuclear Information System (INIS)

    Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian

    2008-01-01

    A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output

  13. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  14. Correlation properties of dual polarized antennas with finite pattern orthogonality in mobile fading channels

    Directory of Open Access Journals (Sweden)

    G. Armbrecht

    2007-06-01

    Full Text Available Starting from planar broadband log.-per. antenna design, offering the possibility of dual-polarized reception properties, in this article a generalized mathematical approach for rapidly estimating the resulting signal correlation coefficient in a stochastically modeled propagation environment solely based on measured or simulated radiation characteristics of one single antenna element is presented. The obtained results are marking an upper limit and are describing the worst-case scenario according to the signal correlation at the antenna feeding points in terms of line-of-sight (LOS reception in main beam direction. The knowledge of the derived relationship may be helpful especially for antenna designers to combine antenna performance values with the significant communication system performance parameters, as e.g. in case of Multiple-Input Multiple-Output (MIMO and diversity configurations.

  15. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  16. Instrument development of the CMB polarization POLARBEAR-2 experiment

    Science.gov (United States)

    Siritanasak, Praween; POLARBEAR Collaboration

    2017-06-01

    We present the status of the development of the Polarbear-2 (PB-2) and Simons Array experiments. PB-2 is a ground-based Cosmic Microwave Back- ground (CMB) polarization experiment located at the James Ax observatory in the Atacama desert of Northern Chile. The Simons Array will consist of three PB-2 receivers on three Huan Tran-style telescopes, each containing a multi-chroic detector array. The first new Simons Array receiver, Polarbear- 2A(PB-2A), will be deployed in 2017. The PB-2A focal plane consists of 1,897 lenslet-coupled, dual-polarization, sinuous-antenna-coupled pixels operating at 95 and 150 GHz, making a total of 7,588 polarization-sensitive transition edge sensor (TES) bolometers. In the order to cover both frequencies, we developed broadband two layer anti-reflection (AR) coating for 5.345 mm diameter lenslets using two types of epoxy: Stycast2850FT and Stycast1090. We developed a mass production AR coating methodology that can control the uniformity and shape to within 25 μm error from the designed value. The second (PB-2B) and third (PB-2C) receivers will employ similar technologies and will cover 95, 150, 220 and 280 GHz. The Simons Array will survey 80% of the sky with broad frequency coverage and high resolution, making it a powerful tool to constrain the tensor-to-scalar ratio through measurements of primordial B-modes and the sum of the neutrino masses through measurements of B-modes produced by gravitational lensing.

  17. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  18. A Design Of Feeding Network For A Dual-Linear Polarization, Stacked, Probe-Fed Microstrip Patch Antenna Array

    DEFF Research Database (Denmark)

    Jaworski, G.; Krozer, Viktor

    2004-01-01

    Components of multilayer feed network are presented for application in broad-band dual-linear polarized stacked C-band antenna. Measurement results of wide band matching circuits and different types of power divider networks constituting parts of BFN demonstrate wideband operation. Suitable...

  19. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette.

    Science.gov (United States)

    Li, Zhibo; Clark, Alasdair W; Cooper, Jonathan M

    2016-01-26

    Color filters based upon nanostructured metals have garnered significant interest in recent years, having been positioned as alternatives to the organic dye-based filters which provide color selectivity in image sensors, as nonfading "printing" technologies for producing images with nanometer pixel resolution, and as ultra-high-resolution, small foot-print optical storage and encoding solutions. Here, we demonstrate a plasmonic filter set with polarization-switchable color properties, based upon arrays of asymmetric cross-shaped nanoapertures in an aluminum thin-film. Acting as individual color-emitting nanopixels, the plasmonic cavity-apertures have dual-color selectivity, transmitting one of two visible colors, controlled by the polarization of the white light incident on the rear of the pixel and tuned by varying the critical dimensions of the geometry and periodicity of the array. This structural approach to switchable optical filtering enables a single nanoaperture to encode two information states within the same physical nanoaperture, an attribute we use here to create micro image displays containing duality in their optical information states.

  20. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  1. Real-time dual-polarization transmission based on hybrid optical wireless communications

    Science.gov (United States)

    Sousa, Artur N.; Alimi, Isiaka A.; Ferreira, Ricardo M.; Shahpari, Ali; Lima, Mário; Monteiro, Paulo P.; Teixeira, António L.

    2018-01-01

    We present experimental work on a gigabit-capable and long-reach hybrid coherent UWDM-PON plus FSO system for supporting different applications over the same fiber infrastructure in the mobile backhaul (MBH) networks. Also, for the first time, we demonstrate a reconfigurable real-time DSP transmission/reception of DP-QPSK signals over standard single-mode fiber (SSMF) and FSO links. The receiver presented is based on a commercial field-programmable gate array (FPGA). The considered communication links are based on 20 UDWDM channels with 625 Mbaud and 2.5 GHz channel spacing. We are able to demonstrate the lowest sampling rate required for digital coherent PON by employing four 1.25 Gsa/s ADCs using an electrical front-end receiver that offers only 1 GHz analog bandwidth. We achieved this by implementing a phase and polarization diversity coherent receiver combined with the DP-QPSK modulation formats. The system performance is estimated in terms of receiver sensitivity. The results show the viability of coherent PON and flexible dual-polarization supported by software-defined transceivers for the MBH.

  2. Analysis of Performance for 100 Gbit/s Dual-Polarization QPSK Modulation Format System

    Science.gov (United States)

    Li, Li; Xiao-bo, Guo; Jing, Li

    2016-03-01

    This article introduces modulation technology, coherent reception technology, the overall design and other key issues for 100 Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) modulation. Using the technologies based on digital signal processing (DSP), it realizes the long-range transmissions of 100 Gbit/s optical systems to achieve optical signal dispersion compensation, polarized solution reuse and phase estimation. The effect of this scheme is verified with OptiSystem, and the simulation results indicate, with the help of DSP module for processing of the received signal, that the last constellation is ideal and the data transmission error rate is less than 1.3 e-4. The scheme is implemented simply and has high reliability, and it also has reference significance for the optimization of coherent optical detection hardware. As they feature in high spectrum efficiency and large dispersion and PMD tolerances, the DP-QPSK modulation can improve the line efficiency, and maximize the spectral efficiency of the dense wavelength division multiplexing systems. The quality of eye diagram is high, which is clean and has decent open degree.

  3. Dual-Polarized On-Chip Antenna for 300 GHz Full-Duplex Communication System

    Directory of Open Access Journals (Sweden)

    Linyan Guo

    2017-01-01

    Full Text Available This paper presents a novel design of compact orthogonally polarized on-chip antenna to realize 300 GHz full-duplex communication system with high isolation. It consists of a dipole antenna for horizontal polarization and a disk-loaded monopole antenna for vertical polarization. They are in good cross-polarization state with more than 90 dB of self-interference suppression and then can be used to achieve good isolation between transmitting and receiving antennas. In addition, two dual-polarized antennas have been adopted in two separated transceivers to study their isolation performance. Furthermore, this compact antenna only occupies an active area of 390 μm × 300 μm × 78 μm and can be used for multiple-input multiple-output application as well.

  4. Polarized few-nucleon targets: new developments

    International Nuclear Information System (INIS)

    Haeusser, O.

    1992-09-01

    We discuss recent improvements in producing polarized few-nucleon targets for nuclear and particle physics experiments. The emphasis is on progress with polarized gas targets intended for experiments at electron and proton storage rings. (author) 54 refs., 1 tab

  5. Some developments in polarized ion sources

    International Nuclear Information System (INIS)

    Witteveen, G.J.

    1979-01-01

    Investigations concerning an atomic beam source are presented and a new polarized ion source of a more universal type is introduced. Polarized and unpolarized beams of positively or negatively charged ions can be produced with this new version and the theoretical limits are a polarized negative hydrogen ion beam with an intensity of about 1 mH and a polarized proton beam with an intensity of 10 mH. (C.F.)

  6. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry

    Science.gov (United States)

    McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.

    2018-02-01

    Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are 80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.

  7. Design and investigations of a microstrip fed open V-shape slot antenna for wideband dual slant polarization

    Directory of Open Access Journals (Sweden)

    R.V.S. Ram Krishna

    2015-12-01

    Full Text Available A dual slant polarized slot antenna is proposed. The antenna is printed on the two sides of a single substrate and has two microstrip feed lines to excite a V-shaped slot formed by the merging of two tilted rectangular step shaped slots. Stepping of the slot sections as well as the feed line improves the impedance matching. A narrow rectangular metallic stub is introduced at the junction of the slot arms to improve the decoupling between the ports. The antenna polarization is +450/−450 with respect to horizontal under alternate excitation and this dual slant polarized nature is demonstrated through aperture electric field plots and far field radiation patterns. The measured return loss bandwidth (S11 < −10 dB of the antenna is from 2.3 GHz and extends beyond 12 GHz while the measured isolation bandwidth (S21 < −20 dB is from 5 GHz onwards. The time domain characterization of the antenna is also done by calculating the fidelity factor. For evaluating the diversity performance, the envelope correlation coefficients are calculated from the simulated and measured S-parameters. The correlation coefficients are well below the acceptable values. With a peak gain varying between 3 and 5 dBi, the antenna is expected to be useful for wideband dual slant polarized applications.

  8. Oil spill detection from TerraSAR-X dual-polarized images using artificial neural network

    Science.gov (United States)

    Kim, D.; Jung, H.-S.

    2017-10-01

    Marine pollution from oil spills destroys ecosystems. In order to minimize the damage, it is important to fast cleanup it after predicting how the oil will spread. In order to predict the spread of oil spill, remote sensing technique, especially radar satellite image is widely used. In previous studies, only the back-scattering value is generally used for the detection of oil spill. However, in this study, oil spill was detected by applying ANN (Artificial Neural Network) as input data from the back-scattering value of the radar image as well as the phase information extracted from the dual polarization. In order to maximize the efficiency of oil spill detection using a back-scattering value, the speckle noise acting as an error factor should be removed first. NL-means filter was applied to multi-look image to remove it without smoothing of spatial resolution. In the coherence image, the sea has a high value and the oil spill area has a low value due to the scattering characteristics of the pulse. In order to using the characteristics of radar image, training sample was set up from NL-means filtered images(HH, VV) and coherence image, and ANN was applied to produce probability map of oil spill. In general, the value was 0.4 or less in the case of the sea, and the value was mainly in the range of 0.7 to 0.9 in the oil spill area. Using coherence images generated from different polarizations showed better detection results for relatively thin oil spill areas such as oil slick or oil sheen than using back-scattering information alone. It is expected that if the information about the look-alike of oil spill such as algae, internal wave and rainfall area is provided, the probability map can be produced with higher accuracy.

  9. Experimental study of dual polarized radar return from the sea surface

    Science.gov (United States)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  10. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Directory of Open Access Journals (Sweden)

    E. Picciotti

    2013-05-01

    Full Text Available Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5

  11. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Science.gov (United States)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  12. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  13. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry

    Science.gov (United States)

    Duan, Ming; Ding, Ziling; Wang, Hu; Xiong, Yan; Fang, Shenwen; Shi, Peng; Liu, Shuai

    2018-01-01

    In this work, the technique of dual polarization interferometry (DPI) was applied to establish a new method to monitor the real-time evolution of oil/water interface in the presence of sodium dodecyl benzene sulfonate (SDBS) at molecular level. A three-stage model of adsorption-desorption-detachment had been proposed and was systematically discussed upon the addition of different SDBS concentrations based on the variation of the interfacial mass with time. The results demonstrated two patterns of adsorption morphology at the oil/water interface, SDBS mono-molecules and SDBS hemi-micelles at SDBS concentrations below and above cmc respectively according to the relaxation time obtained by theoretical model and the reaction order calculated by integral method in the analysis of adsorbed dynamics. The capability of oil detachment with the aid of SDBS as well as the properties of the outlet fluid were investigated under two patterns of adsorption morphologies, which showed different effects of oil detachment with the aid of SDBS molecules. The speed of oil detachment and the fluorescence intensity of the outlet fluid during the detachment process indicated the fact that the oil detachment capability was significantly promoted by the morphology of the absorbed hemi-micelles. The findings in the present study are crucial for fully understanding the interfacial behavior of surfactants applied in oil/water interface, which is of great significance in enhanced oil recovery and pollution industry.

  14. In-fiber torsion sensor based on dual polarized Mach-Zehnder interference.

    Science.gov (United States)

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhang, Hao; Sieg, Jonathan; Zhou, Quan; Zhang, Li-Yu; Wang, Biao; Yan, Tie-Yi

    2014-12-29

    This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.

  15. Dual-Band Operation of a Circularly Polarized Four-Arm Curl Antenna with Asymmetric Arm Length

    Directory of Open Access Journals (Sweden)

    Son Xuat Ta

    2016-01-01

    Full Text Available This paper presents dual-band operation of a single-feed composite cavity-backed four-arm curl antenna. Dual-band operation is achieved with the presence of the asymmetrical arm structure. A pair of vacant-quarter printed rings is used in the feed structure to produce a good circular polarization (CP at both bands. The cavity-backed reflector is employed to improve the CP radiation characteristics in terms of the 3-dB axial ratio beamwidth and broadside gain. The proposed antenna is widely applicable in dual-band communication systems that have a small frequency ratio. Examples of such a system are global positioning systems.

  16. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  17. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  18. Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator

    Science.gov (United States)

    Li, Xuan; Zhao, Shanghong; Li, Yongjun; Zhu, Zihang; Qu, Kun; Li, Tao; Hu, Dapeng

    2018-03-01

    A method for photonic generation of a linearly chirped microwave waveform using a frequency-sweeping laser and a dual-polarization modulator is proposed and investigated. A frequency-sweeping continuous-wave light is generated from the laser and then sent to the modulator. In the modulator, one part of the light is modulated with an RF signal to generate a frequency-shifting optical signal, while another part of the light is passed through a polarization rotator to rotate the polarization to an orthogonal direction. At the output of the modulator, the two optical signals are combined with orthogonal polarizations, and then injected into a polarization delay device to introduce a time delay. After combining the two optical signals for heterodyning, a linearly chirped waveform can be generated. The bandwidth, time duration, chirp rate and sign, central frequency of the generated waveform can be tuned independently and flexibly, furthermore, frequency doubling for the central frequency can be achieved in the waveform generation. A simulation is demonstrated to verify the proposed scheme, a linearly chirped microwave pulse with up or down chirp, central frequency of 20 or 40 GHz, bandwidth of 20 GHz, time duration of 500 ns, time-bandwidth product (TBWP) of 10000 is obtained.

  19. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  20. The BNL polarized H- ion source development program

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.; Hershcovitch, A.; DeVito, B.

    1992-01-01

    Polarized protons have been available for acceleration in the AGS for the high energy physics program since 1984. The polarized H - source, PONI-1, has routinely supplied a 0.4 Hz, 400 μsec pulse having a nominal intensity of 40 μA. Polarization is ∼80% out of the ion source. After PONI- 1 became operational, a program was initiated to develop a more intense source based on a cold ground state atomic beam source, followed by ionization of the polarized H degrees beam by D - charge exchange. Various phases of this work have been fully reported elsewhere, and only a summary is given here

  1. Emergence and Dynamics of Polar Order in Developing Epithelia

    Science.gov (United States)

    Farhadifar, Reza

    2011-03-01

    Planar Cell Polarity (PCP) is a conserved process in many vertebrate and invertebrate tissues, and is fundamental for the coordination of cell behavior and patterning. A well-studied example is the orientational pattern of hairs in the wing of the adult fruit fly Drosophila, which is an important model organism in biology. The Drosophila wing is an epithelium, i.e., a two-dimensional sheet of cells, which grows from a few cells to thousands of cells during the course of development. In the wing epithelium, planar polarity is established by an anisotropic distribution of PCP proteins within cells. The distribution of these proteins in a given cell affects the polarity of neighboring cells, such that at the end of wing development a large-scale PCP orientational order emerges. Here we present a theoretical study of planar polarity in developing epithelia based on a vertex model, which takes into account cell mechanics, cell adhesion, and cell division, combined with experimental results obtained from time-lapse imaging of the wing development. We show that in experiment, polarity order does not develop de novo at the end of wing development, but rather cells are initially polarized at an angle with respect to their final polarity axis. During wing development, the polarity axes of cells reorient towards their final direction. We identify a basic mechanism to generate such a large-scale initial polarization, based on the growth of a small number of cells with an initially random PCP distribution. Finally, we study the effect of shear and oriented cell division on dynamics of PCP order, showing that these two processes can robustly reorient the polarity axes of cells.

  2. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  3. Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser

    Science.gov (United States)

    Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D.

    2013-08-01

    Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.

  4. Detection and alignment of dual-polarization optical quadrature amplitude transmitter IQ and XY skews using reconfigurable interference.

    Science.gov (United States)

    Yue, Yang; Zhang, Bo; Wang, Qiang; Lofland, Rob; O'Neil, Jason; Anderson, Jon

    2016-03-21

    Dual-polarization quadrature amplitude modulation (DP-QAM) is one of the feasible paths towards 100-Gb/s, 400-Gb/s and 1-Tb/s optical fiber communications systems. For DP-QAM transmitter, the time mismatch between the in-phase and quadrature (IQ) or x-polarized and y-polarized (XY) tributary channels is known as the IQ or XY skew. Large uncompensated IQ or XY skew can significantly degrade the optical fiber communications system performance. Sometimes, time-interleaved return-to-zero (RZ) DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, detection and alignment of DP-QAM transmitter IQ and XY skews using reconfigurable interference is experimentally demonstrated. For IQ skew detection, a total dynamic range of 26.4 dB is achieved with ~1-dB power change for 0.5-ps skew from well alignment. For XY skew detection, it shows 23.2-dB dynamic range, and ~1.5-dB power change is achieved for 1-ps XY skew. Fast detection algorithm for arbitrary skew is also proposed and experimentally verified. The scheme is compatible with different modulation formats, flexible data sequences, and variable waveforms.

  5. Development of an embedded instrument for autofocus and polarization alignment of polarization maintaining fiber

    Science.gov (United States)

    Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang

    2017-12-01

    The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.

  6. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    Science.gov (United States)

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.

  7. Dual language exposure and early bilingual development*

    Science.gov (United States)

    HOFF, ERIKA; CORE, CYNTHIA; PLACE, SILVIA; RUMICHE, ROSARIO; SEÑOR, MELISSA; PARRA, MARISOL

    2015-01-01

    The extant literature includes conflicting assertions regarding the influence of bilingualism on the rate of language development. The present study compared the language development of equivalently high-SES samples of bilingually and monolingually developing children from 1;10 to 2;6. The monolingually developing children were significantly more advanced than the bilingually developing children on measures of both vocabulary and grammar in single language comparisons, but they were comparable on a measure of total vocabulary. Within the bilingually developing sample, all measures of vocabulary and grammar were related to the relative amount of input in that language. Implications for theories of language acquisition and for understanding bilingual development are discussed. PMID:21418730

  8. Principle for the Realization of Dual-Orthogonal Linearly Polarized Antennas for UWB Technique

    Directory of Open Access Journals (Sweden)

    Grzegorz Adamiuk

    2011-01-01

    The presented method introduces a superior possibility of an extension of typical UWB technique to fully polarized systems, which improves significantly performance in, for example, UWB-MIMO or UWB-Radar.

  9. Change Detection in Full and Dual Polarization, Single- and Multifrequency SAR Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    of obtaining a smaller value of the test statistic are given. In a case study, airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bifrequency, bitemporal change detection with full and dual polarimetry...

  10. Development and Use of the Dual-Mode Plasma Torch

    International Nuclear Information System (INIS)

    Womack, R.; Shuey, M.

    2002-01-01

    After several years of development, a commercially available high-temperature treatment system has been developed and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing, unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and costs associated with conventional sorting, characterizing and handling. Plasma technology can also be used to treat previous conditioned waste packages that no longer meet the current acceptance criteria for final disposal. Plasma treatment can result, in many cases, in a substantial volume reduction, which lowers the final disposal costs. This paper covers the recently patented dual mode plasma torch design(1), the lessons learned that fostered its development and the advantages it brings to radioactive waste processing. This paper also provides current full scale Plasma Arc Centrifugal Treatment (PACT) project status and how the dual mode torch is being used in the PACT system

  11. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  12. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  13. Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    Science.gov (United States)

    Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali

    2010-01-01

    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles

  14. Change detection in full and dual polarization sar data and the complex wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    A test statistic for equality of two complex variance-covariance matrices following the complex Wishart distribution with an associated probability of observing a smaller value of the test statistic is sketched. We demonstrate the use of the test statistic and the associated probability measure f...... for change detection in both full and dual polarimetry synthetic aperture radar (SAR) data collected by the Danish EMISAR system....

  15. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  16. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  17. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  18. Deployment and Performance of an X-Band Dual-Polarization Radar during the Southern China Monsoon Rainfall Experiment

    Directory of Open Access Journals (Sweden)

    Zhao Shi

    2017-12-01

    Full Text Available An X-band dual-polarization radar (XPRAD was deployed in Guangdong province as part of the Southern China Monsoon Rainfall Experiment (SCMREX during the storm season in 2016. This paper presents a comprehensive assessment of XPRAD observations during SCMREX with emphasis on data processing and rainfall products. The differential phase-based attenuation correction and radar calibration using self-consistency of dual-polarization observables are presented. It is found that the standard deviation of the Z d r bias is less than 0.2 dB based on ‘light rain at low angle’ and ‘dry aggregate snow’ observations. Cross-comparison with two standard S-band China New Generation Weather Radars (CINRAD shows that the bias of Z h has a mean value less than 1.5 dBZ and a standard deviation less than 0.5 dBZ. In addition, fifteen rainfall events that occurred during the intensive observing period (IOP are analyzed to demonstrate the rainfall estimation performance of XPRAD. In particular, rainfall accumulations at 1-, 2- and 3-h scales derived using R( K d p and R( Z h , Z d r relations are evaluated using national level rain gauge data and CINRAD-based rainfall estimation. The results show that both R( K d p - and R( Z h , Z d r -based products agree well with the rain gauge observations and CINRAD estimation. The difference between R ( K d p and R ( Z h , Z d r is not significant, although R ( K d p shows slightly better performance than R ( Z h , Z d r .

  19. Combining dual-polarization radar and ground-based observations to study the effect of riming on ice particles

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Recently a new microphysical scheme based on a single ice-phase category was proposed for the use in numerical weather prediction models. In the proposed scheme, ice particle properties are predicted and vary in time and space. One of the attributes of the proposed scheme is that the prefactor of a power-law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent is kept constant. According to this the maximum dimensions of ice particles do not change during riming until graupel growth phase is reached. The dual-polarization radar observations given an additional insight on what are the physical properties of ice particles. Often, it is assumed that differential reflectivity should decrease because of riming. The motivation for this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have an almost spherical shape and therefore the differential reflectivity will become smaller. On the other hand, at the earlier stages ice particle shape may not change much, while its mass and therefore the density increases. This would lead to the increase of the differential reflectivity, for example. By combining ground-based observations, which allow to quantify the effect of riming on snowfall, and dual-polarization radar observations we investigate the impact of riming on ice particle properties, i.e. mass, density and shape. Furthermore, a connection between, bulk properties of ice particles, liquid water path, radar equivalent reflectivity factor and precipitation rate observations is established. The study is based on data collected during US DOE Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign that took place in Hyytiala, Finland. A detailed analysis of two events is presented to illustrate the method.

  20. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  1. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  2. Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials.

    Science.gov (United States)

    Wang, Jiao; Jiang, Yannan; Hu, Zhirun

    2017-09-04

    Two-dimensional (2D) black phosphorus (BP) with direct band gap, bridges the characteristics of graphene with a zero or near-zero band gap and transition metal dichalcogenides with a wide band gap. In the infrared (IR) regime, 2D BP materials can attenuate electromagnetic energy due to losses derived from its surface conductivity. This paper proposes an IR absorber based on 2D BP metamaterials. It consists of multi-layer BP-based nano-ribbon pairs, each formed by two orthogonally stacked nano-ribbons. The multi-layer BP metamaterials and bottom gold mirror together form a Fabry-Perot resonator that could completely inhibit light transmission to create strong absorption through the BP metamaterials. Unlike previously reported BP metamaterial absorbers, this new structure can operate at two frequency bands with absorption > 90% in each owning to the first-order and second-order Fabry-Perot resonant frequencies. It is also polarization independent due to the fourfold rotational structural symmetry. To our best knowledge, this is the first report on using BP metamaterials in an absorber that operates independent of polarization and in dual bands.

  3. Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single-mode fiber loop.

    Science.gov (United States)

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhou, Quan; Sieg, Jonathan; Zhao, De-Long; Wang, Biao; Yan, Tie-Yi; Wang, Song

    2016-01-01

    A novel refractive index (RI) sensor head is proposed and experimentally demonstrated in this paper. The proposed sensor head is composed of a segment of bared single-mode fiber and a fiber holder that is fabricated by a 3D printer. The mechanism of the sensor head is based on dual polarized Mach-Zehnder interference. According to the aforementioned mechanism, we derived that the RI responses of the resonance dips possess an exponential functional manner when the E field is along the fast or slow axes. In addition, based on the finite element method, we found that the resonance dips wavelength responses are more sensitive when the input E field is along the fast axis. A confirmation experiment was performed, and the results confirmed our hypothesis. The maximum arithmetic mean value of RI response is about 657.895  nm/RIU for the proposed sensor head when the ambient RI changes from 1.3350 to 1.4110. Moreover, in the case of the proposed liquid RI sensor head, aligning the E field along the fast axis is the potentially needed condition for polarization.

  4. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Feng, Bibo; Colon, Raul D; Wilkens, Ken; Waddell, Kevin W; Chekmenev, Eduard Y

    2017-11-01

    Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B 0 /B 1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1- 13 C-d 3 , where the 13 C polarization was estimated to be P 13C =20±2.5% corresponding to 13 C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13 C enhancement at 3 T with respect to thermally induced polarization at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. APECS: A Network for Polar Early Career Scientist Professional Development

    Science.gov (United States)

    Enderlin, E. M.

    2014-12-01

    The Association of Polar Early Career Researchers (APECS) is an international and interdisciplinary organization for undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in the polar regions, alpine regions and the wider Cryosphere. APECS is a scientific, non-profit organization with free individual membership that aims to stimulate research collaborations and develop effective future leaders in polar research, education, and outreach. APECS grew out of the 4th International Polar Year (2007-08), which emphasized the need to stimulate and nurture the next generation of scientists in order to improve the understanding and communication of the polar regions and its global connections. The APECS organizational structure includes a Council and an elected Executive Committee that are supported by a Directorate. These positions are open to all individual members through a democratic process. The APECS Directorate is funded by the Norwegian Research Council, the University of Tromsø and the Norwegian Polar Institute and is hosted by the University of Tromsø. Early career scientists benefit from a range of activities hosted/organized by APECS. Every year, numerous activities are run with partner organizations and in conjunction with major polar conferences and meetings. In-person and online panels and workshops focus on a range of topics, from developing field skills to applying for a job after graduate school. Career development webinars are hosted each fall and topical research webinars are hosted throughout the year and archived online (http://www.apecs.is). The APECS website also contains abundant information on polar news, upcoming conferences and meetings, and job postings for early career scientists. To better respond to members' needs, APECS has national/regional committees that are linked to the international overarching organization. Many of these committees organize regional meetings or

  6. Advances in BNL's polarized ion source development

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; DeVito, B.; Herschcovitch, A.; Kponou, A.; Meitzler, C.

    1988-01-01

    Polarized protons have been accelerated in the AGS to 22/yield/ GeV. The polarized source presently used produces 30-40 ..mu..A of /rvec char/H/sup -/ at 75-80% polarization, in 500 ..mu..s pulses, 0.5 Hz. This is three orders of magnitude lower in intensity than normal H/sup -/ operation, and higher intensities are desired. There is a program in the AGS department to develop a higher intensity source. This is a ground state atomic beam source with an atomic beam cooled to 6 K, spin selection and focusing via a superconducting solenoid (shown) or a sextupole system, and an ionizer for /rvec char/H/sup -/ production based on the charge exchange of /rvec char/H/degree/ with D/sup -/. Work is in progress on all three components, and will be described in this paper. 6 refs., 7 figs.

  7. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    Science.gov (United States)

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  8. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure.

    Science.gov (United States)

    McDonald, Luke T; Finlayson, Ewan D; Wilts, Bodo D; Vukusic, Pete

    2017-08-06

    Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.

  9. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    Science.gov (United States)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.

  10. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...... to the reverse-biased p-i-n diode are key in ensuring high CE levels....

  11. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-05-20

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.

  12. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  13. Intercomparison of simulations using 5 WRF microphysical schemes with dual-Polarization data for a German squall line

    Directory of Open Access Journals (Sweden)

    W. A. Gallus Jr.

    2008-04-01

    Full Text Available Simulations of a squall line system which occurred on 12 August 2004 near Munich, Germany are performed using a fine grid version of the Weather Research and Forecasting (WRF model with five different microphysical schemes. Synthetic dual polarization observations are created from the model output and compared with detailed observations gathered by the DLR polarimetric radar POLDIRAD located near Munich. Synthetic polarimetric radar scans are derived from the model forecasts employing the polarimetric radar forward operator SynPolRad. Evaluations of the microphysical parameterization schemes are carried out comparing Plan Position Indicator (PPI and Range Height Indicator (RHI scans of reflectivity and the spatial distribution of hydrometeor types. The hydrometeor types are derived applying a hydrometeor classification scheme to the observed and simulated polarimetric radar quantities. Furthermore, the Ebert-McBride contiguous rain area method of verification is tested in a variety of ways on the reflectivity output from the simulations. It is found that all five schemes overestimate reflectivity in the domain, particularly in the stratiform region of the convective system. All four schemes including graupel as a hydrometeor type produce too much of it. Differences are seen among the schemes in their depiction of reflectivity in the convective line and their representation of radar bright bands.

  14. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    Science.gov (United States)

    Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni

    2018-01-01

    For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  15. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    Directory of Open Access Journals (Sweden)

    A. Gegiuc

    2018-01-01

    Full Text Available For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  16. Multicentre comparison Of shock efficacy using single-vs. Dual-coil lead systems and Anodal vs. cathodaL polarITY defibrillation in patients undergoing transvenous cardioverter-defibrillator implantation. The MODALITY study.

    Science.gov (United States)

    Baccillieri, Maria Stella; Gasparini, Gianni; Benacchio, Luca; Zorzi, Alessandro; Marras, Elena; Zerbo, Francesca; Tomasi, Luca; Vaccari, Diego; Pastore, Gianni; Bonanno, Carlo; Molon, Giulio; Zanotto, Gabriele; Fusco, Antonio; Carasi, Massimo; Zorzi, Andrea; Calzolari, Vittorio; Ignatiuk, Barbara; Cannas, Sergio; Vaglio, Alessandro; Al Bunni, Muhamad; Pedrini, Antonella; Olivieri, Armando; Rampazzo, Roberta; Minicuci, Nadia; Corrado, Domenico; Verlato, Roberto

    2015-06-01

    An optimal active-can lead configuration during implantable cardioverter defibrillator (ICD) placement is important to obtain an adequate defibrillation safety margin. The purpose of this multicenter study was to evaluate the rate of the first shock success at defibrillation testing according to the type of lead implant (single vs. dual coil) and shock polarity (cathodal and anodal) in a large series of consecutive patients who received transvenous ICDs. This was a multicenter study enrolling 469 consecutive patients. Single- versus dual-coil leads and cathodal versus anodal polarity were evaluated at defibrillation testing. In all cases, the value of the energy for the first shock was set to 20 J less than the maximum energy deliverable from the device. A total of 469 patients underwent defibrillation testing: 158 (34 %) had dual-coil and 311 (66 %) had single-coil lead systems configuration, 254 (54 %) received anodal shock and 215 (46 %) received cathodal shock. In 35 (7.4 %) patients, the shock was unsuccessful. No significant differences in the outcome of defibrillation testing using single- versus dual-coil lead were observed but the multivariate analysis showed an increased risk of shock failure using cathodal shock polarity (OR 2.37, 95 % CI 1.12-5.03). Both single- and dual-coil transvenous ICD lead systems were associated with high rates of successful ICD implantation, and we found no significant differences in ventricular arrhythmias interruption between the two ICD lead systems configuration. Instead, anodal defibrillation was more likely to be successful than cathodal defibrillation.

  17. RHIC Polarization Decay in FY15 pp Run due to Polarization Profile Development

    Energy Technology Data Exchange (ETDEWEB)

    Huang H.; Adams, P.

    2016-05-23

    The decay over time of ratio between polarization profile and beam profile has been analyzed previously. A follow up question is if we can get the decay of polarization profile and beam profile separately. With the beam profiles obtained from Ion Profile Monitor (IPM), this analysis was done and the results are analyzed. The results show that the contribution from polarization profile and beam profile is similar for yellow ring, but the contribution from polarization profile is much stronger in blue ring, which is consistent with lower polarization Blue ring.

  18. Pulsed Cs beam development for the BNL polarized H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1983-01-01

    A pulsed Cs + beam has been developed for use on a polarized H - source. Cesium ion production is by surface ionization using a porous tungsten ionizer. While satisfactory current pulses (5 to 10 mA greater than or equal to 0.5 ms) can be obtained, the pulse shapes are a sensitive function of the ionizer temperature and Cs surface coverage. The beam optical requirements are stringent, and the optics have been studied experimentally for both Cs + and Cs 0 beams. Computer calculations are in good agreement with the observed results. The present source has delivered 2.6 mA of Cs + through the interaction region of the polarized ion source, and as much as 2.0 particle mA of Cs 0 . A new source is being built which is designed to give 15 mA through the interaction region

  19. CB 1/2 dual agonists with 3-carbamoyl 2-pyridone derivatives as antipruritics: reduction of CNS side effects by introducing polar functional groups.

    Science.gov (United States)

    Odan, Masahide; Ishizuka, Natsuki; Hiramatsu, Yoshiharu; Inagaki, Masanao; Hashizume, Hiroshi; Fujii, Yasuhiko; Mitsumori, Susumu; Morioka, Yasuhide; Soga, Masahiko; Deguchi, Masashi; Yasui, Kiyoshi; Arimura, Akinori

    2012-04-15

    Our lead compound 1 showed high affinity for both CB1 and CB2 receptors, suggesting the possibility of inducing psychoactive side effects through the CB1 receptor in the brain. To solve this issue, polar functional groups were introduced at the 3-position of the pyridone core of compound 1 to find CB1/2 dual agonists such as 17 and 20 which did not show any CNS side effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Development of compatibilized SBR and EPR nanocomposites containing dual filler system

    International Nuclear Information System (INIS)

    Rajasekar, R.; Nayak, G.C.; Malas, A.; Das, C.K.

    2012-01-01

    Highlights: ► Nanoclay is dispersed in non-polar rubbers by utilizing a polar compatibilizer. ► Effect of dual fillers [nanoclay and carbon black] on the rubber properties. ► Comparison of the results of single and dual filler containing rubber compounds. -- Abstract: The study described in this paper is an analysis of the role of a compatibilizer for dispersing organically modified nanoclay in styrene butadiene rubber (SBR) and ethylene propylene rubber (EPR) matrices. The normal mixing of non-polar rubbers and organically modified nanoclay may not lead to improved distribution of the nanofiller in the rubbery matrix. Hence, a polar rubber such as epoxidized natural rubber (ENR) can be used as a compatibilizer for dispersing nanoclay in the non-polar rubber matrices. ENR–organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay used in this study is Cloisite 20A. The obtained ENR–nanoclay composites were incorporated in SBR and EPR matrices along with carbon black. The morphological studies proved the intercalation of nanoclay platelets in ENR and further incorporation of EC in SBR and EPR matrices leads to partial exfoliation of nanoclay platelets. A curing study demonstrated faster scorch time, cure time and increased maximum torque for the compatibilized SBR and EPR nanocomposites containing a dual filler system compared to the control. Dynamic mechanical thermal analysis showed increase in storage modulus for the SBR and EPR compounds containing dual fillers compared to rubber compounds containing pure and single filler. The same compounds show substantial improvement in mechanical properties. The tensile fractured surface of the rubber compounds containing single and dual filler observed by scanning electron microscopy, (SEM) showed highly rough and irregular fracture paths, which proved the physical interaction between filler and rubber.

  1. The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells

    Science.gov (United States)

    Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.

    2007-02-01

    Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60

  2. Amplitude and Phase Calibration of an Dual Polarized Active Phased Array Antenna

    NARCIS (Netherlands)

    Vermeulen, B.C.B.; Paquay, M.H.A.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a Polarimetrie C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronym for Phased Array Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 modules (expandable to 96). A module is

  3. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  4. An Objective Prototype-Based Method for Dual-Polarization Radar Clutter Identification

    OpenAIRE

    Guang Wen; Alain Protat; Hui Xiao

    2017-01-01

    A prototype-based method is developed to discriminate different types of clutter (ground clutter, sea clutter, and insects) from weather echoes using polarimetric measurements and their textures. This method employs a clustering algorithm to generate data groups from the training dataset, each of which is modeled as a weighted Gaussian distribution called a “prototype.” Two classification algorithms are proposed based on the prototypes, namely maximum prototype likelihood classifier (MPLC) an...

  5. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies

    Science.gov (United States)

    Zhang, Yu-Ping; Li, Tong-Tong; Lv, Huan-Huan; Huang, Xiao-Yan; Zhang, Xiao; Xu, Shi-Lin; Zhang, Hui-Yun

    2015-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 61001018, the Natural Science Foundation of Shandong Province under Grant No ZR2012FM011, the Shandong-Provincial Higher Educational Science and Technology Program under Grant No J11LG20, the Qingdao City Innovative Leading Talent Plan under Grant No 13-CX-25, the THz Science and Technology Foundation of China Academy of Engineering Physics under Grant No 201401, the Qingdao Economic and Technical Development Zone Science and Technology Project under Grant No 2013-1-64, and the Shandong University of Science and Technology Foundation under Grant No YC140108.

  6. Development of smart controller model for dual fuel generator systems

    African Journals Online (AJOL)

    Application of dual fuel powered electric generators such as one of diesel and biogas has gained popularity locally both as emergency power supply units and in distributed power systems. Dual fuel generators use two fuel types simultaneously in their operations. This is however faced with challenges in control and fuel ...

  7. Development of dual imaging optical sensor (DIOS) for small satellites

    Science.gov (United States)

    Choi, Young-Wan; Kang, Myung-Seok; Jeong, Sung-Keun; Yun, Ji-Ho; Yang, Seung-Uk; Kim, Jongun; Kim, Ee-Eul

    2007-09-01

    The mission of DIOS program is to provide the function of large-swathwidth or in-track stereo imaging with compact electro-optical cameras. Optimized from its predecessor SAC (Small-sized Aperture Camera), DIOS consists of two cameras, each with an aperture of 120 mm diameter, 10 m GSD, and 50 km swath width in the spectral range of 520 ~ 890 nm. DIOS is developed to produce high quality images: MTF of more than 12 %; SNR of more than 100. DIOS can be configured to have cameras side-by-side, providing a swathwidth up to 100 km for a mission of large swathwidth. DIOS will be configured with installation of slanted two cameras for the mission of in-track stereo imaging to produce digital elevation model. In this paper, Dual Imaging Optical Sensor (DIOS) will be introduced with design approach and performance measure. Even though developed for micro satellites, the presentation of development status and test results will demonstrate the potential capability that DISO can provide for world-wide remote sensing groups: short development period, cost-effectiveness, wide application ranges, and high performance.

  8. Metabolomic method: UPLC-q-ToF polar and non-polar metabolites in the healthy rat cerebellum using an in-vial dual extraction.

    Directory of Open Access Journals (Sweden)

    Amera A Ebshiana

    Full Text Available Unbiased metabolomic analysis of biological samples is a powerful and increasingly commonly utilised tool, especially for the analysis of bio-fluids to identify candidate biomarkers. To date however only a small number of metabolomic studies have been applied to studying the metabolite composition of tissue samples, this is due, in part to a number of technical challenges including scarcity of material and difficulty in extracting metabolites. The aim of this study was to develop a method for maximising the biological information obtained from small tissue samples by optimising sample preparation, LC-MS analysis and metabolite identification. Here we describe an in-vial dual extraction (IVDE method, with reversed phase and hydrophilic liquid interaction chromatography (HILIC which reproducibly measured over 4,000 metabolite features from as little as 3mg of brain tissue. The aqueous phase was analysed in positive and negative modes following HILIC separation in which 2,838 metabolite features were consistently measured including amino acids, sugars and purine bases. The non-aqueous phase was also analysed in positive and negative modes following reversed phase separation gradients respectively from which 1,183 metabolite features were consistently measured representing metabolites such as phosphatidylcholines, sphingolipids and triacylglycerides. The described metabolomics method includes a database for 200 metabolites, retention time, mass and relative intensity, and presents the basal metabolite composition for brain tissue in the healthy rat cerebellum.

  9. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  10. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    Science.gov (United States)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  11. Development of a New X-Ray Polarization Detection Device

    Science.gov (United States)

    Thompson, Jahreem R.; Hill, Joanne E.; Jahoda, Keith; Black, Kevin; Querrard, Rodney

    2018-01-01

    The aim of this research is to confirm the functionality of a Gas Electron Multiplier made of stainless steel in a detection medium of carbon dioxide and nitromethane through a series of X-ray tests in a vacuum chamber. Utilizing the photoelectric effect with carbon dioxide and nitromethane, we can confirm polarization of X-rays emitted from the most extreme astronomical conditions. We chose to use CO2 because we can confirm that it works well with the stainless-steel detector based on previous tests and nitromethane because we suspect that the ionization electrons created by the photoelectron during the photoelectric effect will experience less diffusion if they are bonded to a large molecule such as nitromethane as they diffuse towards the drift plate. The development of these new X-ray polarimeters will help to further the study of gravitational fields near black holes, their effects on matter they encounter, and the magnetic fields of neutron stars.

  12. Development of an HCN dual laser for the interferometer on EAST

    Science.gov (United States)

    Li, Gen; Wei, Xuechao; Liu, Haiqing; Shen, Junjie; Jie, Yinxian; Lian, Hui; Zeng, Long; Zou, Zhiyong; Zhang, Jibo; Wang, Shouxin

    2017-08-01

    A two-color continuous wave (CW) discharge-pumped far-infrared (FIR) hydrogen cyanide (HCN) laser was developed as the source of an interferometer for measuring the line-averaged electron density in the Experimental Advanced Superconducting Tokamak (EAST). The output power of the dual laser system was about 120 mW from each laser on the 337 μm (0.89 THz) line. The polarization of each output beam was fixed using thin tungsten filaments and oscillated in the EH11 mode. Different megahertz intermediate frequencies (IF) and a slight frequency offset (˜1 MHz) were generated in this system to replace the traditional rotating grating with ˜10 kHz IF, and this can improve the time resolution of the interferometer significantly. The experimental result showed that different IF signals were obtained by successfully adjusting the cavity length. In particular, the beat frequency was captured at ˜1.3 MHz by a Schottky mixer when the length of the resonant cavities was changed by 5 μm by an automatic adjustment system. In order to study the character of IF, a long time record of the IF signal was carried out, and the IF signal could be stabilized for a few minutes in the range of 2 MHz to 3 MHz. A real-time IF stability control system was initially designed for long pulse discharge experiments on the EAST. The ˜MHz frequency response and good phase sensitivity of the dual laser HCN interferometer will allow the system to track fast density profiles and resolve fast MHD events, such as tearing/neoclassical tearing, disruptions, etc. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  13. Development of optical-pumping polarized deuteron target

    International Nuclear Information System (INIS)

    Tamae, Tadaaki; Yokokawa, Tamio; Nishikawa, Itaru; Abe, Kazuhiro; Konno, Osamu; Nakagawa, Itaru; Sugawara, Masumi; Tanaka, Eiji; Yamaguchi, Nobuo; Yamazaki, Hirohito; Miyase, Haruhisa; Tsubota, Hiroaki

    1998-01-01

    An optical-pumping system of rubidium atoms for a laser-driven polarized deuteron target was constructed. The density and polarization of the rubidium atoms were measured using Faraday rotation. The rotation angle was determined within an error of 0.01 deg. Our preliminary result showed a polarization of 0.4 at a gas thickness of 4x10 13 atoms/cm 2

  14. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    OpenAIRE

    Marco Gabella; Peter Speirs; Ulrich Hamann; Urs Germann; Alexis Berne

    2017-01-01

    The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1) the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE); (2) the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR); (3) a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip) is used; (4) spaceborne observatio...

  15. Development of dual-broadband rotational CARS for combustion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bood, Joakim

    2000-06-01

    The present thesis concerns development and application of dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) for temperature and species concentration measurements in combustion processes. Both fundamental development of the technique, including experimental as well as modelling results, and measurements in practical combustion devices were conducted. A code for calculation of rotational CARS spectra of pure acetylene as well as mixtures of acetylene and nitrogen was developed. Using this code, temperatures and relative acetylene to nitrogen concentrations were evaluated from DB-RCARS measurements in pure acetylene and different acetylene/nitrogen mixtures. Moreover, rotational CARS spectra of dimethyl-ether (DME) have been analyzed. A powerful tool for simultaneous temperature and multiple species concentration measurements was developed by combining rotational CARS with vibrational CARS. The concept was demonstrated for measurements of temperature, oxygen, and carbon monoxide concentrations simultaneously in a premixed sooting ethene/air flame. Rotational CARS spectra of nitrogen at very high pressures (0.1-44 MPa) at room temperature were investigated. The experimental spectra were compared with calculated spectra using different Raman linewidth models. The results indicate some shortcomings in the present model, basically the density calculation and neglecting overlapping effects between adjacent spectral lines. A new method for CARS measurements in several spatially separated points simultaneously was developed. By using DB-RCARS the method was demonstrated for quantitative measurements of profiles of temperatures and oxygen concentrations. An atomic filter for rejection of stray light was developed. The filter was shown to efficiently reject stray light from the narrowband laser without affecting the shape of the rotational CARS spectrum or causing any signal losses. Within an interdisciplinary project intended to increase the

  16. Real-Time Study of the Interaction between G-Rich DNA Oligonucleotides and Lead Ion on DNA Tetrahedron-Functionalized Sensing Platform by Dual Polarization Interferometry.

    Science.gov (United States)

    Wang, Shuang; Lu, Shasha; Zhao, Jiahui; Huang, Jianshe; Yang, Xiurong

    2017-11-29

    G-quadruplex plays roles in numerous physiological and pathological processes of organisms. Due to the unique properties of G-quadruplex (e.g., forming G4/hemin complexes with catalytic activity and electron acceptability, binding with metal ions, proteins, fluorescent ligands, and so on), it has been widely applied in biosensing. But the formation process of G-quadruplex is not yet fully understood. Here, a DNA tetrahedron platform with higher reproducibility, regenerative ability, and time-saving building process was coupled with dual polarization interferometry technique for the real-time and label-free investigation of the specific interaction process of guanine-rich singled-stranded DNA (G-rich ssDNA) and Pb 2+ . The oriented immobilization of probes greatly decreased the spatial hindrance effect and improved the accessibility of the probes to the Pb 2+ ions. Through real-time monitoring of the whole formation process of the G-quadruplex, we speculated that the probes on the tetrahedron platform initially stood on the sensing surface with a random coil conformation, then the G-rich ssDNA preliminarily formed unstable G-quartets by H-bonding and cation binding, subsequently forming a completely folded and stable quadruplex structure through relatively slow strand rearrangements. On the basis of these studies, we also developed a novel sensing platform for the specific and sensitive determination of Pb 2+ and its chelating agent ethylenediaminetetraacetic acid. This study not only provides a proof-of-concept for conformational dynamics of G-quadruplex-related drugs and pathogenes, but also enriches the biosensor tools by combining nanomaterial with interfaces technique.

  17. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  18. Career Development Counseling for Young and Prospective Dual Career Couples.

    Science.gov (United States)

    Sekaran, Uma

    1989-01-01

    A model for counseling dual career families depicts the interaction of four factors: the central life interests of the couple, their gender role orientation, the stresses experienced in balancing work and family roles, and the coping mechanisms used. Counselors can help devise strategies to achieve career advancement as well as career, family, and…

  19. development of a dual purpose refrigeration system for domestic use

    African Journals Online (AJOL)

    user

    process. This paper is aimed at the design and construction of a dual purpose domestic refrigeration system, that can simultaneously function as a .... domestic kitchen. His work had a 3 valve control system that was manually operated and his condensing unit was kept indoors. This arrangement is counterproductive, as the ...

  20. Dual-Process Theories of Reasoning: The Test of Development

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…

  1. Development of a dual purpose refrigeration system for domestic use

    African Journals Online (AJOL)

    This paper is aimed at the design and construction of a dual purpose domestic refrigeration system, that can simultaneously function as a refrigerator and as well as an air conditioner henceforth known as REFACON. The refrigeration system employed was a vapour compression system. The machine was a split ...

  2. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  3. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    Science.gov (United States)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  4. Recent developments in laser-driven polarized sources

    International Nuclear Information System (INIS)

    Young, L.; Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Potterveld, D.H.; Zghiche, A.

    1990-01-01

    Recent progress in the performance of laser-driven sources of polarized hydrogen and deuterium is described. The current status of the prototype source, I = 2.5 x 10 17 s -1 , polarization = 0.29 (including atomic fraction), is comparable to classical Stern-Gerlach sources. A scheme to improve source performance by approximately an order of magnitude, using a combination of optical-pumping spin-exchange and RF transitions, is outlined. 8 refs., 2 figs., 1 tab

  5. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    Science.gov (United States)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  6. Development of a Next Generation Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009

    Science.gov (United States)

    Bell, R. E.; Studinger, M.; Frearson, N.; Gogineni, P.; Braaten, D.

    2007-12-01

    Key elements in Earth's geodynamic and climatic systems, the polar regions are very sensitive to changing global environmental conditions such as increasing sea surface temperatures and have the potential to trigger significant global sea level rise as large volumes of ice melt. Locked within these icy regions are the records of past global climate shifts and novel ecosystems sealed from open interactions with the atmosphere for millions of years. While satellite missions can image the surface of the polar ice sheet, many of the key processes occur beneath the surface beyond the reach of space based observations. These crucial processes can only be efficiently examined through airborne instrumentation designed to study the vast expanses of snow and ice of the Antarctic continent, the sub-continent of Greenland and the surrounding oceans. The expanding logistical infrastructure associated with the International Polar Year (2007-2009) will enable the scientific community access major new portions of the polar regions. We are developing a state-of-the-art integrated multidisciplinary aerogeophysical instrumentation package for deployment during multi-national expeditions as part of the International Polar Year. This development project brings together the recent developments in radar sounding by the University of Kansas CReSIS (Center for Remote Sensing of Ice Sheets), that now permit the full characterization of the entire ice sheet and the major advances in the accuracy, resolution and efficiency of airborne gravity technology emerging from the private sector. Integrating the full spectrum of ice sheet imaging with high-resolution gravity and magnetics will enable the imaging of the previously invisible world of subglacial hydrodynamics.

  7. Retrieval of Melt Ponds on Arctic Multiyear Sea Ice in Summer from TerraSAR-X Dual-Polarization Data Using Machine Learning Approaches: A Case Study in the Chukchi Sea with Mid-Incidence Angle Data

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2016-01-01

    Full Text Available Melt ponds, a common feature on Arctic sea ice, absorb most of the incoming solar radiation and have a large effect on the melting rate of sea ice, which significantly influences climate change. Therefore, it is very important to monitor melt ponds in order to better understand the sea ice-climate interaction. In this study, melt pond retrieval models were developed using the TerraSAR-X dual-polarization synthetic aperture radar (SAR data with mid-incidence angle obtained in a summer multiyear sea ice area in the Chukchi Sea, the Western Arctic, based on two rule-based machine learning approaches—decision trees (DT and random forest (RF—in order to derive melt pond statistics at high spatial resolution and to identify key polarimetric parameters for melt pond detection. Melt ponds, sea ice and open water were delineated from the airborne SAR images (0.3-m resolution, which were used as a reference dataset. A total of eight polarimetric parameters (HH and VV backscattering coefficients, co-polarization ratio, co-polarization phase difference, co-polarization correlation coefficient, alpha angle, entropy and anisotropy were derived from the TerraSAR-X dual-polarization data and then used as input variables for the machine learning models. The DT and RF models could not effectively discriminate melt ponds from open water when using only the polarimetric parameters. This is because melt ponds showed similar polarimetric signatures to open water. The average and standard deviation of the polarimetric parameters based on a 15 × 15 pixel window were supplemented to the input variables in order to consider the difference between the spatial texture of melt ponds and open water. Both the DT and RF models using the polarimetric parameters and their texture features produced improved performance for the retrieval of melt ponds, and RF was superior to DT. The HH backscattering coefficient was identified as the variable contributing the most, and its

  8. Corrections to “Change Detection in Full and Dual Polarization, Single- and Multi-Frequency SAR Data”

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    of obtaining a smaller value of the test statistic are given. In a case study airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry...

  9. Development of a surface isolation estimation technique suitable for application of polar orbiting satellite data

    Science.gov (United States)

    Davis, P. A.; Penn, L. M. (Principal Investigator)

    1981-01-01

    A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.

  10. High Spectrum Narrowing Tolerant 112 Gb/s Dual Polarization QPSK Optical Communication Systems Using Digital Adaptive Channel Estimation

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Dogadaev, Anton Konstantinovich

    2012-01-01

    We experimentally demonstrate high spectrum narrowing tolerant 112-Gb/s QPSK polarization multiplex system based on digital adaptive channel estimation method. The proposed algorithm is able to detect severe spectrum-narrowed signal even with 20GHz 3dB bandwidth.......We experimentally demonstrate high spectrum narrowing tolerant 112-Gb/s QPSK polarization multiplex system based on digital adaptive channel estimation method. The proposed algorithm is able to detect severe spectrum-narrowed signal even with 20GHz 3dB bandwidth....

  11. Development of an undulator-based polarized positron source for ...

    Indian Academy of Sciences (India)

    at KEK [1a], Compton backscattering is used [2], the E166 experiment uses a helical undulator to produce polarized photons. An undulator-based positron source for the ILC has been proposed in [3,4]. The proposed scheme for an ILC positron source is illustrated in figure 1. In this scheme, a 150 GeV electron beam passes.

  12. Divided pulse soliton self-frequency shift: a multi-color, dual-polarization, power-scalable, broadly tunable optical source.

    Science.gov (United States)

    Zhang, Chenji; Bucklew, Victor; Edwards, Perry; Janisch, Corey; Liu, Zhiwen

    2017-02-01

    A versatile, broadly tunable, power scalable, multi-line, ultrafast source is presented, the operation of which is based on combining principles of pulse division with the phenomenon of the soliton self-frequency shift (SSFS). Interferometric pulse recombination is demonstrated showing that the source can decouple the generally limiting relationship between the output power and the center wavelength in SSFS-based optical sources. Broadly tunable two- and four-color soliton self-frequency shifted pulses are experimentally demonstrated. Simultaneous dual-polarization second-harmonic generation was performed with the source, demonstrating one novel imaging methodology that the source can enable. It is expected that this source architecture will be useful for advancing current nonlinear optical imaging methodologies.

  13. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  14. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  15. Development of a polarized deuterium target to measure T/sub 20/ in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.; Coulter, K.; Gilman, R.A.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.; Lasarenko, B.A.; Mishnev, S.I.

    1989-01-01

    The development of a polarized deuterium target to measure the analyzing power in electron scattering from the deuteron at the highest possible momentum transfer is described. Two areas of research have been simultaneously pursued: the development of a storage cell for polarized atoms (ANL and INP) and the development of a high-flux laser-driven source of polarized deuterium (ANL). The successful combination of these two technological developments will produce a polarized target having a figure of merit of np/sub zz//sup 2/ approx. np/sub z//sup 2/ approx. 10/sup 14/ cm/sup /minus/2/. The progress to date, including, feasibility tests of the storage cell concept, design of a high-density storage cell ad the development of the laser-driven source will be described. 14 refs., 7 figs.

  16. Supporting Preschool Dual Language Learners: Parents' and Teachers' Beliefs about Language Development and Collaboration

    Science.gov (United States)

    Sawyer, Brook E.; Manz, Patricia H.; Martin, Kristin A.

    2017-01-01

    Guided by Bronfenbrenner's bio-ecological theory of human development and Moll's theory of funds of knowledge, the aim of this qualitative study was to examine the beliefs of parents and early childhood teachers on (a) the language development of Spanish-speaking preschool dual language learners (DLLs) and (b) how they can collaborate to support…

  17. Development of 780MPa grade gal annealed dual phase steel sheets for automobile

    Science.gov (United States)

    Jiang, Yinghua; Xie, Chunqian; Kuang, Shuang

    2018-01-01

    As the weight reduction of automotive body and crash safety become much more important factors, in an effort to satisfy these requirements, Shougang has developed 780MPa grade galvannealed dual phase steel sheet. Steel chemistry with low C and low Si was designed for good zinc wettability and spot weldability. And some of elements were added to improve the hole expansibility and work hardening capacity of steel as these effectively refine the microstructure and introduce retained austenite. Newly developed 780MPa grade galvannealed dual phase steels have a high yield strength and a good hole expansibility.

  18. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning

    2012-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and synthetic aperture radar (SAR) satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. A multitemporal...... data set from the Danish airborne polarimetric EMISAR has been used to assess the performance of different polarization modes for crop classification. Both C- and L-band SAR data were acquired simultaneously over the Foulum agricultural test site in Denmark on a monthly basis during the growing season...

  19. Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2016-01-01

    to achieve an ultra-high birefringence. Besides, only circular air holes have been used to represent the structure, which makes the fiber remarkably simple. The transmission characteristics have been numerically examined based on an efficient finite element method (FEM). The numerical results confirm a high......In this Letter, we suggest a novel kind of porous-core photonic crystal fiber (PCF) (to the best of our knowledge) for efficient transportation of polarization maintaining (PM) terahertz (THz) waves. We introduce an asymmetry in both the porous-core and the porous-cladding of the structure...

  20. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power...... and is an alternative to pulsed THz systems using femtosecond lasers. The laser system generates output powers up to several hundred mW, has a 25 kHz linewidth and a polarization extinction ratio of better than 20 dB. Since the output power reaches the Watt-level, the laser system is a suitable candidate for future...

  1. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    Science.gov (United States)

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  3. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    Science.gov (United States)

    Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah

    2017-12-01

    Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of

  4. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  5. The impact of aerosols on polarized sky radiance: model development, validation, and applications

    Directory of Open Access Journals (Sweden)

    C. Emde

    2010-01-01

    Full Text Available Although solar radiation initially is unpolarized when entering the Earth's atmosphere, it is polarized by scattering processes with molecules, water droplets, ice crystals, and aerosols. Hence, measurements of the polarization state of radiation can be used to improve remote sensing of aerosols and clouds. The analysis of polarized radiance measurements requires an accurate radiative transfer model. To this end, a new efficient and flexible three-dimensional Monte Carlo code to compute polarized radiances has been developed and implemented into MYSTIC (Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres. The code has been extensively validated against published benchmark results. The polarized downwelling radiation field is calculated for various aerosol types showing the high sensitivity of polarized ultraviolet radiances to the particle microphysics. Model simulations are compared to ground based measurements and found to be qualitatively in good agreement. Quantitative differences can be attributed to the assumed aerosol models based on the OPAC aerosol database, which does not include exactly the types of aerosols that have been observed. This comparison to the measurements shows that there is a high potential to retrieve information about the aerosol type from polarized radiance measurements.

  6. Dual-Polarized Antenna Arrays with CMOS Power Amplifiers for SiP Integration at W-Band

    Science.gov (United States)

    Giese, Malte; Vehring, Sönke; Böck, Georg; Jacob, Arne F.

    2017-09-01

    This paper presents requirements and front-end solutions for low-cost communication systems with data rates of 100 Gbit/s. Link budget analyses in different mass-market applications are conducted for that purpose. It proposes an implementation of the front-end as an active antenna array with support for beam steering and polarization multiplexing over the full W-band. The critical system components are investigated and presented. This applies to a transformer coupled power amplifier (PA) in 40 nm bulk CMOS. It shows saturated output power of more than 10 dBm and power-added-efficiency of more than 10 % over the full W-band. Furthermore, the performance of microstrip-to-waveguide transitions is shown exemplarily as an important part of the active antenna as it interfaces active circuitry and antenna in a polymer-and-metal process. The transition test design shows less than 0.9 dB insertion loss and more than 12 dB return loss for the differential transition over the full W-band.

  7. The Dual Role of Mobile Payment in Developing Countries

    OpenAIRE

    Laetitia Chaix; Dominique Torre

    2015-01-01

    This paper analyzes the capacity of mobile-payment solutions to improve financial inclusion in developing countries. It elaborates from rural East African countries experiences where mobile payment services have developed rapidly. With a simple dynamic model which rationalizes traders' adoption process of distant mobile payment services, we analyze the role of telephonic operators in financial inclusion. We point out the interest of a diversified supply of m-payment services, including simpli...

  8. Experimental verification of long-term evolution radio transmissions over dual-polarization combined fiber and free-space optics optical infrastructures.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2016-03-10

    This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.

  9. Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm

    Science.gov (United States)

    Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen

    2017-05-01

    Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.

  10. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  11. Dual Applications for Metacognitive Development in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    Gabriel ZAMFIR

    2017-01-01

    Full Text Available The improvements in technological infrastructures define the background of our e-society while the developments in the cognitive infrastructure explain the foreground of it. The background and the foreground of the e-science determine the growths of the e-business and the quality of the e-education. E-education evolves as an engine for the cognitive infrastructure of the e-society and it works with information technology, which is a dynamic concept in time and in space. This paper highlights the importance of the account between theory and practice in scientific research in e-education, reviewing the e-society timeline using an educational perspective. It describes an updated knowledge framework for scientific research in e-education, developing directions for comprehension of different analytical frameworks. Within a case study, it presents an approach based on classes of applications focused on metacognitive development in assisted instruction.

  12. Par6b Regulates the Dynamics of Apicobasal Polarity during Development of the Stratified Xenopus Epidermis

    Science.gov (United States)

    Wang, Sha; Cha, Sang-Wook; Zorn, Aaron M.; Wylie, Christopher

    2013-01-01

    During early vertebrate development, epithelial cells establish and maintain apicobasal polarity, failure of which can cause developmental defects or cancer metastasis. This process has been mostly studied in simple epithelia that have only one layer of cells, but is poorly understood in stratified epithelia. In this paper we address the role of the polarity protein Partitioning defective-6 homolog beta (Par6b) in the developing stratified epidermis of Xenopus laevis. At the blastula stage, animal blastomeres divide perpendicularly to the apicobasal axis to generate partially polarized superficial cells and non-polarized deep cells. Both cell populations modify their apicobasal polarity during the gastrula stage, before differentiating into the superficial and deep layers of epidermis. Early differentiation of the epidermis is normal in Par6b-depleted embryos; however, epidermal cells dissociate and detach from embryos at the tailbud stage. Par6b-depleted epidermal cells exhibit a significant reduction in basolaterally localized E-cadherin. Examination of the apical marker Crumbs homolog 3 (Crb3) and the basolateral marker Lethal giant larvae 2 (Lgl2) after Par6b depletion reveals that Par6b cell-autonomously regulates the dynamics of apicobasal polarity in both superficial and deep epidermal layers. Par6b is required to maintain the “basolateral” state in both epidermal layers, which explains the reduction of basolateral adhesion complexes and epidermal cells shedding. PMID:24204686

  13. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  14. The Dual Model Of The Development Of German Armed Forces

    Directory of Open Access Journals (Sweden)

    A. Yu. Timofeev

    2017-01-01

    Full Text Available At the present stage Germany seeks to increase its influence at the international arena and plays active role in the solution of the problems in the sphere of inter-national security. In this regard Germany uses a wide range of foreign policy tools, some of them are military. The Bundeswehr becomes the armed forces which are intended for the usage at the global level and for the solution a large range of tasks, including ones which are atypical for the period of the «cold war». The reform of the Bundeswehr led to its real division of German armed forces into two components. The first of them were the forces which were intend-ed for the usage outside NATO zone of responsibility, and the second component were troops which should complete the tasks of the ensuring the territorial de-fense of Germany and its Alliance`s partners if necessary. In the 1990s – 2000s years the undisputed priority was the development of forces, used outside the Euro-Atlantic society. At the same time the combat capa-bilities of another component were gradually declining in the situation of com-mon reducing the personnel and armaments of the Bundeswehr. At the present stage the Western countries came to a period of profound deterioration of rela-tions with Russia and faced with the increasing manifestations of the non-traditional security threats caused by instability in the Middle East and North Af-rica. It puts Germany in front of necessity of simultaneous development of both parts of the armed forces. In this regard in the conclusion there is an attempt to characterize the modern and perspective image of the Bundeswehr and to outline possible ways of overcoming the existing difficulties of its development.

  15. THE DUAL MODEL OF THE DEVELOPMENT OF GERMAN ARMED FORCES

    Directory of Open Access Journals (Sweden)

    A. Yu. Timofeev

    2017-01-01

    Full Text Available At the present stage Germany seeks to increase its influence at the international arena and plays active role in the solution of the problems in the sphere of inter-national security. In this regard Germany uses a wide range of foreign policy tools, some of them are military. The Bundeswehr becomes the armed forces which are intended for the usage at the global level and for the solution a large range of tasks, including ones which are atypical for the period of the «cold war». The reform of the Bundeswehr led to its real division of German armed forces into two components. The first of them were the forces which were intend-ed for the usage outside NATO zone of responsibility, and the second component were troops which should complete the tasks of the ensuring the territorial de-fense of Germany and its Alliance`s partners if necessary. In the 1990s – 2000s years the undisputed priority was the development of forces, used outside the Euro-Atlantic society. At the same time the combat capa-bilities of another component were gradually declining in the situation of com-mon reducing the personnel and armaments of the Bundeswehr. At the present stage the Western countries came to a period of profound deterioration of rela-tions with Russia and faced with the increasing manifestations of the non-traditional security threats caused by instability in the Middle East and North Af-rica. It puts Germany in front of necessity of simultaneous development of both parts of the armed forces. In this regard in the conclusion there is an attempt to characterize the modern and perspective image of the Bundeswehr and to outline possible ways of overcoming the existing difficulties of its development

  16. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  17. The New Generation of Auditors Meeting Praxis: Dual Learning's Role in Audit Students' Professional Development

    Science.gov (United States)

    Agevall, Lena; Broberg, Pernilla; Umans, Timurs

    2018-01-01

    This paper explores whether and in what way "dual learning" can develop understanding of the relationship between structure/judgement and explores audit student's perceptions of the audit profession. The Work Integrated Learning (WIL) module, serving as a tool of enabling dual learning, represents the context for this exploration. The…

  18. Development of atmospheric electrostatic field mill polarity sensor ...

    African Journals Online (AJOL)

    EFPS). The EFPS developed is based on the phase sensitive detection (PSD) principle. The designed circuit consists of a transducer; a transimpedance amplifier; input amplifier/filter; position detector incorporating amplifier and a schmitt trigger ...

  19. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  20. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  1. Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links.

    Science.gov (United States)

    Giacoumidis, E; Jarajreh, M A; Sygletos, S; Le, S T; Farjady, F; Tsokanos, A; Hamié, A; Pincemin, E; Jaouën, Y; Ellis, A D; Doran, N J

    2014-05-05

    A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

  2. Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Aulin, Christian; Varga, Imre; Claesson, Per M; Wågberg, Lars; Lindström, Tom

    2008-03-18

    Polyethyleneimine (PEI) and Microfibrillated cellulose (MFC) have been used to buildup polyelectrolyte multilayers (PEM) on silicone oxide and silicone oxynitride surfaces at different pH values and with different electrolyte and polyelectrolyte/colloid concentrations of the components. Consecutive adsorption on these surfaces was studied by in situ dual-polarization interferometry (DPI) and quartz crystal microbalance measurements. The adsorption data obtained from both the techniques showed a steady buildup of multilayers. High pH and electrolyte concentration of the PEI solution was found to be beneficial for achieving a high adsorbed amount of PEI, and hence of MFC, during the buildup of the multilayer. On the other hand, an increase in the electrolyte concentration of the MFC dispersion was found to inhibit the adsorption of MFC onto PEI. The adsorbed amount of MFC was independent of the bulk MFC concentration in the investigated concentration range (15-250 mg/L). Atomic force microscopy measurements were used to image a MFC-treated silicone oxynitride chip from DPI measurements. The surface was found to be almost fully covered by randomly oriented microfibrils after the adsorption of only one bilayer of PEI/MFC. The surface roughness expressed as the rms-roughness over 1 microm2 was calculated to be 4.6 nm (1 bilayer). The adsorbed amount of PEI and MFC and the amount of water entrapped by the individual layers in the multilayer structures were estimated by combining results from the two analytical techniques using the de Feijter formula. These results indicate a total water content of ca. 41% in the PEM.

  3. High-precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O / CO2 ratio from polar ice core samples

    Directory of Open Access Journals (Sweden)

    T. K. Bauska

    2014-11-01

    Full Text Available An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ13C-CO2 trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ13C of CO2 at very high precision, as well as measuring the CO2 and N2O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~400 g with a dry-extraction "ice grater" device. The liberated air is cryogenically purified to a CO2 and N2O mixture and analyzed with a microvolume-equipped dual-inlet IRMS (Thermo MAT 253. The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02‰ for δ13C-CO2 and 2 ppm and 4 ppb for the CO2 and N2O mixing ratios, respectively (1σ pooled standard deviation. Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultralow-temperature freezer (−60 °C improves the precision and decreases the experimental blank of the method to −0.07 ± 0.04‰. We describe techniques for accurate calibration of small samples and the application of a mass-spectrometric method based on source fragmentation for reconstructing the N2O history of the atmosphere. The oxygen isotopic composition of CO2 is also investigated, confirming previous observations of oxygen exchange between gaseous CO2 and solid H2O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H2O and CO2 exchange below the H2O bulk melting temperature.

  4. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    Science.gov (United States)

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar

  5. Development of a Dual-Laser Digital Holography Diagnostic for Surface Characterization at ORNL

    Science.gov (United States)

    Sawyer, J. C.; Biewer, T. M.; Thomas, C. E.; Zhang, Z.

    2017-10-01

    The Fusion and Materials for Nuclear Systems Division (FMNSD) at Oak Ridge National Laboratory (ORNL), in collaboration with The University of Tennessee, Knoxville and Third Dimension Technologies (TDT), presents continuing progress towards the development of a dual-laser digital holography (DH) technique for 3D imaging of plasma facing component (PFC) surfaces in real time. This update includes results from an ``on the bench'' single-laser DH demonstration. The dual-laser approach utilizes two CO2 lasers tuned to neighboring molecular CO2 lines to extend the 2 π ambiguity of holographic interferograms to 5 mm from the 10 μm wavelength. Reconstruction of the interferogram allows for measurement of changes in surface topology at rates of 2 mm/s. This status of a dual-laser DH system ``on the bench,'' demonstration and implementation on the Proto-MPEX device will be presented. This work was supported by The University of Tennessee JDRD program and the US. D.O.E. contract DE-AC05-00OR22725. Research sponsored by the Laboratory Directed Research and Development Program of ORNL, managed by UT Battelle, LLC, for the U.S. D.O.E.

  6. Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments

    Science.gov (United States)

    Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.

    Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.

  7. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity.

    Science.gov (United States)

    Mihajlović, Aleksandar I; Bruce, Alexander W

    2017-11-01

    During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis. © 2017 The Authors.

  8. Convergences and divergences in polar auxin transport and shoot development in land plant evolution

    OpenAIRE

    Fujita, Tomomichi; Hasebe, Mitsuyasu

    2009-01-01

    A shoot is a reiterated structure consisting of stems and leaves and is the prevailing body plan in most land plant lineages. Vascular plants form shoots in the diploid generation, whereas mosses do so in the haploid generation.1 However, whether these plants use similar molecular mechanisms in shoot development and how the genetic networks for shoot development evolved is not clear. In our recent paper,2 we examined polar auxin transport in several mosses, which is essential for shoot develo...

  9. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    Science.gov (United States)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  10. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    Science.gov (United States)

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  12. Development of Dual Quantitative Lateral Flow Immunoassay for the Detection of Mycotoxins.

    Science.gov (United States)

    Wang, Yuan-Kai; Yan, Ya-Xian; Sun, Jian-He

    2017-01-01

    Lateral flow immunoassays have been widely used in recent years for detection of toxins, heavy metals, and biomarkers. To improve the efficiency of individual lateral flow immunoassays, multiplex analytical strips play an important role in the detection of several important analytes. In this chapter, development of a dual lateral flow immunoassay is presented for detection of a variety of low molecular weight molecules. Various buffers, additives, and materials are introduced and evaluated. Depending on the analyte to be tested, the technique allows for selection of optimum buffers, additives, and other materials.

  13. Development of a new dual phase steel with laminated microstructural morphology

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 4156–83111 (Iran, Islamic Republic of); Karimi, M. [Department of Materials Science and Engineering, Shahrood University of Technology, Shahrood, 3619995161 (Iran, Islamic Republic of); Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 4156–83111 (Iran, Islamic Republic of)

    2017-05-01

    The development of dual phase steels to meet the current world demands, for the purpose of decreasing the fuel consumption with increasing the strength to weight ratio, requires certain microstructural modifications. In the present research, a new morphology of DP steel, known as Laminated–DP steel, as well as its unique production method has been introduced. The new process developed involved properly selecting low carbon steels, stacking them in a laminated manner and performing a roll bonding process followed by short austenitization treatment. The martensite volume fraction was designed and obtained to be 24%. Scanning electron microscopy (SEM) was employed for microstructural examination. Moreover, deformation and tensile behavior of the newly developed steel were studied and compared with those of some ordinary DP steel (ODP). Room temperature uniaxial tensile tests also revealed mechanical properties comparable with those of the commercial DP600 steel, a kind of structural automotive steel. - Highlights: • A new method for producing dual phase steels was introduced. • Employing a new thermo-mechanical process a laminated microstructure was obtained. • Mechanical properties of the new laminated DP steel were studied. • Tensile properties of the new DP steel were comparable with those of the commercial DP600 steel.

  14. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  15. Development of On-Demand Non-Polar and Semi-Polar Bulk Gallium Nitride Materials for Next Generation Electronic and Optoelectrode Devices

    National Research Council Canada - National Science Library

    Fini, P

    2007-01-01

    ...) wafers that will act as seeds for subsequent GaN boule growth in Phase II. Inlustra developed non-polar a-plane and m-plane GaN films with smooth surfaces and minimal wafer bowing and cracking...

  16. Research and development on optically pumped polarized ion sources. Technical progress report, July 1, 1985-June 30, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-07-01

    The development of an optically pumped polarized 23 Na target is discussed. The three categories of research are: (1) electron spin relaxation of the 23 Na due to wall collisions; (2) effects of radiation trapping on the polarization that can be produced in an alkali target by optical pumping; and (3) the effects of spin exchange collisions in the polarization of a fast H 0 beam formed by charge transfer as an H + beam passes through a polarized alkali target. 90 refs., 7 figs

  17. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  18. Development of dual-function SPECT and CT probe for small animal imaging

    International Nuclear Information System (INIS)

    Gambhir, Sanjay; Dube, Veeresh; Kheruka, Subash; Kumar, Uttam; Ahmad, Absar

    2010-01-01

    Full text: Different biological queries require different imaging strategies. In imaging this is more dependent not so much on the instruments but on the properties of the imaging agents.The development of dual-function probes for both fluorescence imaging and MRI was recently reported. Nano SPECT-CT, Bioscan system for animal imaging recently procured by our institute motivated us to explore and standardize a dual function probe for such a system. The study has been planned with a view develop a dual capability CT and radiopharmaceutical contrast to facilitate an anatomical and functional images thus combining the good resolution abilities of CT and high sensitivity functional images of SPECT. Method: Radiolabeling, of Bismuth nanocolloid with Technetium-99m was done and confirmation of good binding by instant thin layer chromatography (ITLC) confirmed more than 90% binding. This was injected into male Sprauge Dawley rats and biodistribution image and clearance time from blood was calculated. Confirmation, of Bismuth nano-colloid to act as CT contrast agent was done by performing phantom study at various concentrations in saline, 50 mg/ml, 100 mg/ml, 200 mg/ml and 500 mg/ml at CT tube current of 2.5mA and tube voltage of 140 KVp. Results: As compared to commercial Iodine contrast (375 mg/ml iodine) which was used as standard the average clearance time Bismuth colloid was longer. Its biodistribution was seen in heart, Liver, spleen and kidney. The iodine comparable CT contrast was achieved by 500 mg/ml of Bismuth colloid. 99m Tc-Bismuth colloid imaging on a dedicated animal SPECT-CT (Nano-SPECT, Bioscan) revealed similar biodistribution and in-vivo-stability of labeling. Conclusion: Successful radiolabeling, in-vivo stability and SPECT imaging of 99m Tc-Bismuth colloid along with its potential to impart iodine equivalent contrast raises the possibility of converting 99m-Tc-Bismuth as dual SPECT-CT probe for obtaining functional and anatomical image in pre

  19. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    Science.gov (United States)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  20. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    Science.gov (United States)

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Dual-inflammatory cytokines on TiO2nanotube-coated surfaces used for regulating macrophage polarization in bone implants.

    Science.gov (United States)

    Gao, Lili; Li, Mengting; Yin, Lu; Zhao, Chanjuan; Chen, Junhong; Zhou, Jie; Duan, Ke; Feng, Bo

    2018-03-10

    Excessive immune responses following the use of implantable, biomaterial-based medical devices represent a substantial challenge for treatment efficacy and patient well-being. Specifically, after implantation, pro-inflammatory M1 macrophages are activated by cytokines such as interferon-γ (IFN-γ) followed by anti-inflammatory M2 macrophages polarized by cytokines including interleukin-4 (IL-4), leading to healing and long-term stability of implants. Here, we report the loading of an immunomodulatory cytokine,IL-4, into TiO 2 nanotubes (TNTs) followed by hydrogel coating on the TNTs for subsequent release of IL-4. Finally, IFN-γ was added onto the gel layer to effect rapid release. The release rates of both cytokines from the samples were monitored using an immersion test in phosphate-buffered solution. The cytocompatibility of the sample was evaluated using cultures of osteoblasts and macrophages. Macrophage phenotype switching in vitro was examined via cytokine secretion and gene expression analyses. In vitro testing showed that the sample could stimulate macrophage polarization from the M1 to M2 phenotype at the desired period owing to temporal release of IFN-γ and IL-4. Another biomaterial containing only IL-4 in TNTs was also able to modulate the transformation of M1 to M2 although with weaker effect than that containing IFN-γ and IL-4. The biomaterial may be useful as an osteoimplant in vivo owing to the inflammation caused by a wound or implantation. This study provided biomaterials capable of facilitating smooth M1 to M2 macrophages switching, which might be helpful to research immune responses of tissues to implants and will likely contribute to the development of bone substitute materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  2. Numerical simulation study of polar low in Kara sea: developing mechanisms evaluation

    Science.gov (United States)

    Verezemskaya, Polina; Stepanenko, Victor

    2016-04-01

    The study focuses on investigating the mechanisms of interaction between potential vorticity's anomalies and latent heat release as polar low development factors. The polar low observed in Kara sea 29th -30th September 2008 is analyzed using numerical modeling (WRF ARW model) and observational data (IR cloudiness and microwave water vapor and surface wind speeds from MODIS (Aqua)). Two numerical experiments with 5 km spatial resolution were conducted with microphisical scheme turned on and off to assess the role of latent heat on vortex intensification. The quality of modelling was estimated by comparing WRF output and the satellite data. Based on reference experiment (with microphysical parameterization turned on) and observational data PL developed in vertically stable, non-baroclinic atmosphere and characterized by very low surface heat fluxes. «Dry» experiment results suggests that without latent heat source in the middle troposphere polar low intensifies slower, than in reality. In order to divide low- and upper-level forcing within PL dynamics we used attribution concept based on the quasi-geostrophic omega-equation. To ensure that QG theory is applicable for this PL case, we estimate correlation between the modeled and QG vertical speed field obtained from omega-equation using finite-differences method.

  3. Evolution and development of hair cell polarity and efferent function in the inner ear.

    Science.gov (United States)

    Sienknecht, Ulrike J; Köppl, Christine; Fritzsch, Bernd

    2014-01-01

    The function of the inner ear critically depends on mechanoelectrically transducing hair cells and their afferent and efferent innervation. The first part of this review presents data on the evolution and development of polarized vertebrate hair cells that generate a sensitive axis for mechanical stimulation, an essential part of the function of hair cells. Beyond the cellular level, a coordinated alignment of polarized hair cells across a sensory epithelium, a phenomenon called planar cell polarity (PCP), is essential for the organ's function. The coordinated alignment of hair cells leads to hair cell orientation patterns that are characteristic of the different sensory epithelia of the vertebrate inner ear. Here, we review the developmental mechanisms that potentially generate molecular and morphological asymmetries necessary for the control of PCP. In the second part, this review concentrates on the evolution, development and function of the enigmatic efferent neurons terminating on hair cells. We present evidence suggestive of efferents being derived from motoneurons and synapsing predominantly onto a unique but ancient cholinergic receptor. A review of functional data shows that the plesiomorphic role of the efferent system likely was to globally shut down and protect the peripheral sensors, be they vestibular, lateral line or auditory hair cells, from desensitization and damage during situations of self-induced sensory overload. The addition of a dedicated auditory papilla in land vertebrates appears to have favored the separation of vestibular and auditory efferents and specializations for more sophisticated and more diverse functions. © 2014 S. Karger AG, Basel.

  4. Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter’s Lifetime Analysis

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2010-06-01

    Full Text Available To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP is developed. In the propagator, accelerations due to the Moon’s non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator’s performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth’s time of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body’s gravitational attractions (especially the Earth, and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth’s time. However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least 50 × 50 degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea’s lunar orbiter missions.

  5. Activities and Issues of a Developed Information System for the Italian Polar Research

    Directory of Open Access Journals (Sweden)

    A Damiani

    2010-02-01

    Full Text Available Activities performed to develop an information system for the diffusion of Italian polar research (SIRIA project are here described. The system collects and shares information related to research projects carried out in both the Antarctic (since 1985 and Arctic (since 1997 regions. It is addressed primarily to dedicated users in order to foster interdisciplinary research but non-specialists may also be interested in the major results. SIRIA is in charge of managing the National Antarctic Data Center of Italy and confers its metadata to the Antarctic Master Directory. Since 2003, the National Antarctic Research Program has funded this project, which, by restyling its tasks, databases, and web site, is becoming the portal of Italian polar research. Issues concerning data management and policy in Italy are also covered.

  6. Developing and testing multimedia educational tools to teach Polar Sciences in the Italian school

    Science.gov (United States)

    Macario, Maddalena; Cattadori, Matteo; Bianchi, Cristiana; Zattin, Massimiliano; Talarico, Franco Maria

    2013-04-01

    In the last few years science education moved forward rapidly by connecting the expertise and enthusiasm of polar educators worldwide. The interest in Polar Sciences determined the creation of a global professional network for those that educate in, for, and about the Polar Regions. In Italy, this cooperation is well represented by APECS-Italy, the Italian section of the Association of Polar Early Career Scientists (APECS) that is composed by young researchers and teachers of the Italian School. The Polar Regions represent one of the best natural environments where students can investigate directly on global changes. In this sense, the working group UNICAMearth of the Geology Division of School of Science and Technology, University of Camerino (Italy), promotes the arrangement of instructional resources based on real data coming from the research world. Our project aims to develop innovative teaching resources and practices designed to bring the importance of the Polar Regions closer to home. Consequently, Polar Sciences could become a focus point in the new national school curricula, where Earth Sciences have to be thought and learnt in an integrated way together with other sciences. In particular, M. Macario is producing a teaching tool package, starting from a case study, which includes a dozen of full lesson plans based on multimedia tools (images, smart board lessons and videos of lab experiments) as well as on hands-on activities about polar issues and phenomena. Among the resources the teaching tool package is referring to, there is also an App for tablet named CLAST (CLimate in Antartica from Sediments and Tectonics). This App has been designed by a team made up of polar scientists belonging to the University of Siena and University of Padova, two science teachers of the Museo delle Scienze (MUSE) of Trento other than M. Macario. CLAST has been funded by two Research Projects, CLITEITAM ("CLImate-TEctonics Interactions along the TransAntarctic Mountains

  7. Non-Toxic Dual Thrust Reaction Control Engine Development for On-Orbit APS Applications

    Science.gov (United States)

    Robinson, Philip J.; Veith, Eric M.

    2003-01-01

    A non-toxic dual thrust proof-of-concept demonstration engine was successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the Next Generation Launch Technology (NGLT) program. The demonstration engine utilized the existing Kistler K-1 870 lbf LOX/Ethanol orbital maneuvering engine ( O m ) coupled with some special test equipment (STE) that enabled engine operation at 870 lbf in the primary mode and 25 lbf in the vernier mode. Ambient testing in primary mode varied mixture ratio (MR) from 1.28 to 1.71 and chamber pressure (P(c) from 110 to 181 psia, and evaluated electrical pulse widths (EPW) of 0.080, 0.100 and 0.250 seconds. Altitude testing in vernier mode explored igniter and thruster pulsing characteristics, long duration steady state operation (greater than 420 sec) and the impact of varying the percent fuel film cooling on vernier performance and chamber thermal response at low PC (4 psia). Data produced from the testing provided calibration of the performance and thermal models used in the design of the next version of the dual thrust Reaction Control Engine (RCE).

  8. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  9. Status of the Polar Engineering Development Center's (PEDC) Open-Closed Boundary Synoptic Nowcast

    Science.gov (United States)

    Gerrard, A. J.; Kim, H.

    2017-12-01

    We present the most recent Polar Engineering Development Center (PEDC) developments, specifically the first magnetic-field open-closed boundary (OCB) determination scheme. This scheme is implemented in "near real time" and utilizes data from an array of fluxgate magnetometers that are distributed across the high Antarctic plateau, as per Urban et al. [2012]. This OCB determination enables a high-latitude, synoptic measure of space weather variability that provides for more regional determinations of particle precipitation and related impacts. This methodology therefore supplements exciting "index-based" or empically-based space weather nowcasts currently in use.

  10. Development of a Dual-Fuel Gas Turbine Engine of Liquid and Low-Calorific Gas

    Science.gov (United States)

    Koyama, Masamichi; Fujiwara, Hiroshi

    We developed a dual-fuel single can combustor for the Niigata Gas Turbine (NGT2BC), which was developed as a continuous-duty gas turbine capable of burning both kerosene and digester gas. The output of the NGT2BC is 920kW for continuous use with digester gas and 1375kW for emergency use with liquid fuel. Digester gas, obtained from sludge processing at sewage treatment plants, is a biomass energy resource whose use reduces CO2 emissions and take advantage of an otherwise wasted energy source. Design features for good combustion with digester gas include optimized the good matching of gas injection and swirl air and reduced reference velocity. The optimal combination of these parameters was determined through CFD analysis and atmospheric rig testing.

  11. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  12. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  13. Development of a dual permeability model within a hydrological catchment modeling framework: 1D application.

    Science.gov (United States)

    Djabelkhir, K; Lauvernet, C; Kraft, P; Carluer, N

    2017-01-01

    Preferential flow contributes significantly to pesticide fast transfer from surface to groundwater. Modeling this process at several scales is an important challenge for improving the representation of this process which is often neglected. In this study, we developed a dual permeability approach in a hydrological modeling framework, CMF, which is a collaborative environment for developing spatially-integrated models of water fluxes. In the development we propose here, infiltration in macropores which are connected to the surface is activated when the first matrix layer reaches saturation. A transfer function is used to represent water fluxes from macropores to matrix. This approach is tested in 1D by comparison with the dual permeability approach included in Hydrus1D, on 4 typical soil-types (sandy-loam, silty-loam, clay-loam and sandy-clay-loam). The results showed an underestimation of the flux infiltrated in the matrix surface and important infiltration in macropores with the new model, for most of soil-types, comparing to Hydrus1D. Similarities are observed for fluxes transferred from macropores to matrix. Solute transport is then coupled to CMF-DP model considering a convection transport and a linear adsorption to represent pesticides behavior in macroporous soils. The approach we developed is similar to Hydrus though having the advantage to need less input parameters, especially for the exchange between the two porous media. In the future, it could be applied for predicting pesticides transfer in macroporous soils at different scales for operational applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  15. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    Science.gov (United States)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  16. Developing a Dual-Level Capabilities Approach: Using Constructivist Grounded Theory and Feminist Ethnography to Enhance the Capabilities Approaches

    Science.gov (United States)

    Hall, Kia M. Q.

    2014-01-01

    In this study, a dual-level capabilities approach to development is introduced. This approach intends to improve upon individual-focused capabilities approaches developed by Amartya Sen and Martha Nussbaum. Based upon seven months of ethnographic research in the Afro-descendant, autochthonous Garifuna community of Honduras, constructivist grounded…

  17. Developments in investigations of dual purpose nuclear plant features for Egypt

    International Nuclear Information System (INIS)

    Fouad, H.Y.

    1976-01-01

    Developments in investigations of dual purpose nuclear power plant features for Egypt were conducted with the aim of assessing the potentialities of such a plant and its suitability to the Egyptian conditions. High points of the results showed the capital cost to be 500 to 600 PoundKwe, the fuel cost to be 2 to 4 mills/Kwh, and the total generating cost to be 12 to 15 mills/Kwh. Steam temperature to desalination was 140 C. The optimum Mwe to Mgd ratio was close to 2.0. Energy cost was 63 C/Mbtu. Desalination plant initial cost was 1000 Pound/K ga, output ratio 13.1, load factor 85% leading to water cost of 90 c/K gal. Preliminary features for a 400 Mwe-250MGD-PWR plant with MSF-LT evaporator coupled were outlined. (author)

  18. Necator americanus and Ancylostoma ceylanicum: development of protocols for dual infection in hamsters.

    Science.gov (United States)

    Rajasekariah, G R; Dhage, K R; Deb, B N; Bose, S

    1985-03-01

    Two-day-old baby hamsters were infected initially with the infective larvae of hamster-adapted human hookworm, Necator americanus (NaL3). After a specified period they were again infected orally with infective larvae of Ancylostoma ceylanicum (AcL3). Three weeks after the second infection they were killed and the establishment of N. americanus and A. ceylanicum was assessed. The effect of different infection levels and exposure period of N. americanus on the concurrent establishment of A. ceylanicum was also examined. An infection with 50 NaL3 percutaneously, and 3 weeks later, a second infection with 50 AcL3 orally has produced reasonably equal number of hookworms (no statistical difference in the burden of N. americanus and A. ceylanicum) in the intestine of hamsters. Thus this protocol of dual infection was found suitable to develop two species of hookworms in hamsters for anthelmintic screening.

  19. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. Copyright © 2015. Published by Elsevier Inc.

  20. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  1. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  2. The Language and Literacy Development of Young Dual Language Learners: A Critical Review

    Science.gov (United States)

    Hammer, Carol Scheffner; Hoff, Erika; Uchikoshi, Yuuko; Gillanders, Cristina; Castro, Dina; Sandilos, Lia E.

    2015-01-01

    The number of children living in the United States who are learning two languages is increasing greatly. However, relatively little research has been conducted on the language and literacy development of dual language learners (DLLs), particularly during the early childhood years. To summarize the extant literature and guide future research, a critical analysis of the literature was conducted. A search of major databases for studies on young typically developing DLLs between 2000–2011 yielded 182 peer-reviewed articles. Findings about DLL children’s developmental trajectories in the various areas of language and literacy are presented. Much of these findings should be considered preliminary, because there were few areas where multiple studies were conducted. Conclusions were reached when sufficient evidence existed in a particular area. First, the research shows that DLLs have two separate language systems early in life. Second, differences in some areas of language development, such as vocabulary, appear to exist among DLLs depending on when they were first exposed to their second language. Third, DLLs’ language and literacy development may differ from that of monolinguals, although DLLs appear to catch up over time. Fourth, little is known about factors that influence DLLs’ development, although the amount of language exposure to and usage of DLLs’ two languages appears to play key roles. Methodological issues are addressed, and directions for future research are discussed. PMID:25878395

  3. Development of polarized negative hydrogen ion source with resonant charge-exchange plasma ionizer

    Science.gov (United States)

    Belov, A. S.; Esin, S. K.; Netchaeva, L. P.; Turbabin, A. V.; Vasil'Ev, G. A.

    2001-06-01

    Polarized negative hydrogen ion beam with peak current of 2.5 mA has been obtained from an atomic beam-type polarized ion source of Institute for Nuclear Research, Moscow. The intensity improvement has been achieved due to increase of efficiency of conversion of polarized hydrogen atoms into polarized negative ions. New converter for production of deuterium plasma with high density of unpolarized negative ions is described. Limitations of the method and possible improvements are discussed. .

  4. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Atekwana, Estella [Oklahoma State Univ., Stillwater, OK (United States); Patrauchan, Marianna [Oklahoma State Univ., Stillwater, OK (United States); Revil, Andre [Colorado School of Mines, Golden, CO (United States)

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activities on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms

  5. Developing Flexible Dual Master's Degree Programs at UPAEP (Universidad Popular Autonoma del Estado de Puebla) and OSU (Oklahoma State University)

    Science.gov (United States)

    Fabregas-Janeiro, Maria G.; de la Parra, Pablo Nuno

    2012-01-01

    In 2006, UPAEP (Universidad Popular Autonoma del Estado de Puebla) and OSU (Oklahoma State University) signed a MOU (memorandum of understanding) to develop more than 20 dual master's degree programs. This special partnership has allowed students from Mexico and the United States to study two master degree programs, in two languages, in two…

  6. Policy Statement on Supporting the Development of Children Who Are Dual Language Learners in Early Childhood Programs

    Science.gov (United States)

    US Department of Health and Human Services, 2016

    2016-01-01

    The purpose of this policy statement is to support early childhood programs and States by providing recommendations that promote the development and learning of young children, birth to age five, who are dual language learners (DLLs). The statement also provides support to tribal communities in their language revitalization efforts within tribal…

  7. Does Biliteracy + Mathematical Discourse = Binumerate Development? Language Use in a Middle School Dual-Language Mathematics Classroom

    Science.gov (United States)

    Rubinstein-Ávila, Eliane; Sox, Amanda A.; Kaplan, Suzanne; McGraw, Rebecca

    2015-01-01

    Few studies on the role of bilingualism in mathematics classrooms explore the intersection of biliteracy, language use, mathematical discourse, and numeracy--especially at the middle school level. Drawing from biliteracy development theory and reform mathematics education literature, this qualitative case study of a dual-language mathematics…

  8. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Science.gov (United States)

    Szaz, Denes; Horvath, Gabor; Barta, Andras; Robertson, Bruce A; Farkas, Alexandra; Egri, Adam; Tarjanyi, Nikolett; Racz, Gergely; Kriska, Gyorgy

    2015-01-01

    Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  9. The Development of CyberLearning in Dual-Mode: Higher Education Institutions in Taiwan

    Directory of Open Access Journals (Sweden)

    Yau-Jane Chen

    2002-01-01

    Full Text Available Open and distance education in Taiwan has evolved into the third phase – cyberlearning – conceptualized as teaching and learning interactions mediated entirely through the application of state-of-the-art information and communications technologies (ICT, such as the Internet and World Wide Web. Socio-economic influences, the development of new technologies and a marked shift in learning paradigms have increased the utilization of ICT at all levels of the Taiwanese education system. Since the advent and provision of cyberlearning programs, well over half (56 percent of the conventional universities and colleges have been upgraded to dual-mode higher educational institutions. They offer real-time multicast instructional systems using videoconferencing and cable TV technology, virtual classroom systems via network-based instructional management systems, and curriculum-on-demand systems utilizing video-on-demand technology. Critical success factors in the development of these cyber universities and the opportunities, challenges and implications inherent in these are analyzed. ICT and the provision of cyberlearning have gradually been changing the structure and vision of higher education institutions as well as the entire learning environment and educational systems. Because the Ministry of Education (MOE has initiated a policy on credit-based degrees for cyberlearning courses/ programs, the development of open and distance education is anticipated to hasten the transformation of Taiwan’s education system towards one which will create an ideal learning society in the 21st century.

  10. Storm-enhanced plasma density and polar tongue of ionization development during the 15 May 2005 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-06-01

    We investigate the ionosphere's global response to the 15 May 2005 superstorm in terms of storm evolution and ionospheric electrodynamics. Our aim is to study the global distribution of plasma and the resultant large-scale ionospheric features including the equatorial ionization anomaly (EIA), storm-enhanced density (SED), and polar tongue of ionization (TOI). We have combined multi-instrument ionospheric data, solar and terrestrial magnetic data, and polar convection maps. Results reveal the prompt penetration of the interplanetary electric field to the polar region and then to the equator with a dusk-to-dawn polarity during the initial phase and with a dawn-to-dusk polarity during the main phase. This drove during the initial phase a weak eastward equatorial electrojet (EEJ) in the American sector at nighttime and a weak westward EEJ in the Indian-Australian sector at daytime. During the main phase, these EEJs intensified and changed polarities. SED and polar TOI development was observed prior to and during the initial phase at evening-premidnight hours over North America and during the main phase in the south at afternoon-evening hours in the Australian sector. During the main phase and early in the recovery phase, the EIA-SED structure was well formed in the Asian longitude sector. Then, polar TOI development was absent in the north because of the long distance from the magnetic pole but was supported in the south because of the closeness of daytime cusp and magnetic pole. Thus, the EIA-SED-TOI structure developed twice but each time in a different longitude sector and with different characteristics.

  11. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Tanja; Gizewski, Elke Ruth; Grams, Astrid Ellen [Medical University of Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Rehwald, Rafael; Glodny, Bernhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan [Medical University of Innsbruck, Department of Neurology, Innsbruck (Austria)

    2017-03-15

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. (orig.)

  12. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    Science.gov (United States)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  13. Development of manufacture of mirror glass substrate for x-ray timing and polarization observatory

    Science.gov (United States)

    Wei, Zhenbo; Ge, Bing; Jin, Xin; Liu, Na; Liao, Yingyu; Ma, Bin; Bai, Yuhong; Wang, Zhanshan

    2016-07-01

    In China, X-ray timing and polarization (XTP) observatory will have a collection area of 9,000 cm2 at 2 6 keV. The observatory consists of five identical hard X-ray telescopes and ten identical soft X-ray telescopes. The angular resolution is about 1 arcminute of HPD (half-power diameter). Each telescope consists of a large number of mirror segments precisely assembled together. Our development of the mirror glass substrate is presented in this manuscript. These substrates are produced by slumping commercially available thin glass sheets. Here, we report on our work of manufacturing these substrates. The optimization of the slumping procedure is described and optimal procedure parameters are reported. The figure error of slumped glass substrates was measured by a laser scanner and an interferometer with CGH. The measurement demonstrated that the figure error is lower enough for the construction of XTP telescopes.

  14. Development of a Dual Solid-State pH-AT Sensor

    Science.gov (United States)

    Briggs, E.; Martz, T. R.; Kummel, A.; Sandoval, S.; Erten, A.

    2016-02-01

    Here we report on our progress toward development of a solid state, reagentless sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (AT) using ion sensitive field effect transistor (ISFET) technology. The goal of this work is to provide a means of continuous, direct measurement of the seawater carbon dioxide system through measurement of two "master variables" (pH and AT). ISFET-based pH sensors that achieve 0.001 precision are presently in widespread use on autonomous oceanographic platforms. Modifications to an ISFET allow a nL-scale acid-base titration of total alkalinity to be carried out in 10 s. Titrant, H+, is generated through the electrolysis of water on the surface of the chip eliminating the requirement of external reagents. Initial characterization has been performed titrating individual components (i.e. OH-, HCO3-, CO32-, PO43-) of seawater AT. Based on previous work by others in simple acid-base systems and our preliminary results in seawater we feel that it is within reach to set a benchmark goal of 10 μmol kg-1 precision in AT. The estimated resolution of this dual pH-AT sensor translates to approximately 0.5 and 0.7% error in Total Dissolved Inorganic Carbon (CT) and pCO2 respectively and would have a number of immediate applications for investigating biogeochemical processes where strong gradients exist over short distances and in rapidly changing environments.

  15. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    International Nuclear Information System (INIS)

    Kouichi Tsuji; Kazuhiko Nakano

    2007-01-01

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-μm thick Au foil were approximately 90 μm for the x-ray energy of Au Lα. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  16. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Benjamin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  17. A tomographic particle image velocimetry investigation of the flow development over dual step cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Morton, C., E-mail: chris.morton@ucalgary.ca [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4 (Canada); Yarusevych, S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada); Scarano, F. [Department of Aerospace Engineering, Delft University of Technology, 2628 Delft (Netherlands)

    2016-02-15

    This experimental study focuses on the near wake development of a dual step cylinder geometry consisting of a long base cylinder of diameter d to which a larger diameter (D) cylinder of length L is attached coaxially at mid-span. The experiments cover a range of Reynolds numbers, 2000 ≤ Re{sub D} ≤ 5000, diameter ratios, 1.33 ≤ D/d ≤ 2.0 and large cylinder aspect ratios, 0.5 ≤ L/D ≤ 5 using Tomographic particle image velocimetry. Distinct changes in wake topology are observed varying the above parameters. Supporting previous experimental studies on the same geometry involving flow visualization and planar measurements, four distinct flow regimes are identified to which a distinct three-dimensional wake topology can be associated. The vortex-dominated wake dynamical behaviour is investigated with Proper Orthogonal Decomposition (POD) and conditional averaging of three-dimensional velocity fields is used to exemplify the different shedding regimes. The conditionally averaged flow fields are shown to quantitatively resolve flow features equivalent to those obtained from a reduced order model consisting of the first ten to twenty POD modes, identifying the dominant vortex shedding cells and their interactions.

  18. Development of Multi-chroic Millimeter-wave Polarization Sensitive Detector Arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — Improved measurements of the polarization of the Cosmic Microwave Background (CMB) will improve our understanding of both cosmology and fundamental physics....

  19. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  20. Dual Language Development of Latino Children: Effect of Instructional Program Type and the Home and School Language Environment.

    Science.gov (United States)

    Collins, Brian A

    2014-01-01

    Latino dual language children typically enter school with a wide range of proficiencies in Spanish and English, many with low proficiency in both languages, yet do make gains in one or both languages during their first school years. Dual language development is associated with how language is used at home and school, as well as the type of instructional program children receive at school. The present study investigates how changes in both Spanish and English proficiencies of Latino, second-generation immigrant children ( n =163) from kindergarten to second grade relate to instructional program type as well as language use at home and school. A series of MANCOVAs demonstrated significant dual language gains in children who were in bilingual classrooms and schools where Spanish was used among the teachers, students, and staff. Furthermore, only in classrooms where both Spanish and English were used did children reach age-appropriate levels of academic proficiency in both languages. Home language use was also significantly associated with dual language gains as was maternal Spanish vocabulary knowledge before controlling for maternal education. Educational implications and potential benefits associated with bilingualism are discussed.

  1. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  2. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    Directory of Open Access Journals (Sweden)

    Zikun Huang

    Full Text Available The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  3. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S

    2013-01-01

    Displaced dual-mode imaging (DDI) is introduced as a method for simultaneous imaging in positive and negative-ion mode on the same sample with desorption electrospray ionization imaging, as well as a method for simultaneous imaging in full-scan and tandem mass spectrometry (MS/MS) mode. DDI...... only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...... in the MS/MS images. The latter approach is useful, for example in whole-body imaging experiments where the full-scan data gives an overview of the tissue, and the MS/MS mode provides the sensitivity to image trace amounts of drugs and metabolites. Copyright © 2013 John Wiley & Sons, Ltd....

  4. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  5. Development of a Bridge Transport System for the PRIDE Dual Arm Servo-manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Jik; Park, Byung Suk; Lee, Jong Kwang; Kim, Sung Hyun; Park, Hee Sung; Kim, Young Hwang; Jung, Jae Hoo; Kim, Ki Ho; Kim, Ho Dong

    2009-11-15

    A bridge transport system is needed to locate a dual arm servo-manipulator anywhere in a PRIDE cell and to perform remote handling tasks such as operation and repair. To develop a highly reliable bridge transport system, patent surveys were first performed, and then new ideas concerning the principles of telescopic motion and cable management were proposed in consideration of their appropriateness to our system. These ideas are superior to PaR systems inc.'s in terms of structural strength as well as the aesthetic configuration attributed to hidden chains which are needed for telescopic motion with equal extension and retraction. Small space in the PRIDE cell invokes difficulties in designing telescopic tube because it restricts full stroke to 2,000 mm and fully retractable tubset length to as short as possible. To solve this problem, an optimization problem was formulated to determine the number of tubes and a tube length satisfying the spatial restrictions. Also, a motor and gearhead sizing process was established to select proper motors with gearheads driving the girder, trolley, telescopic tube and manipulator interface, in the direction of x, y, z and rotation, respectively. 3D modeling tasks were carried out after 2D drawings to check mechanical interference between parts which is difficult to find out in 2D drawings, to estimate mass and moment of inertia and then to verify if the selected motors and gearheads are appropriate. As a design verification process, a structural analysis was performed after importing 3D models into ABAQUS and then assembling parts, generating mesh, and imposing boundary and load conditions. As a result, a part of the design was revised and the safety factor was quantified. As of Nov 2009, all design processes were finished and the fabrication of the bridge transport system will be completed by the end of Dec.

  6. PolarPortal.org Communicates Real-Time Developments in the Arctic

    Science.gov (United States)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  7. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  8. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  9. The German Dual System of Vocational Education and Implications for Human Resource Development in America.

    Science.gov (United States)

    Theuerkauf, Walter E.; Weiner, Andreas

    The dual job training system in Germany is an essential market parameter of the country's economy and a part of the country's growth policy. By improving human capital (by providing training in high-tech sectors) it will also help safeguard Germany's future as a major industrial nation. Training primarily takes place in handicraft and industrial…

  10. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  11. DEVELOPMENT OF DUAL ANCHORED SHEET PILE WALL METHOD TO INCREASE FRONT WATER DEPTH AND SEISMIC RESISTANCE OF EXISTING QUAY

    Science.gov (United States)

    Nakamura, Yasushi; Sato, Masakatsu; Kikuchi, Yoshiaki; Sugano, Takahiro; Morikawa, Yoshiyuki; Hoshino, Masami; Miki, Kenichi

    Recently the dual anchored sheet pile wall method has been developed to increase a front water depth and seismic resistance of existing quay walls by providing an additional anchor in the lower level of them to reduce a flexural moment of the sheet piles and a tension of the anchors. The existing technical information is not enough to evaluate the seismic behavior and the retrofit of the quay walls with anchors at two different levels. Therefore the experiments with a scale model set on the vibration table of the centrifugal apparatus as well as two dimensional effective stress analyses have been mobilized to investigate the seismic retrofit of the dual anchored sheet pile wall. The experiments and analyses demonstrate the increase the earthquake resistance of quay walls, because they showed the additional anchor can reduce the stress of the sheet walls to one half.

  12. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments.

    Science.gov (United States)

    Meister, Robert J; Kotow, Louren M; Gasser, Charles S

    2002-09-01

    The outer integument of Arabidopsis ovules exhibits marked polarity in its development, growing extensively from the abaxial side, but only to a very limited extent from the adaxial side of the ovule. Mutations in two genes affect this asymmetric growth. In strong inner no outer (ino) mutants outer integument growth is eliminated, whereas in superman (sup) mutants integument growth on the adaxial side is nearly equal to wild-type growth on the abaxial side. Through complementation and reporter gene analysis, a region of INO 5'-flanking sequences was identified that contains sufficient information for appropriate expression of INO. Using this INO promoter (P-INO) we show that INO acts as a positive regulator of transcription from P-INO, but is not sufficient for de novo initiation of transcription in other plant parts. Protein fusions demonstrate nuclear localization of INO, consistent with a proposed role as a transcription factor for this member of the YABBY protein family. Through its ability to inhibit expression of the endogenous INO gene and transgenes driven by P-INO, SUP is shown to be a negative regulator of INO transcription. Substitution of another YABBY protein coding region (CRABS CLAW) for INO overcomes this negative regulation, indicating that SUP suppresses INO transcription through attenuation of the INO positive autoregulatory loop.

  13. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Chun, E-mail: chinchun@nsrrc.org.tw; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10{sup −8} Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  14. Development of a Polarized Electron Gun Based on an S-Band PWT Photoinjector

    CERN Document Server

    Clendenin, J E; Yu, D; Newsham, D; Luo, Y; Smirnov, A

    2003-01-01

    An RF polarized electron gun utilizing the unique features of an integrated, plane-wave-transformer (PWT) photoelectron injector [1] is being developed by DULY Research Inc. in collaboration with SLAC. Modifications to a DULY S-band device [2] include: a re-design of the photocathode/RF backplane interface to accommodate a GaAs cathode; change in the design of the vacuum ports to provide 10-11 Torr operation; the inclusion of a load-lock photocathode replacement system to allow for reactivation and cessation of the GaAs photocathode in a vacuum; and alteration of the magnet field coils to make room for the load-lock. The use of a stainless steel outer tank and cooling rods without copper plating may also provide better vacuum performance at the expense of diminished Q factor. The effectiveness of both the standard cooling rods and synthetic diamond heat sinks for disk cooling is investigated for future linear collider applications operating at a rep rate of 180 Hz and a bunch charge of 2 nC.

  15. Development of an in situ polarization-dependent total-reflection fluorescence XAFS measurement system.

    Science.gov (United States)

    Chun, W J; Tanizawa, Y; Shido, T; Iwasawa, Y; Nomura, M; Asakura, K

    2001-03-01

    An in situ polarization-dependent total-reflection fluorescence X-ray absorption fine structure (PTRF-XAFS) spectroscopy system has been developed, which enables PTRF-XAFS experiments to be performed in three different orientations at various temperatures (273-600 K) and pressures (10(-10) approximately 760 torr). The system consists of a measurement chamber and a preparation chamber. The measurement chamber has a high-precision six-axis goniometer and a multielement solid-state detector. Using a transfer chamber, also operated under ultra-high-vacuum conditions, the sample can be transferred to the measurement chamber from the preparation chamber, which possesses low-energy electron diffraction, Auger electron spectroscopy and X-ray photoelectron spectroscopy facilities, as well as a sputtering gun and an annealing system. The in situ PTRF-EXAFS for Cu species on TiO2 (110) has been measured in three different orientations, revealing anisotropic growth of Cu under the influence of the TiO2 (110) surface.

  16. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    International Nuclear Information System (INIS)

    Longhi, E C; Bencok, P; Dobrynin, A; Rial, E C M; Rose, A; Steadman, P; Thompson, C; Thomson, A; Wang, H

    2013-01-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  17. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    Science.gov (United States)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  18. Concept and technology development for the multispectral imager of the Canadian Polar Communications and Weather mission

    Science.gov (United States)

    Moreau, Louis; Dubois, Patrick; Girard, Frédéric; Tanguay, François; Giroux, Jacques

    2012-09-01

    The Polar Communications and Weather (PCW) mission is proposed by the Canadian Space Agency (CSA), in partnership with Environment Canada, the Department of National Defence, and several other Canadian government departments. The objectives of the PCW mission are to offer meteorological observations and telecommunication services for the Canadian North. These capabilities are particularly important because of increasing interest in the Arctic and the desire to maintain Canadian sovereignty in this region. The PCW mission has completed its Phase A in 2011. The PCW Meteorological Payload is a Multi-Spectral Imager (MSI) that will provide near-real time weather imagery for the entire circumpolar region with a refresh period of 15 to 30 minutes. Two satellites on a Highly Elliptical Orbit (HEO) will carry the instrument so as to observe the high latitudes 24 hours per day from a point of view that is almost geostationary. The data from the imagers are expected to greatly enhance accuracy of numerical weather prediction models for North America and globally. The mission will also produce useful information on environment and climate in the North. During Phase A, a certain number of critical technologies were identified. The CSA has initiated an effort to develop some of these so that their Technology Readiness Level (TRL) will be suitable for the follow-on phases of the program. An industrial team lead by ABB has been selected to perform technology development activities for the Meteorological Payload. The goal of the project is to enhance the TRL of the telescope, the spectral separation optics, and the infrared multispectral cameras of the PCW Meteorological Payload by fabricating and testing breadboards for these items. We will describe the Meteorological Payload concept and report on the status of the development activities.

  19. Air Force Journal of Logistics. Development and Analysis of a Dual-Role Fighter Deployment Footprint Logistics Planning Model. Volume XXI, Number 1

    National Research Council Canada - National Science Library

    Griffis, Stanley

    1997-01-01

    .... The Joint Strike Fighter (JSF) is the next-generation, multi-service, multi-national dual-role fighter acquisition program focusing on the development, testing, and fielding of a replacement aircraft for aging air-to-ground...

  20. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  1. Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2

    Science.gov (United States)

    vandenBerg, Alysia L.; Sassoon, David A.

    2009-01-01

    Summary Wnt signaling effectors direct the development and adult remodeling of the female reproductive tract (FRT); however, the role of non-canonical Wnt signaling has not been explored in this tissue. The non-canonical Wnt signaling protein van gogh-like 2 is mutated in loop-tail (Lp) mutant mice (Vangl2Lp), which display defects in multiple tissues. We find that Vangl2Lp mutant uterine epithelium displays altered cell polarity, concommitant with changes in cytoskeletal actin and scribble (scribbled, Scrb1) localization. The postnatal mutant phenotype is an exacerbation of that seen at birth, exhibiting more smooth muscle and reduced stromal mesenchyme. These data suggest that early changes in cell polarity have lasting consequences for FRT development. Furthermore, Vangl2 is required to restrict Scrb1 protein to the basolateral epithelial membrane in the neonatal uterus, and an accumulation of fibrillar-like structures observed by electron microscopy in Vangl2Lp mutant epithelium suggests that mislocalization of Scrb1 in mutants alters the composition of the apical face of the epithelium. Heterozygous and homozygous Vangl2Lp mutant postnatal tissues exhibit similar phenotypes and polarity defects and display a 50% reduction in Wnt7a levels, suggesting that the Vangl2Lp mutation acts dominantly in the FRT. These studies demonstrate that the establishment and maintenance of cell polarity through non-canonical Wnt signaling are required for FRT development. PMID:19363157

  2. Numerical calculations of the absorption and oscillation processes in the nonlinear polarized crystal Cr4+:YAG pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the dynamic emission of intracavity isotropic Cr 4+ : YAG polarized solid-state saturable absorber as a tool of dual Q-switching and lasing processes 1.06 μm and 1.4 μm by double pumping pulse has been developed. This model describes the time evolution of interaction between the pumping laser pulse with a changed polarization state and the polarized absorber. (author)

  3. Development of a low-color, color stable, dual cure dental resin.

    Science.gov (United States)

    Oei, James D; Mishriky, Maged; Barghi, Nasser; Rawls, H Ralph; Cardenas, H Lee; Aguirre, Rene; Whang, Kyumin

    2013-04-01

    Dual-cure (DC) resins are mainly used as cements due to high initial color (generally yellow) and large color shift (ΔE*) after polymerization as compared to light-cured resins. However, even as cements, this color shift is clinically unacceptable, especially when used to cement thin veneers. To develop a novel DC initiator system with both lower initial color (less yellow, i.e., whiter) and smaller ΔE*. The effect of using an allyl thiourea (T)/cumene hydroperoxide (CH) self-cure (SC) initiator system in combination with a photo-co-initiator, p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate (OPPI), in a commercial DC resin cement (PermaFlo DC, Ultradent Products, Inc.) was investigated. Initial color and ΔE* were assessed for 6 weeks in vitro under accelerated aging conditions (75°C water bath). Rockwell15T hardness was used to assess degree of cure (DoC) and the three-point bending test was used to assess mechanical properties. PermaFlo DC (control) was significantly harder than all experimental groups without OPPI but had up to three times higher initial color and four times greater color shift (ΔE*=27 vs. 8). With OPPI, hardness in the experimental groups increased significantly and several were comparable to the controls. Initial color and ΔE* increased slightly (ΔE*=9), but was still 3 times less than that of PermaFlo DC. DC samples containing OPPI had comparable modulus and ultimate transverse strengths to those of the controls. DC resins that use the T/CH initiator system are weaker but have extremely low color and ΔE*. The addition of OPPI increases DoC and mechanical properties to clinically acceptable levels and maintains extremely low color and ΔE*. With this novel initiator system, DC resins potentially can now have comparable color and color stability to light-cure resins and be used in broader esthetic dental applications to improve color stability and reduce shrinkage stress in restorative composites. Copyright © 2013 Academy of

  4. Development and initial validation of a dual-language English-Spanish format for the Arthritis Impact Measurement Scales.

    Science.gov (United States)

    Hendricson, W D; Russell, I J; Prihoda, T J; Jacobson, J M; Rogan, A; Bishop, G D; Castillo, R

    1989-09-01

    Language, cultural, and educational barriers complicate efforts to validate health status questionnaires that have been translated into Spanish. To overcome these problems, a prototype dual-language format was developed for the Arthritis Impact Measurement Scales. Validity testing with 72 patients diagnosed as having rheumatoid arthritis indicated high levels of test-retest reliability, item-to-scale internal consistency, and construct validity for both Anglo and Hispanic subjects. A technique for developing and pilot-testing a questionnaire written in a regional Spanish dialect is described. Linguistic considerations, questionnaire design, and other applications are discussed in light of the results obtained.

  5. Development and Evaluation of Dual Cross-Linked Pulsatile Beads for Chronotherapy of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Abanesh kumar Bansal

    2013-01-01

    Full Text Available In the present investigation, pulsatile release beads were prepared by ionic gelation technique. Lornoxicam dual cross-linked beads were prepared by dropping dispersed phase of lornoxicam, pectin, and sodium alginate into the dispersion phase of different concentrations of calcium chloride solution followed by aluminium chloride solution. The formulated beads were further coated by Eudragit L & S 100 in the ratio 1 : 2 w/w in order to achieve desired lag time. In vitro release study showed lag time of 5–8 h before release of lornoxicam from the formulated beads. Thus, formulated dual cross-linked beads when administered at bed time may release lornoxicam when needed most for chronotherapeutics of early morning rheumatoid arthritis attacks in chronic patients.

  6. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    Science.gov (United States)

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Into the development of a model to assess beam shaping and polarization control effects on laser cutting

    Science.gov (United States)

    Rodrigues, Gonçalo C.; Duflou, Joost R.

    2018-02-01

    This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.

  8. JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    William C. Maurer; Colin Ruan; Greg Deskins

    2003-05-01

    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a

  9. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2017-05-01

    Full Text Available When the quartz crystal microbalance (QCM is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  10. Development of a mobile dynamic nuclear polarizer for continuous flow applications

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Sandro; Dollmann, Bjoern; Bauer, Christian; Koelzer, Michael; Spiess, Hans W.; Hinderberger, Dariush; Muennemann, Kerstin [Max Planck Institute for Polymer Research, Mainz (Germany); Bluemler, Peter [Johannes Gutenberg University, Institute of Physics, Mainz (Germany)

    2011-07-01

    Despite its wide applicability in natural science, NMR still suffers from its inherently low sensitivity. This could be overcome by hyperpolarization of molecules via dynamic nuclear polarization (DNP). Here, we introduce a mobile DNP polarizer, based on an inexpensive Halbach magnet operating at 0.35 T. It shows an almost vanishing magnetic flux at its outer side and is not disturbing other instruments. It can be placed directly next to a superconducting magnet, thus limiting the transport time of the hyperpolarized sample. It will be shown, that the Halbach magnet has the same DNP performance like an electromagnet. Although DNP methods have found important applications in science, two problems remain: Firstly radicals are needed, which are mostly toxic. This problem becomes crucial with regard to medical applications. Secondly, the sample must be transported from the polarization magnet to the place of detection and polarization losses due to T1 occur. We are currently implementing a flow system to the mobile DNP polarizer, which should overcome both obstacles. The radicals will be immobilized in a gel matrix and the hyperpolarized radical free fluid is pumped subsequently directly in the MRI scanner.

  11. Dual Diagnosis

    Science.gov (United States)

    A person with dual diagnosis has both a mental disorder and an alcohol or drug problem. These conditions occur together frequently. In particular, ... to emotional and mental problems. Someone with a dual diagnosis must treat both conditions. For the treatment ...

  12. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  13. Flexing dual-systems models: How variable cognitive control in children informs our understanding of risk-taking across development.

    Science.gov (United States)

    Li, Rosa

    2017-10-01

    Prevailing models of the development of decision-making propose that peak risk-taking occurs in adolescence due to a neural imbalance between two processes: gradual, linearly developing cognitive control and rapid, non-linearly developing reward-processing. Though many studies have found neural evidence supporting this dual-systems imbalance model, its behavioral predictions have been surprisingly difficult to document. Most laboratory studies have not found adolescents to exhibit greater risk-taking than children, and public health data show everyday risk-taking to peak in late adolescence/early adulthood. Moreover, when adolescents are provided detailed information about decision options and consequences, they evince similar behavior to adults. Such findings point to a critical feature of the development of decision-making that is missed by imbalance models. Specifically, the engagement of cognitive control is context dependent, such that cognitive control and therefore advantageous decision-making increases when available information is high and decreases when available information is low. Furthermore, the context dependence of cognitive control varies across development, such that increased information availability benefits children more than adolescents, who benefit more than adults. This review advances a flexible dual-systems model that is only imbalanced under certain conditions; explains disparities between neural, behavioral, and public health findings; and provides testable hypotheses for future research. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. APECS: A Model Organization for Bridging Past to Present and Developing a New Generation of Polar Scientists (Invited)

    Science.gov (United States)

    Timm, K.; Baeseman, J. L.; Membership, Association Of Polar Early Career Scientists

    2010-12-01

    One of the greatest legacies of the International Polar Year (IPY) is the creation of APECS, the Association of Polar Early Career Scientists. As a grassroots effort, APECS was proposed, formed, and developed by and for early career polar researchers. While the young investigators who founded APECS had talent, ambition, and the desire to make things happen, partnerships with key organizations and experienced leaders in polar science were essential to provide the funding, leadership, and mentorship that has taken the organization well beyond the IPY and to over 2000 members. In four years, APECS has strived to foster the skills of and develop a group of early career interdisciplinary polar scientists through networking and mentoring among themselves and with senior scientists. Through diverse activities including, panel discussions, career development workshops, online seminars, a comprehensive job listing, formal mentoring, meeting travel support, and the APECS Virtual Poster Session, APECS goal is to support the early career researcher being trained to do the science, to become a well-rounded scientist prepared for 21st century careers in science. As part of that training, APECS members are encouraged to participate in activities and training related to science communication, education, and outreach; working with the media; participating in the science / public policy interface; and working with arctic communities and indigenous peoples. During the IPY, APECS members were guest speakers and presenters on International Polar Day activities; they contributed to resources for education and outreach such as the book: Polar Science and Global Climate: An International Resource for Education and Outreach; and they made connections with educators, community groups, the media through in-person presentations, blogs from the field, videos, and much more. Workshops, panels, and online discussions focusing on these activities helped develop the capacity to conduct such

  15. A Study of Problems and Responses in the Development of Dual-Language Education Models in Tibetan Regions: Taking Xiahe County in Gannan Tibetan Autonomous Prefecture as an Example

    Science.gov (United States)

    Hongzhi, Long

    2017-01-01

    Dual-language education models are theoretical and practical systems formed through the process of dual-language education and centered on study and teaching. The language environment is the basis for developing and reforming dual-language education models. The author takes Xiahe County in Gannan Tibetan Autonomous Prefecture as an example and…

  16. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014).

    Science.gov (United States)

    Zhao, Jing; Ge, Li-Ya; Xiong, Wei; Leong, Fong; Huang, Lu-Qi; Li, Shao-Ping

    2016-01-08

    In 2011, we wrote a review for summarizing the phytochemical analysis (2006-2010) of medicine and food dual purposes plants used in China (Zhao et al., J. Chromatogr. A 1218 (2011) 7453-7475). Since then, more than 750 articles related to their phytochemical analysis have been published. Therefore, an updated review for the advanced development (2011-2014) in this topic is necessary for well understanding the quality control and health beneficial phytochemicals in these materials, as well as their research trends. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development of the dual SMART micro-surgical system using common-path swept source optical coherence tomography.

    Science.gov (United States)

    Park, H C; Yeo, C B; Gehlbach, P L; Song, C

    2015-01-01

    Manual micro-surgical tasks are fundamentally divided into grasping, cutting and injecting maneuvers performed on biological tissues. Efficient dissection of fibrous tissue from the surface of the retina often requires grasping and cutting maneuvers carried out simultaneously. True bimanual surgery requires that the surgeon contend with the innate hand tremor of two hands at once as well as unpredicted patient's movement. In this study, we develop and test a dual SMART micro-surgical system to suppress bimanual hand tremor during micro-surgical dissection.

  18. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development

    DEFF Research Database (Denmark)

    Wu, Xunwei; Li, Shaohua; Chrostek-Grashoff, Anna

    2007-01-01

    , but exhibited defects of cell polarity, cell-cell junctions, survival, and cavitation. These defects corresponded to a decreased phosphorylation and membrane localization of aPKC, a reduced phosphorylation of GSK3beta, and a diminished activity of Rac1. However, neither Rac1 nor the kinase function of GSK3beta...

  19. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    Science.gov (United States)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  20. The Association of Polar Early Career Scientists (APECS): A Model for the Professional Development of Scientists (Invited)

    Science.gov (United States)

    Baeseman, J. L.; Apecs Leadership Team

    2010-12-01

    Efforts like the International Polar Year 2007-2008 (IPY) have helped to increase research efforts as well as enhancing the integration of education and outreach into research projects and developing the next generation of researchers. One of the major legacies of the IPY was the creation of the Association of Polar Early Career Scientists (APECS), which was developed in 2006 by young researchers and focuses on helping each other develop the skills needed for successful careers in research by working with senior mentors. APECS is an international and interdisciplinary organization of over 2000 early career researchers and educators with interests in the Polar Regions and the wider cryosphere from 45 countries. APECS aims to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. This is achieved by - Facilitating international and interdisciplinary networking opportunities to share ideas and experiences and to develop new research directions and collaborations, - Providing opportunities for professional career development for both academic and alternative research professions, and - Promoting education and outreach as an integral component of polar research and to stimulate future generations of polar researchers. Since its inception, APECS has strived to develop a strong network of partnerships with senior international organizations and scientific bodies to provide career development opportunities for young researchers. These partnerships have led to early-career representation on science planning bodies at an international level, the mandate of early career researchers serving as co-chairs at science conferences, the development of a mentorship program, field schools and techniques workshops, mentor panel discussions at conferences and increased funding for young researchers to attend conferences. APECS has also worked with an international teachers network to develop

  1. Development of real-time dual-display handheld and bench-top hybrid-mode SD-OCTs.

    Science.gov (United States)

    Cho, Nam Hyun; Park, Kibeom; Wijesinghe, Ruchire Eranga; Shin, Yong Seung; Jung, Woonggyu; Kim, Jeehyun

    2014-01-27

    Development of a dual-display handheld optical coherence tomography (OCT) system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers' physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe's built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT), and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU) accelerated processing rather than central-processing-unit (CPU) processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

  2. Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs

    Directory of Open Access Journals (Sweden)

    Nam Hyun Cho

    2014-01-01

    Full Text Available Development of a dual-display handheld optical coherence tomography (OCT system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers’ physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe’s built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT, and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU accelerated processing rather than central-processing-unit (CPU processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

  3. Status and recent developments at the polarized-electron injector of the superconducting Darmstadt electron linear accelerator S-DALINAC

    Science.gov (United States)

    Poltoratska, Y.; Eckardt, C.; Ackermann, W.; Aulenbacher, K.; Bahlo, T.; Barday, R.; Brunken, M.; Burandt, C.; Eichhorn, R.; Enders, J.; Espig, M.; Franke, S.; Ingenhaag, C.; Lindemann, J.; Müller, W. F. O.; Platz, M.; Roth, M.; Schneider, F.; Wagner, M.; Weber, A.; Weiland, T.; Zwicker, B.

    2011-05-01

    At the superconducting Darmstadt electron linac a 100 keV source of polarized electrons has been installed. Major components had been tested prior to installation at an offline teststand. Commissioning of the new source at the S-DALINAC will take place early in 2011. We report on the performance of the teststand, simulations, developments on the laser systems, new radio-frequency components for the S-DALINAC injector, and the status of the implementation of the source.

  4. Dual asymmetric centrifugation as an alternative preparation method for parenteral fat emulsions in preformulation development.

    Science.gov (United States)

    Tenambergen, Frederike; Maruiama, Cintia H; Mäder, Karsten

    2013-04-15

    Nanoscaled fat emulsions are well established as a drug delivery system for lipophilic drugs and for the use in parenteral nutrition. Typically, the production of nanoscaled fat emulsions requires several formulation steps, including high pressure homogenization and filtration. The applicability of dual asymmetric centrifugation as an alternative technique to produce submicron fat emulsions in a short and easy way was investigated. The emulsions could be prepared without substance loss in a closed system within 30 min. Formulations with 10% soybean oil and up to 5% emulsifier-mixture were produced. The droplet size distribution was determined by static light scattering. Stability over six months was shown by regular static light scattering measurements and determination of the zeta potential. Furthermore, hemolytic activity of the samples was investigated. With the dual asymmetric centrifugation physiological tolerable emulsions with droplets in the lower micron and submicron range could be prepared. This method could be used as a model for screening active pharmaceutical ingredients. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development of an i-line attenuated phase shift process for dual inlay interconnect lithography

    Science.gov (United States)

    Sturtevant, John L.; Ho, Benjamin C. P.; Geiszler, Vincent C.; Herrick, Matthew T.; King, Charles F.; Carter, Russell L.; Roman, Bernard J.; Litt, Lloyd C.; Smith, Brad; Strozewski, Kirk J.

    2000-06-01

    The transition from aluminum/oxide to copper/low-k dielectric interconnect technology involves a variety of fundamental changes in the back-end manufacturing process. The most attractive patterning strategy involves the use of a so-called dual inlay approach, which offers lower fabrication costs by the elimination of one inter-level dielectric (ILD) deposition and polish sequence per metal layer. In this paper, the lithographic challenges for dual inlay, including thin-film interference effect, resist bulk effect, and optical proximity effects are reviewed. The use of attenuated phase shift (aPSM) reticles for patterning vias and trenches was investigated, and shown to provide adequate process margin by optimizing the photoresist and exposure tool parameters. Our results indicate that using appropriately sized attenuated phase shift technique increases the photospeed considerably and simultaneously improves the common process window with sufficient sidelobe suppression margin. The cost of ownership tradeoffs between an attenuated PSM I-Line process and a DUV binary process are discussed.

  6. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  8. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity.

    Science.gov (United States)

    Jones, Steven L; Svitkina, Tatyana M

    2016-01-01

    The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability.

  9. Association of Polar Early Career Scientists: a model for experiential learning in professional development for students and early career researchers

    Science.gov (United States)

    Bradley, A. C.; Hindshaw, R. S.; Fugmann, G.; Mariash, H.

    2016-12-01

    The Association of Polar Early Career Scientists was established by early career researchers during the 2007-2008 International Polar Year as an organization for early career researchers in the polar and cryospheric sciences. APECS works to promote early career researchers through soft-skills training in both research and outreach activities, through advocating for including early career researchers in all levels of the scientific process and scientific management, and through supporting a world-wide network of researchers in varied fields. APECS is lead by early career researchers; this self-driven model has proved to be an effective means for developing the leadership, management, and communication skills that are essential in the sciences, and has shown to be sustainable even in a community where frequent turn-over is inherent to the members. Since its inception, APECS has reached over 5,500 members in more than 80 countries, and we have placed more than 50 early career researchers on working groups and steering committees with organizations around the world in the last two years alone. The close partnerships that APECS has with national and international organizations exposes members to both academic and alternative career paths, including those at the science-policy interface. This paper describes APECS's approach to experiential learning in professional development and the best practices identified over our nearly ten years as an organization.

  10. Design and development of CAMAC 12 bit ADC/DAC dual purpose module

    International Nuclear Information System (INIS)

    Kulkarni, S.G.; Gore, J.A.; Ramlal, V.; Matkar, U.V.; Lokare, R.N.; Yadav, M.L.; Ekambaram, M.; Gupta, A.K.; Datar, V.M.

    2013-01-01

    A dual function CAMAC module is designed for Pelletron Accelerator which can function as 12 bit 8 channels DAC or 12 bit 16 channels ADC. Spartan 2 series of FPGA is used for implementing the CAMAC interface logic as well as logic for ADC/DAC interface. The PCB has both the ADC and DAC mounted but the module can have only one function selected due to wiring constraint. Two different VHDL programs (one for the ADC and other for the DAC) reside on the EEPROM permitting selection of any one as per the functionality required. The module is working as a 12 bit DAC at BARC-TIFR Pelletron Linac Facility, successfully. (author)

  11. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment

    Directory of Open Access Journals (Sweden)

    Daniel Pereira Bezerra

    2017-12-01

    Full Text Available The formation of reactive oxygen species (ROS during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.

  12. Investigation on the separability of slums by multi-aspect TerraSAR-X dual-co-polarized high resolution spotlight images based on the multi-scale evaluation of local distributions

    Science.gov (United States)

    Schmitt, Andreas; Sieg, Tobias; Wurm, Michael; Taubenböck, Hannes

    2018-02-01

    Following recent advances in distinguishing settlements vs. non-settlement areas from latest SAR data, the question arises whether a further automatic intra-urban delineation and characterization of different structural types is possible. This paper studies the appearance of the structural type ;slums; in high resolution SAR images. Geocoded Kennaugh elements are used as backscatter information and Schmittlet indices as descriptor of local texture. Three cities with a significant share of slums (Cape Town, Manila, Mumbai) are chosen as test sites. These are imaged by TerraSAR-X in the dual-co-polarized high resolution spotlight mode in any available aspect angle. Representative distributions are estimated and fused by a robust approach. Our observations identify a high similarity of slums throughout all three test sites. The derived similarity maps are validated with reference data sets from visual interpretation and ground truth. The final validation strategy is based on completeness and correctness versus other classes in relation to the similarity. High accuracies (up to 87%) in identifying morphologic slums are reached for Cape Town. For Manila (up to 60%) and Mumbai (up to 54%), the distinction is more difficult due to their complex structural configuration. Concluding, high resolution SAR data can be suitable to automatically trace potential locations of slums. Polarimetric information and the incidence angle seem to have a negligible impact on the results whereas the intensity patterns and the passing direction of the satellite are playing a key role. Hence, the combination of intensity images (brightness) acquired from ascending and descending orbits together with Schmittlet indices (spatial pattern) promises best results. The transfer from the automatically recognized physical similarity to the semantic interpretation remains challenging.

  13. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  14. Development of an Advanced Digital Reactor Protection System Using Diverse Dual Processors to Prevent Common-Mode Failure

    International Nuclear Information System (INIS)

    Shin, Hyun Kook; Nam, Sang Ku; Sohn, Se Do; Chang, Hoon Seon

    2003-01-01

    The advanced digital reactor protection system (ADRPS) with diverse dual processors has been developed to prevent common-mode failure (CMF). The principle of diversity is applied to both hardware design and software design. For hardware diversity, two different types of CPUs are used for the bistable processor and local coincidence logic (LCL) processor. The Versa Module Eurocard-based single board computers are used for the CPU hardware platforms. The QNX operating system and the VxWorks operating system were selected for software diversity. Functional diversity is also applied to the input and output modules, and to the algorithm in the bistable processors and LCL processors. The characteristics of the newly developed digital protection system are described together with the preventive capability against CMF. Also, system reliability analysis is discussed. The evaluation results show that the ADRPS has a good preventive capability against the CMF and is a highly reliable reactor protection system

  15. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  16. Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide: an overview

    Directory of Open Access Journals (Sweden)

    Nívia do Nascimento Marques

    2015-06-01

    Full Text Available AbstractA great deal of research on polymers over the past two decades has been focused on the development of stimuli-responsive polymers to obtain materials able to respond to specific surroundings. In this paper, an overview is presented of the concepts, behavior and applicability of these “smart polymers”. Polymers that are temperature- or pH-sensitive are discussed in detail, including the response mechanisms and types of macromolecules, because they are easy to handle and have a wide range of applications. Finally, the combination of pH and temperature responsive properties by means of graft copolymerization of chitosan with poly (N-isopropylacrylamide (PNIPAM was chosen to represent some synthetic routes and properties of dual-sensitive polymeric systems developed currently.

  17. Development of an polarization sensitive Fourier domain optical coherence tomography and it utilization on the Mueller matrix determination

    International Nuclear Information System (INIS)

    Raele, Marcus Paulo

    2009-01-01

    This study approached theoretical and experimental aspects related with the development of a polarization sensitive, Fourier domain, optical coherence tomography system (PS-FD-OCT) and its utilization on the Mueller Matrix determination. This work began with a bibliographic revision, which describes since the early studies to the actual state of the art of the technique. The mathematical formalism of Fourier domain low coherence interferometry and light polarization was performed as well. Studies based on numerical simulations, of three different algorithm types, responsible to recover the scattering profile, were done. The implemented algorithms were: Direct Fourier Transform, Interpolation and zero-filling. By the end of the simulation study, was possible to conclude that the algorithm zero-filling 2N presented better characteristics when compared with the others. In the experimental part, firstly different OCT setups were assembled and measurements were done in order to verify aspects related with the theory. Then, using a polymeric sample, birefringence images were performed, which allowed determining the sample birefringence quantitatively. Finally, images taken of different polarization states were collected, and through then images related with the Mueller Matrix elements were calculated, which were analyzed individually. (author)

  18. Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Hiroshi; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Kato, Katsuhiko [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka (Japan)

    2013-03-01

    A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd{sub 3}Al{sub 12}Ga{sub 3}O{sub 12} (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm{sup 3} GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm{sup 2}. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.

  19. Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun

    2013-03-01

    A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.

  20. Development of non-metallic and conformal dual band meta-skin and its absorption study for microwave applications

    Science.gov (United States)

    Borah, Dipangkar; Bhattacharyya, Nidhi S.

    2017-08-01

    An efficient approach for achieving a dual, conformal and non-metallic metamaterial absorber for microwave applications is proposed in this paper. The unit cell structures are simple circular ring resonators, made up of non-metallic and conducting expanded graphite, fabricated on a linear low density polyethylene substrate. The expanded graphite is synthesized, characterized and processed to be used as a conducting layer. The materials properties of linear low density polyethylene is investigated and found to be a promising candidate for flexible microwave applications. The developed absorber showed more than 90% absorption at 7.72 GHz and 9.92 GHz. Electric and magnetic fields are also simulated at the resonating frequency to understand the absorption mechanism. The proposed expanded graphite based metamaterial absorber possesses the advantages of being ultra-thin, flexible and non-corrosive.

  1. Development of a dual-sinker densimeter for high-accuracy fluid P-V-T measurements

    International Nuclear Information System (INIS)

    McLinden, M.O.; Frederick, N.V.

    1993-01-01

    A dual-sinker densimeter to very accurately measure the pressure-volume-temperature (P-V-T) properties of fluids over a temperature range of 80 K to 520 K and at pressures up to 35 MPa is in the final stages of development at NIST. The density of a fluid is determined by measuring the difference in the buoyancy forces experienced by two sinkers of identical mass, surface area, and surface material, but very different volumes. The buoyancy forces on the sinkers are transmitted to a semi-microbalance by means of a magnetic suspension coupling. This paper reviews the principle of the measurement and describes the overall design of the system

  2. A Polarization-Dependent Frequency-Selective Metamaterial Absorber with Multiple Absorption Peaks

    Directory of Open Access Journals (Sweden)

    Guangsheng Deng

    2017-06-01

    Full Text Available A polarization-dependent, frequency-selective metamaterial (MM absorber based on a single-layer patterned resonant structure intended for F frequency band is proposed. The design, fabrication, and measurement for the proposed absorber are presented. The absorber’s absorption properties at resonant frequencies have unique characteristics of a single-band, dual-band, or triple-band absorption for different polarization of the incident wave. The calculated surface current distributions and power loss distribution provide further understanding of physical mechanism of resonance absorption. Moreover, a high absorption for a wide range of TE-polarized oblique incidence was achieved. Hence, the MM structure realized on a highly flexible polyimide film, makingthe absorber suitable for conformal geometry applications. The proposed absorber has great potential in the development of polarization detectors and polarizers.

  3. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  4. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    Science.gov (United States)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  5. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.

    2016-01-01

    In this paper we present a multi-flow transmitter developed within the EU project PANTHER and we evaluate its first proof-of-concept demonstration of up to two single- or dual-polarization optical flows with selectable wavelength, m-QAM modulation format, number of carriers and destination. Multi...

  6. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  7. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  8. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    Raman, P.; Ram, N.K.; Gupta, Ruchi

    2013-01-01

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm −3 .Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm −3 . • In clean gas the tar content is 35 mg Nm −3 and the dust content is nil. • The specific gasification rate is 2.8 Nm 3 kg −1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm −3 , SFC: 1.1 kg kWh −1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  9. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    resulting cisplatin-like byproduct represents an intriguing new strategy for potential dual-threat metalloenediyne therapeutics.

  10. Development of Efficient and Robust Heteronuclear Cross-Polarization Techniques for Biological Solid-State Nuclear Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Jain, Sheetal Kumar

    2014-01-01

    →13C polarization transfer to facilitate 2-dimensional experiments detecting 14N in the indirect dimension are shown. Finally, to test the polarization transfer efficiency with very large chemical shift anisotropies, 19F→13C polarization transfer experiments for Poly Tetra Fluoro Ethylene (PTFE...

  11. Room Temperature Memory for Few Photon Polarization Qubits

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  12. Development of Fully Automated Serial-Sectioning 3D Microscope and Topological Approach to Pearlite and Dual-Phase Microstructure in Steels

    Science.gov (United States)

    Adachi, Yoshitaka; Sato, Naoko; Ojima, Mayumi; Nakayama, Makoto; Wang, Yuan-Tsung

    Using a newly developed fully automated serial-sectioning three-dimensional (3D) microscope, Genus_3D, and a conventional dual-beam SEM, we examined ferrite-martensite dual-phase and eutectoid pearlite microstructures. In particular, we consider the topology and differential geometry. Genus, Euler characteristics, Gaussian curvature, and mean curvatures were obtained from 3D reconstructions. A variation in the martensite morphology in dual-phase steel, i.e., connectivity, was examined to understand the ductile fracture mechanism. In addition, we investigated the 3D morphological variation of lamellar cementite in pearlite during spheroidizing. This 3D observation revealed many holes and fissures in cementite lamellae, which potentially accelerate the spheroidization. The disintegration of lamellar structure into particles was discussed with respect to surface area change per unit volume and local surface morphology (i.e., curvature).

  13. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  14. Evolution and Development of Dual Ingestion Systems in Mammals: Notes on a New Thesis and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Alberts

    2012-01-01

    Full Text Available Traditionally, the development of oral feeding is viewed as a continuous, unitary process in which reflex-dominated sucking behavior gives rise to a more varied and volitional feeding behavior. In contrast, we consider the thesis that the infant develops two separable ingestive systems, one for suckling and one for feeding. First, we apply an evolutionary perspective, recognizing that suckling-feeding is a universal, mammalian developmental sequence. We find that in mammalian evolution, feeding systems in offspring were established prior to the evolution of lactation, and therefore suckling is a separable feature that was added to feeding. We next review an experimental literature that characterizes suckling and feeding as separable in terms of their topography, sensory controls, physiological controls, neural substrates, and experience-based development. Together, these considerations constitute a view of “dual ingestive systems.” The thesis, then, is that suckling is not a simple precursor of feeding but is a complete behavior that emerges, forms, and then undergoes a dissolution that overlaps with the emergence of independent feeding. This thesis guides us to focus differently on the challenges of properly managing and facilitating oral ingestion in infants, especially those born preterm, prior to the developmental onset of suckling.

  15. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    Science.gov (United States)

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  16. Evolution and development of dual ingestion systems in mammals: notes on a new thesis and its clinical implications.

    Science.gov (United States)

    Alberts, Jeffrey R; Pickler, Rita H

    2012-01-01

    Traditionally, the development of oral feeding is viewed as a continuous, unitary process in which reflex-dominated sucking behavior gives rise to a more varied and volitional feeding behavior. In contrast, we consider the thesis that the infant develops two separable ingestive systems, one for suckling and one for feeding. First, we apply an evolutionary perspective, recognizing that suckling-feeding is a universal, mammalian developmental sequence. We find that in mammalian evolution, feeding systems in offspring were established prior to the evolution of lactation, and therefore suckling is a separable feature that was added to feeding. We next review an experimental literature that characterizes suckling and feeding as separable in terms of their topography, sensory controls, physiological controls, neural substrates, and experience-based development. Together, these considerations constitute a view of "dual ingestive systems." The thesis, then, is that suckling is not a simple precursor of feeding but is a complete behavior that emerges, forms, and then undergoes a dissolution that overlaps with the emergence of independent feeding. This thesis guides us to focus differently on the challenges of properly managing and facilitating oral ingestion in infants, especially those born preterm, prior to the developmental onset of suckling.

  17. Child, family, and school characteristics related to English proficiency development among low-income, dual language learners.

    Science.gov (United States)

    Kim, Yoon Kyong; Curby, Timothy W; Winsler, Adam

    2014-12-01

    Little is known about 2nd language development among young, low-income, language-minority children. This article examined the longitudinal English development of low-income, dual language learners (DLLs) in Miami (n = 18,532) from kindergarten through 5th grade. Growth curve modeling indicated that social skills, good behavior, Spanish (L1) competence in preschool, having a mother born in the United States, and attending larger schools with fewer DLLs were associated with higher initial levels of English proficiency in kindergarten and/or steeper growth over time. Survival analyses indicated that it took about 2 years for half of the sample to become proficient in English according to the school district's criterion. Higher initial proficiency in kindergarten, not receiving free/reduced lunch, not being Hispanic or Black, strong cognitive, language, and socioemotional skills at age 4, and maternal education were associated with faster attainment of English proficiency. It is important for teachers, parents, researchers, and policy makers to understand that DLL students come from diverse backgrounds and that poverty and other factors influence the speed of English language development for DLLs. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Evolution and Development of Dual Ingestion Systems in Mammals: Notes on a New Thesis and Its Clinical Implications

    Science.gov (United States)

    Alberts, Jeffrey R.; Pickler, Rita H.

    2012-01-01

    Traditionally, the development of oral feeding is viewed as a continuous, unitary process in which reflex-dominated sucking behavior gives rise to a more varied and volitional feeding behavior. In contrast, we consider the thesis that the infant develops two separable ingestive systems, one for suckling and one for feeding. First, we apply an evolutionary perspective, recognizing that suckling-feeding is a universal, mammalian developmental sequence. We find that in mammalian evolution, feeding systems in offspring were established prior to the evolution of lactation, and therefore suckling is a separable feature that was added to feeding. We next review an experimental literature that characterizes suckling and feeding as separable in terms of their topography, sensory controls, physiological controls, neural substrates, and experience-based development. Together, these considerations constitute a view of “dual ingestive systems.” The thesis, then, is that suckling is not a simple precursor of feeding but is a complete behavior that emerges, forms, and then undergoes a dissolution that overlaps with the emergence of independent feeding. This thesis guides us to focus differently on the challenges of properly managing and facilitating oral ingestion in infants, especially those born preterm, prior to the developmental onset of suckling. PMID:23028391

  19. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  20. Dual-Mode Teacher Professional Development: Challenges and Re-Visioning Future TPD in Indonesia

    Science.gov (United States)

    Widodo, Ari; Riandi

    2013-01-01

    This paper presents the results of a two-year research project aimed at developing a teacher professional development (TPD) model in Indonesia. New government policies in this nation, its archipelagic nature, vast numbers of teachers and scarcity of support resources present a unique challenge to TPD. A needs assessment was conducted to identify…

  1. The dual role of local sites in assisting firms with developing technological capabilities: Evidence from China

    DEFF Research Database (Denmark)

    Wang, Yuandi; Zhou, Zhao

    2013-01-01

    As strong local knowledge bases emerge in some developing countries and regions, more research efforts are devoted to examine the role of local sites in technological-capability development of firms from developing countries. However, most of these studies illuminate the direct input (e.......g., knowledge, human capital) and the role of motivating multinational companies (MNCs) to upgrade their local operations in developing countries so as to perform more innovation activities. Few articles are presented that examine the role of local sites in the learning and technological-capability building...... processes that take place during technology import activities. This study investigates how local sites in developing countries help their firms benefit from the spillovers of international technology diffusion, by empirically scrutinizing Chinese licensee firms. The empirical results support the hypothesis...

  2. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  3. Dual Factors May Be Necessary for Development of Atopic March in Early Infancy.

    Science.gov (United States)

    Taniuchi, Shoichiro; Soejima, Kazuhiko; Hatano, Yasuko; Takahashi, Masaya; Minami, Hirotaka

    2018-01-01

    The incidence of atopic diseases, including atopic dermatitis (AD), food allergies, allergic rhinitis, and asthma, has increased in recent decades, and currently affects approximately 20% of the population. Atopic march is the development of AD in infancy and subsequent food allergies, allergic rhinitis, and asthma in later childhood. Patients with infantile eczema may develop typical symptoms of AD, allergic rhinitis, and asthma at certain ages. Some patients' symptoms persist for several years, whereas others may have resolution with aging. Development of these diseases is strongly influenced by the following two factors: skin dysfunction caused by filaggrin mutations and development of colonization of microflora in early infancy. Filaggrin mutations predisposing to asthma, allergic rhinitis, and allergic sensitization, only in the presence of AD, strongly support the role of filaggrin in the pathogenesis of AD and in subsequent progression of the atopic march. Several studies have shown that development of colonization of microflora in early infancy might affect development of allergic disease or food desensitization. Therefore, massive allergen exposure to genetic skin dysfunction in early infancy and an imbalance of microflora might be necessary for development of atopic march.

  4. Development of mats composed by TiO{sub 2} and carbon dual electrospun nanofibers: A possible anode material in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gomez, Nora A.; Balderas-Renteria, Isaias [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Garcia-Gutierrez, Domingo I. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, PIIT, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Mosqueda, Hugo A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); and others

    2015-03-15

    Highlights: • Dual nanofiber of TiO{sub 2}–C/C showed excellent electrical performance. • TiO{sub 2}–C/C dual nanofiber can host a dense biofilm of electroactivated Escherichia coli. • Dual nanofibers can be applied as anode to obtain electricity in microbial fuel cells. - Abstract: A new material based on TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} dual nanofiber mats is presented, whose composition and synthesis methodology are fundamental factors for the development of exoelectrogenic biofilms on its surface. Therefore, this material shows the required characteristics for possible applications in the bioconversion process of an organic substrate to electricity in a microbial fuel cell. Chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrical conductivity analyses showed excellent electrical performance of the material for the application intended; a resistance as low as 3.149 Ω was able to be measured on this material. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirmed the morphology sought on the material for the application intended, dual nanofibres TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} with a side by side configuration. The difference in composition of the fibers forming the dual nanofibers was clearly observed and confirmed by energy dispersive X-ray spectroscopy (EDXS), and their crystal structure was evident in the results obtained from selected area electron diffraction (SAED) studies. This nanostructured material presented a high surface area and is biocompatible, given that it can host a dense biofilm of electroactivated Escherichia coli. In this study, the maximum current density obtained in a half microbial fuel cell was 8 A/m{sup 2} (0.8 mA/cm{sup 2})

  5. Dual Headquarters Involvement in Multibusiness Firms

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher; Kappen, Philip; Dellestrand, Henrik

    development projects of subsidiaries. Analyses of 85 innovation development projects reveal that dual innovation importance (innovation that is important for the division and the rest of the firm), and dual dual embeddedness (innovating subsidiary is embedded both within the division and in the rest...... of the firm) lead to greater dual headquarters involvement, especially when the innovation development network is large. The results contribute to the literature on complex parenting and theory of selective headquarters involvement....

  6. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  7. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  8. Partnering Community Decision Makers with Early Career Scientists - The NASA DEVELOP Method for Dual Capacity Building

    Science.gov (United States)

    Ross, K. W.; Childs-Gleason, L. M.; Cripps, G. S.; Clayton, A.; Remillard, C.; Watkins, L. E.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2017-12-01

    The NASA DEVELOP National Program carries out many projects every year with the goal of bringing the benefits of NASA Earth science to bear on decision-making challenges that are local in scale. Every DEVELOP project partners end users with early/transitioning science professionals. Many of these projects invited communities to consider NASA science data in new ways to help them make informed decisions. All of these projects shared three characteristics: they were rapid, nimble and risk-taking. These projects work well for some communities, but might best be suited as a feasibility studies that build community/institutional capacity towards eventual solutions. This presentation will discuss DEVELOP's lessons learned and best practices in conducting short-term feasibility projects with communities, as well as highlight several past successes.

  9. Dual wavelength asymmetric photochemical synthesis with circularly polarized light† †Electronic supplementary information (ESI) available: Full detailed methods used for the entire study; further discussion of the work not central to the main message of the paper; full derivation of the kinetics models used to predict the dual wavelength enantioselectivity; computational details and energy breakdown; more complete mechanism for the reaction. See DOI: 10.1039/c4sc03897e

    Science.gov (United States)

    Richardson, Robert D.; Baud, Matthias G. J.; Weston, Claire E.; Rzepa, Henry S.

    2015-01-01

    Asymmetric photochemical synthesis using circularly polarized (CP) light is theoretically attractive as a means of absolute asymmetric synthesis and postulated as an explanation for homochirality on Earth. Using an asymmetric photochemical synthesis of a dihydrohelicene as an example, we demonstrate the principle that two wavelengths of CP light can be used to control separate reactions. In doing so, a photostationary state (PSS) is set up in such a way that the enantiomeric induction intrinsic to each step can combine additively, significantly increasing the asymmetric induction possible in these reactions. Moreover, we show that the effects of this dual wavelength approach can be accurately determined by kinetic modelling of the PSS. Finally, by coupling a PSS to a thermal reaction to trap the photoproduct, we demonstrate that higher enantioselectivity can be achieved than that obtainable with single wavelength irradiation, without compromising the yield of the final product. PMID:29218156

  10. Consenting to sexual activity: the development and psychometric assessment of dual measures of consent.

    Science.gov (United States)

    Jozkowski, Kristen N; Sanders, Stephanie; Peterson, Zoë D; Dennis, Barbara; Reece, Michael

    2014-04-01

    Sexual assault prevention efforts have focused on educating students to obtain consent as a mechanism to reduce sexual assault, yet little is known about how college students consent to sex. Additionally, there are currently no measures available to assess students' consent to sex. The current study aimed to better understand college students consent by using a systematic approach to develop validated measures of sexual consent. This study integrated mixed methods via three phases and two waves of data collection to develop two measures of consent. In Phase 1, qualitative data were collected from college students (n = 185) to inform the design of quantitative measures aimed at assessing sexual consent at last sexual intercourse. In Phase 2, items were written for the closed-ended quantitative instrument and reviewed by a team of experts, educators, and clinicians. In Phase 3, a quantitative survey was administered to college students (n = 660) which included the measures of consent developed from the Phase 1 data; the measures were assessed for their psychometric properties. Exploratory factor analyses were utilized to assess the measures and resulted in five factors each for both consent scales. Both scales had high internal consistency reliability, showed gender differences, and showed differences across relationship status (single vs. in a relationship). The two newly developed measures assess unique constructs of consent and demonstrate assessments of specific concepts. Our findings provide an important contribution to the field of sexuality as these measures can be used in future research to better understand sexual consent.

  11. Polite, Instrumental, and Dual Liars: Relation to Children's Developing Social Skills and Cognitive Ability

    Science.gov (United States)

    Lavoie, Jennifer; Yachison, Sarah; Crossman, Angela; Talwar, Victoria

    2017-01-01

    Lying is an interpersonal exercise that requires the intentional creation of a false belief in another's mind. As such, children's development of lie-telling is related to their increasing understanding of others and may reflect the acquisition of basic social skills. Although certain types of lies may support social relationships, other types of…

  12. Transient hypothyroidism: Dual effect on adult-type leydig cell and sertoli cell development

    NARCIS (Netherlands)

    Rijntjes, Eddy; Lucca Moreira Gomes, de Marcos; Zupanic, Nina; Swarts, Hans J.M.; Keijer, Jaap; Teerds, Katja J.

    2017-01-01

    Transient neonatal 6-propyl-2-thiouracil (PTU) induced hypothyroidism affects Leydig and Sertoli cell numbers in the developing testis, resulting in increased adult testis size. The hypothyroid condition was thought to be responsible, an assumption questioned by studies showing that uninterrupted

  13. Using the dual-level modeling approach to developing applications in the pervasive healthcare environment

    NARCIS (Netherlands)

    Cardoso de Moraes, J.L.; Lopes de Souza, Wanderley; Ferreira Pires, Luis; Cavalini, Luciana Tricai; do Prado, Antonio Francisco

    2013-01-01

    Health information technology is the area of IT involving the design, development, creation, use and maintenance of information systems for the healthcare industry. Automated and interoperable healthcare information systems are expected to lower costs, improve efficiency and reduce error, while also

  14. Development of generative structures of polar Caryophyllaceae plants: the Arctic Cerastium alpinum and Silene involucrata, and the Antarctic Colobanthus quitensis

    Directory of Open Access Journals (Sweden)

    Kellmann-Sopyła Wioleta

    2017-03-01

    Full Text Available The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard. In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.

  15. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development

    DEFF Research Database (Denmark)

    Elias, Bertha C; Das, Amrita; Parekh, Diptiben V

    2015-01-01

    and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either...

  16. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  17. The dual role of scavenger receptor class A in development of diabetes in autoimmune NOD mice.

    Directory of Open Access Journals (Sweden)

    Mami Shimizu

    Full Text Available Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A-/- nonobese diabetic (NOD mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A-/- NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I:C was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I:C. In addition, injection of high-dose poly(I: C to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A-/- NOD mice compared with untreated SR-A-/- NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A-/- NOD mice treated with poly(I:C than in untreated SR-A-/- NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A-/- NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I:C treatment even in SR-A-/- NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes.

  18. Dual diagnosis screening interview to identify psychiatric comorbidity in substance users: development and validation of a brief instrument.

    Science.gov (United States)

    Mestre-Pintó, Joan Ignasi; Domingo-Salvany, Antònia; Martín-Santos, Rocío; Torrens, Marta

    2014-01-01

    The objective of this study was to develop and validate a brief tool, the Dual Diagnosis Screening Instrument (DDSI), to screen psychiatric disorders in substance users in treatment and nontreatment-seeking samples. A total of 827 substance users (66.5% male, mean age 28.6±9.9 years) recruited in treatment (in- and outpatient) and nontreatment (substance user volunteers in university research studies) settings were assessed by trained interviewers using the DDSI and the Psychiatric Research Interview for Substance and Mental Disorders (PRISM) as the criterion standard. Both instruments were administered blind to the results of the other. Disorders obtained with the DDSI were compared to lifetime diagnoses obtained with the PRISM. Sensitivity, specificity, negative, and positive predictive values were estimated. Also test-retest reliability of the DDSI was assessed. The DDSI showed a high sensitivity (≥80%) for identifying lifetime depression, mania, psychosis, panic, social phobia, and specific phobia disorders. Specificity was ≥82% for those diagnoses. Test-retest κ showed excellent agreement (range 81-95%). The mean duration of the DDSI administration was 16.8±2.5 min. The DDSI is a valid and easy-to-administer screening tool to detect possible psychiatric comorbidity among substance users. Copyright © 2013 S. Karger AG, Basel.

  19. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  20. Transient Hypothyroidism: Dual Effect on Adult-Type Leydig Cell and Sertoli Cell Development

    Directory of Open Access Journals (Sweden)

    Eddy Rijntjes

    2017-05-01

    Full Text Available Transient neonatal 6-propyl-2-thiouracil (PTU induced hypothyroidism affects Leydig and Sertoli cell numbers in the developing testis, resulting in increased adult testis size. The hypothyroid condition was thought to be responsible, an assumption questioned by studies showing that uninterrupted fetal/postnatal hypothyroidism did not affect adult testis size. Here, we investigated effects of transient hypothyroidism on Leydig and Sertoli cell development, employing a perinatal iodide-deficient diet in combination with sodium perchlorate. This hypothyroidism inducing diet was continued until days 1, 7, 14, or 28 postpartum (pp respectively, when the rats were switched to a euthyroid diet and followed up to adulthood. Continuous euthyroid and hypothyroid, and neonatal PTU-treated rats switched to the euthyroid diet at 28 days pp, were included for comparison. No effects on formation of the adult-type Leydig cell population or on Sertoli cell proliferation and differentiation were observed when the diet switched at/or before day 14 pp. However, when the diet was discontinued at day 28 pp, Leydig cell development was delayed similarly to what was observed in chronic hypothyroid rats. Surprisingly, Sertoli cell proliferation was 6- to 8-fold increased 2 days after the diet switch and remained elevated the next days. In adulthood, Sertoli cell number per seminiferous tubule cross-section and consequently testis weight was increased in this group. These observations implicate that increased adult testis size in transiently hypothyroid rats is not caused by the hypothyroid condition per se, but originates from augmented Sertoli cell proliferation as a consequence of rapid normalization of thyroid hormone concentrations.

  1. DEVELOPMENT OF A DUAL MODALITY TOMOGRAPHIC IMAGING SYSTEM FOR BIOLUMINESCENCE AND PET

    Energy Technology Data Exchange (ETDEWEB)

    CHATZIIOANNOU, ARION

    2011-12-21

    The goal of this proposal was to develop a new hybrid imaging modality capable to simultaneously image optical bioluminescence signals, as well as radionuclide emissions from the annihilation of positrons originating from molecular imaging probes in preclinical mouse models. This new technology enables the simultaneous in-vivo measurements of both emissions that could be produced from a single or a combination of two different biomarkers. It also facilitates establishing the physical limitations of bioluminescence imaging, its tomographic and spectral image reconstruction potential and the quantification of bioluminescence signals.

  2. Isolated Ficus trees deliver dual conservation and development benefits in a rural landscape

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2015-01-01

    Many of the world’s rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost...... strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated...

  3. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture.

    OpenAIRE

    Tanimizu, Naoki; Miyajima, Atsushi; Mostov, Keith E

    2007-01-01

    Cholangiocytes are cellular components of the bile duct system of the liver, which originate from hepatoblasts during embryonic liver development. Although several transcription factors and signaling molecules have been implicated in bile duct development, its molecular mechanism has not been studied in detail. Here, we applied a three-dimensional (3D) culture technique to a liver progenitor cell line, HPPL, to establish an in vitro culture system in which HPPL acquire differentiated cholangi...

  4. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  5. Strategic Management of Development of the Military-Industrial Complex Enterprises with the Use of Dual Technologies under the Resource-Based Approach

    Directory of Open Access Journals (Sweden)

    Petr Mikhailovich Brovko

    2016-07-01

    Full Text Available The main goal of the present study is to consider the specifics of current state and strategic management of development of enterprises within the military-industrial complex in the dynamic environment of the global market and determine the most effective ways of their development on the example of Russian helicopter industry. Methodology and tools of the study are based on the comparison and comparative evaluation of major Russian and foreign corporations engaged in development and production of helicopters. The authors analyze current state and strategic management of the helicopter industry on the basis of information available in the public domain. The source of the main problems of functioning of military-industrial complex enterprises, in particular, in the helicopter industry, can be found in the specifics of strategic management of its development, which is determined by major holdings under the close supervision of the government. One of the most important ways to develop enterprises of this industry is to diversify civil production in order to increase the output and improve the financial situation and, on the other hand, to reduce the dependence of enterprises on the state defense order. The development of dual-use technology and production of dual-use products makes it possible not only to maintain a powerful military-industrial complex, but also to accelerate the development of the economy as a whole. The authors of the paper put forward an algorithm of formation of an optimum strategy for diversification of production through the use of “dual technologies”. The profit obtained from the sales of products produced on the basis of “dual-use technology” will compensate for some of the military expenditures

  6. Study of thermocline development inside a dual-media storage tank at the beginning of dynamic processes

    Science.gov (United States)

    Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther

    2017-06-01

    This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Satoshi, E-mail: okumura.satoshi@c.mbox.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine (Japan); Yamamoto, Seiichi [Nagoya University Graduate School of Medicine (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University (Japan); Kato, Natsuki; Hamamura, Huka [Nagoya University Graduate School of Medicine (Japan)

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd{sub 2}SiO{sub 5} (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm{sup 3} and 1.6×2.4×8.0 mm{sup 3} for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  9. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Science.gov (United States)

    Okumura, Satoshi; Yamamoto, Seiichi; Watabe, Hiroshi; Kato, Natsuki; Hamamura, Huka

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd2SiO5 (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm3 and 1.6×2.4×8.0 mm3 for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  10. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Markus Schosserer

    2017-11-01

    Full Text Available Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress

  11. Development of Dual-Phase Oxygen Transport Membranes for Carbon Capture Processes

    DEFF Research Database (Denmark)

    Pirou, Stéven

    -fuel combustion power plants. For the case of direct integration considered here the permeate side of the OTMs will be swept with recirculated flue gas whereby a driving force for oxygen transport through the membrane, which is fed with air on the other side, is directly established. It further facilitates...... developed and characterized as thick (1 mm) self-standing membranes and thin (8 μm) supported membranes. The stability of these membranes in gas streams containing CO2, SO2 and H2O was found to be excellent. However, the high volatility of the Zn in the AZO phase under mildly reducing atmospheres makes...... in the combustion, which greatly facilitates the down-stream CO2 capture. The main energy penalty for the oxy-fuel process is related to the production of the oxygen, which today commonly is done in cryogenic air separation units (ASUs). An alternative approach, which requires significant less energy is the use...

  12. A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology

    Science.gov (United States)

    Tinker, Michael L.

    1994-01-01

    A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.

  13. Addressing the Dual Challenges of Meeting Demand for Minerals and Sustainable Development

    Directory of Open Access Journals (Sweden)

    R. Larry Grayson

    2010-10-01

    Full Text Available In recent decades, excellent progress has been made globally in finding mineral resources, extracting them efficiently and effectively, dramatically reducing environmental degradation, and preventing adverse health and safety impacts on workers and stakeholders. The industry has realized tremendous advances in technology and applied science; has met changing and more stringent environmental performance criteria; has made remarkable reductions in fatality, illness, and lost-time accident rates; and has connected better than ever before with the communities in which mining, milling, and smelting are housed. A new era focused on continuous improvement in tackling key sustainable development parameters has come and is intensifying [1].  In order to maintain the social licenses needed to enlist broad public support for mining businesses, continued progress must be visible to national, provincial, and local governments as well as the people who live in the areas blessed with the mineral resources that the global economy and growing population will demand. [...

  14. Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila.

    Science.gov (United States)

    Enya, Sora; Yamamoto, Chikana; Mizuno, Hajime; Esaki, Tsuyoshi; Lin, Hsin-Kuang; Iga, Masatoshi; Morohashi, Kana; Hirano, Yota; Kataoka, Hiroshi; Masujima, Tsutomu; Shimada-Niwa, Yuko; Niwa, Ryusuke

    2017-12-01

    Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo ( nobo ), encoding a glutathione S -transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ -glutamylcysteine synthetase catalytic subunit ( Gclc ) gene in the fruit fly Drosophila melanogaster Gclc encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete Gclc loss-of-function leads to drastic GSH deficiency in the larval body fluid. Gclc mutant animals show a larval-arrest phenotype. Ecdysteroid titer in Gclc mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, Gclc mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to nobo loss-of-function animals. On the other hand, Gclc mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, Gclc mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in Gclc mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected

  15. Frizzled3 controls axonal polarity and intermediate target entry during striatal pathway development

    NARCIS (Netherlands)

    Morello, Francesca; Prasad, Asheeta A.; Rehberg, Kati; Baptista Vieira de Sá, Renata; Antón-Bolaños, Noelia; Leyva-Diaz, Eduardo; Adolfs, Youri; Tissir, Fadel; López-Bendito, Guillermina; Pasterkamp, R. Jeroen

    2015-01-01

    The striatum is a large brain nucleus with an important role in the control of movement and emotions.Mediumspiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains

  16. Predicting writing development in dual language instructional contexts: exploring cross-linguistic relationships.

    Science.gov (United States)

    Savage, Robert; Kozakewich, Meagan; Genesee, Fred; Erdos, Caroline; Haigh, Corinne

    2017-01-01

    This study examined whether decoding and linguistic comprehension abilities, broadly defined by the Simple View of Reading, in grade 1 each uniquely predicted the grade 6 writing performance of English-speaking children (n = 76) who were educated bilingually in both English their first language and French, a second language. Prediction was made from (1) English to English; (2) French to French; and (3) English to French. Results showed that both decoding and linguistic comprehension scores predicted writing accuracy but rarely predicted persuasive writing. Within the linguistic comprehension cluster of tests, Formulating Sentences was a strong consistent within- and between-language predictor of writing accuracy. In practical terms, the present results indicate that early screening for later writing ability using measures of sentence formulation early in students' schooling, in their L1 or L2, can provide greatest predictive power and allow teachers to differentiate instruction in the primary grades. Theoretically, the present results argue that there are correlations between reading-related abilities and writing abilities not only within the same language but also across languages, adding to the growing body of evidence for facilitative cross-linguistic relationships between bilinguals' developing languages. © 2016 John Wiley & Sons Ltd.

  17. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Alfakih Khaled

    2011-05-01

    Full Text Available Abstract Background The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF by first-pass perfusion cardiovascular magnetic resonance (CMR. However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion CMR. The main reasons for this are that the setup for the dual-bolus method is complex and requires a state-of-the-art injector and there is also a lack of post processing software. As a solution to one of these problems, we have devised a universal dual-bolus injection scheme for use in a clinical setting. The purpose of this study is to show the setup and feasibility of the universal dual-bolus injection scheme. Methods The universal dual-bolus injection scheme was tested using multiple combinations of different contrast agents, contrast agent dose, power injectors, perfusion sequences, and CMR scanners. This included 3 different contrast agents (Gd-DO3A-butrol, Gd-DTPA and Gd-DOTA, 4 different doses (0.025 mmol/kg, 0.05 mmol/kg, 0.075 mmol/kg and 0.1 mmol/kg, 2 different types of injectors (with and without "pause" function, 5 different sequences (turbo field echo (TFE, balanced TFE, k-space and time (k-t accelerated TFE, k-t accelerated balanced TFE, turbo fast low-angle shot and 3 different CMR scanners from 2 different manufacturers. The relation between the time width of dilute contrast agent bolus curve and cardiac output was obtained to determine the optimal predefined pause duration between dilute and neat contrast agent injection. Results 161 dual-bolus perfusion scans were performed. Three non-injector-related technical errors were observed (1.9%. No injector-related errors were observed. The dual-bolus scheme worked well in all the combinations of parameters if the optimal predefined pause was used. Linear regression analysis showed that the optimal duration for the predefined

  18. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Huixian [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Shi, Zhenqi [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Qiao, Ping [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Department of Pharmacology, Norman Bethune Medical College, Jilin University, Changchun, Jilin 130021 (China); Li, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); McCoy, Erin M. [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Mao, Ping [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Xu, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Feng, Xu [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Wang, Shunqing, E-mail: shqwang_cn@yahoo.com [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China)

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  19. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation.

    Science.gov (United States)

    Alarcon, Vernadeth B; Marikawa, Yusuke

    2018-01-01

    In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

  20. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  1. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator

    International Nuclear Information System (INIS)

    Espig, Martin

    2016-02-01

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of n,x =(1.7478(4).10 -4 .(r)/(μm)+2.8(18).10 -5 ) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1.2) ps at a

  2. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    injection, the polarized hydrogen jet target runs for every fill with both beams. Based on the known analyzing power, there is very little polarization loss between injection and 100 GeV. An alternative way is to measure the asymmetry at 100 GeV followed by ramping up to 250 GeV and back down to 100 GeV and then to measure the asymmetry again at 100 GeV. If the asymmetry after the down ramp is similar to the measurement before the up ramp, polarization was also preserved during the ramp to 250 GeV. The analyzing power at storage energy can then be extracted from the asymmetries measured at 100 GeV and 250 GeV. The tune and orbit feedbacks are essential for the down ramp to be possible. The polarized proton operation is still going on. We will push bunch intensity higher until reaching the beam-beam limit. The even higher intensity will have to wait for the electron lenses to compensate the beam-beam effect. To understand the details of spin dynamics in RHIC with two snakes, spin simulation with the real magnet fields have been developed recently. The study will provide guidance for possible polarization loss schemes. Further polarization gain will requires a polarized source upgrade; more careful setup jump quads in the AGS to get full benefit; and control emittance in the whole accelerator chain.

  3. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    injection, the polarized hydrogen jet target runs for every fill with both beams. Based on the known analyzing power, there is very little polarization loss between injection and 100 GeV. An alternative way is to measure the asymmetry at 100 GeV followed by ramping up to 250 GeV and back down to 100 GeV and then to measure the asymmetry again at 100 GeV. If the asymmetry after the down ramp is similar to the measurement before the up ramp, polarization was also preserved during the ramp to 250 GeV. The analyzing power at storage energy can then be extracted from the asymmetries measured at 100 GeV and 250 GeV. The tune and orbit feedbacks are essential for the down ramp to be possible. The polarized proton operation is still going on. We will push bunch intensity higher until reaching the beam-beam limit. The even higher intensity will have to wait for the electron lenses to compensate the beam-beam effect. To understand the details of spin dynamics in RHIC with two snakes, spin simulation with the real magnet fields have been developed recently. The study will provide guidance for possible polarization loss schemes. Further polarization gain will requires a polarized source upgrade; more careful setup jump quads in the AGS to get full benefit; and control emittance in the whole accelerator chain.

  4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    Science.gov (United States)

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the

  5. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  6. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  7. Development and validation of polar RP-HPLC method for screening for ectoine high-yield strains in marine bacteria with green chemistry.

    Science.gov (United States)

    Chen, Jun; Chen, Jianwei; Wang, Sijia; Zhou, Guangmin; Chen, Danqing; Zhang, Huawei; Wang, Hong

    2018-04-02

    A novel, green, rapid, and precise polar RP-HPLC method has been successfully developed and screened for ectoine high-yield strain in marine bacteria. Ectoine is a polar and extremely useful solute which allows microorganisms to survive in extreme environmental salinity. This paper describes a polar-HPLC method employed polar RP-C18 (5 μm, 250 × 4.6 mm) using pure water as the mobile phase and a column temperature of 30 °C, coupled with a flow rate at 1.0 mL/min and detected under a UV detector at wavelength of 210 nm. Our method validation demonstrates excellent linearity (R 2  = 0.9993), accuracy (100.55%), and a limit of detection LOQ and LOD of 0.372 and 0.123 μgmL -1 , respectively. These results clearly indicate that the developed polar RP-HPLC method for the separation and determination of ectoine is superior to earlier protocols.

  8. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Dual beam vidicon digitizer

    International Nuclear Information System (INIS)

    Evans, T.L.

    1976-01-01

    A vidicon waveform digitizer which can simultaneously digitize two independent signals has been developed. Either transient or repetitive waveforms can be digitized with this system. A dual beam oscilloscope is used as the signal input device. The light from the oscilloscope traces is optically coupled to a television camera, where the signals are temporarily stored prior to digitizing

  10. Towards a Dual Approach

    DEFF Research Database (Denmark)

    Holli, Anne Maria; Harder, Mette Marie Stæhr

    2016-01-01

    Drawing on insights from state feminism and legislative studies on parliamentary committees, this article develops a dual approach for the comparative analysis of committees on gender equality. Empirically, it compares the standing committees on gender equality in Denmark and Finland, two Nordic...

  11. Characterization of polarity development through 2- and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L.

    Science.gov (United States)

    Dubas, Ewa; Custers, Jan; Kieft, Henk; Wędzony, Maria; van Lammeren, André A M

    2014-01-01

    Isolated microspores of B. napus in culture change their developmental pathway from gametophytic to sporophytic and form embryo-like structures (ELS) upon prolonged heat shock treatment (5 days at 32 °C). ELS express polarity during the initial days of endosporic development. In this study, we focussed on the analysis of polarity development of ELS without suspensor. Fluorescence microscopy and 3-D confocal laser scanning microscopy (CLSM) without tissue interfering enabled us to get a good insight in the distribution of nuclei, mitochondria and endoplasmic reticulum (ER), the architecture of microtubular (MT) cytoskeleton and the places of 5-bromo-2'-deoxy-uridine (BrdU) incorporation in successive stages of microspore embryogenesis. Scanning electron microscopy (SEM) analysis revealed, for the first time, the appearance of a fibrillar extracellular matrix-like structure (ECM-like structure) in androgenic embryos without suspensor. Two types of endosporic development were distinguished based upon the initial location of the microspore nucleus. The polarity of dividing and growing cells was recognized by the differential distributions of organelles, by the organization of the MT cytoskeleton and by the visualization of DNA synthesis in the cell cycle. The directional location of nuclei, ER, mitochondria and starch grains in relation to the MTs configurations were early polarity indicators. Both exine rupture and ECM-like structure on the outer surfaces of ELS are supposed to stabilize ELS's morphological polarity. As the role of cell polarity during early endosporic microspore embryogenesis in apical-basal cell fate determination remains unclear, microspore culture system provides a powerful in vitro tool for studying the developmental processes that take place during the earliest stages of plant embryogenesis.

  12. Development of the Next Generation of Seismological Instrumentation for Polar Environments

    Science.gov (United States)

    Winberry, J. P.; Anderson, K. R.; Huerta, A. D.; Bernsen, S. P.; Parker, T.; Carpenter, P.; Woodward, R.; Beaudoin, B. C.; Bilek, S. L.

    2014-12-01

    Ice covered regions comprise >10% of Earth's continental area; and include regions with poorly understood ice dynamics, ice shelf stability, hydrology, tectonic histories and basic geologic structure both deep and shallow. Scientific investigations of these regions are challenged by extreme weather, limited and expensive logistics, and the physical conditions of the ice environment. We report on the next development of a new NSF MRI-supported community seismic capability for studying ice-covered regions- the Geophysical Earth Observatory for Ice Covered Environments (GEOICE). This project is fundamentally motivated by the need to densify and optimize the collection of high-quality data relevant to key solid Earth and cryosphere science questions. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements, for observation of both long-period (e.g., long-period surface waves and slow sources) and intermediate-to-short-period (e.g., teleseismic body waves local seismicity, impulsive or extended glaciogenic signals). The GEOICE instrument, and its power and other ancillary systems, will be specifically designed to both withstand conditions associated with icy environments, including cold/wet conditions and high-latitude solar limitations, and to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field, in data handling, and in telemetry compatibility. Key features will include a design that integrates the seismometer and data logger into a single environmentally and mechanically robust housing, very low power requirements (peer-reviewed community use.

  13. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  14. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  15. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    Science.gov (United States)

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol

  16. Why did distinct types of dual-earner models in Czech, Slovak and East German societies develop and persist?

    Czech Academy of Sciences Publication Activity Database

    Hašková, Hana; Klenner, Ch.

    2010-01-01

    Roč. 22, č. 3 (2010), s. 266-288 ISSN 1437-2940 R&D Projects: GA AV ČR IAA700280901; GA ČR GAP404/10/0021 Institutional research plan: CEZ:AV0Z70280505 Keywords : dual earner model * Central and Eastern Europe Subject RIV: AO - Sociology , Demography Impact factor: 0.037, year: 2010

  17. The Evolution of Dual-Branded Hotels: How the Marriott/Starwood Acquisition Enhances Opportunities for Developers

    Directory of Open Access Journals (Sweden)

    Jonathan Jaeger

    2016-01-01

    Full Text Available Should the deal ultimately close, the recently announced acquisition of Starwood Hotels and Resorts Worldwide, Inc. (HOT by Marriott International (MI will be a lodging industry game changer. MI is a trailblazer of the dual-branded hotel trend and will be well poised to accelerate this concept by capitalizing on its newly-expanded suite of brands.

  18. The Dual Impact of Gender and the Influence of Timing of Parenthood on Men's and Women's Career Development: Longitudinal Findings

    Science.gov (United States)

    Abele, Andrea E.; Spurk, Daniel

    2011-01-01

    This study investigated the impact of gender, the gender-related self-concept (agency and communion), and the timing of parenthood on objective career success of 1,015 highly educated professionals. Hypotheses derived from a dual-impact model of gender and career-related processes were tested in a 5-wave longitudinal study over a time span of 10…

  19. Development of a LabVIEW-based surface with innovative controls for the control system of the spin-polarized electron test source Photo-CATCH

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Heidi Ayse; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [TU Darmstadt, Institut fuer Kernphysik (Germany)

    2016-07-01

    Operations of the spin-polarized electron source of the S-DALINAC will be supported by a photo-cathode activation, test and cleaning system, Photo-CATCH. Besides cathode-performance studies, this teststand produces spin-polarized electron bunches from a GaAs photo-cathode that are then transported, manipulated, and characterized by devices in a low-energy beam line. To set and monitor the various components of the beamline, a control system was developed, based on the EPICS framework. As interfaces, LabVIEW was used in combination with a gamepad as a controlling device.

  20. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  1. Dual Entwining Structures and Dual Entwined Modules

    OpenAIRE

    Abuhlail, Jawad Y.

    2003-01-01

    In this note we introduce and investigate the concepts of dual entwining structures and dual entwined modules. This generalizes the concepts of dual Doi-Koppinen structures and dual Doi-Koppinen modules introduced (in the infinite case over rings) by the author is his dissertation.

  2. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  3. Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.; Fincke, James R.; Hakel, Peter; Hsu, Scott C.; Krasheninnikova, Natalia S.; Kyrala, George A.; Magelssen, Glenn R.; Montgomery, David S.; Murphy, Thomas J.; Obrey, Kimberly A.; Shah, Rahul C.; Tregillis, Ian L.; Baumgaertel, Jessica A.; Wysocki, Frederick J.; Batha, Steven H. [Los Alamos National Laboratory, MS F699, Los Alamos, New Mexico 87545 (United States); Stephen Craxton, R.; McKenty, Patrick W. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States); Fitzsimmons, Paul [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); and others

    2013-05-15

    Experiments were performed to develop a platform for the simultaneous measurement of mix and its effects on fusion burn. Two polar direct drive implosions of all-plastic capsules were conducted for the first time on the National Ignition Facility (NIF). To measure implosion trajectory and symmetry, area image backlighting of these capsules was also employed for the first time on NIF, an advance over previous 1-D slit imaging experiments, providing detailed symmetry data of the capsules as they imploded. The implosion trajectory and low-mode asymmetry seen in the resultant radiographs agreed with pre-shot predictions even though the 700 kJ drive energy produced laser beam intensities exceeding laser-plasma instability thresholds. Post-shot simulations indicate that the capsule yield was reduced by a factor of two compared to pre-shot predictions owing to as-shot laser drive asymmetries. The pre-shot predictions of bang time agreed within 200 ps with the experimental results. The second shot incorporated a narrow groove encircling the equator of the capsule. A predicted yield reduction factor of three was not observed.

  4. Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility

    International Nuclear Information System (INIS)

    Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.; Fincke, James R.; Hakel, Peter; Hsu, Scott C.; Krasheninnikova, Natalia S.; Kyrala, George A.; Magelssen, Glenn R.; Montgomery, David S.; Murphy, Thomas J.; Obrey, Kimberly A.; Shah, Rahul C.; Tregillis, Ian L.; Baumgaertel, Jessica A.; Wysocki, Frederick J.; Batha, Steven H.; Stephen Craxton, R.; McKenty, Patrick W.; Fitzsimmons, Paul

    2013-01-01

    Experiments were performed to develop a platform for the simultaneous measurement of mix and its effects on fusion burn. Two polar direct drive implosions of all-plastic capsules were conducted for the first time on the National Ignition Facility (NIF). To measure implosion trajectory and symmetry, area image backlighting of these capsules was also employed for the first time on NIF, an advance over previous 1-D slit imaging experiments, providing detailed symmetry data of the capsules as they imploded. The implosion trajectory and low-mode asymmetry seen in the resultant radiographs agreed with pre-shot predictions even though the 700 kJ drive energy produced laser beam intensities exceeding laser-plasma instability thresholds. Post-shot simulations indicate that the capsule yield was reduced by a factor of two compared to pre-shot predictions owing to as-shot laser drive asymmetries. The pre-shot predictions of bang time agreed within 200 ps with the experimental results. The second shot incorporated a narrow groove encircling the equator of the capsule. A predicted yield reduction factor of three was not observed

  5. Development of a high-performance dual-energy chest imaging system: initial investigation of diagnostic performance.

    Science.gov (United States)

    Kashani, Hany; Gang, Jianan Grace; Shkumat, Nicholas A; Varon, Carlos A; Yorkston, John; Van Metter, Richard; Paul, Narinder S; Siewerdsen, Jeffrey H

    2009-04-01

    The aim of this study was to assess the performance of a newly developed dual-energy (DE) chest radiographic system in comparison to digital radiographic (DR) imaging in the detection and characterization of lung nodules. An experimental prototype was developed for high-performance DE chest imaging, with total dose equivalent to a single posterior-anterior DR image. Projections at low and high peak kilovoltage were used to decompose DE soft tissue and bone images. A cohort of 55 patients (31 men, 24 women; mean age, 65.6 years) was drawn from an ongoing trial involving patients referred for percutaneous computed tomography-guided biopsy of suspicious lung nodules. DE and DR images were acquired of each patient prior to biopsy. Image quality was assessed by means of human observer tests involving five radiologists independently rating the detection and characterization of lung nodules on a nine-point scale. Results were analyzed in terms of the fraction of cases at or above a given rating, and statistical significance was evaluated using Wilcoxon's signed-rank test. Performance was analyzed for all cases pooled as well as by stratification of nodule size, density, lung region, and chest thickness. The studies demonstrated a significant performance advantage for DE imaging compared to DR imaging (P < .001) in the detection and characterization of lung nodules. DE imaging improved the detection of both small and large nodules and exhibited the most significant improvement in regions of the upper lobes, where overlying anatomic noise (ribs and clavicles) are believed to reduce nodule conspicuity on DR imaging. DE imaging outperformed DR imaging overall, particularly in the detection of small, solid nodules. DE imaging also performed better in regions dominated by anatomic noise, such as the lung apices. The potential for improved nodule detection and characterization at radiation doses equivalent to DR imaging is encouraging and could augment the broader use of DE

  6. Amplification of spin-current polarization

    Science.gov (United States)

    Saha, D.; Holub, M.; Bhattacharya, P.

    2007-08-01

    A ferromagnet/semiconductor based electrically controlled spin-current amplifier using a dual-drain nonlocal lateral spin valve is demonstrated. The spin polarization injected by the source into the channel is amplified at the second drain contact. An amplified current spin polarization of 100% is measured. The controlled variation of amplifier gain with bias is also demonstrated. The observations are explained in the framework of the spin drift-diffusion model.

  7. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  8. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    Science.gov (United States)

    Srinivasan, Balaji; Ramachandra Rao, M. S.; Rao, Balkrishna C.

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min-1 with a lower feed and a lower depth of cut of 0.5 mm rev-1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength.

  9. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Srinivasan, Balaji; Rao, Balkrishna C; Ramachandra Rao, M S

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min −1 with a lower feed and a lower depth of cut of 0.5 mm rev −1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength. (paper)

  10. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  11. The development of a green supply chain dual-objective facility by considering different levels of uncertainty

    Science.gov (United States)

    Khorasani, Sasan Torabzadeh; Almasifard, Maryam

    2017-11-01

    This paper presents a dual-objective facility programming model for a green supply chain network. The main objectives of the presented model are minimizing overall expenditure and negative environmental impacts of the supply chain. This study contributes to the existing literature by incorporating uncertainty in customer demand, suppliers, production, and casting capacity. An industrial case study is also analyzed to reveal the feasibility of the proposed model and its application. A fuzzy approach which is known as TH is used to solve the suggested dual-objective model. TH approach is integration of a max-min method (LH) and modified version of Werners' approach (MW). The outcome of this study reveals that the presented model can support green supply chain network in different levels of uncertainty. In presented model, cost and negative environmental impacts derived from the supply chain network will increase of higher levels of uncertainty.

  12. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    Science.gov (United States)

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  13. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    Directory of Open Access Journals (Sweden)

    Ye Chang

    2018-01-01

    Full Text Available In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET and a film bulk acoustic resonator (FBAR. We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  14. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  15. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  16. Evaluating the Role of First Polar Body Morphology on Rates of Fertilization and Embryo Development in ICSI Cycles

    Directory of Open Access Journals (Sweden)

    Iman Halvaei

    2011-01-01

    Full Text Available Background: Recent studies have demonstrated that morphology of the first polar body (1st PBis related to oocyte viability, which can be used as a prognostic tool to predict oocyte performanceand pregnancy outcomes in an intracytoplasmic sperm injection (ICSI program. According to somestudies, there is a correlation between oocyte performance and 1st PB morphology, while others havenot reported any correlation. The objective of this study is to evaluate the role of 1st PB morphologyon rates of fertilization and embryo development in ICSI cases.Materials and Methods: In this prospective study morphological characteristics of 470 metaphaseII (MII oocytes were assessed in 80 ICSI cycles. The women were ages 21-42 years (mean 32.6 ±0.2. Their oocytes were retrieved after a hyperstimulation protocol. After denudation, all oocyteswere evaluated for 1st PB morphology. The oocytes were divided into two groups of A (normal 1stPB and B (abnormal fragmented 1st PB. In addition, other abnormalities, such as refractile bodies(RF, wide previtelline space (wPVS, central and general granulation, bull’s eye, vacuole, smoothendoplasmic reticulum cluster (SERc, debris in PVS, shape and dark oocyte were checked. Forverifying of fertilization, about 18-19 hours post-ICSI, oocytes were checked for two-pronuclear.Assessments of embryo quality, development and embryo transfer were done at day two. Chisquare,Fisher’s exact and independent sample t tests were chosen for statistical analysis.Results: Twenty-seven percent of oocytes had fragmented 1st PB, while the remainder was associatedwith other morphological abnormalities. A total of 46.1% and 26.9% of oocytes showed double andmultiple defects, respectively. RF was the most common abnormality observed in group B. Nosignificant differences in women’s’ ages between groups A and B were noted (p=0.3. A total of 179and 107 oocytes (61.5% vs. 59.8% were fertilized in groups A and B, respectively (p=0.7. Therates of

  17. Developing a weighting strategy to include mobile phone numbers into an ongoing population health survey using an overlapping dual-frame design with limited benchmark information.

    Science.gov (United States)

    Barr, Margo L; Ferguson, Raymond A; Hughes, Phil J; Steel, David G

    2014-09-04

    In 2012 mobile phone numbers were included into the ongoing New South Wales Population Health Survey (NSWPHS) using an overlapping dual-frame design. Previously in the NSWPHS the sample was selected using random digit dialing (RDD) of landline phone numbers. The survey was undertaken using computer assisted telephone interviewing (CATI). The weighting strategy needed to be significantly expanded to manage the differing probabilities of selection by frame, including that of children of mobile-only phone users, and to adjust for the increased chance of selection of dual-phone users. This paper describes the development of the final weighting strategy to properly combine the data from two overlapping sample frames accounting for the fact that population benchmarks for the different sampling frames were not available at the state or regional level. Estimates of the number of phone numbers for the landline and mobile phone frames used to calculate the differing probabilities of selection by frame, for New South Wales (NSW) and by stratum, were obtained by apportioning Australian estimates as none were available for NSW. The weighting strategy was then developed by calculating person selection probabilities, selection weights, applying a constant composite factor to the dual-phone users sample weights, and benchmarking to the latest NSW population by age group, sex and stratum. Data from the NSWPHS for the first quarter of 2012 was used to test the weighting strategy. This consisted of data on 3395 respondents with 2171 (64%) from the landline frame and 1224 (36%) from the mobile frame. However, in order to calculate the weights, data needed to be available for all core weighting variables and so 3378 respondents, 2933 adults and 445 children, had sufficient data to be included. Average person weights were 3.3 times higher for the mobile-only respondents, 1.3 times higher for the landline-only respondents and 1.7 times higher for dual-phone users in the mobile frame

  18. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    Science.gov (United States)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  19. Correction of polarization error in scanned array weather radar antennas

    NARCIS (Netherlands)

    Pang, C.; Hoogeboom, P.; Russchenberg, H.; Wang, T.; Dong, J.; Wang, X.

    2014-01-01

    In this paper, the polarization error correction of dual-polarized planar scanned array weather radar in alternately transmitting and simultaneously receiving (ATSR) mode is analyzed. A method based on point correction and a method taking the complete array patterns into account are discussed. To

  20. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    Science.gov (United States)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  1. Some properties of dual and approximate dual of fusion frames

    OpenAIRE

    Arefijamaal, Ali Akbar; Neyshaburi, Fahimeh Arabyani

    2016-01-01

    In this paper we extend the notion of approximate dual to fusion frames and present some approaches to obtain dual and approximate alternate dual fusion frames. Also, we study the stability of dual and approximate alternate dual fusion frames.

  2. Dual-layer ultrathin film optics: I. Theory and analysis

    International Nuclear Information System (INIS)

    Wang, Qian; Lim, Kim Peng

    2015-01-01

    This paper revisits dual-layer ultrathin film optics, which can be used for functional graded refractive index thin film stack. We present the detailed derivation including s-polarized and p-polarized light under arbitrary incidence angle showing the equivalence between the dual-layer ultrathin films and a negative birefringent thin film and also the approximations made during the derivation. Analysis of the approximations shows the influence of thickness of dual-layer thin films, the incidence angle and desired refractive index of the birefringent film. Numerical comparison between the titanium dioxide/aluminum oxide based dual-layer ultrathin film stack and the equivalent birefringent film verifies the theoretical analysis. The detailed theoretical study and numerical comparison provide a physical insight and design guidelines for dual-layer ultrathin film based optical devices. (paper)

  3. The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers[C][W

    Science.gov (United States)

    Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian

    2013-01-01

    LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase–box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits. PMID:24220634

  4. DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and -Regulated Kinase 1A: A Gene with Dosage Effect During Development and Neurogenesis

    Directory of Open Access Journals (Sweden)

    M. Dierssen

    2006-01-01

    Full Text Available DYRKs (dual-specificity tyrosine-regulated kinases are an emerging family of evolutionarily conserved dual-specificity kinases that play key roles in cell proliferation, survival, and development. The research in the last years suggests a relevant conserved function during neuronal development, related to proliferation and/or differentiation for DYRK1A. It is expressed in neural progenitor cells and has been proposed to participate in the signaling mechanisms that regulate dendrite differentiation. In Drosophila, disruption of the homolog minibrain gene results in flies with reduced neuroblast proliferation, decreased numbers of central brain neurons, and learning/memory deficits. Knockout DYRK1A mice are embryonic lethal, and heterozygotes show decreased viability and region-specific reductions in brain size. In humans, DYRK1A has been proposed to be involved in the neurodevelopmental alterations associated with Down syndrome. The large number of protein interaction and putative substrates described for DYRK1A suggest multiple pathways and functions to be involved in its developmental function. This review focuses on the functional role that DYRK1A plays in brain development.

  5. Development of a dual-isotope procedure for the tagging and identification of manufactured products: application to explosives.

    Science.gov (United States)

    Carames-Pasaron, Isabel; Rodríguez-Castrillón, José Ángel; Moldovan, Mariella; Alonso, J Ignacio García

    2012-01-03

    A novel chemical tagging approach, based on a dual-isotope procedure, is presented. The method has been applied to explosives tagging. The method is based on the addition to the explosive of two enriched isotopes of the same element, which may be already present within it, at a given molar ratio. This dual-isotope approach will give a unique fingerprint to the tagged explosive. Further, the authentication of the tagged explosive or its residues will be obtained by comparison of the ratio of molar fractions experimentally measured by inductively coupled plasma mass spectrometry (ICP-MS) with the molar fraction ratio of the tagging mixture. The novelty of this tagging method relies on working with isotope abundances and molar fraction ratios instead of the classical isotope ratios, and this fact constitutes the strong point of the described approach since the molar ratio is not affected by physical, chemical, or biochemical processes, and it is also not disturbed by environmental contamination with the natural abundance element. Furthermore, the use of molar fraction ratios overcomes the nonhomogeneous distribution of the tagging element within the explosive. As the tagging element can be present at trace or ultratrace levels, a very small amount of enriched isotopes needs to be added, denoting a low cost solution. Also, the use of enriched stable isotopes of nontoxic elements will have negligible health effects or affect the environment. © 2011 American Chemical Society

  6. Development of dual sulfur oxides and oxygen solid state sensor for 'in-situ' measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, S. [Analyt Instruments Pty. Ltd., Caulfield North, Vic. (Australia)

    2000-08-01

    Dual SO{sub x}/O{sub 2} 'in-situ' potentiometric sensor based on zirconia solid electrolyte and a composition of metal sulfates was investigated for simultaneous measurement of both oxygen and sulfur oxide emissions in combustion gas. The BaSO{sub 4}-K{sub 2}SO{sub 4}-SiO{sub 2}-based electrochemical cell of the senor exhibited excellent sensing characteristics for SO{sub x} measurement within a reasonably wide working temperature range of 650-1000{degree}C and measuring SO{sub x} concentrations (18-10,000 ppm). Carbon dioxide, oxygen and nitrogen oxides had no measurable effect on the SO{sub x} sensing properties of the sensor. Typical response times at 700{degree}C were in the range of 45-80s. The sensor also showed good correlation between the measuring SO{sub x} concentration and the output EMF in accordance with the Nernst equation. The installation of the probe based on dual SO{sub x}/O{sub 2} sensor in control loops can provide a better and a more effective way towards fuel saving and efficiency. 40 refs., 9 figs., 1 tab.

  7. Development of dual-activity vectors by co-envelopment of adenovirus and SiRNA in artificial lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Açelya Yilmazer

    Full Text Available Gene therapy with human adenovirus type 5 (Ad5 has been extensively explored for the treatment of diseases resistant to traditional therapies. Intravenous administration leads to rapid clearance from blood circulation and high liver accumulation, which restrict the use of Ad-based vectors in clinical gene therapy protocols that involve systemic administration. We have previously proposed that such limitations can be improved by engineering artificial lipid envelopes around Ad and designed a variety of artificial lipid bilayer envelopes around the viral capsid. In this study, we sought to explore further opportunities that the artificially enveloped virus constructs could offer, by designing a previously unreported gene therapy vector by simultaneous envelopment of Ad and siRNA within the same lipid bilayer. Such a dual-activity vector can offer efficacious therapy for different genetic disorders where both turning on and switching off genes would be needed. Dynamic light scattering, transmission electron microscopy and atomic force microscopy were used to characterize these vectors. Agarose gel electrophoresis, Ribo green and dot blot assays showed that siRNA and Ad virions can be enveloped together within lipid bilayers at high envelopment efficiency. Cellular uptake and in vitro transfection experiments were carried out to show the feasibility of combining siRNA-mediated gene silencing with viral gene transfer using these newly designed dual-activity vectors.

  8. Dual-Schemata Model

    Science.gov (United States)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  9. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  10. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  11. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  12. Design, development and performance characteristics of a large ...

    Indian Academy of Sciences (India)

    ... a pulse of 450 s) using an in-house developed dual-polarity capacitor bank based power supply. It was coupled to a high power Nd: phosphate glass laser chain and a maximum output pulse energy exceeding 100 J in a 1·5 ns (FWHM) pulse has been measured. A dry nitrogen gas based cooling system was developed ...

  13. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  14. The dual of a generalized minimax location problem

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1992-01-01

    This paper develops the dual formulation of a generalized minimax facility location problem which has distance and linear constraints......This paper develops the dual formulation of a generalized minimax facility location problem which has distance and linear constraints...

  15. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  16. Development of a High-Throughput Fluorescence Polarization Assay to Identify Novel Ligands of Glutamate Carboxypeptidase II

    Czech Academy of Sciences Publication Activity Database

    Alquicer, Glenda; Sedlák, David; Byun, Y.; Pavlíček, Jiří; Stathis, M.; Rojas, C.; Slusher, B.; Pomper, M.G.; Bartůněk, Petr; Bařinka, Cyril

    2012-01-01

    Roč. 17, č. 8 (2012), s. 1030-1040 ISSN 1087-0571 R&D Projects: GA MŠk(CZ) ME10031; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:68378050 Keywords : fluorescence polarization * glutamate carboxypeptidase II * high-throughput screening Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.207, year: 2012

  17. Nuclear membrane localization during pollen development and apex-focused polarity establishment of SYP124/125 during pollen germination in Arabidopsis thaliana.

    Science.gov (United States)

    Ichikawa, Mie; Iwano, Megumi; Sato, Masa H

    2015-12-01

    Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP). The expression of SYP124 and SYP125 was firstly detected in the microspore nuclear membrane during pollen mitosis II. Although SYP124, 125 and 131 accumulated throughout the cytosol in the mature pollen grain, GFP-SYP124 and GFP-SYP125 were highly concentrated in the apical or subapical regions of the elongating pollen tube with slightly different localization patterns, whereas GFP-SYP131 was uniformly localized to the plasma membrane of the pollen tube. The apex-focused polarity of GFP-SYP125 was established coincident with formation of a Ca(2+) gradient before pollen germination. These results suggest that SNAREs function differentially in the same cells and that at least two distinct membrane transport pathways are involved in the pollen development and the pollen tube germination and elongation.

  18. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (3). A new type of durable neutron shielding resin

    International Nuclear Information System (INIS)

    Kamoshida, Mamoru; Nishi, Takashi; Iga, Kiminori; Shimizu, Masashi; Kashiwakura, Jun; Hayashi, Makoto

    2003-01-01

    Hitachi Ltd. has been developing a new neutron shielding resin for the dual-purpose metal cask. The newly developed resin is composed of a thermo setting epoxy and magnesium hydroxide. Highly durable resin can be obtained by combining base polymer having dense cross linkage and fire retardant with high dehydration temperature. Estimated weight loss of the resin during storage period is less than 1%. Fabrication process of shielding unit suitable for the new material is also developed. In the new process, a resin block constituted of cured resin and heat transfer fin is manufactured and fitted to the cask. This process was verified by fabricating about 200 resin blocks for real size mock-up of Hitachi's metal cask. (author)

  19. Design and Investigation of Differential-Fed Ultra-Wideband Patch Antenna with Polarization Diversity

    Directory of Open Access Journals (Sweden)

    Yanfang Wang

    2016-01-01

    Full Text Available A novel single- or dual-polarized ultra-wideband (UWB patch antenna fed by coupled feeding mechanism is proposed. The single-polarized antenna consists of a square ring patch and two Γ-shaped patches which are coupled to the radiating patch. The vertical portions of the Γ-shaped patches are connected to the microstrip lines which are printed on the bottom layer of the grounded FR4 substrate. To realize the differential feeding mechanism for enhancing the polarization purity, a tapered balun is employed to excite the antenna. Further to provide dual linear orthogonal polarizations, another pair of Γ-shaped patches is added in the single-polarized UWB antenna. The dual-polarized UWB antenna prototype can achieve two orthogonal polarizations with an impedance bandwidth (S11≤-10 dB of 113% and isolation of over 25 dB across the entire frequency band.

  20. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  1. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  2. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  3. Shape-Controlled Generation of Gold Nanoparticles Assisted by Dual-Molecules: The Development of Hydrogen Peroxide and Oxidase-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chifang Peng

    2014-01-01

    Full Text Available With the assist of dual-molecules, 2-(N-morpholinoethanesulfonic acid (MES and sodium citrate, gold nanoparticles (GNPs with different shapes can be generated in the H2O2-mediated reduction of chloroauric acid. This one-pot reaction can be employed to sensitively detect H2O2, probe substrates or enzymes in oxidase-based reactions as well as prepare branched GNPs controllably. By the “naked eye,” 20 μM H2O2, 0.1 μM glucose, and 0.26 U/mL catalase could be differentiated, respectively. By spectrophotometer, the detected limits of H2O2, glucose, and catalase were 1.0 μM, 0.01 μM, and 0.03 U/mL, respectively, and the detection linear ranges for them were 5.0–400 μM, 0.01–0.3 mM, and 0.03–0.78 U/mL, respectively. The proposed “dual-molecules assist” strategy probably paves a new way for the fabrication of nanosensors based on the growth of anisotropic metal nanoparticles, and the developed catalase sensor can probably be utilized to fabricate ultrasensitive ELISA methods for various analytes.

  4. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  5. How self-dual is QCD?

    International Nuclear Information System (INIS)

    Alexandru, Andrei; Horváth, Ivan

    2012-01-01

    Vacuum characteristics quantifying dynamical tendency toward self-duality in gauge theories could be used to judge the relevance of classical solutions or the viability of classically motivated vacuum models. Here we decompose the field strength of equilibrium gauge configurations into self-dual and anti-self-dual parts, and apply absolute X-distribution method to the resulting polarization dynamics in order to construct such characteristics. Using lattice regularization and focusing on pure-glue SU(3) gauge theory at zero temperature, we find evidence for positive but very small dynamical tendency for self-duality of vacuum in the continuum limit.

  6. Are organohalogen contaminants a cofactor in the development of renal lesions in east Greenland polar bears (Ursus maritimus)?

    Science.gov (United States)

    Sonne, Christian; Dietz, Rune; Leifsson, Pall S; Born, Erik W; Kirkegaard, Maja; Letcher, Robert J; Muir, Derek C G; Riget, Frank E; Hyldstrup, Lars

    2006-06-01

    Tissues of polar bears (Ursus maritimus) from East Greenland contain the highest concentrations of organohalogen contaminants (OHCs) among subpopulations of any mammalian species in the Arctic. Negative associations also have been found between OHC concentrations and bone mineral density and liver histology parameters for this subpopulation of polar bears. The present study examined the OHC concentrations and adverse effects on renal tissue for 75 polar bears collected during 1999 to 2002. Specific lesions were diffuse glomerular capillary wall thickening, mesangial glomerular deposits, tubular epithelial cell hyperplasia, hyalinization of the tubular basement membrane, tubular dilatation, atrophy and necrosis, tubular medullary hyalin casts, interstitial fibrosis, and mononuclear cell infiltration. With the exception of mononuclear cell infiltrations, all these parameters were correlated with age, whereas none was associated with the sex of the animals. In an age-controlled statistical analysis of covariance, increases in glomerular mesangial deposits and interstitial fibrosis were significantly (p < 0.05) correlated with polybrominated diphenyl ether (sigmaPBDE) concentrations in subadults. In adult males, statistically significant (p < 0.05) positive correlations were found for tubular epithelial cell hyperplasia and dieldrin concentration; diffuse glomerular capillary wall thickening and chlordane (sigmaCHL) concentrations, and tubular medullary hyalin casts and sigmaCHL, sigmaPBDE, polychlorinated biphenyl, and hexachlorocyclohexane concentrations. The lesions were consistent with those reported previously in highly OHC-contaminated Baltic seal populations and exposed laboratory animals. The renal lesions were a result of aging. However, based on the above statistical findings as well as the nature of the findings, we suggest that long-term exposure to OHCs may be a cofactor in renal lesion occurrence, although other cofactors, such as exposure to heavy metals

  7. Determination of fluoroquinolone antibiotics via ionic-liquid-based, salt-induced, dual microextraction in swine feed.

    Science.gov (United States)

    Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong

    2016-09-01

    In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from

  8. Development status of a test stand for semiconductor photocathodes with 60 keV spin-polarized beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kurichijanil, Neeraj; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Heichelt, Dominic; Kaiser, Andreas; Roesch, Heidi; Wagner, Markus [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    A test facility for Photo-Cathode Activation, Test and Cleaning using atomic-Hydrogen (Photo-CATCH) is being constructed at TU Darmstadt's Institute for Nuclear Physics (IKP) which houses the Superconducting Darmstadt Linear Accelerator (S-DALINAC). In order to improve the performance of the SDALINAC's photoelectron source based on GaAs, systematic studies in terms of quantum efficiency (QE), cathode rejuvenation, lifetimes and polarization (P) have to be conducted on different photocathode types. These factors strongly depend on handling of the cathode, the vacuum condition in the chambers, cathode surface cleaning as well as preservation of stoichiometry, negative electron affinity (NEA) activation of the cathode and the type and structure of the semiconductor material. With Photo-CATCH, experiments such as atomic-hydrogen cleaning, multi-alkali and oxidant NEA activation of the cathode and tests of QE, P and lifetimes can be performed in an improved vacuum. Additionally, experiments with polarized-electron beams of up to 60 keV are foreseen.

  9. Dual Headquarters Involvement in Subsidiary Innovation

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher; Kappen, Philip; Dellestrand, Henrik

    innovation importance, i.e., an innovation that is important for the division and the corporate level, drives dual headquarters involvement in innovation development. Contrary to expectations, no significant effect of dual embeddedness on dual headquarters involvement is found. The network size....... The current paper takes on this neglected question by empirically investigating corporate and divisional headquarters direct involvement in innovation development projects at the subsidiary level. Analyses that draw upon 85 innovation development projects in 23 multinational enterprises reveal that dual...... of the developing subsidiary positively moderates the two aforementioned effects on dual headquarters involvement in innovation development. The results lend support for the notion that parenting in complex structures entails complex headquarters structures. Thus, the results question simplistic views...

  10. Dual Headquarters Involvement in Subsidiary Innovation

    DEFF Research Database (Denmark)

    Dellestrand, Henrik; Kappen, Philip; Nell, Phillip Christopher

    2014-01-01

    innovation importance, i.e., an innovation that is important for the division and the corporate level, drives dual headquarters involvement in innovation development. Contrary to expectations, no significant effect of dual embeddedness on dual headquarters involvement is found. The network size....... The current paper takes on this neglected question by empirically investigating corporate and divisional headquarters direct involvement in innovation development projects at the subsidiary level. Analyses that draw upon 85 innovation development projects in 23 multinational enterprises reveal that dual...... of the developing subsidiary positively moderates the two aforementioned effects on dual headquarters involvement in innovation development. The results lend support for the notion that parenting in complex structures entails complex headquarters structures. Thus, the results question simplistic views...

  11. Dual Headquarters Involvement in Subsidiary Innovation

    DEFF Research Database (Denmark)

    Dellestrand, Henrik; Kappen, Philip; Nell, Phillip Christopher

    2014-01-01

    . The current paper takes on this neglected question by empirically investigating corporate and divisional headquarters direct involvement in innovation development projects at the subsidiary level. Analyses that draw upon 85 innovation development projects in 23 multinational enterprises reveal that dual...... innovation importance, i.e., an innovation that is important for the division and the corporate level, drives dual headquarters involvement in innovation development. Contrary to expectations, no significant effect of dual embeddedness on dual headquarters involvement is found. The network size...... of the developing subsidiary positively moderates the two aforementioned effects on dual headquarters involvement in innovation development. The results lend support for the notion that parenting in complex structures entails complex headquarters structures. Thus, the results question simplistic views...

  12. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    Science.gov (United States)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  13. Development of a dual-cure mineral trioxide aggregate-based cement: Biological, physical, and mechanical properties.

    Science.gov (United States)

    Pintado, Laura Siqueira; Torre, Eliana do Nascimento; Dos Santos Selayaran, Maicon; de Carvalho, Rodrigo Varella; Zanchi, Cesar Henrique; Manzolli Leite, Fábio Renato; Etges, Adriana

    2018-01-01

    The purpose of this study is to compare the physical, mechanical, and biocompatibility properties of a new dual-cure white mineral trioxide aggregate (D-W-MTA) and a commercial W-MTA. Diametral tensile strength (DTS), water sorption (WSp), and water solubility (WSl) tests were performed. Cytotoxicity was observed in primary culture of human pulp fibroblasts (HPFs) and mouse 3T3/NIH fibroblast lineage. Specimens of both materials were embedded in 1 mL of Dulbecco's modified essential medium for 24 h. Cells were incubated for 24 h with the eluates. Cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and genotoxicity by micronucleus (MN) formation. Data were analyzed by ANOVA and Kruskal-Wallis tests considering P MTA and W-MTA not showed cytotoxic effect on the two cell lines. However, D-MTA stimulated HPF growth. The MN count was similar to that of the control group for D-MTA and W-MTA. D-MTA presented lower DTS and WSl. Nevertheless, WSp was similar in the two groups. The results suggest that D-MTA is a promising material for pulp capping. Thus, in vivo tests should be performed to evaluate the performance of this material.

  14. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...... influenza, a common differential diagnosis in mink and seals. Further testing is needed to determine the effects of PCR inhibitors in clinical samples. In addition, an elaborate panel of potential differential diagnostic agents must be tested in order to determine the assay specificity.......In a commercial diagnostic setting streamlining and optimization is an important factor when the goal is to provide high quality diagnostic results while remaining competitive. In the PCR diagnostics unit at DTU National Veterinary Institute part of this optimization programme is to replace...

  15. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  16. Methodological developments of low field MRI: Elasto-graphy, MRI-ultrasound interaction and dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Madelin, Guillaume

    2005-01-01

    This thesis deals with two aspects of low field (0.2 T) Magnetic Resonance Imaging (MRI): the research of new contrasts due to the interaction between Nuclear Magnetic Resonance (NMR) and acoustics (elasto-graphy, spin-phonon interaction) and enhancement of the signal-to-noise ratio by Dynamic Nuclear Polarization (DNP). Magnetic Resonance Elasto-graphy (MRE) allows to assess some viscoelastic properties of tissues by visualization of the propagation of low frequency acoustic strain waves. A review on MRE is given, as well as a study on local measurement of the acoustic absorption coefficient. The next part is dedicated to MRI-ultrasound interaction. First, the ultrasonic transducer was calibrated for power and acoustic field using the comparison of two methods: the radiation force method (balance method) and laser interferometry. Then, we tried to modify the T1 contrast of tissues by spin-phonon interaction due to the application of ultrasound at the resonance frequency at 0.2 T, which is about 8.25 MHz. No modification of T1 contrast has been obtained, but the acoustic streaming phenomenon has been observed in liquids. MRI visualization of this streaming could make possible to calibrate transducers as well as to assess some mechanical properties of viscous fluids. The goal of the last part was to set up DNP experiments at 0.2 T in order to enhance the NMR signal. This double resonance method is based on the polarization transfer of unpaired electrons of free radicals to the surrounding protons of water. This transfer occurs by cross relaxation during the saturation of an electronic transition using Electronic Paramagnetic Resonance (EPR). Two EPR cavities operating at 5.43 GHz have been tested on oxo-TEMPO free radicals (nitroxide). An enhancement of the NMR signal by a factor 30 was obtained during these preliminary experiments. (author)

  17. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  18. Polar source analysis : technical memorandum

    Science.gov (United States)

    2017-09-29

    The following technical memorandum describes the development, testing and analysis of various polar source data sets. The memorandum also includes recommendation for potential inclusion in future releases of AEDT. This memorandum is the final deliver...

  19. Design, development and performance characteristics of a large ...

    Indian Academy of Sciences (India)

    based cooling system was developed for cooling the glass discs with a thermal recovery time of ∼ 20 minutes. Keywords. Disc amplifier; high power lasers; dual polarity power supply; dry nitrogen cooling system. 1. Introduction. High energy high power (HEHP) laser systems based on master oscillator power amplifier.

  20. Polarization Measurements in the Vacuum Ultraviolet

    Science.gov (United States)

    West, E. A.; Kobayashi, K.; Noble, M.

    2005-01-01

    This paper will describe the VUV polarization testing of the NSSTC Solar Ultraviolet Magnetograph (SUMI) optics. SUMI is being developed for a sounding rocket payload to prove the feasibility of making magnetic field measurements in the transition region. This paper will cover the polarization properties of the VUV calibration polarizers, the instrumental polarization of the VUV chamber, SUMI's toroidal varied-line-space gratings and the SUMI polarimeter.

  1. RHIC Polarized proton performance in run-8

    International Nuclear Information System (INIS)

    Montag, C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-01-01

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  2. The physics of polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14

  3. Dual Diagnosis - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Dual Diagnosis URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Dual Diagnosis - Multiple Languages To use the sharing features ...

  4. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  5. Dual wound dc brush motor gearhead

    Science.gov (United States)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  6. Dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2003-01-01

    A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions...... are considered and the relation with the dual Youla parameter given. Some applications of the dual Youla parameterisation are considered in connection with the design of controllers and model/performance validation....

  7. From Cases to Capacity? A Critical Reflection on the Role of ‘Ethical Dilemmas’ in the Development of Dual-Use Governance

    Science.gov (United States)

    Edwards, Brett; Revill, James; Bezuidenhout, Louise

    2016-01-01

    The dual-use issue is often framed as a series of paralyzing ‘dilemmas’ facing the scientific community as well as institutions which support innovation. While this conceptualization of the dual-use issue can be useful in certain contexts (such as in awareness-raising and as part of educational activities directed at the scientific community) its usefulness is more limited when reflecting on the governance and politics of the dual-use issue. Within this paper, key shortcomings of the dilemma framing are outlined. It is argued that many of the issues raised in the most recent debates about ‘dual-use’ bird flu research remain unresolved. This includes questions about the trajectories of certain lines of research, as well as broader trends in the practice and governance of science. This leads to difficult questions about current approaches to the dual-use issue within the US, as well as internationally. PMID:23703451

  8. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  9. Investigating the Development of Abnormal Subauroral Ion Drift (ASAID) and Abnormal Subauroral Polarization Stream (ASAPS) During the Magnetically Active Times of September 2003

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2018-02-01

    This study investigates two recently reported subauroral phenomena: the abnormal subauroral ion drift (ASAID) appearing as an inverted SAID and the shielding-E—SAID structure depicting a SAID feature on the poleward side of a small eastward or antisunward flow channel that is the shielding electric (E) field's signature. We have analyzed polar cross sections, constructed with multi-instrument Defense Meteorological Satellite Program data, for the development of these subauroral phenomena. New results show the features of abnormal subauroral polarization stream (ASAPS) and ASAID-ASAPS comprised by a narrow ASAID embedded in a wider ASAPS. We have identified undershielding, perfect shielding, and overshielding events. Our observational results demonstrate SAPS development during undershielding, the absence of subauroral flow channel during perfect shielding, and ASAID/ASAPS and shielding-E—SAID/SAPS development during overshielding. The appearance of an ASAID-ASAPS structure together with a pair of dayside-nightside eastward auroral flow channels implies the intensification of region 2 field-aligned currents via the westward traveling surge and thus the strengthening of overshielding conditions. From the observational results presented we conclude for the magnetically active time period studied that (i) the shielding E field drove the wider ASAPS flow channel, (ii) the ASAID-ASAPS structure's narrow antisunward flow channel developed due to the injections of hot ring current ions in a short-circuited system wherein the hot ring current plasma was closer to the Earth than the cold plasmaspheric plasma, and (iii) overshielding created this hot-cold plasma configuration via the development of a plasmaspheric shoulder.

  10. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    International Nuclear Information System (INIS)

    Wigmans, Richard; Nural, Akchurin

    2013-01-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals

  11. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  12. Polarimetry with azimuthally polarized light

    Science.gov (United States)

    de Sande, Juan Carlos González; Piquero, Gemma; Santarsiero, Massimo

    2018-03-01

    Nonuniformly polarized light can be used for Mueller polarimetry of homogeneous linear samples. In this work, a set up based on using azimuthally polarized input light and a modified commercial light polarimeter is proposed and developed. With this set up, a Mueller submatrix of a sample can be obtained by measuring the Stokes parameters at only three different positions across the output beam section. Symmetry constraints for linear deterministic samples allow the complete Mueller matrix to be deduced for this kind of specimens. The experimental results obtained for phase plates and for a linear polarizer confirm the validity of the proposed method.

  13. Dual leadership in a hospital practice

    DEFF Research Database (Denmark)

    Thude, Bettina Ravnborg; Thomsen, Svend Erik; Stenager, Egon

    2017-01-01

    , this study aims to analyse three different dual leadership pairs at a Danish hospital. Furthermore, this study develops a tool to characterize dual leadership teams from each other. Design/methodology/approach This is a qualitative study using semi-structured interviews. Six leaders were interviewed...... to clarify how dual leadership works in a hospital context. All interviews were transcribed and coded. During coding, focus was on the nine principles found in the literature and another principle was found by looking at the themes that were generic for all six interviews. Findings Results indicate...... in the hospital context and develops a categorizing tool for being able to distinguish dual leadership teams from each other. It is important to reveal if there are any indicators that can be used for optimising dual leadership teams in the health-care sector and in other organisations....

  14. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    Science.gov (United States)

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.

  15. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  16. Development and optimisation of a ultracold neutron polarizing system in the framework of a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Pierre, Edgard

    2012-01-01

    The work presented in this thesis has been performed within the framework of an experiment located at the Paul Scherrer Institut (PSI) and dedicated to the measurement of the neutron electric dipole moment (nEDM). The expected sensitivity is 10 -27 e cm at the end of 2013. The experiment requires a polarized ultracold neutron (UCN) beam. A new polarizing system, a spin transport device and a spin reversal system have been developed for this purpose. Their study is detailed in this thesis. These systems are currently installed on the experiment. Thanks to magnetic field mappings done on the spectrometer, to magnetic field simulations using the Radia and Maentouch programs and also to Monte-Carlo simulations using the Geant4 software, the efficiency of the device has been calculated. The measured efficiency is 88.5±0.3%, which is slightly less than the expected value of 95%. Furthermore, this preliminary data taken in October 2011 allows the determination of some fundamental parameters of the experiment such as the filling, storage and longitudinal depolarization time constants of the spectrometer. These parameters are promising for the continuation of the experiment. (author) [fr

  17. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  18. Constraining foreground spectrum with the projection-induced polarization for the cosmological global 21-cm experiments

    Science.gov (United States)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Professor O.

    2018-01-01

    Detecting the cosmological global (sky-averaged) 21-cm spectrum as a function of observed frequency will provide a powerful tool to study the thermal history of intergalactic medium (IGM) in the high-redshift Universe (~ 400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21-cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (~ 1e4-1e5 K) to uncover the weak cosmological signal (~ 10-100 mK). The foreground is further corrupted by the frequency-dependent instrumental systematics. We have developed a new polarimetry-based observational approach that aims to measure the foreground emission by modulating it as a function of time through its circumpolar motion. Due to geometry, the projection of the anisotropic foreground sources onto the dual-polarized antenna induces a net foreground polarization, which is distinct from the much weaker intrinsic polarization of synchrotron sources. Instead of pointing the radio antenna at the zenith as in the conventional experiments, we point the antenna at the North Celestial Pole (NCP) and measure the projection-induced polarization modulated by the foreground's circumpolar diurnal periodicity. This temporal signature allows us to separate the dynamic foreground spectrum from the static cosmological background. In this presentation, we describe the design, construction, and initial results from the "Cosmic Twilight Polarimeter'' (CTP) as a proof-of-concept implementation of this technique. The instrument consists of a dual-polarized broadband antenna (60-120 MHz) with a two-stage thermally stabilized front-end electronics, tilted toward the NCP. The instrument is currently being evaluated at a site near Charlottesville, VA. Ultimately, the instrument will be relocated to an RFI-quiet site closer to the Geographic North Pole (GNP) to mitigate sky obstruction due to the horizon at a lower latitude.

  19. Dual Functional Star Polymers for Lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a 3-arm architecture were designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure-property relationships between macromolecular structure and lubricant performance were studied. Several co-polymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% effectively reduced the friction coefficient in both mixed and boundary lubrication regime only in block or tapered block topology. However, a polar content of 20% was efficient in reducing friction in both random and block topologies.

  20. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.

    Science.gov (United States)

    Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of