WorldWideScience

Sample records for detoxification enzymes pesticide

  1. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    Science.gov (United States)

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  2. Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides

    Directory of Open Access Journals (Sweden)

    M.V. Kurashvili

    2016-09-01

    Full Text Available The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of specially selected plants and microorganisms. Initial degradation of pesticides carry out by microorganisms; the forming dehalogenated products easily uptake by the plants and undergo oxidative degradation via plant detoxification enzymes. This approach can complete degradation of toxicants and their mineralization into nontoxic compounds. In the presented work the results of using selected strains from genera Pseudomonas and plants phytoremediators in the model experiments are given. It has been shown that the using developed technological approach effectively decreased degree of pollution in artificially polluted soil samples.

  3. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides.

    Science.gov (United States)

    Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Silva, Maria Cristina; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil

    2016-01-01

    The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.

  4. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  5. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals

    Directory of Open Access Journals (Sweden)

    M.G. Mithra

    2017-08-01

    Full Text Available Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS during 24–120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose along with half dose each of xylanase (1.5 mg protein/g hemicelluloses and Stargen (12.5 μl/g biomass was used to saccharify conventional dilute sulphuric acid (DSA pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3–4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing

  6. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    Science.gov (United States)

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects.

    Science.gov (United States)

    Itoh, Hideomi; Tago, Kanako; Hayatsu, Masahito; Kikuchi, Yoshitomo

    2018-04-12

    Covering: up to 2018Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds. Here, we review recent advances in our understanding on the symbiont-mediated degradation of natural and artificial toxins, with a special emphasis on their underlying genetic basis, focus on the importance of environmental microbiota as a resource of toxin-degrading microorganisms, and discuss the ecological and evolutionary significance of these symbiotic associations.

  8. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  9. Correction: Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability.

    Science.gov (United States)

    Frančič, N; Bellino, M G; Soler-Illia, G J A A; Lobnik, A

    2016-07-07

    Correction for 'Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability' by N. Frančičet al., Analyst, 2014, 139, 3127-3136.

  10. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  11. Deficient UDP-glucuronosyltransferase detoxification enzyme activity in the small intestinal mucosa of patients with coeliac disease.

    NARCIS (Netherlands)

    Goerres, M.S.; Roelofs, H.M.J.; Jansen, J.B.M.J.; Peters, W.H.M.

    2006-01-01

    BACKGROUND: Small intestinal malignancies in humans are rare; however, patients with coeliac disease have a relatively high risk for such tumours. Intestinal UDP-glucuronosyltransferases are phase II drug metabolism enzymes also involved in the detoxification of ingested toxins and carcinogens. As

  12. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    Science.gov (United States)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  13. Optimization of sol-gel medium for entrapment of acetylcholinesterase enzyme in biosensor for pesticide detection

    Science.gov (United States)

    Wijayanti, S. D.; Rahayu, F. S.; Widyaningsih, T. D.

    2018-03-01

    Pesticides are chemical substances used to kill and control pests or diseases that can damage crops. The use of pesticides should be done precisely because the accumulation of chemicals contained in pesticides can cause various health effects. Therefore, detection of pesticide residues on plants is important to reduce the risk of poisoning due to pesticide residues. Some of the conventional methods that have been done to detect pesticide residues have weaknesses among expensive tools, takes a long time, and are generally performed by trained laboratory technicians. Biosensors are analytical devices that can measure the quantitative or semi-quantitative targets of analyte by utilizing a bioreceptor such as enzyme. Several studies have shown that enzyme-based acetylcholinesterase-based biosensors can be used to detect pesticide residues in vegetable samples. The objective of this research was to get a proper silica based sol-gel formulation with molar ratio of H2O:TEOS and NaOH concentration as immobilization medium of acetylcholinesterase enzyme for biosensor application. Response Surface Methodology (RSM) was used in order to determine the interaction between the parameters studied and resulting responses which were amount and activity of acetylcholinesterase enzyme. Based on the research, the best result for immobilized enzyme activity was shown by molar ratio (H2O: TEOS) 1: 8 and 4 mM NaOH treatment.

  14. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae).

    Science.gov (United States)

    Xu, Junhuan; Strange, James P; Welker, Dennis L; James, Rosalind R

    2013-12-12

    The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees

  15. Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane.

    Science.gov (United States)

    Kurama, Eiko E; Fenille, Roseli C; Rosa, Vicente E; Rosa, Daniel D; Ulian, Eugenio C

    2002-07-01

    Summary Adopting the sequencing of expressed sequence tags (ESTs) of a sugarcane database derived from libraries induced and not induced by pathogens, we identified EST clusters homologous to genes corresponding to enzymes involved in the detoxification of reactive oxygen species. The predicted amino acids of these enzymes are superoxide dismutases (SODs), glutathione-S-transferase (GST), glutathione peroxidase (GPX), and catalases. Three MnSOD mitochondrial precursors and 10 CuZnSOD were identified in sugarcane: the MnSOD mitochondrial precursor is 96% similar to the maize MnSOD mitochondrial precursor and, of the 10 CuZnSOD identified, seven were 98% identical to maize cytosolic CuZnSOD4 and one was 67% identical to putative peroxisomal CuZnSOD from Arabidopsis. Three homologues to class Phi GST were 87-88% identical to GST III from maize. Five GPX homologues were identified: three were homologous to cytosolic GPX from barley, one was 88% identical to phospholipid hydroperoxide glutathione peroxidase (PHGPX) from rice, and the last was 71% identical to GPX from A. thaliana. Three enzymes similar to maize catalase were identified in sugarcane: two were similar to catalase isozyme 3 and catalase chain 3 from maize, which are mitochondrial, and one was similar to catalase isozyme 1 from maize, whose location is peroxisomal subcellular. All enzymes were induced in all sugarcane libraries (flower, seed, root, callus, leaves) and also in the pathogen-induced libraries, except for CuZnSOD whose cDNA was detected in none of the libraries induced by pathogens (Acetobacter diazotroficans and Herbaspirillum rubrisubalbicans). The expression of the enzymes SOD, GST, GPX, and catalases involved in the detoxification was examined using reverse transcriptase-polymerase chain reaction in cDNA from leaves of sugarcane under biotic stress conditions, inoculated with Puccinia melanocephala, the causal agent of sugarcane rust disease.

  16. A study on some enzymes in rice field fish as biomarkers for pesticide exposure

    International Nuclear Information System (INIS)

    Juzu Hayati Arshad; Mazlina Muhammad; Salmijah Surif; Abdul Manan Mat Jais

    2002-01-01

    A study was carried out on three enzymes in rice field fish which can be used as possible biomarkers for pesticide exposure. The results obtained showed that the activity of the enzyme EROD (ethoxyresorufin-o-deethylase) increased between 1.5-2.2 fold in snakehead or haruan (Channa striata) sampled from the pesticide polluted areas, particularly the recycled areas and only a slight increase in EROD activity in climbing perch or puyu (Anabas testudineus). Increase in the activity of carboxylesterase was also noted. The percentage inhibition of acety1cholinesterase ranges from 18.4%-57.4% and 2.5%-34.2% for Channa striata and Anabas testudineus, respectively. Generally, a higher percentage of acety1cholinesterase inhibition was noted for those fish sampled from the recycled areas. The noted changes in the activity of these enzymes suggest exposure of rice field fish to foreign compounds, possibly pesticides, which are known to induce EROD activity and inhibit acety1cholinesterase activity. Therefore it may be possible to use these enzymes as biomarkers for pesticide exposure. (Author)

  17. A Design of Portable Pesticide Residue Detection System Based on the Enzyme Electrode

    Directory of Open Access Journals (Sweden)

    Xia SUN

    2013-03-01

    Full Text Available In this paper, a portable detection system was designed based on amperometric acetylcholinesterase biosensor for rapidly detecting pesticide residues in fruits and vegetables. There were potentiostat, three electrode system, differential amplification circuit and double integral analog to digital (A/D circuit modules in this system. The measurement principle of this system was depended on the weak current from enzyme catalyzing substrate in acetylcholinesterase biosensor for detecting pesticide residues. The weak current generated by the enzyme biosensor was changed into 0-5 V standard voltage signal by this system as an output signal. The proposed system was investigated with eight kinds of standard pesticide of different concentrations, the results showed that the detection limits were all lower than 10 ng/kg. Thus, a new effective home-made system of detecting pesticide residues with portable, easy-to-use, fast response was developed. The pesticide residues rapid detection system can collect the weak current signal generated by electrochemical reaction and on-site detect the concentration of pesticide residues in real fruits and vegetables samples.

  18. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P.; Hernandez, Antonio F.; Liesivuori, Jyrki; Tsatsakis, Aristidis M.

    2013-01-01

    Organochlorine and organophosphate pesticides are compounds that can be detected in human populations as a result of occupational or residential exposure. Despite their occurrence in considerably low levels in humans, their biological effects are hazardous since they interact with a plethora of enzymes, proteins, receptors and transcription factors. In this review we summarize the cell and molecular effects of organochlorine and organophosphate pesticides with respect to their toxicity, with particular emphasis on glucose and lipid metabolism, their interaction with some members of the nuclear receptor family of ligand-activated transcription factors, including the steroid and peroxisome proliferator activated receptors that changes the expression of genes involved in lipid metabolism and xenobiotic detoxification. More importantly, evidence regarding the metabolic degradation of pesticides and their accumulation in tissues is presented. Potential non-cholinergic mechanisms after long-term low-dose organophosphate exposure resulting in neurodevelopmental outcomes and neurodegeneration are also addressed. We conclude that the mechanism of pesticide-mediated toxicity is a combination of various enzyme-inhibitory, metabolic and transcriptional events acting at the cellular and molecular level

  19. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.

    Science.gov (United States)

    du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W

    2015-07-02

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.

  20. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish.

    Science.gov (United States)

    Assis, Caio Rodrigo Dias; Linhares, Amanda Guedes; Oliveira, Vagne Melo; França, Renata Cristina Penha; Carvalho, Elba Veronica Matoso Maciel; Bezerra, Ranilson Souza; de Carvalho, Luiz Bezerra

    2012-12-15

    Monitoring of pesticides based on acetylcholinesterase (AChE; EC 3.1.1.7) inhibition in vitro avoids interference of detoxification defenses and bioactivation of some of those compounds in non-target tissues. Moreover, environmental temperature, age and stress are able to affect specific enzyme activities when performing in vivo studies. Few comparative studies have investigated the inter-specific differences in AChE activity in fish. Screening studies allow choosing the suitable species as source of AChE to detect pesticides in a given situation. Brain AChE from the tropical fish: pirarucu (Arapaima gigas), cobia (Rachycentron canadum) and Nile tilapia (Oreochromis niloticus) were characterized and their activities were assayed in the presence of pesticides (the organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate- TEPP and the carbamates: carbaryl and carbofuran). Inhibition parameters (IC₅₀ and Ki) for each species were found and compared with commercial AChE from electric eel (Electrophorus electricus). Optimal pH and temperature were found to be 8.0 and 35-45 °C, respectively. A. gigas AChE retained 81% of the activity after incubation at 50 °C for 30 min. The electric eel enzyme was more sensitive to the compounds (mainly carbofuran, IC₅₀ of 5 nM), excepting the one from A. gigas (IC₅₀ of 9 nM) under TEPP inhibition. These results show comparable sensitivity between purified and non-purified enzymes suggesting them as biomarkers for organophosphorus and carbamate detection in routine environmental and food monitoring programs for pesticides. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks

  2. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera).

    Science.gov (United States)

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid)+Domark (512.5 mg a.i. /L tetraconazole), Advise+Transform (58.5 mg a.i./L sulfoxaflor), and Advise+Vydate (68 mg a.i./L oxamyl), and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate) and Advise+Karate (62.2 mg a.i./L L-cyhalothrin) showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin) and Advise+Roundup (1217.5 mg a.i./L glyphosate) had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE) activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST), and esterase and AChE. Immunity-related phenoloxidase (PO) activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s) for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not only

  3. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yu Cheng Zhu

    Full Text Available Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid+Domark (512.5 mg a.i. /L tetraconazole, Advise+Transform (58.5 mg a.i./L sulfoxaflor, and Advise+Vydate (68 mg a.i./L oxamyl, and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate and Advise+Karate (62.2 mg a.i./L L-cyhalothrin showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin and Advise+Roundup (1217.5 mg a.i./L glyphosate had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST, and esterase and AChE. Immunity-related phenoloxidase (PO activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not

  4. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  5. Detection of Pesticides and Pesticide Metabolites Using the Cross Reactivity of Enzyme Immunoassays

    Science.gov (United States)

    Thurman, E.M.; Aga, D.S.

    2001-01-01

    Enzyme immunoassay is an important environmental analysis method that may be used to identify many pesticide analytes in water samples. Because of similarities in chemical structure between various members of a pesticide class, there often may be an unwanted response that is characterized by a percentage of cross reactivity. Also, there may be cross reactivity caused by degradation products of the target analyte that may be present in the sample. In this paper, the concept of cross reactivity caused by degradation products or by nontarget analytes is explored as a tool for identification of metabolites or structurally similar compounds not previously known to be present in water samples. Two examples are examined in this paper from various water quality studies. They are alachlor and its metabolite, alachlor ethane sulfonic acid, and atrazine and its class members, prometryn and propazine. A method for using cross reactivity for the detection of these compounds is explained in this paper.

  6. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    Science.gov (United States)

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  7. Detoxification of corn stover and corn starch pyrolysis liquors by ligninolytic enzymes of Phanerochaete chrysosporium.

    Science.gov (United States)

    Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C

    2005-04-20

    Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.

  8. Detoxification of Pesticide-Containing Wastewater with FeIII, Activated Carbon and Fenton Reagent and Its Control Using Three Standardized Bacterial Inhibition Tests

    Directory of Open Access Journals (Sweden)

    Eduard Rott

    2017-12-01

    Full Text Available Discharge of toxic industrial wastewaters into biological wastewater treatment plants may result in inhibition of activated sludge bacteria (ASB. In order to find an appropriate method of detoxification, the wastewater of a pesticide-processing plant in Vietnam was treated with three different methods (FeIII, powdered activated carbon (PAC, Fenton (FeII/H2O2 analyzing the detoxification effect with the nitrification inhibition test (NIT, respiration inhibition test (RIT and luminescent bacteria test (LBT. The heterotrophic ASB were much more resistant to the wastewater than the autotrophic nitrificants. The NIT turned out to be more suitable than the RIT since the NIT was less time-consuming and more reliable. In addition, the marine Aliivibrio fischeri were more sensitive than the nitrificants indicating that a lack of inhibition in the very practical and time-efficient LBT correlates with a lack of nitrification inhibition. With 95%, the Fenton method showed the highest efficiency regarding the chemical oxygen demand (COD removal. Although similar COD removal (60–65% was found for both the FeIII and the PAC method, the inhibitory effect of the wastewater was reduced much more strongly with PAC. Both the NIT and the LBT showed that the PAC and Fenton methods led to a similar reduction in the inhibitory effect.

  9. Correlation between Pesticide Resistance and Enzyme Activity in the Diamondback Moth, Plutella xylostella

    Science.gov (United States)

    Gong, Ya-Jun; Wang, Ze-Hua; Shi, Bao-Cai; Kang, Zong-Jiang; Zhu, Liang; Jin, Gui-Hua; Weig, Shu-Jun

    2013-01-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most important pests that has developed high pesticide resistance. The resistances of five Chinese populations of this moth, four resistant strains (from Beijing, Henan, Fujian, and Guangdong) and one susceptible strain, to five pesticides were determined, and the activities of carboxylesterase, glutathione S-transferase, and acetylcholine esterase were tested in all five populations. The correlations between pesticide resistance and enzyme activity were analyzed. The results showed that the resistance status to the five pesticides was different among the five populations. The resistance ratios of the Beijing and Henan populations to spinosad were 5.84 and 8.22, respectively, and those to beta-cypermethrin were 4.91 and 4.98, respectively. These ratios were higher than those for the Fujian and Guangdong populations. The Fujian population was more sensitive to abamectin and chlorpyrifos than the susceptible population (the resistance ratios were 0.14 and 0.91, respectively); in fact, the median lethal concentration for P. xylostella was significantly higher for chlorpyrifos than that for any of the other four pesticides. The carboxylesterase activity in P. xylostella showed positive correlations with the resistance to spinosad, beta-cypermethrin, chlorpyrifos, and abamectin, but no correlation was observed between the carboxylesterase activity and resistance to emamectin benzoate, between glutathione S-transferase activity and resistance to any of the five pesticides tested, or between acetylcholine esterase activity and any of the pesticides except for emamectin benzoate. PMID:24766444

  10. Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture

    Directory of Open Access Journals (Sweden)

    Doganlar Oguzhan

    2015-01-01

    Full Text Available The effects of a mixture of seven pesticides were examined on the expression of antioxidant enzymes, Mn superoxide dismutase (Mn-SOD, catalase (CAT, glutathione synthetase (GS, and heat shock proteins (HSP 26, 60, 70 and 83 in adult fruit flies (Drosophila melanogaster Oregon R. The flies were reared under controlled conditions on artificial diets and treated with a mixture of seven pesticides (molinate, thiobencarb, linuron, phorate, primiphos-methyl, fenvalerate and lambda-cyhalothrin commonly found in water, at concentrations of 0.1, 0.5 and 1 parts per billion (ppb for 1 and 5 days. Quantitative real-time PCR (qRT-PCR analysis of Mn-SOD, CAT and GS expression revealed that the analyzed markers responded significantly to pesticide-induced oxidative stress, in particular on the 5th day of treatment. On the 1st day of treatment, the relative expression of HSP26 and HSP60 genes increased only after exposure to the highest concentrations of pesticides, whereas HSP70 and HSP83 expression increased after exposure to 0.5 and 1 ppb. After five days of treatment, the expression of all HSP genes was increased after exposure to all pesticide concentrations. A positive correlation was determined between the relative expression levels of some HSPs (except HSP60, and antioxidant genes. The observed changes in antioxidant enzyme and HSP mRNA levels in D. melanogaster suggest that the permissible limits of pesticide concentrations for clean drinking water outlined in the regulations of several countries are potentially cytotoxic. The presented findings lend support for reevaluation of these limits.

  11. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    2010-05-01

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  12. Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor.

    Science.gov (United States)

    Wolfand, Jordyn M; LeFevre, Gregory H; Luthy, Richard G

    2016-10-12

    Fipronil is a recalcitrant phenylpyrazole-based pesticide used for flea/tick treatment and termite control that is distributed in urban aquatic environments via stormwater and contributes to stream toxicity. We discovered that fipronil is rapidly metabolized (t 1/2 = 4.2 d) by the white rot fungus Trametes versicolor to fipronil sulfone and multiple previously unknown fipronil transformation products, lowering fipronil concentration by 96.5%. Using an LC-QTOF-MS untargeted metabolomics approach, we identified four novel fipronil fungal transformation products: hydroxylated fipronil sulfone, glycosylated fipronil sulfone, and two compounds with unresolved structures. These results are consistent with identified enzymatic detoxification pathways wherein conjugation with sugar moieties follows initial ring functionalization (hydroxylation). The proposed pathway is supported by kinetic evidence of transformation product formation. Fipronil loss by sorption, hydrolysis, and photolysis was negligible. When T. versicolor was exposed to the cytochrome P450 enzyme inhibitor 1-aminobenzotriazole, oxidation of fipronil and production of hydroxylated and glycosylated transformation products significantly decreased (p = 0.038, 0.0037, 0.0023, respectively), indicating that fipronil is metabolized intracellularly by cytochrome P450 enzymes. Elucidating fipronil transformation products is critical because pesticide target specificity can be lost via structural alteration, broadening classes of impacted organisms. Integration of fungi in engineered natural treatment systems could be a viable strategy for pesticide removal from stormwater runoff.

  13. Identification and isolation of bacteria containing OPH enzyme for biodegradation of organophosphorus pesticide diazinon from contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Sara Mobarakpoor

    2015-04-01

    Full Text Available Background: Organophosphorus insecticide diazinon has been widely used in agriculture and has the ability to transfer and accumulate in soil, water and animal tissues, and to induce toxicity in plants, animals and humans. In humans, diazinon inhibits nerve transmission by inactivating acetylcholinesterase enzyme. The present study was carried out to identify bacteria containing OPH enzyme for biodegradation of diazinon from contaminated agricultural soil. Methods: In this study, 8 contaminated agricultural soil samples that were exposed to pesticides, especially diazinon in the last two decades, were collected from the farms of Hamedan province. After preparing the media, for isolation of several bacterial strains containing OPH enzyme that are capable of biodegrading organophosphorus pesticides by diazinon enzymatic hydrolysis, bacterial genomic DNA extraction, plasmid product sequencing, phylogenetic sequence processing and phylogenetic tree drawing were carried out. Results: Eight bacterial strains, capable of secreting OPH enzyme, were isolated from soil samples, one of which named BS-1 with 86% similarity to Bacillus safensis displayed the highest organophosphate-hydrolyzing capability and can be used as a source of carbon and phosphorus. Conclusion: It can be concluded that the isolated bacterial strain identified in this study with OPH enzyme secretion has the potential for biodegradation of organophosphorus pesticides, especially diazinon in invitro conditions. Also, further studies such as the environmental stability and interaction, production strategies, safety, cost-benefit, environmental destructive parameters, and, toxicological, genetic and biochemical aspects are recommended prior to the application of bacterial strains in the field-scale bioremediation.

  14. Investigation of the enzyme system of detoxification of insecticides in the Colorado beetle

    International Nuclear Information System (INIS)

    Leonova, I.N.; Nedel'kina, S.V.; Salganik, R.I.

    1986-01-01

    The activity of three enzymes systems of xenobiotic metabolism - cytochrome P-450-dependent monooxygenases, nonspecific esterases, and glutathione S-transferases - was investigated at various stages of the development of the Colorado beetle Leptinotarsa decemlineata. Substantial sex and ontogenetic differences in the content of cytochrome P-450, the position of the maxima of the CO-differential spectra of its reduced form, and the substrate specificity of cytochrome P-450 were demonstrated. An increase in the activity of nonspecific esterases with increasing age of Colorado beetle larvae was observed. The insecticide 1-naphtholenol methylcarbamate, which is metabolized by the system of cytochrome P-450-dependent monooxygenases, is more toxic at the larval stage of development in comparison with the imaginal stage, which is in good agreement with the activity of this system at different stages of development. The inhibitor of microsomal monooxygenases piperonyl butoxide more than doubles the toxicity of the insecticide in the Colorado beetle imago. The data presented are evidence of a different contribution of the systems of detoxification to the sensitivity of the Colorado beetle to insecticides at different stages of metamorphosis

  15. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  16. Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development

    Directory of Open Access Journals (Sweden)

    Ashok Mulchandani

    2003-06-01

    Full Text Available The realisation of a miniaturised potentiometric enzyme biosensor is presented. The biosensor chip utilises the enzyme organophosphorus hydrolase (OPH for the direct determination of pesticides. The transducer structure of the sensors chip consists of a pH-sensitive capacitive electrolyte-insulator-semiconductor (EIS structure that reacts towards pH changes caused by the OPH-catalised hydrolysis of the organophosphate compounds. The biosensor is operated versus a conventional Ag/AgCl reference electrode. Measurements were performed in the capacitance/voltage (C/V and the constant capacitance (ConCap mode for the two different pesticides paraoxon and parathion. For the development of this new type of biosensor, different immobilisation strategies, influence of buffer composition and concentration, transducer material, detection limit, long-term stability and selectivity have been studied.

  17. Effect of organic species on the solar detoxification of water polluted with pesticides

    International Nuclear Information System (INIS)

    Soler, J.; Santos-Juanes, L.; Miro, P.; Vicente, R.; Arques, A.; Amat, A.M.

    2011-01-01

    Research highlights: → Aliphatic surfactants inhibit treatment of pesticides by solar photo-Fenton. → Longer irradiation periods are required for pesticides removal and mineralization. → An enhancement of biodegradability can be achieved. - Abstract: The effect of organic species on a solar-driven photo-Fenton treatment of a mixture of pesticides (methyl-oxydemethon, methidathion, carbaryl and dimethoate) has been studied in this paper. Triethoxyisododecyl alcohol, acetophenone and ethylenediaminetetraacetic acid (EDTA) have been used as examples of surfactants, solvents and complexing agents, respectively. An inhibitory effect on mineralization as well as on the elimination of the pesticides was observed in the case of the aliphatic surfactants, most probably due to the competition between the pesticides and the added organic matter for reaction with the relatively unselective hydroxyl radical. A methodology combining chemical analyses and bioassays was tested in order to explore the applicability of coupling a photo-Fenton process with a biological treatment in the presence of the surfactant. Despite the complexity of the mixture under study, a reliable monitoring of the process was accomplished; the biocompatibility of the mixture was enhanced and the optimal irradiation intensity was achieved just after complete removal of the pesticides.

  18. Effect of organic species on the solar detoxification of water polluted with pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.; Santos-Juanes, L. [Grupo de Procesos de Oxidacion Avanzada, Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Campus de Alcoy, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Miro, P., E-mail: pamimar@eio.upv.es [Departamento de Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica de Valencia, Campus de Alcoy, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Vicente, R. [Grupo de Procesos de Oxidacion Avanzada, Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Campus de Alcoy, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Arques, A., E-mail: aarques@txp.upv.es [Grupo de Procesos de Oxidacion Avanzada, Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Campus de Alcoy, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Amat, A.M. [Grupo de Procesos de Oxidacion Avanzada, Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Campus de Alcoy, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2011-04-15

    Research highlights: {yields} Aliphatic surfactants inhibit treatment of pesticides by solar photo-Fenton. {yields} Longer irradiation periods are required for pesticides removal and mineralization. {yields} An enhancement of biodegradability can be achieved. - Abstract: The effect of organic species on a solar-driven photo-Fenton treatment of a mixture of pesticides (methyl-oxydemethon, methidathion, carbaryl and dimethoate) has been studied in this paper. Triethoxyisododecyl alcohol, acetophenone and ethylenediaminetetraacetic acid (EDTA) have been used as examples of surfactants, solvents and complexing agents, respectively. An inhibitory effect on mineralization as well as on the elimination of the pesticides was observed in the case of the aliphatic surfactants, most probably due to the competition between the pesticides and the added organic matter for reaction with the relatively unselective hydroxyl radical. A methodology combining chemical analyses and bioassays was tested in order to explore the applicability of coupling a photo-Fenton process with a biological treatment in the presence of the surfactant. Despite the complexity of the mixture under study, a reliable monitoring of the process was accomplished; the biocompatibility of the mixture was enhanced and the optimal irradiation intensity was achieved just after complete removal of the pesticides.

  19. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health

    International Nuclear Information System (INIS)

    Hernández, Antonio F.; Parrón, Tesifón; Tsatsakis, Aristidis M.; Requena, Mar; Alarcón, Raquel; López-Guarnido, Olga

    2013-01-01

    Highlights: ► Toxic effects of pesticide mixtures can be independent, dose addition or interaction. ► Metabolic interactions involve inhibition or induction of detoxifying enzymes. ► Organophosphates can potentiate pyrethroid, carbaryl and triazine toxicity. ► Synergism occurs when two active pesticides elicit greater than additive toxicity. ► Endocrine disruptors have the potential for additivity rather than synergism. - Abstract: Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the

  20. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application

    Directory of Open Access Journals (Sweden)

    Romilly E. Hodges

    2015-01-01

    Full Text Available Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.

  1. Techno-economical assessment of solar detoxification systems with compound parabolic collectors

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Milow, B.; Maldonado, M.I. [CIEMAT- Centro de Investigacion Energica Medioambiental y Technologia, Madrid (Spain); Fallmann, H.; Krutzler, T.; Bauer, R. [Institute of Physical Chemistry, TU Vienna (Italy)

    1999-03-01

    This paper is focussed on a techno-economical analysis comparing TiO{sub 2}-Persulfate and Photo-Fenton methods for Solar Detoxification of pesticides from an industrial point of view and considering the photocatalytic system coupled with a pesticide bottles recycling plant. The analysis is based on the experiments performed at PSA Solar Detox facility with 250 L of a mixture of 10 commercial pesticides, which have been treated with both photocatalytic methods in the same CPC-type reactor system. The initial TOC of the pollutants was 100 mg/L (considering not only the active ingredient but also the rest of the commercial formulation components) and the final TOC 10 mg/L (plant design parameters). Different experiments have been performed to optimize both treatments. In the experiments with Photo-Fenton 80% of the initial TOC were removed in 75 to 90 minutes and 90% in approximately 2 hours. In the experiment with TiO{sub 2}-Persulfate, 80% of the TOC was removed in 3 hours and 90% of the TOC after 4 hours. (authors)

  2. Detoxification of cyanides in cassava flour by linamarase of Bacillus ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... Full Length Research Paper. Detoxification of ... utilizing indigenous bacteria from cyanide rich cassava peel waste and exploited their potential for ... Figure 1. Enzyme catalyzed degradation of cyanogenic glycosides. pains ..... Linamarin - the toxic compound of cassava. J. Venom. Anim. Toxins. 2(1): 6-12.

  3. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Lin, Yongwen; Chen, Shiman; Huang, Wei; Zhang, Jinguan; Idrees, Atif; Qiu, Dongliang; Wang, Liande

    2018-03-25

    Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera).

    Science.gov (United States)

    Schmehl, Daniel R; Teal, Peter E A; Frazier, James L; Grozinger, Christina M

    2014-12-01

    Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediating sensitivity and resistance to pesticides are not well characterized. We explored the impact of coumaphos and fluvalinate, the two most abundant and frequently detected pesticides in the hive, on genome-wide gene expression patterns of honey bee workers. We found significant changes in 1118 transcripts, including genes involved in detoxification, behavioral maturation, immunity, and nutrition. Since behavioral maturation is regulated by juvenile hormone III (JH), we examined effects of these miticides on hormone titers; while JH titers were unaffected, titers of methyl farnesoate (MF), the precursor to JH, were decreased. We further explored the association between nutrition- and pesticide-regulated gene expression patterns and demonstrated that bees fed a pollen-based diet exhibit reduced sensitivity to a third pesticide, chlorpyrifos. Finally, we demonstrated that expression levels of several of the putative pesticide detoxification genes identified in our study and previous studies are also upregulated in response to pollen feeding, suggesting that these pesticides and components in pollen modulate similar molecular response pathways. Our results demonstrate that pesticide exposure can substantially impact expression of genes involved in several core physiological pathways in honey bee workers. Additionally, there is substantial overlap in responses to pesticides and pollen-containing diets at the transcriptional level, and subsequent analyses demonstrated that pollen-based diets reduce workers' pesticide sensitivity. Thus, providing honey bees and other pollinators with high quality nutrition may improve resistance to pesticides. Copyright © 2014 Elsevier Ltd. All

  6. Influence of bacterial N-acyl-homoserinelactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    Directory of Open Access Journals (Sweden)

    Christine eGoetz-Roesch

    2015-04-01

    Full Text Available Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the QS signalling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signalling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance towards radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters.We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL, N-octanoyl- (C8-HSL and N-decanoyl- homoserine lactone (C10-HSL on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L. as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase (DHAR in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase (SOD activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers towards AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different

  7. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    Science.gov (United States)

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  8. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga

    OpenAIRE

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-01-01

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odor...

  9. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lin [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Department of Pharmacology, University of Nantong, Nantong (China); Chen, Yeru; Wu, Deqi; Shou, Jiafeng [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Shengcun [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Ye, Jie [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun, E-mail: xjwang@zju.edu.cn [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2015-11-01

    Butylated hydroxyanisole (BHA) is widely used as an antioxidant and preservative in food, food packaging and medicines. Its chemopreventive properties are attributing to its ability to activate the transcription factor NF-E2 p45-related factor 2 (Nrf2), which directs central genetic programs of detoxification and protection against oxidative stress. This study was to investigate the histological changes of Nrf2 and its regulated phase II enzymes Nqo1, AKR1B8, and Ho-1 in wild-type (WT) and Nrf2{sup −/−} mice induced by BHA. The mice were given a 200 mg/kg oral dose of BHA daily for three days. Immunohistochemistry revealed that, in the liver from WT mice, BHA increased Nqo1 staining in hepatocytes, predominately in the pericentral region. In contrast, the induction of AKR1B8 appeared mostly in hepatocytes in the periportal region. The basal and inducible Ho-1 was located almost exclusively in Kupffer cells. In the small intestine from WT mice, the inducible expression patterns of Nqo1 and AKR1B8 were nearly identical to that of Nrf2, with more intense staining in the villus than that the crypt. Conversely, Keap1 was more highly expressed in the crypt, where the proliferative cells reside. Our study demonstrates that BHA elicited differential expression patterns of phase II-detoxifying enzymes in the liver and small intestine from WT but not Nrf2{sup −/−} mice, demonstrating a cell type specific response to BHA in vivo. - Highlights: • Histological view of basal and inducible Nrf2 and its targets in vivo • Induction of detoxification enzymes by BHA is cell-type dependent. • BHA induces the expression of HO-1 in Kupffer cells.

  10. Impact of food processing and detoxification treatments on mycotoxin contamination.

    Science.gov (United States)

    Karlovsky, Petr; Suman, Michele; Berthiller, Franz; De Meester, Johan; Eisenbrand, Gerhard; Perrin, Irène; Oswald, Isabelle P; Speijers, Gerrit; Chiodini, Alessandro; Recker, Tobias; Dussort, Pierre

    2016-11-01

    Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.

  11. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  12. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Science.gov (United States)

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  13. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    detoxification and bioactivation. Hydrophobic pesticides that are expected to be highly stored in tissues would not be bioconcentrated if susceptible to biotic transformation by aquatic organisms to more rapidly metabolized to hydrophilic entities are generally less toxic. By analogy, pesticides that are metabolized to similar entities by aquatic species surely are les ecotoxicologically significant. One feature of fish and other aquatic species that makes them more relevant as targets of environmental studies and of regulation is that they may not only become contaminated by pesticides or other chemicals, but that they constitute and important part of the human diet. In this chapter, we provide an overview of the enzymes that are capable of metabolizing or otherwise assisting in the removal of xenobiotics from aquatic species. Many studies have been performed on the enzymes that are responsible for metabolizing xenobiotics. In addition to the use of conventional biochemical methods, such studies on enzymes are increasingly being conducted using immunochemical methods and amino acid or gene sequences analysis. Such studies have been performed in algae, in some aquatic macrophytes, and in bivalva, but less information is available for other aquatic species such as crustacea, annelids, aquatic insecta, and other species. Although their catabolizing activity is often lower than in mammals, oxidases, especially cytochrome P450 enzymes, play a central role in transforming pesticides in aquatic organisms. Primary metabolites, formed from such initial enzymatic action, are further conjugated with natural components such as carbohydrates, and this aids removal form the organisms. The pesticides that are susceptible to abiotic hydrolysis are generally also biotically degraded by various esterases to from hydrophilic conjugates. Reductive transformation is the main metabolic pathway for organochlorine pesticides, but less information on reductive enzymology processes is available. The

  14. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Science.gov (United States)

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  15. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  16. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures.

    Science.gov (United States)

    Lizano-Fallas, Verónica; Masís-Mora, Mario; Espinoza-Villalobos, David; Lizano-Brenes, Michelle; Rodríguez-Rodríguez, Carlos E

    2017-09-01

    Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Accumulation and detoxification dynamics of Chromium and antioxidant responses in juvenile rare minnow, Gobiocypris rarus.

    Science.gov (United States)

    Yuan, Cong; Li, Meng; Zheng, Yao; Zhou, Ying; Wu, Feili; Wang, Zaizhao

    2017-09-01

    Hexavalent chromium (Cr 6+ ) compounds are hazardous via all exposure routes. To explore the dynamics of Cr accumulation and elimination and to reveal the mechanisms underlying detoxification and antioxidation in juvenile Gobiocypris rarus, one-month old G. rarus larvae were exposed to 0.1mgL -1 Cr 6+ for four weeks for accumulation and subsequently placed to clean water for another week for depuration. The contents of Cr were measured weekly in the whole body of G. rarus juveniles. The activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase (GR), and contents of glutathione (GSH) and malonaldehyde (MDA), and transcripts of cat, Cu/Zn-sod, Mn-sod, gpx1, gstpi, gr, mt1, nrf2 and uba52 were determined. The results indicated that G. rarus juveniles had a strong ability to resist the Cr accumulation by Cr 6+ exposure and to remove Cr from the body in clean water. In addition, GST and MT proteins may be involved in the detoxification of Cr 6+ . Moreover, Cr 6+ -induced GST detoxification in G. rarus juveniles might be accomplished through the Nrf2-mediated regulation of gene expressions. The antioxidant enzyme systems exhibited a response mechanism of the protective enzymes in organisms when they are subjected to external environmental stress. Two weeks of Cr 6+ treatments could have led to the damage and consecutive degradation of antioxidant enzymes via ubiquitination, and MT proteins could be involved in protecting the activity of these enzymes. The capability of antioxidant enzyme systems to recover from the Cr 6+ -induced damage was strong in G. rarus juveniles after Cr 6+ was removed from the water. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Several Pesticides Influence the Nutritional Content of Sweet Corn.

    Science.gov (United States)

    Cutulle, Matthew A; Armel, Gregory R; Kopsell, Dean A; Wilson, Henry P; Brosnan, James T; Vargas, Jose J; Hines, Thomas E; Koepke-Hill, Rebecca M

    2018-03-28

    Herbicides are pesticides used to eradicate unwanted plants in both crop and non-crop environments. These chemistries are toxic to weeds due to inhibition of key enzymes or disruption of essential biochemical processes required for weedy plants to survive. Crops can survive systemic herbicidal applications through various forms of detoxification, including metabolism that can be enhanced by safeners. Field studies were conducted near Louisville, Tennessee and Painter, Virginia to determine how the herbicides mesotrione, topramezone, nicosulfuron, and atrazine applied with or without the safener isoxadifen-ethyl would impact the nutritional quality of "Incredible" sweet corn ( Zea mays L. var. rugosa). Several herbicide treatments increased the uptake of the mineral elements phosphorus, magnesium, and manganese by 8-75%. All herbicide treatments increased protein content by 4-12%. Applied alone, nicosulfuron produced similar levels of saturated, monounsaturated, and polyunsaturated fatty acids when compared to the nontreated check, but when applied with isoxadifen-ethyl, fatty acids increased 8 to 44% relative to the check or control. Nicosulfuron plus isoxadifen-ethyl or topramezone or the combination of all three actives increased the concentrations of fructose and glucose (40-68%), whereas reducing levels of maltose or sucrose when compared to the nontreated check (-15 to -21%). Disruptions in biochemical pathways in plants due to the application of herbicides, safeners, or other pesticides have the potential to alter the nutrient quality, taste, and overall plant health associated with edible crops.

  19. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Catarina, E-mail: catarinarcruzeiro@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Lopes-Marques, Mónica, E-mail: monicaslm@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Ruivo, Raquel, E-mail: ruivo.raquel@gmail.com [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rodrigues-Oliveira, Nádia, E-mail: nadia.oliveira@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Santos, Miguel M., E-mail: santos@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal); Rocha, Maria João, E-mail: mjsrocha@netcabo.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rocha, Eduardo, E-mail: erocha@icbas.up.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Castro, L. Filipe C., E-mail: filipe.castro@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal)

    2016-05-15

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  20. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    International Nuclear Information System (INIS)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M.; Rocha, Maria João; Rocha, Eduardo; Castro, L. Filipe C.

    2016-01-01

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  1. Carbonic anhydrase from Apis mellifera: purification and inhibition by pesticides.

    Science.gov (United States)

    Soydan, Ercan; Güler, Ahmet; Bıyık, Selim; Şentürk, Murat; Supuran, Claudiu T; Ekinci, Deniz

    2017-12-01

    Carbonic anhydrase (CA) enzymes have been shown to play an important role in ion transport and in pH regulation in several organisms. Despite this information and the wealth of knowledge regarding the significance of CA enzymes, few studies have been reported about bee CA enzymes and the hazardous effects of chemicals. Using Apis mellifera as a model, this study aimed to determine the risk of pesticides on Apis mellifera Carbonic anhydrase enzyme (Am CA). CA was initially purified from Apis mellifera spermatheca for the first time in the literature. The enzyme was purified with an overall purification of ∼35-fold with a molecular weight of ∼32 kDa. The enzyme was then exposed to pesticides, including tebuconazole, propoxur, carbaryl, carbofuran, simazine and atrazine. The six pesticides dose-dependently inhibited in vitro AmCA activity at low micromolar concentrations. IC 50 values for the pesticides were 0.0030, 0.0321, 0.0031, 0.0087, 0.0273 and 0.0165 μM, respectively. The AmCA inhibition mechanism of these compounds is unknown at this moment.

  2. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae.

    Science.gov (United States)

    Kotze, Andrew C; Ruffell, Angela P; Ingham, Aaron B

    2014-12-01

    We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase). The phenobarbital-induced drug tolerance was reversed by cotreatment with the UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, probenecid, and sulfinpyrazone. Isobologram analysis of the interaction of 5-nitrouracil with naphthalophos in phenobarbital-treated larvae clearly showed the presence of strong synergism. The UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, and probenecid also showed synergistic effects with non-phenobarbital-treated worms (synergism ratio up to 3.2-fold). This study indicates that H. contortus larvae possess one or more UDPGT enzymes able to detoxify naphthalophos. In highlighting the protective role of this enzyme group, this study reveals the potential for UDPGT enzymes to act as a resistance mechanism that may develop under drug selection pressure in field isolates of this species. In addition, the data indicate the potential for a chemotherapeutic approach utilizing inhibitors of UDPGT enzymes as synergists to increase the activity of naphthalophos against parasitic worms and to combat detoxification-mediated drug resistance if it arises in the field. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  4. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    International Nuclear Information System (INIS)

    Phung, Thu-Ha; Jung, Sunyo

    2015-01-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F v /F m , as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H 2 O 2 production and greater increases in H 2 O 2 -decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress

  5. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling?

    Science.gov (United States)

    Gems, David; McElwee, Joshua J

    2005-03-01

    Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.

  6. Newer approaches to opioid detoxification

    Directory of Open Access Journals (Sweden)

    Siddharth Sarkar

    2012-01-01

    Full Text Available Opioid use disorders present with distressing withdrawal symptoms at the time of detoxification. The pharmacological agents and methods currently in use for detoxification mainly include buprenorphine, methadone, and clonidine. Many other pharmacological agents have been tried for opioid detoxification. This review takes a look at the newer pharmacological options, both opioid agonists and non-agonist medications that have been utilized for detoxification. Peer reviewed articles were identified using PubMed and PsychInfo databases. The keywords included for the search were a combination of ′opioid′ and ′detoxification′ and their synonyms. All the articles published in the last 10 years were screened for. Relevant data was extracted from identified studies. Many newer pharmacological agents have been tried in detoxification of opioids. However, the quest for a safe, efficacious, cost-effective pharmacological option which requires minimal monitoring still continues. The role of non-pharmacological measures and alternative medicine needs further evaluation.

  7. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure.

    Science.gov (United States)

    Nigg, H N; Knaak, J B

    2000-01-01

    phosphorothioates and phosphorodithioates (e.g., parathion and azinphosmethyl, respectively) to the more toxic oxons (P = O(S to O)). In some cases, P-450 isozymes catalyze the oxidative cleavage of P-O-aryl bonds (e.g., parathion, methyl parathion, fenitrothion, and diazinon) to form inactive water-soluble alkyl phosphates and aryl leaving groups that are readily conjugated with glucuronic or sulfuric acids and excreted. In addition to the P-450 isozymes, mammalian tissues contain ('A' and 'B') esterases capable of reacting with OPs to produce hydrolysis products or phosphorylated enzymes. 'A'-esterases hydrolyze OPs (i.e., oxons), while 'B'-esterases with serine at the active center are inhibited by OPs. OPs possessing carboxylesters, such as malathion and isofenphos, are hydrolyzed by the direct action of 'B'-esterases (i.e., carboxylesterase, CaE). Metabolic pathways shown for isofenphos, parathion, and malathion define the order in which these reactions occur, while Michaelis-Menten kinetics define reaction parameters (Vmax, K(m)) for the enzymes and substrates involved, and rates of inhibition of 'B'-esterases (kis, bimolecular rate constants) by OPs and their oxons. OPs exert their insecticidal action by their ability to inhibit AChE at the cholinergic synapse, resulting in the accumulation of acetylcholine. The extent to which AChE or other 'B'-esterases are inhibited in workers is dependent upon the rate the OP pesticide is activated (i.e., oxon formation), metabolized to nontoxic products by tissue enzymes, its affinity for AChE and other 'B'-esterases, and esterase concentrations in tissues. Rapid recovery of OP BChE inhibition may be related to reactivation of inhibited forms. AChE, BChE, and CaE appear to function in vivo as scavengers, protecting workers against the inhibition of AChE at synapses. Species sensitivity to OPs varies widely and results in part from binding affinities (Ka) and rates of phosphorylation (kp) rather than rates of activation and detoxif

  8. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    International Nuclear Information System (INIS)

    Ghanem, Eman; Raushel, Frank M.

    2005-01-01

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilized to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed

  9. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S.

    Science.gov (United States)

    Luo, Xiangwen; Zhang, Deyong; Zhou, Xuguo; Du, Jiao; Zhang, Songbai; Liu, Yong

    2018-05-09

    Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30-46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l -1 and 0.918 ± 0.025 U·µg -1 , respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems.

  10. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cárcamo, Juan Guillermo; Aguilar, Marcelo N; Carreño, Constanza F; Vera, Tamara; Arias-Darraz, Luis; Figueroa, Jaime E; Romero, Alex P; Alvarez, Marco; Yañez, Alejandro J

    2017-01-01

    Rainbow trout (Oncorhynchus mykiss) subjected to three consecutive, alternating treatments with emamectin benzoate (EMB) and deltamethrin (DM) during outbreaks of Caligus rogercresseyi in a farm located in southern Chile (Hornopiren, Chiloé), were studied to determine the effects of these treatments on the protein and enzymatic activity levels of cytochrome P450 1A (CYP1A), flavin-containing monooxygenase (FMO) and glutathione S-transferase (GST) in different tissues. Consecutive and alternating EMB/DM treatments resulted in a 10-fold increase and 3-fold decrease of CYP1A protein levels in the intestine and gills, respectively. Notably, CYP1A activity levels decreased in most of the analyzed tissues. FMO protein and activity levels markedly increased in the kidney and the intestine. GST was up-regulated in all tissues, either as protein or enzyme activity. When comparing consecutive EMB/DM treatments against previous studies of EMB treatment alone, CYP1A activity levels were similarly diminished, except in muscle. Likewise, FMO activity levels were increased in most of the analyzed tissues, particularly in the muscle, kidney, and intestine. The increases observed for GST were essentially unchanged between consecutive EMB/DM and EMB only treatments. These results indicate that consecutive EMB/DM treatments in rainbow trout induce the expression and activity of FMO and GST enzymes and decrease CYP1A activity. These altered activities of detoxification enzymes could generate imbalances in metabolic processes, synthesis, degradation of hormones and complications associated with drug interactions. It is especially important when analyzing possible effects of consecutive antiparasitic treatments on withholding periods and salmon farming yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. PREVENTING EFFECT OF THE PESTICIDE IN FARMING SOCIETY AT BUAHAN VILLAGE, KINTAMANI, BANGLI

    Directory of Open Access Journals (Sweden)

    dr. I Made Sutarga

    2012-09-01

    Full Text Available Abtract In the year 2004 from the result of research of horticultura farmer, from 46 person who had been checked their blood cholinesterase found 17.4% suffering of poison pesticide, 56.5% their knowlage still less to manage pesticide and also 47.8% less behavior in conducting real correct spraying, self protector applied should be used. The purpose of this activity to give understanding to farmer that use pesticide in managing pesticide and also to see pesticide conten through inspection of periodical cholinesterase. On Oktober 2006 from result checking of cholinesterase enzyme from 39 farmers. Their blood sample found cholinesterase enzyme rate >50-75 with degradation egual to 25% or suffer light poisond equal 23%. Farmer behavior in using pesticide still less. That is why counselling and also society inspection of cholinesterase enzyme required to be level and in the event of poisoned hence require to be intervenced continually through counselling continually through counselling and is rejancent of society.

  13. Pb detoxification in Equisetum diffusum

    Directory of Open Access Journals (Sweden)

    Deepak Pant

    2015-01-01

    Full Text Available Current research highlights the use of aquatic macrophyte Equisetum diffusum (Himalayan horsetail for lead detoxification. This plant species can grow in waste cathode ray tube (CRT powder and absorbs its Pb. X-ray fluorescence spectroscopy (XRF analysis of plant ash shows that 68 mg/kg lead concentration in the untreated plant was improved to 7600 mg/kg in CRT powder after 90 days. The role of monosilicic and/or monoplumbic acid as reaction intermediates for Pb detoxification and associated bioaccumulation is proposed. Pb detoxification in E. diffusum is mainly rendering around the iso-electronic nature of Pb and Si and forms similar phytochelatin (PC complexes with available family of peptide ligands. The study focuses on the underlying functions of silicon containing plants in metal detoxification.

  14. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  15. Solar photocatalytic degradation and detoxification of EU priority substances

    Energy Technology Data Exchange (ETDEWEB)

    Hincapie, M. [Facultad de Ingeniera Ambiental, Universidad de Medellin, Carrera 87 No. 30-65, P.O. Box 1983, Medellin (Colombia); Maldonado, M.I.; Oller, I.; Gernjak, W.; Malato, S. [Plataforma Solar de Almeria-CIEMAT, Carretera Senes km4, 04200 Tabernas (Almeria) (Spain); Sanchez-Perez, J.A.; Ballesteros, M.M. [Departamento de Ingenieria Quimica, Universidad de Almeria Crta de Sacramento s/n, 04120 Almeria (Spain)

    2005-04-15

    Several different pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) considered PS (priority substances) by the European Commission and dissolved in water at 50mg/L (or at maximum water solubility) have been degraded at pilot-plant scale using photo-Fenton and TiO{sub 2} photocatalysis driven by solar energy. Two different iron concentrations (2 and 55mg/L) and TiO{sub 2} at 200mg/L have been tested and discussed, using mainly TOC mineralisation for comparison of treatment effectiveness. Vibrio fischeri (Microtox{sup (}R)) toxicity assays were also employed for evaluating the photocatalytic treatments, and comparison between these results and parent compound disappearance, TOC evolution and anion (or ammonia) release were discussed. Almost complete mineralisation and total detoxification were always attained. It has been demonstrated that evolution of chloride could be a key-parameter for predicting toxicity of chlorinated compounds.

  16. Metabolism of a sea lamprey pesticide by fish liver enzymes part A: identification and synthesis of TFM metabolites.

    Science.gov (United States)

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Buchinger, Tyler; Li, Ke; Smith, Scott A; Jones, A Daniel; Li, Weiming

    2018-02-01

    The sea lamprey (Petromyzon marinus) is a destructive invasive species in the Great Lakes that contributed to the collapse of native fish populations in the mid-1900s. 3-Trifluoromethyl-4-nitrophenol (TFM) is a selective pesticide that has been applied to sea lamprey infested tributaries of the Great Lakes to kill larvae since the 1960s and has reduced the populations by as much as 90%. However, the metabolism of TFM by sea lamprey and non-target species is not fully illuminated. Elucidation of TFM metabolism is critical for understanding its mode of action and possible environmental impact. Here, we describe the screening, identification, synthesis and structural characterization of TFM metabolites in livers from sea lamprey and three non-target species that differ in their ability to survive TFM exposure. We identified glucuronidation, sulfation, N-acetylation, glutathione conjugation, and aromatic nitro group reduction as potential detoxification mechanisms. Seven metabolites were synthesized for use as markers of TFM metabolism in fish. Quantitative 1 H NMR was used to assay synthesized metabolite stock solutions that were then used as standard material to develop a quantitative LC-MS/MS method for TFM metabolites.

  17. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    Science.gov (United States)

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of turmeric on xenobiotic metabolising enzymes.

    Science.gov (United States)

    Goud, V K; Polasa, K; Krishnaswamy, K

    1993-07-01

    Diet contains several substances capable of inhibiting chemical carcinogenesis. It is known that such inhibitors may either act directly by scavenging the reactive substances or indirectly by promoting mechanisms which enhance detoxification. Turmeric which contains curcumin both in vitro and in vivo is an active antimutagen. Studies were therefore conducted to evaluate the effects of turmeric on xenobiotic metabolising enzymes in hepatic tissue of rats fed turmeric ranging from 0.5-10% in the diet. Enzymes such as aryl hydrocarbon hydroxylase, UDP glucuronyl transferase and glutathione-S-transferase were assayed after four weeks of turmeric fed diets. No significant differences were seen in the activating enzyme AHH. However, UDPGT was significantly elevated in rats fed 10% turmeric while GSHT registered a significant increase in 5 and 10% turmeric fed diet as compared to controls and 0.5-1.0% turmeric fed animals. The results suggest that turmeric may increase detoxification systems in addition to its anti-oxidant properties. Curcumin perhaps is the active principle in turmeric. Turmeric used widely as a spice would probably mitigate the effects of several dietary carcinogens.

  19. Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa.

    Science.gov (United States)

    Fatma, Firdos; Verma, Sonam; Kamal, Aisha; Srivastava, Alka

    2018-02-01

    Pesticides are a group of chemical substances which are widely used to improve agricultural production. However, these substances could be persistent in soil and water, accumulative in sediment or bio-accumulative in biota depending on their solubility, leading to different types of environmental pollution. The present study was done to assess the impact of pesticides-mancozeb and chlorpyrifos, via morphological and physiological parameters using Allium cepa test system. Phytotoxic effects of pesticides were examined via germination percentage, survival percentage, root and shoot length, root shoot length ratio, seedling vigor index, percentage of phytotoxicity and tolerance index. Oxidative stress on Allium seedlings caused by pesticides was also assessed by investigating the activity of antioxidative enzymes viz. catalase, peroxidase and superoxide dismutase. Correlation was worked out between morphological parameters and antioxidative enzymes to bring out the alliance between them. Mancozeb and chlorpyrifos concentrations were significantly and positively correlated with the activity of antioxidative enzymes and negatively correlated with morphological parameters. Significant positive correlation between various morphological parameters showed their interdependency. However, negative correlation was obtained between activity of antioxidative enzymes and morphological parameters. The enzymes however, showed positive correlation with each other. Based on our result we can conclude that all morphological parameters were adversely affected by the two pesticides as reflected by phytotoxicity in Allium . Their negative correlation with activity of antioxidative enzymes indicates that upregulation of antioxidative enzymes is not sufficient to overcome the toxic effect, thereby signifying the threat being caused by the regular use of these pesticides.

  20. response of anopheles gambiae detoxification enzymes to levels

    African Journals Online (AJOL)

    USER

    Bayero Journal of Pure and Applied Sciences, 7(2): 93 – 104 ... 2Scottish Informatics, Mathematics, Biology and Statistics (SIMBIOS) Centre and Abertay Centre for .... stannous-chloride and turbidimetric methods, .... Bivariate Linear Regression with enzyme activity as .... Preliminary classical multivariate regression between.

  1. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ling-Hsiu Liao

    2017-02-01

    Full Text Available Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82, p-coumaric acid (HR = 0.91 and casein (HR = 0.74 were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17 and 0.5 ppm β-cyfluthrin (HR = 1.34, reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health.

  2. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    Science.gov (United States)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  3. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  4. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  5. Computational regulatory model for detoxification of ammonia from urea cycle in liver

    OpenAIRE

    ALI, Rashith Muhammad MUBARAK; GURUSAMY, Poornima Devi; RAMACHANDRAN, Selvakumar

    2015-01-01

    A nondeterministic finite automaton was designed to monitor enzymatic regulation and detoxification of excess ammonia in the urea cycle and its disorders. The designed machine is used for the diagnosis of deficiency and for regulating the expression of any of the enzymes involved with acceptance and rejection states in the urea cycle. The urea cycle is the metabolism of excess nitrogen produced by the breakdown of protein and other nitrogen-containing molecules in liver. Disorder in the urea ...

  6. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH.

    Science.gov (United States)

    Lyu, Yunbin; LaPointe, Gisèle; Zhong, Lei; Lu, Jing; Zhang, Chong; Lu, Zhaoxin

    2018-02-01

    Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL -1 when the recombinant cells were induced with 50 ng mL -1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.

  7. Detoxification of Hg(II) from aqueous and enzyme media: Pristine vs. tailored calcium alginate hydrogels.

    Science.gov (United States)

    Sarkar, Kangkana; Ansari, Zarina; Sen, Kamalika

    2016-10-01

    Calcium alginate (CA) hydrogels were tailored using phenolic compounds (PC) like, thymol, morin, catechin, hesperidin, during their preparation. The PC incorporated gels show modified surface features as indicated by scanning electron microscopic images (SEM). The rheological studies show that excepting the hesperidin incorporated gels all the other kinds including calcium alginate pristine have similar mechanical strength. The hesperidine incorporated CA gels had the maximum capacity to adsorb Hg. The Freundlich adsorption isotherms show higher values of adsorption capacity for all PC incorporated CA beads than the pristine CA (PCA). The hesperidin incorporated CA gels were found to show the best adsorption condition at neutral pH and an optimum contact time of 2.5h at 25°C. Considering the possibility of ingested Hg detoxification from human alimentary tract, the hesperidin and morin incorporated CA beads were further modified through incorporation of cod liver oil as the digestion time of fat in stomach is higher. In vitro uptake capacities of Hg in pepsin and pancreatin containing enzyme media were studied with hesperidin and morin incorporated beads and their corresponding fat incorporated beads also. In the pepsin medium, there was no uptake by hesperidin and fat-hesperidin incorporated beads, which is possibly due to the higher acidity of the medium. But in pancreatin medium Hg was taken up by both kinds of beads. Morin and morin-fat incorporated beads were efficient to uptake Hg from both the pepsin and pancreatin medium. The tailored CA beads may therefore serve as efficient scaffolds to rescue Hg ingested individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biosensor technology for pesticides--a review.

    Science.gov (United States)

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  9. Opportunities for the UK in solar detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P A; Walker, G M

    1997-12-31

    The most investigated approach to the solar detoxification of water involves the use of titanium dioxide, TiO{sub 2}, as the photocatalyst. The involvement of engineers in photocatalytic water detoxification research has been far too low, the research effort in photochemical reactor design has not been sufficient, with the result that a well-defined application for solar, or UV lamp, -driven TiO{sub 2}-based water detoxification technology has not been identified. The most effective and carefully investigated reactor design remains that in which TiO{sub 2} is added as a slurry to the contaminated water, however, the cost implications of the subsequent separation of the slurry from the treated water have not been addressed in any sensible fashion. The poor quantum efficiencies, rate constants and overlap between the solar emission spectrum and the absorption spectrum of TiO{sub 2} has resulted in very low solar detoxification efficiencies. This, in turn, means that very large areas of land will be necessary to accommodate a solar detoxification reactor, however UK industry, and the water companies in particular, have no interest in investing in water and/or wastewater treatment methods which demand increased land usage. In addition both industry and the water companies have little or no knowledge of, or interest in, novel detoxification technologies. From the above, the only conclusion can be that the application of the solar-driven photocatalytic detoxification of high-volume and most low-volume water in the UK is not a commercial option, and so is unlikely to be in the near future. (author)

  10. Opportunities for the UK in solar detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.A.; Walker, G.M.

    1996-12-31

    The most investigated approach to the solar detoxification of water involves the use of titanium dioxide, TiO{sub 2}, as the photocatalyst. The involvement of engineers in photocatalytic water detoxification research has been far too low, the research effort in photochemical reactor design has not been sufficient, with the result that a well-defined application for solar, or UV lamp, -driven TiO{sub 2}-based water detoxification technology has not been identified. The most effective and carefully investigated reactor design remains that in which TiO{sub 2} is added as a slurry to the contaminated water, however, the cost implications of the subsequent separation of the slurry from the treated water have not been addressed in any sensible fashion. The poor quantum efficiencies, rate constants and overlap between the solar emission spectrum and the absorption spectrum of TiO{sub 2} has resulted in very low solar detoxification efficiencies. This, in turn, means that very large areas of land will be necessary to accommodate a solar detoxification reactor, however UK industry, and the water companies in particular, have no interest in investing in water and/or wastewater treatment methods which demand increased land usage. In addition both industry and the water companies have little or no knowledge of, or interest in, novel detoxification technologies. From the above, the only conclusion can be that the application of the solar-driven photocatalytic detoxification of high-volume and most low-volume water in the UK is not a commercial option, and so is unlikely to be in the near future. (author)

  11. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  12. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2017-04-01

    Full Text Available Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.

  13. Detoxification Mechanisms of Mercury Toxicity in Plants: A Review

    Directory of Open Access Journals (Sweden)

    Shilpa Shrivastava

    2015-12-01

    Full Text Available Mercury is one of the most toxic heavy metals present in the earth’s crust. It has been considered as environmental pollutant because of its potent toxicity to plants and humans. In this review, we discuss mercury toxicity responses on plant metabolism and its detoxification mechanism by phytochelatins and antioxidant enzymes. Some light is also shed on selenium antagonistic study with mercury. Due to its potential toxicity, it has attracted attention in fields of soil science and plant nutrition. Mercury has harmful toxic effects on the molecular and physiobiochemical behavior of plants. Mostly research work has been done on seed germination, and shoot, root, and leaf morphology. Enzyme responses with respect to mercury as a result Hg accumulated in food chain is also reviewed here. Hence, this review may provide a compiled data for other researches in this direction, to provide a better mechanism or details about mercury’s noxious effect in the ecosystem.

  14. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  15. Detoxification of Arsenic by Phytochelatins in Plants1

    Science.gov (United States)

    Schmöger, Marcus E.V.; Oven, Matjaz; Grill, Erwin

    2000-01-01

    As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([γ-glutamate-cysteine]n-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs. PMID:10712543

  16. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  17. Mutagenic activation and detoxification of benzo[a]pyrene in vitro by hepatic cytochrome P450 1A1 and phase II enzymes in three meat-producing animals.

    Science.gov (United States)

    Darwish, W; Ikenaka, Y; Eldaly, E; Ishizuka, M

    2010-01-01

    The mutagenic activation activity of hepatic microsomes from three meat-producing animals (cattle, deer and horses) was compared with those of rats as a reference species. In the Ames Salmonella typhimurium TA98 assay, the liver microsomes of all examined animals mutagenically activated benzo[a]pyrene, an ideal promutagens, in terms of production of histidine-independent revertant colonies. The microsomes of horses had the highest ability to produce revertant colonies of the examined animals under both low and high substrate concentrations. Inhibition of this mutagenic activity using alpha-naphthoflavone, anti-rat CYP1A1, CYP3A2 and CYP2E1 antibodies suggests that this activity was mainly because of CYP1A1 in these animals as well as in rats. The addition of co-factors for two phase II enzymes, microsomal UDP glucoronosyl transferase and cytosolic glutathione-S-transferase, reduced the production of the revertant colonies in a concentration-dependent manner. Interestingly, horses had the highest reduction rate among the examined animals, suggesting that phase II enzymes play a great role in producing a state of balance between the bioactivation and detoxification of xenobiotics in these meat-producing animals. This report is the first to investigate the mutagenic activation activity of the hepatic microsomes and the role of phase II enzymes against this activity in meat-producing animals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Detoxification in Abdominal Sepsis

    Directory of Open Access Journals (Sweden)

    A. F. Potapov

    2005-01-01

    Full Text Available Objective. To comparatively analyze the efficiency of methods for extracorporeal detoxification (ED of the body in abdominal sepsis (AS and to choose the optimum detoxifying methods in relation to the level of endotoxicosis.Material and methods. 56 patients (41 males and 15 females; mean age 39.4±12.2 years with surgical abdominal infection of various genesis, complicated by the development of sepsis whose treatment included ED methods, were examined. The level of intoxication and the efficiency of detoxification were evaluated by general clinical and biochemical blood parameters, the leukocytic intoxication index, the levels of low and medium molecular-weight substances in the body’s media. Hemosorption, plasmapheresis, hemodialysis, hemodiafiltration, and hemofiltration were used for detoxification.Results. Surgical abdominal infection is accompanied by endotoxemia that has no clear nosological specificity, but it depends on the pattern of a clinical course of the disease and is most pronounced in the septic syndrome. In AS, 80.4% of the patients are observed to have an irreversible decompensation phase and a terminal degree of endotoxicosis, which require detoxification. The use of different ED methods according to the level of intoxication may reduce the level of endotoxicosis and yield a persistent beneficial effect in 85.2% of cases of its application. Conclusion. Filtration and dialysis techniques (hemodialysis, hemofiltration, and hemodiafiltration are the methods of choice in AS. Hemosorption and plasmapheresis may be recommended for use at the early stages of endotoxicosis development and in preserved renal excretory function.

  19. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa).

    Science.gov (United States)

    Zhang, Jing Jing; Xu, Jiang Yan; Lu, Feng Fan; Jin, She Feng; Yang, Hong

    2017-10-16

    Low molecular weight (LMW) thiols in higher plants are a group of sulfur-rich nonprotein compounds and play primary and multiple roles in cellular redox homeostasis, enzyme activities, and xenobiotics detoxification. This study focused on identifying thiols-related protein genes from the legume alfalfa exposed to the herbicide atrazine (ATZ) residues in environment. Using high-throughput RNA-sequencing, a set of ATZ-responsive thiols-related protein genes highly up-regulated and differentially expressed in alfalfa was identified. Most of the differentially expressed genes (DEGs) were involved in regulation of biotic and abiotic stress responses. By analyzing the genes involved in thiols-mediated redox homeostasis, we found that many of them were thiols-synthetic enzymes such as γ-glutamylcysteine synthase (γECS), homoglutathione synthetase (hGSHS), and glutathione synthetase (GSHS). Using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), we further characterized a group of ATZ-thiols conjugates, which are the detoxified forms of ATZ in plants. Cysteine S-conjugate ATZ-HCl+Cys was the most important metabolite detected by MS. Several other ATZ-conjugates were also examined as ATZ-detoxified metabolites. Such results were validated by characterizing their analogs in rice. Our data showed that some conjugates under ATZ stress were detected in both plants, indicating that some detoxified mechanisms and pathways can be shared by the two plant species. Overall, these results indicate that LMW thiols play critical roles in detoxification of ATZ in the plants.

  20. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.

    Science.gov (United States)

    Gurram, Raghu N; Menkhaus, Todd J

    2014-07-01

    Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

  1. Prediction of withdrawal symptoms during opioid detoxification

    NARCIS (Netherlands)

    Dijkstra, Boukje A G; Krabbe, Paul F M; De Jong, Cor A J; van der Staak, Cees P F

    2008-01-01

    OBJECTIVE: The severity of self-reported withdrawal symptoms varies during detoxification of opioid-dependent patients. The aim of this study is to identify subgroups of withdrawal symptoms within the detoxification trajectory and to predict the severity of withdrawal symptoms on the basis of

  2. Prediction of withdrawal symptoms during opioid detoxification

    NARCIS (Netherlands)

    Dijkstra, B.A.G.; Krabbe, P.F.M.; Jong, C.A.J. de; Staak, C.P.F. van der

    2008-01-01

    Objective: The severity of self-reported withdrawal symptoms varies during detoxification of opioid-dependent patients. The aim of this study is to identify subgroups of withdrawal symptoms within the detoxification trajectory and to predict the severity of withdrawal symptoms on the basis of

  3. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  4. Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides.

    Science.gov (United States)

    Ahluwalia, Meenakshi; Kaur, Anupam

    2018-04-01

    Glutathione S-transferases are important detoxification enzymes involved in the metabolism of endogenous as well as exogenous compounds. Individuals differ in metabolic capacity due to inherited genetic variations. Due to the polymorphism exhibited by GSTT1 and GSTM1 that results in the complete loss of function, the present study was aimed towards the determination of the frequency distribution of GSTT1 and GSTM1 in agricultural workers in Punjab, India. The study aimed to investigate their contribution in susceptibility to increased disease risk. A total of 513 subjects were included in this study, out of which 250 were agriculture workers and 263 were non-exposed occupationally. GSTT1 and GSTM1 null-genotype distribution was analyzed through multiplex-PCR method. Complete gene deletion in either of the genes was strongly associated with an increased risk (OR = 1.8; 95% CI = 1.3-2.6; p < 0.0008) of DNA/cytogenetic damage, cancer, infertility, and many other serious health effects. Therefore, homozygous deletion in GSTT1 or GSTM1 could play a modulatory role in health of workers with long-term exposure to pesticides.

  5. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  6. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants

    Directory of Open Access Journals (Sweden)

    Smita Kumar

    2018-06-01

    Full Text Available Arsenic (As, naturally occurring metalloid and a potential hazardous material, is found in low concentrations in the environment and emerges from natural sources and anthropogenic activities. The presence of As in ground water, which is used for irrigation, is a matter of great concern since it affects crop productivity and contaminates food chain. In plants, As alters various metabolic pathways in cells including the interaction of substrates/enzymes with the sulfhydryl groups of proteins and the replacement of phosphate in ATP for energy. In addition, As stimulates the generation of free radicals and reactive oxygen species (ROS, resulting in oxidative stress. Glutathione S-transferases (GSTs quench reactive molecules with the addition of glutathione (GSH and protect the cell from oxidative damage. GSTs are a multigene family of isozymes, known to catalyze the conjugation of GSH to miscellany of electrophilic and hydrophobic substrates. GSTs have been reported to be associated with plant developmental processes and are responsive to multitude of stressors. In past, several studies suggested involvement of plant GST gene family in As response due to the requirement of sulfur and GSH in the detoxification of this toxic metalloid. This review provides updated information about the role of GSTs in abiotic and biotic stresses with an emphasis on As uptake, metabolism, and detoxification in plants. Further, the genetic manipulations that helped in enhancing the understanding of the function of GSTs in abiotic stress response and heavy metal detoxification has been reviewed.

  7. Characterization of the biodegradation, bioremediation and detoxification capacity of a bacterial consortium able to degrade the fungicide thiabendazole.

    Science.gov (United States)

    Perruchon, Chiara; Pantoleon, Anastasios; Veroutis, Dimitrios; Gallego-Blanco, Sara; Martin-Laurent, F; Liadaki, Kalliopi; Karpouzas, Dimitrios G

    2017-12-01

    Thiabendazole (TBZ) is a persistent fungicide used in the post-harvest treatment of fruits. Its application results in the production of contaminated effluents which should be treated before their environmental discharge. In the absence of efficient treatment methods in place, biological systems based on microbial inocula with specialized degrading capacities against TBZ could be a feasible treatment approach. Only recently the first bacterial consortium able to rapidly transform TBZ was isolated. This study aimed to characterize its biodegradation, bioremediation and detoxification potential. The capacity of the consortium to mineralize 14 C-benzyl-ring labelled TBZ was initially assessed. Subsequent tests evaluated its degradation capacity under various conditions (range of pH, temperatures and TBZ concentration levels) and relevant practical scenarios (simultaneous presence of other postharvest compounds) and its bioaugmentation potential in soils contaminated with increasing TBZ levels. Finally cytotoxicity assays explored its detoxification potential. The consortium effectively mineralized the benzoyl ring of the benzimidazole moiety of TBZ and degraded spillage level concentrations of the fungicide in aqueous cultures (750 mg L -1 ) and in soil (500 mg kg -1 ). It maintained its high degradation capacity in a wide range of pH (4.5-7.5) and temperatures (15-37 °C) and in the presence of other pesticides (ortho-phenylphenol and diphenylamine). Toxicity assays using the human liver cancer cell line HepG2 showed a progressive decrease in cytotoxicity, concomitantly with the biodegradation of TBZ, pointing to a detoxification process. Overall, the bacterial consortium showed high potential for future implementation in bioremediation and biodepuration applications.

  8. Enzymatic detoxification of jojoba meal and effect of the resulting meal on food intake in rats.

    Science.gov (United States)

    Bouali, Abderrahime; Bellirou, Ahmed; Boukhatem, Noureddin; Hamal, Abdellah; Bouammali, Boufelja

    2008-05-10

    When defatted jojoba meal is used as animal food, it causes food-intake reduction and growth retardation. Detoxification procedures by chemical, microbiological, and solvent extraction methods are reported by several authors. Here we report a successful detoxification of jojoba meal using enzymes. We establish reaction conditions that yield new meal which has the same nutritional qualities in proteins as the original meal. The enzymatic reaction gives rise to one major compound to which the structure of an amide is assigned on the basis of IR, 1H and 13C NMR spectra. The effect of the resulting jojoba meal on the food intake in rats is checked. In contrast, the detoxified meal containing the amide derivatives shows no toxicological activity since rats receiving oral administration of the obtained meal show normal growth. Thus, it is expected that this meal could be used as an animal feed ingredient.

  9. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    International Nuclear Information System (INIS)

    Routti, Heli; Bavel, Bert van; Letcher, Robert J.; Arukwe, Augustine; Chu Shaogang; Gabrielsen, Geir W.

    2009-01-01

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  10. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Routti, Heli, E-mail: heli.routti@npolar.n [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway); Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, 20014 Turku (Finland); Bavel, Bert van [MTM Research Centre, Orebro University, 70182 Orebro (Sweden); Letcher, Robert J. [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Chu Shaogang [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Gabrielsen, Geir W. [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway)

    2009-08-15

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  11. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms.

    Science.gov (United States)

    Khiyami, Mohammad A; Pometto Iii, Anthony L; Brown, Robert C

    2005-04-20

    Plant biomass can be liquefied into fermentable sugars (levoglucosan then to glucose) for the production of ethanol, lactic acid, enzymes, and more by a process called pyrolysis. During the process microbial inhibitors are also generated. Pseudomonas putida (ATCC 17484) and Streptomyces setonii75Vi2 (ATCC 39116) were employed to degrade microbial inhibitors in diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors. The detoxification process evaluation included measuring total phenols and changes in UV spectra, a GC-MS analysis, and a bioassay, which employed Lactobacillus casei subsp. rhamosus (ATCC 11443) growth as an indicator of detoxification. Suspended-cell cultures illustrated limited detoxification ability of Dcs and Dst. P. putida and S. setoniiplastic compost support (PCS) biofilm continuous-stirred-tank-reactor pure cultures detoxified 10 and 25% (v/v) Dcs and Dst, whereas PCS biofilm mixed culture also partially detoxified 50% (v/v) Dcs and Dst in repeated batch culture. Therefore, PCS biofilm mixed culture is the process of choice to detoxify diluted pyrolysis liquors.

  12. Performance contracting to engage detoxification-only patients into continued rehabilitation.

    Science.gov (United States)

    Haley, Sean J; Dugosh, Karen Leggett; Lynch, Kevin G

    2011-03-01

    In 2006, only 18.7% of Delaware's detoxification patients were admitted to continuing recovery-oriented treatment within 30 days after discharge. In response, Delaware established financial contingencies to (1) maintain 90% detoxification occupancy, (2) make receipt of 10% of the facility's monthly reimbursement contingent on 25% of patients entering treatment, and (3) provide a $500 bonus for every patient with three or more prior detoxification visits who was retained in treatment. Under the performance contract, the detoxification provider (1) maintained the 90% occupancy requirement, (2) achieved the 25% treatment entry target for 7 of 12 months, and (3) observed only 8% (27/337) of detoxification completions that met the targeted length of stay. Continuation to and retention in treatment was even more constrained for patients with three or more prior detoxifications. Contrary to the policy intent, the number of patients with three or more detoxifications in fiscal year (FY) 2008 is nearly triple that of FY 2006. The modest gain in the transition rate was achieved without changes in patient access; the FY 2008 patient population reported significantly higher rates of homelessness and a younger age of first use than before the performance contract in FY 2006. Performance contracting may offer promise for improving transition to treatment rates. However, the unique needs of detoxification patients, the treatment capacity of each level of care to meet patient needs, and the structure of the performance contract must be carefully considered. Performance contracting efforts may be strengthened when service contracts across the system are tightly synchronized. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB.

    Science.gov (United States)

    Bafana, Amit; Chakrabarti, Tapan; Devi, Sivanesan Saravana

    2008-01-01

    Azo dyes are known to be a very important and widely used class of toxic and carcinogenic compounds. Although lot of research has been carried out for their removal from industrial effluents, very little attention is given to changes in their toxicity and mutagenicity during the treatment processes. Present investigation describes isolation of a Bacillus velezensis culture capable of degrading azo dye Direct Red 28 (DR28). Azoreductase enzyme was isolated from it, and its molecular weight was found to be 60 kDa. The enzyme required NADH as cofactor and was oxygen-insensitive. Toxicity and mutagenicity of the dye during biodegradation was monitored by using a battery of carefully selected in vitro tests. The culture was found to degrade DR28 to benzidine and 4-aminobiphenyl, both of which are potent mutagens. However, on longer incubation, both the compounds were degraded further, resulting in reduction in toxicity and mutagenicity of the dye. Thus, the culture seems to be a suitable candidate for further study for both decolourization and detoxification of azo dyes, resulting in their safe disposal.

  14. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology

    Directory of Open Access Journals (Sweden)

    Bingna Huang

    2018-02-01

    Full Text Available Pesticides are the basis for defending against major biological disasters and important for ensuring national food security. Biocompatible, biodegradable, intelligent, and responsive materials are currently an emerging area of interest in the field of efficient, safe, and green pesticide formulation. Using nanotechnology to design and prepare targeted pesticides with environmentally responsive controlled release via compound and chemical modifications has also shown great potential in creating novel formulations. In this review, special attention has been paid to intelligent pesticides with precise controlled release modes that can respond to micro-ecological environment changes such as light-sensitivity, thermo-sensitivity, humidity sensitivity, soil pH, and enzyme activity. Moreover, establishing intelligent and controlled pesticide release technologies using nanomaterials are reported. These technologies could increase pesticide-loading, improve the dispersibility and stability of active ingredients, and promote target ability.

  15. Selected soil enzymes: Examples of their potential roles in the ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In ... A better understanding of the role of these soil enzyme- es activity ..... measure of any disruption caused by pesticides, trace.

  16. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    Science.gov (United States)

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with

  17. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.

    Science.gov (United States)

    Carter, Brian; Squillace, Phillip; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. Copyright © 2011 Wiley Periodicals, Inc.

  18. Impact of long term applications of cotton pesticides on soil biological properties, dissipation of [14C]-methyl parathion and persistence of multi-pesticide residues

    International Nuclear Information System (INIS)

    Andrea, M.M.; Peres, T.B.; Luchini, L.C.; Marcondes, M.A.; Pettinelli, A. Jr.; Nakagawa, L.E.

    2001-01-01

    Biological parameters were followed in soils from a cotton farm (Tatui) where the recommended pesticides have been used for years, and from an experimental field (Sao Paulo) which was subdivided in two areas: one received the recommended pesticides and the other was maintained untreated. The soil bioactivities monitored from 1995 to 1998, after different pesticide applications, were: basal and glucose-induced respiration; anaerobic activity; nitrification rate; activity of the enzymes: dehydrogenase, aryl sulfatase and arginine deaminase; the soil capacity to mineralize an aromatic pesticide molecule ([ 14 C]-2,4-D), fungal and bacterial contributions for soil respiration until the beginning of 1998, and fungal and bacterial numbers from the beginning of 1998. The dissipation of [ 14 C]-methyl parathion - one of the recommended pesticides - was followed by radiometric techniques only in Sao Paulo, but persistence of multi-residues was determined in both soils by gas-liquid chromatography. All the biological parameters varied each sampling time and values also varied among soil samples, being inhibited or stimulated by the different pesticide applications, but they mostly recovered the initially detected activity. Dissipation of methyl parathion was fast and not affected by the other pesticide applications. Pesticide residues varied between the two soils but were mostly low after all applications, which indicates their dissipation. (author)

  19. Breaking the 'detox-loop' for alcoholics with social detoxification.

    Science.gov (United States)

    Richman, A; Neumann, B

    1984-01-01

    A significant number of alcoholics do not respond to detoxification as a step on the way to rehabilitation. Instead, they periodically 'dry out' and subsequently return to alcohol abuse. They do not accept the responsibilities inherent in the sick role (cooperation in order to improve status of health by entering and continuing treatment), although they do accept the privileges (care, shelter and asylum). Repeated detoxifications (within medical and non-medical settings) of persons who do not commit themselves to entering rehabilitation, are of minimum benefit to the patient and absorb resources which could be better used by those more amendable to treatment. An appropriate level of care--social detoxification--should be provided for ' detox - loopers '. Such a model can focus on the alcoholic's social welfare needs. Social detoxification provides both respite and basic care. The door to ongoing rehabilitation through professional services, as well as self-help groups, can remain open, without being the main objective of the centre.

  20. In vitro–in vivo correlations for endocrine activity of a mixture of 5 currently used pesticides

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Hadrup, Niels; Boberg, Julie

    2013-01-01

    , indicating increased aromatase activity. The pesticide-mixtures were also investigated in vivo in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. All 5 pesticides could be detected in the amniotic fluid, demonstrating exposure of the fetuses. Decreased estradiol...... with steroidogenesis, and it is suggested that one underlying mechanism for these pesticides is disturbance of steroidogenic enzymes....

  1. Detoxification and biodegradability enhancement of aqueous solutions of four commercial pesticides along a Photo-Fenton treatment

    International Nuclear Information System (INIS)

    Amat, A. M.; Arques, A.; Domenech, A.; Garcia-Ripoll, A.; Vicente, R.

    2009-01-01

    Photo-Fenton treatment has proven to be efficient to remove recalcitrant pollutants as commercial pesticides commonly employed in citric cultivars in the Mediterranean coast of Spain as Laition, Sevnol, Ultracid and Metasystox. However, the photon-Fenton treatment resulted to be less efficient to remove organic matter; nevertheless it could be employed as a pre-treatment to couple with biological processes, widely used in wastewater treatment. (Author)

  2. Detoxification and biodegradability enhancement of aqueous solutions of four commercial pesticides along a Photo-Fenton treatment

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A. M.; Arques, A.; Domenech, A.; Garcia-Ripoll, A.; Vicente, R.

    2009-07-01

    Photo-Fenton treatment has proven to be efficient to remove recalcitrant pollutants as commercial pesticides commonly employed in citric cultivars in the Mediterranean coast of Spain as Laition, Sevnol, Ultracid and Metasystox. However, the photon-Fenton treatment resulted to be less efficient to remove organic matter; nevertheless it could be employed as a pre-treatment to couple with biological processes, widely used in wastewater treatment. (Author)

  3. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  4. DEVELOPMENT OF PASSIVE DETOXIFICATION TECHNOLOGY FOR GOLD HEAP LEACH STOCKPILED WASTES

    OpenAIRE

    M.P. Belykh; A.Yu. Chikin; S.V. Petrov; N.L. Belkova

    2017-01-01

    Purpose. The processes of biopassive detoxication are of special interest for the solution of environmental issues of detoxification of gold heap leach cyanide-bearing wastes whose detoxification period is unlimited. These processes are based on spontaneous degradation of cyanides under the influence of natural factors including the action of autochthonous bacterial community. The purpose of the work is to develop a biopassive detoxification technology of heap leach stockpiled wastes. Methods...

  5. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Jørgensen, Sys Borcher; Wilhelmsen, Ellen Sloth

    2007-01-01

    and properties of the vaccine component, occurs through partly unknown chemical modifications of the toxin. The aim of this study was to gain knowledge of the detoxification mechanism in the generation of the tetanus vaccine. Two approaches were chosen: (i) the effect of changes in the concentrations of lysine...... The tetanus vaccine is based on the extremely potent tetanus neurotoxin (TeNT), which is converted by treatment with formaldehyde and lysine into the non-toxic, but still immunogenic tetanus toxoid (TTd). This formaldehyde-induced detoxification, which to a large extend determines the quality...... and formaldehyde in the detoxification process and (ii) characterisation of the chemically detoxified TTd. (i) We examined a number of TTd components that was produced by varying the concentrations of formaldehyde and lysine during the inactivation. Toxicity tests showed that the detoxification failed when...

  6. Biodegradation of mixtures of pesticides by bacteria and white rot fungi

    OpenAIRE

    Gouma, Sofia

    2009-01-01

    The objective of this study was to examine the potential for degradation of mixtures of pesticides (chlorpyrifos, linuron, metribuzin) by a range of bacteria and fungi and to relate this capability to enzyme production and quantify the rates of degradation of the components of the mixture of xenobiotic compounds. Overall, although bacteria (19 Bacillus and 4 Pseudomonas species) exhibited tolerance to the individual and micture of pesticides actual degradation was not eviden...

  7. Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function

    International Nuclear Information System (INIS)

    Lacasana, Marina; Lopez-Flores, Inmaculada; Rodriguez-Barranco, Miguel; Aguilar-Garduno, Clemente; Blanco-Munoz, Julia; Perez-Mendez, Oscar; Gamboa, Ricardo; Gonzalez-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E.

    2010-01-01

    Organophosphate pesticides are widely used in agricultural purposes. Recently, a few studies have demonstrated the ability of these chemicals to alter the function of the thyroid gland in human. Moreover, the paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity. This study evaluates the interaction between exposure to organophosphate compounds and PON1 enzyme activity on serum levels of TSH and thyroid hormones in a population of workers occupationally exposed to pesticides. A longitudinal study was conducted on a population of floriculture workers from Mexico, during two periods of high and low-intensity levels of pesticide application. A structured questionnaire was completed by workers containing questions on sociodemographic characteristics and other variables of interest. Urine and blood samples were taken, and biomarkers of exposure (dialkylphosphates), susceptibility (PON1 polymorphisms and activity) and effect (thyroid hormone levels) were determined. Interaction between dialkylphosphates and PON1 polymorphisms or PON1 activity on hormone levels was evaluated by generalized estimating equation (GEE) models. A significant interaction was found between serum diazoxonase activity and total dialkylphosphates (ΣDAP) on TSH levels. Thus, when PON1 activity was increased we observed a decrease in the percentage of variation of TSH level for each increment in one logarithmic unit of the ΣDAP levels. This interaction was also observed with the PON1 192 RR genotype. These results suggest a stronger association between organophosphate pesticides and thyroid function in individuals with lower PON1 activity.

  8. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  9. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure.

    Science.gov (United States)

    Koureas, Michalis; Tsezou, Aspasia; Tsakalof, Andreas; Orfanidou, Timoklia; Hadjichristodoulou, Christos

    2014-10-15

    The widespread use of pesticides substances nowadays largely guarantees the protection of crops and people from undesired pests. However, exposure to pesticides was related to a variety of human health effects. The present study was conducted in the region of Thessaly which is characterized by intensive agricultural activities and wide use of pesticides. The study aimed at estimating the oxidative damage to DNA in different subpopulations in Thessaly region (Greece) and investigating its correlation with exposure to pesticides and other potential risk factors. In total, the study involved 80 pesticide sprayers, 85 rural residents and 121 individuals, inhabitants of the city of Larissa. Demographic characteristics, habits, medical history and exposure history of the participants to pesticides were recorded by personal interviews. Blood and urine samples were collected from all participants. For the measurement of exposure to organophosphorus insecticides, dialkylphosphate (DAP) metabolites were quantified in urine, by gas chromatography-mass spectrometry. Genomic DNA was extracted from peripheral blood samples and the oxidation by-product 8-hydroxydeoxyguanosine (8-OHdG) was determined by Enzyme Immuno-Assay. Urinary metabolite concentrations were not associated with 8-OHdG levels but it was found that pesticide sprayers had significantly higher levels of 8-OHdG (p=0.007) in comparison to the control group. Last season's exposure to insecticides and fungicides, expressed as total area treated multiplied by the number of applications, showed a statistically significant association with the risk of having high 8-OHdG levels [RR: 2.19 (95%CI:1.09-4.38) and RR: 2.32 (95% CI:1.16-4.64) respectively]. Additionally, from the subgroups of pesticides examined, seasonal exposure to neonicotinoid insecticides [RR: 2.22 (95% CI:1.07-4.63)] and glufosinate ammonium [RR: 3.26 (95% CI:1.38-7.69)] was found to have the greater impact on 8-OHdG levels. This study produced findings

  10. Plant mediated detoxification of mercury and lead

    Directory of Open Access Journals (Sweden)

    Brajesh Kumar

    2017-05-01

    Full Text Available In recent years, the development of efficient green chemistry methods for detoxification of metal poisoning has become a major focus of researchers. They have investigated in order to find an eco-friendly and recyclable technique for the removal of heavy metal (Pb2+, Hg2+ contamination from the natural resources. One of the most considered methods is the removal of Pb2+, Hg2+ metal using green plants and their wastes. Among these plant wastes seem to be the best candidates and they are suitable for detoxification of heavy metals. Biosorption by plants involve complex mechanisms, mainly ion exchange, chelation, adsorption by physical forces and ion entrapment in inter and intra fibrillar capillaries and spaces of the structural polysaccharide cell wall network. The advantages of using green plants and their wastes for detoxification of heavy metal have interested researchers to investigate mechanisms of metal ion uptake, and to understand the possible utilization. In this review, we discuss the role of plants and their wastes for minimizing mercury and lead pollution with their toxic effect on both human beings and plants.

  11. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.

    Science.gov (United States)

    Goulson, Dave; Nicholls, Elizabeth; Botías, Cristina; Rotheray, Ellen L

    2015-03-27

    Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future. Copyright © 2015, American Association for the Advancement of Science.

  12. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. Copyright © 2015 John Wiley & Sons, Ltd.

  13. [Estimation of adaptive capacities in Magnitogorsk children from the activity of some detoxification enzymes].

    Science.gov (United States)

    koganova, Z I; Ingel', F I; Antipanova, N A; Legostoeva, T B; Poliakova, O V

    2010-01-01

    The paper provides the first fragment of a multiparameter study analyzing the influence of environmental pollution, the social and psychological features of a family, and some endogenous factors on genome stability and sensitivity in a developed ferrous metallurgy town. It also gives data on the urine and serum activity of the lysosomal enzyme N-acetyl-b-D-glucosaminidase (NAG) and the serum activity of catalase in an organized contingent of apparently healthy children (n = 178; 6 kindergartens) aged 5-7 years, who live permanently in Magnitogorsk at different distances from the metallurgical works. More than 70% of children selected for examination were found to have average normal levels of activity of the enzymes studied. According to the average levels of enzyme activity, there were only 2 kindergartens (both from the left-bank region). In the children from the left-bank area, enzyme activities varied more greatly, which suggests the higher prevalence of tense adaptation. Correlation analysis revealed association between the children's serum activity of enzymes and some components of snow pollution. It is anticipated that the found changes in serum activities of N-acetyl-beta-D-glucosaminidase and catalase may be determined by individual differences in a child's response to ambient air pollutants.

  14. Enzymatic Mercury Detoxification: The Regulatory Protein MerR

    CERN Multimedia

    Ctortecka, B; Walsh, C T; Comess, K M

    2002-01-01

    Mercury ions and organomercurial reagents are extremely toxic due to their affinity for thiol groups. Many bacteria contain an elaborate detoxification system for a metabolic conversion of toxic Hg$^{2+}$ or organomercurials to less toxic elemental Hg$^0$. The main components of the enzymatic mercury detoxification (see Fig. 1) are the regulatory protein MerR (mercury responsive genetic switch), the organomercurial lyase MerB (cleavage of carbon mercury bonds), and the mercuric ion reductase MerA (reduction of mercuric ions). In these proteins Hg$^{2+}$ is usually coordinated by the thiol groups of cysteines. We utilize the nuclear quadrupole interaction (NQI) of ${\\rm^{199m}}$Hg detected by time differential perturbed angular correlation (TDPAC) to identify the Hg metal site geometries in these proteins in order to elucidate the molecular origin of the ultrasensitivity, selectivity and reaction mechanism of this detoxification system. The short lived TDPAC probe ${\\rm^{199m}}$Hg ($\\tau_{1/2} =$ 43 min) is su...

  15. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides.

    Science.gov (United States)

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Is plasma β-glucuronidase a novel human biomarker for monitoring anticholinesterase pesticides exposure? A Malaysian experience

    International Nuclear Information System (INIS)

    Inayat-Hussain, Salmaan H.; Lubis, Syarif Husin; Sakian, Noor Ibrahim Mohamed; Ghazali, Ahmad Rohi; Ali, Noor Suhailah; El Sersi, Magdi; Toong, Lee Mun; Zainal, Awang Mat; Hashim, Suhaimi; Ghazali, Mohd Shariman; Saidin, Mohd Nazri; Rahman, Ab Razak Ab; Rafaai, Mohd Jamil Mohd; Omar, Sollahudin; Rapiai, Rafiah; Othman, Radziah; Chan, Lee Tiong; Johari, Amran; Soon, Wong Hing; Salleh, Abdul Rahim; Satoh, Tetsuo

    2007-01-01

    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma β-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The β-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasma cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma β-glucuronidase activity was measured fluorometrically based on β-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p 0.05). The plasma β-glucuronidase activity among the farmers was significantly elevated (p 0.05). The plasma cholinesterase activity was positively correlated with the plasma β-glucuronidase activity among the farmers (r = 0.205, p 0.05). Thus, plasma β-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma β-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning

  17. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  18. Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent

    Directory of Open Access Journals (Sweden)

    Lade Harshad

    2016-12-01

    Full Text Available In the present study, the enrichment and isolation of textile effluent decolorizing bacteria were carried out in wheat bran (WB medium. The isolated bacterium Providencia rettgeri strain HSL1 was then tested for decolorization of textile effluent in consortium with a dyestuff degrading fungus Aspergillus ochraceus NCIM 1146. Decolorization study suggests that A. ochraceus NCIM 1146 and P. rettgeri strain HSL1 alone re moves only 6 and 32% of textile effluent American Dye Manufacturing Institute respectively in 30 h at 30 ±0.2°C of microaerophilic incubation, while the fungal-bacterial consortium does 92% ADMI removal within the same time period. The fungal-bacterial consortium exhibited enhanced decolorization rate due to the induction in activities of catalytic enzymes laccase (196%, lignin peroxidase (77%, azoreductase (80% and NADH-DCIP reductase (84%. The HPLC analysis confirmed the biodegradation of textile effluent into various metabolites. Detoxification studies of textile effluent before and after treatment with fungal-bacterial consortium revealed reduced toxicity of degradation metabolites. The efficient degradation and detoxification by fungal-bacterial consortium pre-grown in agricultural based medium thus suggest a promising approach in designing low-cost treatment technologies for textile effluent.

  19. High utilization of inpatient detoxification: predictors among US veterans.

    Science.gov (United States)

    Chang, Grace; Raffi, Edwin; Tang, Michael; Fernando, Gerard I; Zucker, Jarred; Schein, Abigail Z

    2016-05-01

    Readmissions are among the most problematic and expensive problems in the treatment of substance use disorders. To evaluate the characteristics associated with four or more inpatient medically managed detoxification admissions in FY 2012, when all had post-discharge appointments within 7 days. A retrospective case control study. A total of 38 (6.0%) of 623 unique veterans had four or more detoxification admissions (high utilizers). A random sample of 42 was selected from the remaining 585 people (comparison group). In all, 264 detoxification and 70 hospital admissions for other reasons were reviewed. The high utilizers had more alcohol use disorder (AUD, 82% versus 59%, p = 0.03) of significantly longer duration (mean 28.9 years [SD = 17] vs. 19.6 [SD = 13.4], p = 0.01). AUD increased the odds of being a high utilizer three-fold [OR = 3.0, 95% CI 1.1, 8.4], and every additional year of AUD, increased the number of admissions 1.3%, p = 0.0006. The high utilizers did not differ from the comparison group with regards to either number of hospitalizations for other reasons (mean 1.2 [SD = 1.9] vs. 0.57 [SD = 0.8], p = 0.06) or rate of 7 day post discharge appointments kept (46.9% vs. 49.3%, p = 0.82). High utilizers were a small percentage of patients (6.0%) who accounted for a disproportionate number (23%) of 977 detoxification admissions. They had greater disease severity as manifest by more years of AUD. They were not more likely to have hospitalizations for other reasons or less likely to keep post discharge appointments. These patients may warrant different services tailored to prevent hospital readmissions for detoxification.

  20. Optical Biosensor with Multienzyme System Immobilized onto Hybrid Membrane for Pesticides Determination

    Directory of Open Access Journals (Sweden)

    Lyubov Yotova

    2011-12-01

    Full Text Available A construction of optical biosensor based on simultaneous immobilization of acetylcholinesterase and choline oxidase enzymes for the detection of pesticides residues is described. Different kinds of novel SiO2 hybrid membranes were synthesized to be suitable for optical biosensors using sol-gel techniques. The bioactive component of the sensor consists of a multi-enzyme system including acetylcholinesterase and choline oxidase covalently immobilized on new hybrid membranes. The sensor exhibited a linear response to acetylcholine in a concentration range of 2.5 - 30 mM. Inhibition plots obtained from testing carbamate (carbofuran pesticides exhibited concentration dependent behaviour and showed linear profiles in concentration ranges between 5x10-8 - 5x10-7 M for carbofuran. The factors affecting the constructed optical biosensors were investigated.

  1. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Vélëz, Heriberto

    2014-01-01

    The fungus Clonostachys rosea is antagonistic against plant pathogens, including Fusarium graminearum, which produces the oestrogenic mycotoxin zearalenone (ZEA). ZEA inhibits other fungi, and C. rosea can detoxify ZEA through the enzyme zearalenone lactonohydrolase (ZHD101). As the relevance...... wheat seedlings against foot rot caused by the ZEA-producing F. graminearum. These data show that ZEA detoxification by ZHD101 is important for the biocontrol ability of C. rosea against F. graminearum....

  2. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    Science.gov (United States)

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  3. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment : a randomized controlled trial

    NARCIS (Netherlands)

    De Jong, Cor A J; Laheij, Robert J F; Krabbe, Paul F M

    AIM: Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  4. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment: a randomized controlled trial.

    NARCIS (Netherlands)

    Jong, C.A.J. de; Laheij, R.J.F.; Krabbe, P.F.M.

    2005-01-01

    AIM: Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  5. The role of enzyme activities in soil ecosystem services: Location, origin and connection to the phytobiome

    Science.gov (United States)

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  6. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment: a randomised controlled trial

    NARCIS (Netherlands)

    Jong, C.A.J. de; Laheij, R.J.F.; Krabbe, P.F.M.

    2005-01-01

    Aim  Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  7. Fatal pesticide intoxication - case report of a 2 patients

    Directory of Open Access Journals (Sweden)

    Jędrzej Tkaczyk

    2018-05-01

    Full Text Available Pesticides is a collective term for a group of chemicals used predominantly in agriculture and against vectors in vectorborne diseases such as malaria, filariasis, etc. Organophosphates (OP have become nowadays the most widely used pesticides among the world. However, they are very highly toxic to humans. Poisoning with OP is a life - threatening condition. It is responsible for the symptoms due to a cholinergic effects. The Acetylcholinesterase (ACHE enzyme inhibition leads to an acetylcholine accumulation, which causes symptoms such as diarrhea, sweating, vomiting, small pupils, muscle tremors, increased saliva and tears production and confusion. Other type of pesticides are also common used in agriculture. Glyphosate is a broad‐spectrum systemic herbicide used to kill weeds. It is promoted by the manufacturer as having no risks to human health. We present two patients with a fatal pesticide poisoning. First patient drank OP agent, which was decanted in a non-original bottle. Despite the intensive treatment, including high doses of atropine, and toxogonine, patient died after 6 days due to acute respiratory failure. The second one, tried to commit suicide by drinking 2 glasses of a pesticide called ‘Roundap’ (glyphosate. Short time after admission to a hospital, a myocardial infarction occurred. The patient died the same day, due to a cardiac arrest.

  8. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives

    International Nuclear Information System (INIS)

    Mostafalou, Sara; Abdollahi, Mohammad

    2013-01-01

    Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action. - Highlights: ► There is a link between exposure to pesticides and incidence of chronic diseases. ► Genotoxicity and proteotoxicity are two main involved mechanisms. ► Epigenetic knowledge may help diagnose the relationships. ► Efficient policies on safe use of pesticides should be set up

  9. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Mostafalou, Sara; Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca

    2013-04-15

    Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action. - Highlights: ► There is a link between exposure to pesticides and incidence of chronic diseases. ► Genotoxicity and proteotoxicity are two main involved mechanisms. ► Epigenetic knowledge may help diagnose the relationships. ► Efficient policies on safe use of pesticides should be set up.

  10. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues.

    Science.gov (United States)

    Zhou, Jia-Wei; Zou, Xue-Mei; Song, Shang-Hong; Chen, Guan-Hua

    2018-02-14

    The pesticide and veterinary drug residues brought by large-scale agricultural production have become one of the issues in the fields of food safety and environmental ecological security. It is necessary to develop the rapid, sensitive, qualitative and quantitative methodology for the detection of pesticide and veterinary drug residues. As one of the achievements of nanoscience, quantum dots (QDs) have been widely used in the detection of pesticide and veterinary drug residues. In these methodology studies, the used QD-signal styles include fluorescence, chemiluminescence, electrochemical luminescence, photoelectrochemistry, etc. QDs can also be assembled into sensors with different materials, such as QD-enzyme, QD-antibody, QD-aptamer, and QD-molecularly imprinted polymer sensors, etc. Plenty of study achievements in the field of detection of pesticide and veterinary drug residues have been obtained from the different combinations among these signals and sensors. They are summarized in this paper to provide a reference for the QD application in the detection of pesticide and veterinary drug residues.

  11. Importance of phytoalexin tolerance and detoxification for pathogenicity. Progress report, June 1983-June 1985

    International Nuclear Information System (INIS)

    VanEtten, H.; Matthews, D.

    1985-01-01

    This study focuses on the biochemistry of phytoalexin detoxifying enzymes. Progress is reported on purification, substrate specificity, and mechanism of several enzymes involved. Some aspects of the regulation of pisatin demethylase were studied since parallel genetic studies suggest its regulation is an important factor in the pathogenicity of Nectria haematococca. We have established that the detoxification of pisatin requires two components: NADPH-cytochrome c reductase and cytochrome P-450. The ability to separate and reconstitute these two components has allowed us to demonstrate that the reductase from a non-demethylating isolate of N. haematococca will support demethylating activity when combined with the cytochrome P-450 from a demethylating isolate. The finding that the critical genetic factor here is the cytochrome P-450 fraction reinforces the hypothesis that the multiple pda genes of this fungus encode different cytochrome P-450 isozymes. The evidence for monooxygenase catalyzed metabolism of maackiain suggests the existence of additional members of a phytoalexin detoxifying cytochrome P-450 family. 4 refs., 1 fig., 1 tab

  12. Generation of Nutrients and Detoxification: Possible Roles of Yeasts in Leaf-Cutting Ant Nests

    Directory of Open Access Journals (Sweden)

    Fernando C. Pagnocca

    2012-02-01

    Full Text Available The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellulolytic enzymes, 44% exhibited pectinolytic activity while 27% and 17% possess enzyme systems for the degradation of protease and amylase, respectively. Galacturonic acid, which had been reported in previous work to be poorly assimilated by the ant fungus and also to have a negative effect on ants’ survival, was assimilated by 64% and 79% of yeasts isolated from nests of A. texana and Acromyrmex respectively. Our results suggest that yeasts found in ant nests may participate in generation of nutrients and removal of potentially toxic compounds, thereby contributing to the stability of the complex microbiota found in the leaf-cutting ant nests.

  13. Detoxification Treatments of Free Gossypol in Cottonseed Meal by Microbial Treatment of Mixed Cultures and Biochemical Evaluation on Rabbits

    International Nuclear Information System (INIS)

    Atia, A.I.; Abdel- Rahim, G.A.

    2009-01-01

    Detoxification of ti-ee gossypol (FG) in cottonseed meal (CSM) by Saccharomyces cerevisiae and Aspergillus niger, as a mixed culture, was carried out in solid state fermentation (SSF). Experiments were adopted to optimize the fermentation conditions. Maximum detoxification efficiency (90.2%) occurred after 48 h of incubation at 30 degree C in a 250 ml conical flask containing 15 g of CSM supplemented with 1 % (w/w) (NH 4 ) 2 SO 4 at the optimal conditions including the initial moisture content 55% (w/w) and inoculum level at 5% (v/w). The detoxification of FG was a growth-associated process, which was highly correlated with the dry matter weight loss. Moreover, high activities of hydrolytic enzymes were also produced in solid state fermentation, which enhanced the nutritive value of the detoxified cottonseed powder. A total number of 48 white New Zealand male rabbits were used to biologically examine the feeding of treated (detoxified) CSM without any adverse effects. Hematological and biochemical relevant parameters of white New Zealand male rabbits as affected by feeding treated meal were in the normal physiological range without no obvious change. No significant changes in liver and kidney functions of the rabbits weight gain, feed conversion and efficiency did not significantly change among experimental groups. The study showed that the feeding of the detoxified CSM by S. cerevisiae and A. niger as a mixed culture in this research without any adverse effects on rabbits

  14. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    Science.gov (United States)

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  15. Detoxification with titration and tapering in gamma-hydroxybutyrate (GHB) dependent patients: The Dutch GHB monitor project.

    Science.gov (United States)

    Dijkstra, Boukje A G; Kamal, Rama; van Noorden, Martijn S; de Haan, Hein; Loonen, Anton J M; De Jong, Cor A J

    2017-01-01

    Gamma-hydroxybutyrate (GHB) detoxification procedures have been insufficiently studied for effectiveness and safety. Based on case reports, benzodiazepines are generally regarded as first-choice agents in GHB detoxification. Detoxification by titration and tapering (DeTiTap) with pharmaceutical GHB in an open-label consecutive case series of 23 GHB-dependent patients showed to be feasible, effective and safe. This study further explored the feasibility, effectiveness and safety of this detoxification procedure in a large group of patients. A large observational multicenter study was carried out in six addiction treatment centers in the Netherlands. GHB-dependent inpatients (229 unique patients, 274 admissions) were titrated on and tapered off with pharmaceutical GHB. Successful detoxification was achieved in 85% of cases. Detoxification was carried out in 12.5days in most patients. The DeTiTap procedure proved to be feasible and significantly reduced the experienced withdrawal symptoms and craving (p≤0.001). Several symptoms were found to influence the course of subjective withdrawal symptoms. During detoxification, psychological symptoms such as depression, anxiety, and stress decreased (p≤0.05). The main complications were hypertension and anxiety. Six patients were sent to the general hospital for observation, but all six were able to continue detoxification in the addiction treatment centers. Most patients (69%) relapsed within three months after detoxification. The DeTiTap procedure using pharmaceutical GHB seems a safe alternative to benzodiazepines as a GHB detoxification procedure. However, the high relapse rates warrant further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi [State Key Laboratory of Urban Water Resource and Environment, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080 (China); Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080 (China); Liu, Shaoqin, E-mail: shaoqinliu@hit.edu.cn [Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time–saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5–100 μg L{sup −1} under the optimized conditions with the limit of detection (LOD) of 10 μg L{sup −1}. The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). - Graphical abstract: A fluorimetric assay for high-throughput screening of organophosphorous pesticides was developed based on the CdTe QDs/AChE microarrays via inkjet-assisted LbL printing techniques. - Highlights: • The large scale microarrays of CdTe QDs and AChE were fabricated by facile inkjet-assisted LbL printing technique. • The QDs/AChE microscopic dot arrays could be used quantitatively and rapidly for the sensitively visual detection of OPs. • A detection limit of 10 μg L{sup −1} was achieved, much lower than levels specified by standard tests and other colorimetric detection methods. • The low cost, short processing time, sufficient sensitivity, good stability and ease of use make it for a facile platform for on-site screening.

  17. The effects of clove oil on the enzyme activity of Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-07-01

    Full Text Available Varroa destructor, a key biotic threat to the Western honey bee, has played a major role in colony losses over the past few years worldwide. Overuse of traditional acaricides, such as tau-fluvalinate and flumethrin, on V. destructor has only increased its tolerance to them. Therefore, the application of essential oils in place of traditional pesticides is an attractive alternative, as demonstrated by its high efficiency, lack of residue and tolerance resistance. To study the acaricidal activity of essential oils, we used clove oil (Syzygium aromaticum L., a typical essential oil with a wide range of field applications, and examined its effects on the enzyme activities of Ca2+-Mg2+-ATPase, glutathione-S-transferase (GST and superoxide dismutase (SOD and its effects on the water-soluble protein content of V. destructor body extracts after exposure to 0.1 μl and 1.0 μl of clove oil for 30 min. Our results showed that the water-soluble protein content significantly decreased after the treatments, indicating that the metabolism of the mites was adversely affected. The bioactivity of GSTs increased significantly after a low dosage (0.1 μl exposure but decreased at a higher dosage (1.0 μl, while the activities of SOD and Ca2+-Mg2+-ATPase were significantly elevated after treatments. These results suggest that the protective enzyme SOD and detoxifying enzymes Ca2+-Mg2+-ATPase and GST contributed to the stress reaction of V. destructor to the essential oils and that the detoxification ability of V. destructor via GST was inhibited at higher dosages. Our findings are conducive to understanding the physiological reactions of V. destructor to treatment with essential oils and the underlying mechanisms behind the acaricidal activities of these natural products.

  18. Metabolism and interactions of pesticides in human and animal in vitro hepatic models

    OpenAIRE

    Abass, K. M. (Khaled M.)

    2010-01-01

    Abstract Risk assessment of chemicals needs reliable scientific information and one source of information is the characterization of the metabolic fate and toxicokinetics of a chemical. Metabolism is often the most important factor contributing to toxicokinetics. Cytochrome P450 (CYP) enzymes are a superfamily of microsomal proteins playing a pivotal role in xenobiotic metabolism. In the present study, pesticides were used as representative xenobiotics since exposure to pesticides is ...

  19. Pig PON1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Farajzadeh, Leila; Kristensen, Kaja Kjaer

    2018-01-01

    Atherosclerosis is an inflammatory disease promoted by oxidized low density lipoprotein (LDL). High density lipoprotein (HDL) is an important antioxidant, protecting LDL and itself from oxidation and by detoxifying the hydroperoxides from oxidized LDL. Paraoxonase, encoded by the PON1 gene......, is an enzyme involved in oxidant defense by hydrolyzing oxidized lipids, including oxLDL, and in detoxification of organophosphate pesticides. Aging is the major risk factor for developing atherosclerosis and as paraoxonase is responsible for the antioxidant effect of HDL, aging might be accompanied...

  20. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  1. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2010-01-01

    Full Text Available A disposable organophosphorus pesticides (OPs enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE has been developed. Firstly, an acetylcholinesterase (AChE-coated Fe3O4/Au (GMP magnetic nanoparticulate (GMP-AChE was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs/nano-ZrO2/prussian blue (PB/Nafion (Nf composite membrane by an external magnetic field. Thus, the biosensor (SPCE|CNTs/ZrO2/PB/Nf|GMP-AChE for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM and X-ray fluorescence spectrometery (XRFS and its electrochemical properties were studied by cyclic voltammetry (CV and differential pulse voltammetry (DPV. The degree of inhibition (A% of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh. In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10-3–10 ng•mL-1 with a detection limit of 5.6 × 10-4 ng•mL-1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis.

  2. Functional characterization of the Hyles euphorbiae hawkmoth transcriptome reveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes.

    Science.gov (United States)

    Barth, M Benjamin; Buchwalder, Katja; Kawahara, Akito Y; Zhou, Xin; Liu, Shanlin; Krezdorn, Nicolas; Rotter, Björn; Horres, Ralf; Hundsdoerfer, Anna K

    2018-01-01

    The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate

  3. Contributions of ludic care in nursing to chemical detoxification due to the use of crack cocaine

    Directory of Open Access Journals (Sweden)

    Paola Aparecida Pavanatto

    Full Text Available OBJECTIVE: to understand the contributions of ludic care in nursing by stimulating the acceptance of chemical detoxification from crack on the perception of people in the detoxification process. METHODS: an exploratory, descriptive study with a qualitative approach, performed with five people hospitalized for chemical detoxification from crack, from March to July 2013 in a chemical detox unit of a midsize hospital in the central region of Rio Grande do Sul. Data was collected using a semi-structured interview and was subjected to content analysis. RESULTS: Two categories emerged: Ludic care in nursing as a stimulus to the acceptance of chemical detoxification; Ludic care in nursing in the promotion for healthy living after chemical detoxification. CONCLUSION: ludic care in nursing proved to enhance the acceptance of chemical detoxification from crack in the reality investigated.

  4. Detoxification with titration and tapering in gamma-hydroxybutyrate (GHB) dependent patients : The Dutch GHB monitor project

    NARCIS (Netherlands)

    Dijkstra, Boukje A G; Kamal, Rama; van Noorden, Martijn S; de Haan, Hein; Loonen, Anton J.M.; De Jong, Cor A J

    2016-01-01

    BACKGROUND AND AIMS: Gamma-hydroxybutyrate (GHB) detoxification procedures have been insufficiently studied for effectiveness and safety. Based on case reports, benzodiazepines are generally regarded as first-choice agents in GHB detoxification. Detoxification by titration and tapering (DeTiTap)

  5. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    Science.gov (United States)

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  6. Metabolic pathways leading to detoxification of triptolide, a major active component of the herbal medicine Tripterygium wilfordii.

    Science.gov (United States)

    Du, Fuying; Liu, Zhaohua; Li, Xinxiu; Xing, Jie

    2014-08-01

    Triptolide (TP) shows promising anti-inflammatory and antitumor activity but with severe toxicity. TP is a natural reactive electrophile containing three epoxide groups, which are usually linked to hepatotoxicity via their ability to covalently bind to cellular macromolecules. In this study, metabolic pathways leading to detoxification of TP were evaluated in glutathione (GSH)-depleted (treated with L-buthionine-S,R-sulfoxinine, BSO) and aminobenzotriazole (ABT; a non-specific inhibitor for P450s)-treated mice. The toxicity of TP in mice was evaluated in terms of mortality and levels of serum alanine transaminase (ALT). In incubates with NADPH- and GSH-supplemented liver microsomes, seven GSH conjugates derived from TP were detected. In mice, these hydrolytically unstable GSH conjugates underwent γ-glutamyltranspeptidase/dipeptidases-mediated hydrolysis leading to two major cysteinylglycine conjugates, which underwent further hydrolysis by dipeptidases to form two cysteine conjugates of TP. In ABT-treated mice, the hydroxylated metabolites of TP were found at a lower level than normal mice, and their subsequent conjugated metabolites were not found. The level of cysteinylglycine and cysteine conjugates derived from NADPH-independent metabolism increased in mice treated with both TP and BSO (or ABT), which could be the stress response to toxicity of TP. Compared with normal mice, mortality and ALT levels were significantly higher in TP-treated mice, indicating the toxicity of TP. Pretreatment of ABT increased the toxicity caused by TP, whereas the mortality decreased in GSH-depleted mice. Metabolism by cytochrome P450 enzymes to less reactive metabolites implied a high potential for detoxification of TP. The GSH conjugation pathway also contributed to TP's detoxification in mice. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses.

    Science.gov (United States)

    Qian, Haifeng; Zhu, Kun; Lu, Haiping; Lavoie, Michel; Chen, Si; Zhou, Zhongjing; Deng, Zhiping; Chen, Jun; Fu, Zhengwei

    2016-12-01

    Several studies have shown that AgNPs can be toxic to phytoplankton, but the underlying cellular mechanisms still remain largely unknown. Here we studied the toxicity and detoxification of AgNPs (and ionic silver released by the AgNPs) in a prokaryotic (Microcystis aeruginosa) and a eukaryotic (Chlorella vulgaris) freshwater phytoplankton species using a combination of proteomic, gene transcription, and physiological analyses. We show that AgNPs were more toxic to the growth, photosynthesis, antioxidant systems, and carbohydrate metabolism of M. aeruginosa than of C. vulgaris. C. vulgaris could detoxify efficiently AgNPs-induced ROS species via induction of antioxidant enzymes (superoxide dismutase or SOD, peroxidase or POD, catalase or CAT, and glutamine synthetase), allowing photosynthesis to continue unabated at growth-inhibitory AgNPs concentration. By contrast, the transcription and expression of SOD and POD in M. aeruginosa was inhibited by the same AgNPs exposure. The present study shed new lights on the AgNPs toxicity mechanisms and detoxification strategies in two freshwater algae of contrasting AgNPs sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    Science.gov (United States)

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The in vitro effects of some pesticides on carbonic anhydrase activity of Oncorhynchus mykiss and Cyprinus carpio carpio fish.

    Science.gov (United States)

    Doğan, Serap

    2006-05-20

    Systemic carbonic anhydrase (CA) inhibitors are among the most powerful agents to lower intraocular pressure. Unfortunately, their use is frequently accompanied by undesired side effects. Some are due to the relatively large amounts of drug that have to be systematically administered to inhibit the CA in the ciliary processes. The aim of the present work was to study in vitro effects of some pesticides on CA enzyme obtained from blood of fish, which play a key role in salt- and osmoregulation and acid-base balance in the fish, Oncorhynchus mykiss and Cyprinus carpio carpio living in freshwaters, and compared with CA inhibitors. CA activities were significantly inhibited by pesticides and inhibitors. I(50) values of O. mykiss CA enzyme inhibited by lambda-cyhalothrin, deltametrin, diozinon, dorzolamide and brinzolamide were 6.05 x 10(-4), 1.48 x 10(-5), 6.84 x 10(-3), 3.82 x 10(-5) and 1.80 x 10(-6) mol/l, and that for C. c. carpio 6.86 x 10(-4), 4.70 x 10(-4), 3.92 x 10(-3), 8.34 x 10(-6) and 1.42 x 10(-6) mol/l, respectively. The pesticides used in this study inhibited the CA activity from different fish species to various degrees. It was found that the most effective inhibitor of CA enzyme within pesticides used was detrametrin. These findings observed in vitro could be useful in the understanding of the toxic effects that pesticides elicit on aquatic organisms in vivo.

  10. Detection of metals and polychlorobiphenyls and their correlation with detoxificant enzymes activity in Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    I. Traversi

    2011-01-01

    Full Text Available Several pollutants released to the environment, are biotransformed into more soluble molecules, in liver, by several enzymes, as catalase (CAT and glutathione-S-tranferase (GST, which are fundamental for detoxification and excretion. The aim of this study was to investigate the relationships among xenobiotic levels and CAT and GST enzymatic activities, in reared European sea bass.

  11. Enzyme activity - Evaluating the impacts of pesticides on ESA-listed salmon and their habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Long-running science support for the agency (Office of Protected Resources, others) related to the use of modern pesticides throughout the United States as a...

  12. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    Science.gov (United States)

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. The plant as metaorganism and research on next-generation systemic pesticides - Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Zisis Vryzas

    2016-12-01

    Full Text Available Systemic pesticides (SP are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic and trans-membane transport of systemic pesticides in accordance with the intercommunication dictated by plant-microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism and action of systemic pesticides are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides.

  14. Flavonoids as modulators of metabolic enzymes and drug transporters.

    Science.gov (United States)

    Miron, Anca; Aprotosoaie, Ana Clara; Trifan, Adriana; Xiao, Jianbo

    2017-06-01

    Flavonoids, natural compounds found in plants and in plant-derived foods and beverages, have been extensively studied with regard to their capacity to modulate metabolic enzymes and drug transporters. In vitro, flavonoids predominantly inhibit the major phase I drug-metabolizing enzyme CYP450 3A4 and the enzymes responsible for the bioactivation of procarcinogens (CYP1 enzymes) and upregulate the enzymes involved in carcinogen detoxification (UDP-glucuronosyltransferases, glutathione S-transferases (GSTs)). Flavonoids have been reported to inhibit ATP-binding cassette (ABC) transporters (multidrug resistance (MDR)-associated proteins, breast cancer-resistance protein) that contribute to the development of MDR. P-glycoprotein, an ABC transporter that limits drug bioavailability and also induces MDR, was differently modulated by flavonoids. Flavonoids and their phase II metabolites (sulfates, glucuronides) inhibit organic anion transporters involved in the tubular uptake of nephrotoxic compounds. In vivo studies have partially confirmed in vitro findings, suggesting that the mechanisms underlying the modulatory effects of flavonoids are complex and difficult to predict in vivo. Data summarized in this review strongly support the view that flavonoids are promising candidates for the enhancement of oral drug bioavailability, chemoprevention, and reversal of MDR. © 2017 New York Academy of Sciences.

  15. Modulating effects of thyroid state on the induction of biotransformation enzymes byu 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    NARCIS (Netherlands)

    Schuur, A.G.; Tacken, P.J.; Visser, T.J.; Brouwer, A.

    1998-01-01

    In this study we investigated to what extent the induction of detoxification enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is modulated by concomitant TCDD-induced changes in thyroid state. Euthyroid (Eu) male Sprague-Dawley rats, surgically thyroidectomized (Tx) rats and Tx rats receiving

  16. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    International Nuclear Information System (INIS)

    Rahman, M. Azizur; Hassler, Christel

    2014-01-01

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As V , which is thermodynamically stable in oxic waters, and As III , which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As V , biotransform it to As III , then biomethylate it to methylarsenic (MetAs) forms. Although As III is more toxic than As V , As III is much more easily excreted from the cells than As V . Therefore, majority of researchers consider the reduction of As V to As III as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA V , dimethylarsonate; DMA V , and trimethylarsenic oxide; TMAO V ) and trimethylarsine (TMAO III ). However, biomethylation by microorganisms also produces monomethylarsenite (MMA III ) and dimethylarsenite (DMA III ), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data

  17. Exposureassessmentof greenhouseworkerswithanti-cholinesterase pesticides by biological monitoring

    Directory of Open Access Journals (Sweden)

    Sh Bakand

    2012-12-01

    Full Text Available   Background and Aims: Organophosphate compounds are the most popular insecticides with the widespread application in pest control. These toxic compounds interfere with the blood cholinesterase and inhibit the cholinestarse activity.Measurement of Cholinesterase activity is widely used for diagnosis of poisoning and adverse effects caused by pesticides. Green-house workers are one of the important occupational groups with the high risk of poisoning with organophosphate and karbamat pesticides .The purpose of this study was to assess the exposure of green-house workers with anti-cholinesterase toxic compounds by measuring the blood cholinesterase activity using electrometric method.   Methods: This research is a descriptive cross sectional study that carried out on farmers of the cucumber green-houses . In this study, 40 workers were selected and their blood cholinesterase enzyme activity were measured using electrometric method . In electrometric method the reduction of cholinesterase activity can be measured through recording the changes of blood pH induced by anticholinestrase agents . The results were analyzed by version16 of spss software.   Results: Based on the obtained results the amount of erythrocyte cholinesterase enzyme inhibition was between 1 / 77% to 35 / 4% and the mean and standard deviation was 23 / 2% ±9 / 68.   Similarly, the amount of plasma cholinesterase enzyme inhibition was between 1% to 28% and the mean and standard deviation was equal to 16/57 ±7 / 92.   Following the analysis of results 25% (n=10 of the workers were identified with no poisoning, 17.5% (n = 7 with minor poisoning , 55% (n=22 with moderate poisoning and 2.5% (n=1 with severe poisoning.     Conclusion : Organophosphate poisoning has been reported as the third cause of poisoning and also the leading cause of poisoning deaths in our country.Therefore, considering the results of this research and the importance of the evaluation of workers exposure

  18. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.

    Science.gov (United States)

    Hagstrom, Danielle; Hirokawa, Hideto; Zhang, Limin; Radic, Zoran; Taylor, Palmer; Collins, Eva-Maria S

    2017-08-01

    The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.

  19. A glyphosate-based pesticide impinges on transcription

    International Nuclear Information System (INIS)

    Marc, Julie; Le Breton, Magali; Cormier, Patrick; Morales, Julia; Belle, Robert; Mulner-Lorillon, Odile

    2005-01-01

    Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets

  20. Clinical, cytogenetic and toxicological studies in rural workers exposed to pesticides in Botucatu, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Salete Marcia Bréga

    1998-01-01

    Full Text Available Pesticides can cause gene mutations and chromosomal aberrations in exposed individuals. We have investigated 24 workers exposed to pesticides. Clinical examinations and cytogenetic and toxicological tests were performed. Ten non-exposed individuals were used as controls. Toxicological dosages of copper, zinc and manganese (metals found in some pesticides, hepatic enzyme dosage (GOT, GPT, AR and acetylcholinesterase activity were performed in 16 workers and 8 controls. In the exposed workers, the most relevant clinical symptoms were poor digestion with fullness sensation after meals, irritated eyes, headache and fasciculations. The exposed group showed significantly lower manganese dosage and acetylcholinesterase activity, and significantly higher levels of alkaline phosphatase. Cytogenetic studies showed significantly higher chromosomal aberrations in the exposed group compared to the control group. Although the workers used protection against the pesticide's fog, the results revealed that the workers were contaminated with the pesticides. Therefore, the cytogenetic, toxicological studies with clinical examination are necessary for monitoring workers who are exposed to pesticides in any situation.

  1. A Survey of Pesticide Accumulation in a Specialist Feeder, the Koala (Phascolarctos cinereus).

    Science.gov (United States)

    Marschner, Caroline; Higgins, Damien P; Krockenberger, Mark B

    2017-09-01

    To maintain profitability in Australia's agricultural and urban landscapes pesticides are used throughout the range of koala habitats. The koala is a specialist feeder, reliant on metabolic enzyme capacities to utilise a toxic diet of eucalypt leaves and is potentially prone to adverse effects when xenobiotic interactions between dietary and anthropogenic xenobiotics occur. The aim of this study was to investigate accumulation of frequently used pesticides in wild koalas in 4 areas of New South Wales and Queensland. Liver samples of 57 deceased koalas were collected from care facilities and analysed using a modified QuEChERS extraction method followed by GCMSMS, HRLCMS and LCMSMS. No accumulation of any of the 166 investigated pesticides was found. Data indicate hepatic accumulation of pesticides in this species is uncommon even with close interactions with intensive land use. Despite the lack of hepatic bioaccumulation, this study cannot exclude a direct effect on hepatocellular metabolic pathways.

  2. Evaluation of Four Bio fertilizers for Bioremediation of Pesticide contaminated Soil

    International Nuclear Information System (INIS)

    El- Kabbany, S.

    1999-01-01

    Experiments were conducted to asses the ability of mixed populations of microorganisms which produced as a bio fertilizers by the General Organization of Agriculture Fund, Ministry of Agriculture, Egypt (phosphoren, microbien, cerealin and azospirillum) to degrade five selected pesticides representing different classes including organophosphate, carbamate and chlorinated organic compounds. There were differences in rates of biotransformation, suggesting the selective induction of certain metabolic enzymes. Inoculation of soil incorporated with malathion, fenamiphos, carbaryl, aldicarb and dieldrin, resulted in ca. 80-90% removal of malathion and fenamiphos within 8 days, carbaryl and aldicarb within 11-15 days respectively. Dieldrin removal occurred slowly within 2 months. These data suggest that bioremediate may act as potential candidates for soil inoculation to bioremediate pesticide contaminated soil. The production of Co2 (soil respiration ) was stimulated by some pesticides. In samples with microbien, an about 2 times higher Co2 production was measured

  3. Antimicrobial Pesticides

    Science.gov (United States)

    EPA regulates pesticides under the statutory authority of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The registration requirements for antimicrobial pesticides differ somewhat from those of other pesticides. Find out more.

  4. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats

    Directory of Open Access Journals (Sweden)

    Ferda ARI

    2017-10-01

    Full Text Available Fenarimol and methyl parathion are pesticides that have been used in agriculture for several years. These pesticides have significant effects on environmental and human health. Therefore, we investigated the effects of methyl parathion and fenarimol on glucose 6-phosphate dehydrogenase (EC 1.1.1.49 enzyme activity in rats. The glucose 6- phosphate dehydrogenase is the first enzyme of the pentose phosphate pathway and it is important in detoxifying reactions by NADPH generated. In this study, wistar albino rats administrated with methyl parathion (7 mg kg–1 and fenarimol (200 mg kg−1 by intraperitoneally for different periods (2, 4, 8, 16, 32, 64, and 72 h. The glucose 6-phosphate dehydrogenase enzyme activity was assayed in liver, kidney, brain, and small intestine in male and female rats. The exposure of fenarimol and methyl parathion caused increase of glucose 6-phosphate dehydrogenase enzyme activity in rat tissues, especially at last periods. We suggest that this increment of enzyme activity may be the reason of toxic effects of fenarimol and methyl parathion.

  6. Biosensors for the determination of environmental inhibitors of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Evtugyn, Gennadii A; Budnikov, Herman C [Kazan State University, Kazan (Russian Federation); Nikolskaya, Elena B [I.M. Sechenov Institute of Evolution Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    1999-12-31

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  7. Biosensors for the determination of environmental inhibitors of enzymes

    International Nuclear Information System (INIS)

    Evtugyn, Gennadii A; Budnikov, Herman C; Nikolskaya, Elena B

    1999-01-01

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  8. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  9. Spray drift of pesticides and stream macroinvertebrates: Experimental evidence of impacts and effectiveness of mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, Lorraine [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: l.maltby@sheffield.ac.uk; Hills, Louise [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-12-15

    Impoverished stream communities in agricultural landscapes have been associated with pesticide contamination, but conclusive evidence of causality is rare. We address this deficiency by adopting an experimental approach to investigate the effects of the insecticides cypermethrin and chlorpyrifos on benthic macroinvertebrates. Three treatments were established and a combination of biomarker, bioassay and biomonitoring approaches was employed to investigate, individual, population and community-level effects. Animals deployed during pesticide application had altered enzyme activity, depressed feeding rate and reduced survival, but these effects were only observed where pesticide was sprayed to the stream edge. There were no clear pesticide-related effects on macroinvertebrate community structure or on the population densities of individual species. Hence, short-term pesticide exposure did cause individual-level effects in stream macroinvertebrates, but these were not translated to effects at the population or community-level and were effectively mitigated by the adoption of a no-spray buffer zone. - Pulsed pesticide exposures via spray drift adversely affected stream invertebrates but did not cause population or community-level effects and were mitigated by no-spray buffer zones.

  10. Pesticide Labels

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  11. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Azizur, E-mail: Mohammad.Rahman@uts.edu.au [Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007 (Australia); Hassler, Christel [Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland (Switzerland)

    2014-01-15

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As{sup V}, which is thermodynamically stable in oxic waters, and As{sup III}, which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As{sup V}, biotransform it to As{sup III}, then biomethylate it to methylarsenic (MetAs) forms. Although As{sup III} is more toxic than As{sup V}, As{sup III} is much more easily excreted from the cells than As{sup V}. Therefore, majority of researchers consider the reduction of As{sup V} to As{sup III} as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA{sup V}, dimethylarsonate; DMA{sup V}, and trimethylarsenic oxide; TMAO{sup V}) and trimethylarsine (TMAO{sup III}). However, biomethylation by microorganisms also produces monomethylarsenite (MMA{sup III}) and dimethylarsenite (DMA{sup III}), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.

  12. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    Science.gov (United States)

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  13. Complications related to osteopenia in the thoracic spine on admission chest radiographs of substance abuse detoxification patients

    International Nuclear Information System (INIS)

    Haramati, L.B.; Alterman, D.D.; Israel, G.M.; Haramati, N.; Mallavurapu, R.

    1998-01-01

    Objective. To assess the prevalence of complications related to osteopenia in the thoracic spine (anterior wedging and fish vertebrae) of patients admitted for substance abuse detoxification. Design and patients. We retrospectively identified 150 sequential patients admitted to our drug and alcohol detoxification ward in whom posteroanterior and lateral admission chest radiographs and clinical charts were available for review. There were 116 men and 34 women with a mean age of 37 years (range 19-67 years). Thirty-eight patients were admitted for drug detoxification, 37 for alcohol detoxification, and 75 for drug and alcohol detoxification. These patients were compared with 66 age- and sex-matched controls from our hospital's employee health service. Two radiologists reviewed all chest radiographs for the presence of anterior wedging and fish vertebrae in the thoracic spine and other nonspinal fractures. Serum calcium and inorganic phosphorus levels were recorded for the substance abuse detoxification patients. Results. Forty-nine percent (n=73) of detoxification patients had complications of osteopenia in the thoracic spine including: anterior wedging (n=47), fish vertebrae (n=21), or both (n=5). Twenty-four percent (n=36) of patients had an elevated serum inorganic phosphorus level and one patient had an elevated serum calcium level. Patients with anterior wedging or fish vertebrae included: 45% (n=45) of patients below age 40 years, 35% (n=12) of women, 41% (n=15) of drug detoxification patients, 58% (n=22) of alcohol detoxification patients, 48% (n=36) of drug and alcohol detoxification patients, and 47% (n=17) of patients with elevated serum inorganic phosphorus (P=NS). Six percent (n=9) of our study population had nonspinal fractures on their chest radiographs. Twenty-one percent (n=14) of controls had complications of osteopenia in the thoracic spine (all anterior wedging). This prevalence differed significantly (P<0.05, chi-squared) from the study population

  14. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Contemporary enzyme based technologies for bioremediation: A review.

    Science.gov (United States)

    Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-15

    The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Training Manual Occupational Pesticide Exposure & Health and Safe & Responsible Handling of Pesticides

    NARCIS (Netherlands)

    Maden, van der E.C.L.J.; Koomen, I.

    2016-01-01

    Pesticides are commonly used in the horticulture sector. While emphasis is often on the correct and efficient application of pesticides, the risk associated with application of pesticides receives less attention. Those working with pesticides need to know about occupational pesticide exposure and

  17. Water and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Water and Pesticides Related Topics: What Happens to Pesticides Released into the Environment? Water Solubility Drinking Water and Pesticides Fact Sheet

  18. Association between PON1 genetic polymorphisms and miscarriage in Mexican women exposed to pesticides.

    Science.gov (United States)

    Blanco-Muñoz, Julia; Aguilar-Garduño, Clemente; Gamboa-Avila, Ricardo; Rodríguez-Barranco, Miguel; Pérez-Méndez, Oscar; Huesca-Gómez, Claudia; González-Alzaga, Beatriz; Lacasaña, Marina

    2013-04-01

    Placental oxidative stress has been involved in the pathogenesis of certain reproductive adverse effects, including miscarriage. Paraxonase 1 (PON1) is a high-density lipoprotein(HDL)-linked enzyme that prevents oxidation of low-density lipoproteins (LDL) and is involved in detoxification from organophosphate pesticides. To assess the association between maternal PON1 polymorphisms (PON1192Q/R, PON155 L/M y PON1-108C/T) and the risk of miscarriage in women chronically exposed to organophosphate pesticides in Mexico. In a cross-sectional study, socio-demographic data, reproductive history data, environmental exposures, and other variables of concern were collected by means of a questionnaire from 264 women (floriculturists and wives of floriculturists) who had been pregnant sometime during the 10 years preceding the study. Blood samples were also collected from them. PON1192 and PON155 genotypes were determined by PCR amplification, and PON1-108 genotypes, by a TaqMan real-time polymerase chain reaction assay. Complete information regarding the results of pregnancy and maternal genotype tests was obtained for 514 pregnancies (35 miscarriages and 479 controls). The association between PON1 genotypes and miscarriage was evaluate through GEE models. The risk of miscarriage by mothers with PON1192RR genotype was 2.2 higher than by mothers with PON1192QR/PON1192QQ genotype (95% CI 0.93-5.17). The risk was close to 4 times higher in mothers with PON155MM/PON155LM genotype than in mothers with PON155LL genotype (OR=3.9; 95% CI 1.38-11.0). No significant differences were found in risk of miscarriage based on the maternal PON1-108C/T genotype. No evidence was found of an interaction between the various PON1 genotypes and the mothers' floricultural activity during pregnancy. This study suggests that there is an effect of genetic maternal PON1 polymorphisms on miscarriage and provides additional evidence that combines with the growing information about the ways in which

  19. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta

    Directory of Open Access Journals (Sweden)

    IA Pérez-Legaspi

    Full Text Available AbstractThe organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE, by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  20. Perceived Relapse Risk and Desire for Medication Assisted Treatment among Persons Seeking Inpatient Opiate Detoxification

    Science.gov (United States)

    Bailey, Genie L; Herman, Debra S.; Stein, Michael D.

    2016-01-01

    Most patients with opioid addiction do not receive medication at the time of discharge from brief inpatient detoxification programs despite the high risk of relapse and the availability of three FDA-approved medications. We surveyed 164 inpatient opioid detoxification patients to assess desire for pharmacotherapy following detoxification program discharge. Participants were predominantly male (71.3%) and 80% had detoxed in the past. Reporting on their most recent previous inpatient detoxification, 27% had relapsed the day they were discharged, 65% within a month of discharge, and 90% within a year of discharge. 63% reported they wanted medication-assisted treatment (MAT) after discharge from the current admission. The odds of desiring a treatment medication increased by a factor of 1.02 for every 1% increase in perceived relapse risk (p detox abstinence. PMID:23786852

  1. Pesticides

    Science.gov (United States)

    ... stores. Exposure to pesticides can happen in the workplace, through foods that are eaten, and in the ... or place bait in areas where children or pets have access. DO NOT stock up on pesticides, ...

  2. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides

    International Nuclear Information System (INIS)

    Singh, Satyender; Kumar, Vivek; Thakur, Sachin; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Ichhpujani, Rattan Lal; Rai, Arvind

    2011-01-01

    Human paraoxonase 1 (PON1) is a lipoprotein-associated enzyme involved in the detoxification of organophosphate pesticides (OPs) by hydrolyzing the bioactive oxons. Polymorphisms of the PON1 gene are responsible for variation in the expression and catalytic activity of PON1 enzyme. In the present study, we have determined (a) the prevalence of two common PON1 polymorphisms, (b) the activity of PON1 and acetylcholinesterase enzymes, and (c) the influence of PON1 genotypes and phenotypes variation on DNA damage in workers exposed to OPs. We examined 230 subjects including 115 workers exposed to OPs and an equal number of normal healthy controls. The results revealed that PON1 activity toward paraoxon (179.19 ± 39.36 vs. 241.52 ± 42.32 nmol/min/ml in controls) and phenylacetate (112.74 ± 17.37 vs. 134.28 ± 25.49 μmol/min/ml in controls) was significantly lower in workers than in control subjects (p 192 QR (Gln/Arg) and PON1 55 LM (Leu/Met) in workers and control subjects (p > 0.05). The PON1 activity toward paraoxonase was found to be significantly higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes in both workers and control subjects (p 55 LM (Leu/Met), PON1 activity toward paraoxonase was observed to be higher in individuals with L/L (Leu/Leu) genotypes and lowest in individuals with M/M (Met/Met) genotypes in both groups (p < 0.001). No influence of PON1 genotypes and phenotypes was seen on the activity of acetylcholinesterase and arylesterase. The DNA damage was observed to be significantly higher in workers than in control subjects (p < 0.05). Further, the individuals who showed least paraoxonase activity i.e., those with (Q/Q [Gln/Gln] and M/M [Met/Met]) genotypes showed significantly higher DNA damage compared to other isoforms in workers exposed to OPs (p < 0.05). The results indicate that the individuals with PON1 Q/Q and M/M genotypes are more susceptible toward genotoxicity. In conclusion, the study suggests

  3. Negative moods correlate with craving in female methamphetamine users enrolled in compulsory detoxification

    Directory of Open Access Journals (Sweden)

    Shen Wenwen

    2012-10-01

    Full Text Available Abstract Background Methamphetamine (METH use, especially in females, has become a growing public health concern in China. In this study, we aimed to characterize the factors that contributed to drug craving in female METH users under isolated compulsory detoxification. We characterized factors contributing to craving such as duration of detoxification, history of drug use and self-reported mood state. Methods Subjects (N=113 undergoing a 1- to 3-year METH detoxification program were recruited from the Zhejiang Compulsory Detoxification Center for Women. The Questionnaire of METH-use Urge (QMU was used to evaluate the level of craving for METH. The Abbreviate Profile of Mood States (A-POMS was applied as an assessment for the negative mood disturbances. Results The participants were at a mean age of 25.2, primarily lowly educated and unemployed, and single. Smoking was the only route of METH administration at an average dose of 0.5 g/day, and 4 times/week. The reported craving level was positively correlated with the negative mood disturbances and the weekly dose of METH, but independent of the duration of detoxification. Furthermore, all five aspects of negative mood disturbances, including fatigue, bewilderment, anxiety, depression and hostility, were shown to positively correlate to the self-reported craving level after controlling for weekly dose of METH. Conclusions The data demonstrate a robust correlation between mood distress and craving for METH. Our results call for close evaluation of mood distress in treatment of METH users in China.

  4. Soil and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  5. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  6. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  7. Pesticides and the Environment

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Related Topics: What Happens to Pesticides Released into the Environment? Pesticide Storage Pesticide Disposal Pesticide Products Integrated Pest Management (IPM) How Safe

  8. Pattern of pesticide storage before pesticide self-poisoning in rural Sri Lanka

    Science.gov (United States)

    Mohamed, Fahim; Manuweera, Gamini; Gunnell, David; Azher, Shifa; Eddleston, Michael; Dawson, Andrew; Konradsen, Flemming

    2009-01-01

    Background Deliberate self-poisoning with agricultural pesticides is the commonest means of suicide in rural Asia. It is mostly impulsive and facilitated by easy access to pesticides. The aim of this large observational study was to investigate the immediate source of pesticides used for self-harm to help inform suicide prevention strategies such as reducing domestic access to pesticides. Methods The study was conducted in a district hospital serving an agricultural region of Sri Lanka. Patients who had self-poisoned with pesticides and were admitted to the adult medical wards were interviewed by study doctors following initial resuscitation to identify the source of pesticides they have ingested. Results Of the 669 patients included in the analysis, 425 (63.5%) were male; the median age was 26 (IQR 20-36). In 511 (76%) cases, the pesticides had been stored either inside or immediately outside the house; among this group only eight patients obtained pesticides that were kept in a locked container. Ten percent (n = 67) of the patients used pesticides stored in the field while 14% (n = 91) purchased pesticides from shops within a few hours of the episode. The most common reasons for choosing the particular pesticide for self-harm were its easy accessibility (n = 311, 46%) or its popularity as a suicide agent in their village (n = 290, 43%). Conclusion Three quarters of people who ingested pesticides in acts of self-harm used products that were available within the home or in close proximity; relatively few patients purchased the pesticide for the act. The study highlights the importance of reducing the accessibility of toxic pesticides in the domestic environment. PMID:19889236

  9. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate.

    Science.gov (United States)

    Narainsamy, Kinsley; Farci, Sandrine; Braun, Emilie; Junot, Christophe; Cassier-Chauvat, Corinne; Chauvat, Franck

    2016-04-01

    Using genetics and metabolomics we investigated the synthesis (gshA and gshB genes) and catabolism (ggt) of the conserved antioxidant glutathione in the model cyanobacterium Synechocystis PCC6803. These three genes are crucial to Synechocystis, in agreement with the proposed invention of glutathione by ancient cyanobacteria to protect themselves against the toxicity of oxygen they produced through photosynthesis. Consistent with their indispensability, gshA and gshB also operate in the production of another antioxidant, ergothioneine, as well as of the glutathione analogues ophthalmate and norophthalmate. Furthermore, we show that glutathione, ophthalmate and norophthalmate are accumulated in cells stressed by glucose, and that the two glutathione-dependent glyoxalase enzymes operate in the protection against glucose and its catabolite methylglyoxal. These findings are interesting because ophthalmate and norophthalmate were observed only in mammals so far, where ophthalmate is regarded as a biomarker of glutathione depletion. Instead, our data suggest that ophthalmate and norophthalmate are stress-induced markers of cysteine depletion triggered by its accelerated incorporation into glutathione, to face its increased demand for detoxification purposes. Hence, Synechocystis is an attractive model for the analysis of the role of glutathione, ergothioneine, ophthalmate and norophthalmate, in signalling and detoxification of oxidants and metabolic by-products. © 2015 John Wiley & Sons Ltd.

  10. A Low Temperature Detoxification Method for Treatment of Chrysotile-Containing Waste Roofing Slate

    Directory of Open Access Journals (Sweden)

    Hwanju Jo

    2017-08-01

    Full Text Available In this study, we evaluated a two-step process for detoxification of waste roofing slate, involving cement hydrate removal and low temperature detoxification using oxalic acid. These treatments were conducted on raw material and intermediate product, respectively. Cement hydrate removal effectively eliminated most Ca-containing cement hydrate components from the raw material under the following conditions: HCl to solid ratio: 0.456 g/g, reaction time: 2 h, and solid to liquid ratio: 0.124 g/mL. Following low temperature (~100 °C detoxification of intermediate product obtained after cement hydrate removal, chrysotile in waste roofing slate was effectively transformed to Mg-oxalate under conditions of oxalic acid to solid ratio of >0.67 g/g.

  11. Pesticide exposure - Indian scene

    International Nuclear Information System (INIS)

    Gupta, P.K.

    2004-01-01

    Use of pesticides in India began in 1948 when DDT was imported for malaria control and BHC for locust control. India started pesticide production with manufacturing plant for DDT and benzene hexachloride (BHC) (HCH) in the year 1952. In 1958, India was producing over 5000 metric tonnes of pesticides. Currently, there are approximately 145 pesticides registered for use, and production has increased to approximately 85,000 metric tonnes. Rampant use of these chemicals has given rise to several short-term and long-term adverse effects of these chemicals. The first report of poisoning due to pesticides in India came from Kerala in 1958 where, over 100 people died after consuming wheat flour contaminated with parathion. Subsequently several cases of pesticide-poisoning including the Bhopal disaster have been reported. Despite the fact that the consumption of pesticides in India is still very low, about 0.5 kg/ha of pesticides against 6.60 and 12.0 kg/ha in Korea and Japan, respectively, there has been a widespread contamination of food commodities with pesticide residues, basically due to non-judicious use of pesticides. In India, 51% of food commodities are contaminated with pesticide residues and out of these, 20% have pesticides residues above the maximum residue level values on a worldwide basis. It has been observed that their long-term, low-dose exposure are increasingly linked to human health effects such as immune-suppression, hormone disruption, diminished intelligence, reproductive abnormalities, and cancer. In this light, problems of pesticide safety, regulation of pesticide use, use of biotechnology, and biopesticides, and use of pesticides obtained from natural plant sources such as neem extracts are some of the future strategies for minimizing human exposure to pesticides

  12. Heroin refusal self-efficacy and preference for medication-assisted treatment after inpatient detoxification.

    Science.gov (United States)

    Kenney, Shannon R; Bailey, Genie L; Anderson, Bradley J; Stein, Michael D

    2017-10-01

    An individual's self-efficacy to refuse using heroin in high-risk situations is believed to minimize the likelihood for relapse. However, among individuals completing inpatient heroin detoxification, perceived refusal self-efficacy may also reduce one's perceived need for medication-assisted treatment (MAT), an effective and recommended treatment for opioid use disorder. In the current study, we examined the relationship between heroin refusal self-efficacy and preference for MAT following inpatient detoxification. Participants (N=397) were interviewed at the start of brief inpatient opioid detoxification. Multiple logistic regression was used to estimate the adjusted association of background characteristics, depressed mood, and perceived heroin refusal self-efficacy with preference for MAT. Controlling for other covariates, depressed mood and lower perceived refusal self-efficacy were associated with a significantly greater likelihood of expressing preference for MAT (versus no MAT). Perceived ability to refuse heroin after leaving detox is inversely associated with a heroin user's desire for MAT. An effective continuum of care model may benefit from greater attention to patient's perceived refusal self-efficacy during detoxification which may impact preference for MAT and long-term recovery. Copyright © 2017. Published by Elsevier Ltd.

  13. Improving Blood Monitoring of Enzymes as Biomarkers of Risk from Anticholinergic Pesticides and Chemical Warfare Agents

    National Research Council Canada - National Science Library

    Wilson, Barry W

    2006-01-01

    Blood biomarkers are an important way to monitor exposure to anticholinergic pesticides and chemical warfare agents and to establish whether some personnel are at greater risk than others from exposure...

  14. Improving Blood Monitoring of Enzymes as Biomarkers of Risk from Anticholinergic Pesticides and Chemical Warfare Agents

    National Research Council Canada - National Science Library

    Wilson, Barry W

    2005-01-01

    Blood biomarkers are an important way to monitor exposure to anticholinergic pesticides and chemical warfare agents and to establish whether some personnel are at greater risk than others from exposure...

  15. Evaluation of the protective effect of garlic oil on hepatic injury induced by pesticides

    International Nuclear Information System (INIS)

    Afifi, E.A.; El-Sherbiny, E.M.; Tawfik, S.M.F.

    2006-01-01

    The present study was directed to evaluate the effect of repeated daily oral administrations of two pesticides; malathion (organophosphorus) and lannate (carbamate) at dose levels of 27.5 and 3.4 mg/kg body weight, respectively. Garlic oil at a dose of 0.2 ml/kg body weight was given by gavage during pesticides treatment (garlic oil + pesticides) to evaluate its role against the harmful effects of the two selected pesticides in male albino rats. The level of serum 14 C-isoleucine (4 μCi/100 g body weight) twenty-four hours post administration of malathion or lannate and also garlic oil was studied. Malathion and lannate treatments resulted in significant increase in the activity of alkaline phosphatase, acid phosphatase, gamma glutamyl transferase (GGT), bilirubin, 5-nucleotidase, glucose-6-phosphatase and serum total calcium level. On the other hand, pesticides treatment caused significant decrease in serum inorganic phosphorus. The level of serum 14 C-isoleucine twenty-four hours post administration of malathion or lannate and also garlic oil was significantly increased due to pesticides treatment and decreased in case of garlic oil treatment. The protective role of garlic oil was clear to some extent and could ameliorate the activities of some serum enzymes in addition to inorganic phosphorus. The administration of garlic oil to malathion treated animals was more effective in ameliorating the disturbed levels in case of malathion than that occurred with lannate pesticide treatment

  16. Ontogenic differences in human liver 4-hydroxynonenal detoxification are associated with in vitro injury to fetal hematopoietic stem cells

    International Nuclear Information System (INIS)

    Gardner, James L.; Doi, Adriana M.; Pham, Robert T.; Huisden, Christiaan M.; Gallagher, Evan P.

    2003-01-01

    4-hydroxynonenal (4HNE) is a highly mutagenic and cytotoxic α,β-unsaturated aldehyde that can be produced in utero during transplacental exposure to prooxidant compounds. Cellular protection against 4HNE injury is provided by alcohol dehydrogenases (ADH), aldehyde reductases (ALRD), aldehyde dehydrogenases (ALDH), and glutathione S-transferases (GST). In the present study, we examined the comparative detoxification of 4HNE by aldehyde-metabolizing enzymes in a panel of adult and second-trimester prenatal liver tissues and report the toxicological ramifications of ontogenic 4HNE detoxification in vitro. The initial rates of 4HNE oxidation and reduction were two- to fivefold lower in prenatal liver subcellular fractions as compared to adult liver, and the rates of GST conjugation of 4HNE were not detectable in either prenatal or adult cytosolic fractions. GSH-affinity purification of hepatic cytosol yielded detectable and roughly equivalent rates of GST-4HNE conjugation for the two age groups. Consistent with the inefficient oxidative and reductive metabolism of 4HNE in prenatal liver, cytosolic fractions prepared from prenatal liver exhibited a decreased ability to protect against 4HNE-protein adduct formation relative to adults. Prenatal liver hematopoietic stem cells (HSC), which constitute a significant percentage of prenatal liver cell populations, exhibited ALDH activities toward 4HNE, but little reductive or conjugative capacity toward 4HNE through ALRD, ADH, and GST. Cultured HSC exposed to 5 μM 4HNE exhibited a loss in viability and readily formed one or more high molecular weight 4HNE-protein adduct(s). Collectively, our results indicate that second trimester prenatal liver has a lower ability to detoxify 4HNE relative to adults, and that the inefficient detoxification of 4HNE underlies an increased susceptibility to 4HNE injury in sensitive prenatal hepatic cell targets

  17. Modulation of central sensitisation by detoxification in MOH

    DEFF Research Database (Denmark)

    Munksgaard, Signe B; Bendtsen, Lars; Jensen, Rigmor H

    2013-01-01

    detoxification. For baseline comparison, we tested 40 healthy controls. We measured cephalic and extra-cephalic pressure-pain thresholds and supra-threshold pressure-pain scores and extra-cephalic pain thresholds, supra-threshold pain scores and temporal summation for electrical stimulation.ResultsOf the 35...

  18. Pesticides and children

    International Nuclear Information System (INIS)

    Garry, Vincent F.

    2004-01-01

    Prevention and control of damage to health, crops, and property by insects, fungi, and noxious weeds are the major goals of pesticide applications. As with use of any biologically active agent, pesticides have unwanted side-effects. In this review, we will examine the thesis that adverse pesticide effects are more likely to occur in children who are at special developmental and behavioral risk. Children's exposures to pesticides in the rural and urban settings and differences in their exposure patterns are discussed. The relative frequency of pesticide poisoning in children is examined. In this connection, most reported acute pesticide poisonings occur in children younger than age 5. The possible epidemiological relationships between parental pesticide use or exposure and the risk of adverse reproductive outcomes and childhood cancer are discussed. The level of consensus among these studies is examined. Current concerns regarding neurobehavioral toxicity and endocrine disruption in juxtaposition to the relative paucity of toxicant mechanism-based studies of children are explored

  19. Acute pesticide poisoning and pesticide registration in Central America

    International Nuclear Information System (INIS)

    Wesseling, Catharina; Corriols, Marianela; Bravo, Viria

    2005-01-01

    The International Code of Conduct on the Distribution and Use of Pesticides of the Food and Agriculture Organization (FAO) of the United Nations has been for 20 years the most acknowledged international initiative for reducing negative impact from pesticide use in developing countries. We analyzed pesticide use and poisoning in Central America, particularly in Costa Rica and Nicaragua, and evaluated whether registration decisions are based on such data, in accordance with the FAO Code. Extensive use of very hazardous pesticides continues in Central America and so do poisonings with organophosphates, carbamates, endosulfan and paraquat as the main causative agents. Central American governments do not carry out or commission scientific risk assessments. Instead, guidelines from international agencies are followed for risk management through the registration process. Documentation of pesticide poisonings during several decades never induced any decision to ban or restrict a pesticide. However, based on the official surveillance systems, in 2000, the ministers of health of the seven Central American countries agreed to ban or restrict twelve of these pesticides. Now, almost 4 years later, restrictions have been implemented in El Salvador and in Nicaragua public debate is ongoing. Chemical and agricultural industries do not withdraw problematic pesticides voluntarily. In conclusion, the registration processes in Central America do not comply satisfactorily with the FAO Code. However, international regulatory guidelines are important in developing countries, and international agencies should strongly extend its scope and influence, limiting industry involvement. Profound changes in international and national agricultural policies, steering towards sustainable agriculture based on non-chemical pest management, are the only way to reduce poisonings

  20. Identification of two Nereis virens [Annelida: Polychaeta] cytochrome P450 enzymes and induction by xenobiotics

    DEFF Research Database (Denmark)

    Rewitz, Kim; Kjellerup, C; Jørgensen, A

    2004-01-01

    Nereis virens. These are the first CYP sequences reported in annelids. The deduced amino acid sequences both share highest identities to mammalian CYP4F enzymes (61% and 58%), indicating membership of the CYP4 family (accordingly, referred to as CYP41 and CYP42, respectively). The CYP42 gene expression...... was significantly higher in vehicle controls (corn oil) compared to untreated controls. Clofibrate increased the expression of the CYP42 genes. The induction by clofibrate and corn oil indicates regulatory similarities to vertebrate CYP4 enzymes, which are primarily involved in the metabolism of endogenous...... compounds such as fatty acids. Crude oil and benz(a)anthracene significantly induced CYP42 gene expression 2.6-fold, and because CYP enzymes often are induced by their own substrates, this induction may indicate involvement of N. virens CYP4 enzymes in the detoxification of environmental contaminants...

  1. Pesticides: chemicals for survival

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1981-01-01

    Pesticides are chemicals used to control pests such as insects, weeds, plant diseases, nematodes, and rodents. The increased use of pesticides since 1945 has greatly aided the increase in crop production, protected livestock from diseases such as trypanosomiasis, protected man from diseases such as malaria and filarisis, decreased losses of stored grain, and has generally improved man's welfare. Despite the enormous benefits derived from pesticides these chemicals are not problem-free. Many pesticides are toxic to living organisms and interfere with specific biochemical systems. To measure the very small quantities of a pesticide radiolabelled chemicals are frequently essential, particularly to measure changes in the chemical structure of the pesticide, movement of the pesticide in soil, plants, or animals, amounts of pesticide going through various steps in food processing, etc. The use of radiolabelled pesticides is shortly shown for metabolism of the pesticide in crop species, metabolism in ruminant, in chickens and eggs, in soil, and possibly leaching and sorption in soil, hydrolysis, bio-concentration, microbial and photodegradation, and toxicity studies

  2. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project: An open-label pragmatic randomised control trial comparing the efficacy of differing therapeutic agents for primary care detoxification from either street heroin or methadone [ISRCTN07752728

    Directory of Open Access Journals (Sweden)

    Sheard Laura

    2004-04-01

    Full Text Available Abstract Background Heroin is a synthetic opioid with an extensive illicit market leading to large numbers of people becoming addicted. Heroin users often present to community treatment services requesting detoxification and in the UK various agents are used to control symptoms of withdrawal. Dissatisfaction with methadone detoxification 8 has lead to the use of clonidine, lofexidine, buprenorphine and dihydrocodeine; however, there remains limited evaluative research. In Leeds, a city of 700,000 people in the North of England, dihydrocodeine is the detoxification agent of choice. Sublingual buprenorphine, however, is being introduced. The comparative value of these two drugs for helping people successfully and comfortably withdraw from heroin has never been compared in a randomised trial. Additionally, there is a paucity of research evaluating interventions among drug users in the primary care setting. This study seeks to address this by randomising drug users presenting in primary care to receive either dihydrocodeine or buprenorphine. Methods/design The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project is a pragmatic randomised trial which will compare the open use of buprenorphine with dihydrocodeine for illicit opiate detoxification, in the UK primary care setting. The LEEDS project will involve consenting adults and will be run in specialist general practice surgeries throughout Leeds. The primary outcome will be the results of a urine opiate screening at the end of the detoxification regimen. Adverse effects and limited data to three and six months will be acquired.

  3. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  4. Functions, Evolution, and Application of the Supramolecular Machines of Hg Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M.

    2009-11-27

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic [Hg(II)] and organic [RHg(I)] mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. At a more basic level, studies of interactions between the metal ion trafficking proteins in this pathway provide insights into general mechanisms used by proteins in pathways involved in trafficking of other metal ions in cells of all types of organisms, including pathways for essential metal ions such as Cu and Zn and other toxic metal ions such as Cd. In this project we focused on investigations of proteins from mer operons found in gamma-proteobacteria with specific objectives to use biophysical and biochemical approaches to detect and define (1) interactions between the structural components of the key detoxifying mer operon enzyme, mercuric ion reductase (MerA), (2) interactions between the components of MerA and the other mer operon enzyme, organomercurial lyase (MerB), and (3) to investigate the structure and interactions of integral membrane transport proteins, MerT and MerC, with MerA.

  5. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest.

    Science.gov (United States)

    Cheng, Tingcai; Wu, Jiaqi; Wu, Yuqian; Chilukuri, Rajendra V; Huang, Lihua; Yamamoto, Kohji; Feng, Li; Li, Wanshun; Chen, Zhiwei; Guo, Huizhen; Liu, Jianqiu; Li, Shenglong; Wang, Xiaoxiao; Peng, Li; Liu, Duolian; Guo, Youbing; Fu, Bohua; Li, Zhiqing; Liu, Chun; Chen, Yuhui; Tomar, Archana; Hilliou, Frederique; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; d'Alençon, Emmanuelle; Seth, Rakesh K; Bhatnagar, Raj K; Jouraku, Akiya; Shiotsuki, Takahiro; Kadono-Okuda, Keiko; Promboon, Amornrat; Smagghe, Guy; Arunkumar, Kallare P; Kishino, Hirohisa; Goldsmith, Marian R; Feng, Qili; Xia, Qingyou; Mita, Kazuei

    2017-11-01

    The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.

  6. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification.

    Science.gov (United States)

    Monlau, F; Sambusiti, C; Antoniou, N; Zabaniotou, A; Solhy, A; Barakat, A

    2015-01-01

    The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sensing and detoxification devices in public building spaces

    DEFF Research Database (Denmark)

    Traberg-Borup, Steen; Gunnarsen, Lars Bo; Afshari, Alireza

    2008-01-01

    This paper describes commonly used ventilation principles and where sensig and detoxification devices could be integrated in public buidings in an effort to warn and protect citizens against surprise attacks by toxic agents. The release of toxic agents may be outdoors, in a single indoor spot...

  8. Pattern of pesticide storage before pesticide self-poisoning in rural Sri Lanka

    DEFF Research Database (Denmark)

    Mohamed, Fahim; Manuweera, Gamini; Gunnell, David

    2009-01-01

    BACKGROUND: Deliberate self-poisoning with agricultural pesticides is the commonest means of suicide in rural Asia. It is mostly impulsive and facilitated by easy access to pesticides. The aim of this large observational study was to investigate the immediate source of pesticides used for self......-harm to help inform suicide prevention strategies such as reducing domestic access to pesticides. METHODS: The study was conducted in a district hospital serving an agricultural region of Sri Lanka. Patients who had self-poisoned with pesticides and were admitted to the adult medical wards were interviewed...... the particular pesticide for self-harm were its easy accessibility (n = 311, 46%) or its popularity as a suicide agent in their village (n = 290, 43%). CONCLUSION: Three quarters of people who ingested pesticides in acts of self-harm used products that were available within the home or in close proximity...

  9. Detoxification of rats subjected to nickel chloride by a biomaterial-based carbonated orthophosphate.

    Science.gov (United States)

    Boulila, S; El Feki, A; Oudadesse, H; Kallel, C; El Feki, H

    2014-09-01

    Recently, the therapeutic approaches of the detoxification against the metals (nickel) in the body are the use of biomaterials such as carbonated hydroxyapatite. The aim of this study is therefore to analyze the physiological and physicochemical parameters of strain white rats "Wistar" receiving nickel chloride and to study the protective associative of apatite against adverse effects of this metal, and this in comparison with control rats. Our results showed that the nickel induced in rats an oxidative stress objectified by elevated levels of thiobarbituric acid-reactive substances and conjugated dienes associated with inhibition of the activity of the antioxidant defense system such as glutathione peroxidase, superoxide dismutase and catalase in the liver, kidney, spleen and erythrocyte. Disorders balances of ferric, phosphocalcic, a renal failure and a liver toxicity were observed in rats exposed to nickel. As well as a significant increase in the rate of nickel in the bones and microcytic anemia was revealed. However, the implantation of carbonated hydroxyapatite in capsule form protects rats intoxicated by the nickel against the toxic effects of this metal by lowering the levels of markers of lipid peroxidation and improving the activities of defense enzymes. Our implantation technique is effective to correct ferric balance and phosphocalcic equilibrium, to protect liver and kidney function, to reduce the rate of bone nickel and to correct anemia. They clearly explain the beneficial and protective of our biomaterial which aims the detoxification of rats receiving nickel by substituting cationic (Ca(2+) by Ni(2+)) and anionic (OH(-) by Cl(-)) confirmed by physicochemical characterization like the IR spectroscopy and X-ray diffraction. These techniques have shown on the one hand a duplication of OH(-) bands (IR) and on the other hand the increase of the volume of the apatite cell after these substitutions (X-ray diffraction). Copyright © 2014 Elsevier Masson

  10. Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system

    International Nuclear Information System (INIS)

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M.; Chaudhri, Apoorvi; Chandrasekaran, N.; Mandal, A.B.; Mukherjee, Amitava

    2013-01-01

    Highlights: •TiO 2 NPs cytotoxicity at low exposure levels (≤1 μg/mL) to freshwater algae. •ROS generation, NP adsorption and internalization contributors to toxicity. •Observational evidence of genotoxicity by nanoparticles in an algal cell. •Reduced bioavailability thus detoxification of NPs by microalgae. •Possible role of EPS in detoxification. -- Abstract: In the current study, two aspects concerning (i) the cytotoxicity potential of TiO 2 nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO 2 NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration–sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects

  11. Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study

    International Nuclear Information System (INIS)

    Sanchez-Hernandez, Juan C.; Carbonell, R.; Henriquez Perez, A.; Montealegre, M.; Gomez, L.

    2004-01-01

    A field study was performed to evaluate the effect of exposure to organophosphorus (OP) and carbamate (CB) pesticides on the lizard Gallotia galloti palmae. Butyrylcholinesterase (BChE) activity was measured in the plasma of 420 lizards collected from agricultural and reference areas on the Island of La Palma (Canary Islands, Spain) in two sampling periods. Exposure to cholinesterase-inhibiting pesticides was evaluated by a statistical criterion based on a threshold value (two standard deviations below the mean enzyme activity) calculated for the reference group, and a chemical criterion based on the in vitro reactivation of BChE activity using pyridine-2-aldoxime methochloride (2-PAM) or after water dilution of the sample. Mean (±SD) BChE activity for lizards from agricultural areas was significantly lower (Fuencaliente site = 2.00 ± 0.98 μmol min -1 ml -1 , Tazacorte site = 2.88 ± 1.08) than that for lizards from the reference areas (Los Llanos site = 3.06 ± 1.17 μmol min -1 ml -1 , Tigalate site = 3.96 ± 1.62). According to the statistical criterion, the number of lizards with BChE depressed was higher at Fuencaliente (22% of males and 25.4% of females) than that sampled at Tazacorte (7.8% of males and 6.2% of females). According to the chemical criterion, Fuencaliente also yielded a higher number of individuals (112 males and 47 females) with BChE activity inhibited by both OP and CB pesticides. CBs appeared to be the pesticides most responsible for BChE inhibition because most of the samples showed reactivation of BChE activity after water treatment (63.3% from Fuencaliente and 29% from Tazacorte). We concluded that the use of reactivation techniques on plasma BChE activity is a better and more accurate method for assessing field exposure to OP/CB pesticides in this lizard species than making direct comparisons of enzyme activity levels between sampling areas. - Capsule: Chemical reactivation of lizard BChE activity is a suitable diagnostic method for

  12. Pesticide poisoning in the developing world--a minimum pesticides list

    DEFF Research Database (Denmark)

    Eddleston, Michael; Karalliedde, Lakshman; Buckley, Nick

    2002-01-01

    In parts of the developing world, pesticide poisoning causes more deaths than infectious diseases. Use of pesticides is poorly regulated and often dangerous; their easy availability also makes them a popular method of self-harm. In 1985, the UN Food and Agriculture Organisation (FAO) produced...... a voluntary code of conduct for the pesticide industry in an attempt to limit the harmful effects of pesticides. Unfortunately, a lack of adequate government resources in the developing world makes this code ineffective, and thousands of deaths continue today. WHO has recommended that access to highly toxic...... to do specific tasks within an integrated pest management system. Use of safer pesticides should result in fewer deaths, just as the change from barbiturates to benzodiazepines has reduced the number of deaths from pharmaceutical self-poisoning....

  13. Occurrence and Distribution of Pesticides in the St. Lucie River Watershed, South-Central Florida, 2000-01, Based on Enzyme-Linked Immunosorbent Assay (ELISA) Screening

    Science.gov (United States)

    Lietz, A.C.

    2003-01-01

    The St. Lucie River watershed is a valuable estuarine ecosystem and resource in south-central Florida. The watershed has undergone extensive changes over the last century because of anthropogenic activities. These activities have resulted in a complex urban and agricultural drainage network that facilitates the transport of contaminants, including pesticides, to the primary canals and then to the estuary. Historical data indicate that aquatic life criteria for selected pesticides have been exceeded. To address this concern, a reconnaissance was conducted to assess the occurrence and distribution of selected pesticides within the St. Lucie River watershed. Numerous water samples were collected from 37 sites among various land-use categories (urban/built-up, citrus, cropland/pastureland, and inte-grated). Samples were collected at inflow points to primary canals (C-23, C-24, and C-44) and at control structures along these canals from October 2000 to September 2001. Samples were screened for four pesticide classes (triazines, chloroacetanilides, chlorophenoxy compounds, and organophosphates) by using Enzyme-Linked Immunosorbent Assay (ELISA) screening. A temporal distribution of pesticides within the watershed was made based on samples collected at the integrated sites during different rainfall events between October 2000 and September 2001. Triazines were detected in 32 percent of the samples collected at the integrated sites. Chloroacetanilides were detected in 60 percent of the samples collected at the integrated sites, with most detections occurring at one site. Chlorophenoxy compounds were detected in 17 percent of the samples collected at the integrated sites. Organophosphates were detected in only one sample. A spatial distribution and range of concentration of pesticides at the 37 sampling sites in the watershed were determined among land-use categories. Triazine concentrations ranged from highest to lowest in the citrus, urban/built-up, and integrated areas

  14. Predicting client attendance at further treatment following drug and alcohol detoxification: Theory of Planned Behaviour and Implementation Intentions.

    Science.gov (United States)

    Kelly, Peter J; Leung, Joanne; Deane, Frank P; Lyons, Geoffrey C B

    2016-11-01

    Despite clinical recommendations that further treatment is critical for successful recovery following drug and alcohol detoxification, a large proportion of clients fail to attend treatment after detoxification. In this study, individual factors and constructs based on motivational and volitional models of health behaviour were examined as predictors of post-detoxification treatment attendance. The sample consisted of 220 substance-dependent individuals participating in short-term detoxification programs provided by The Australian Salvation Army. The Theory of Planned Behaviour and Implementation Intentions were used to predict attendance at subsequent treatment. Follow-up data were collected for 177 participants (81%), with 104 (80%) of those participants reporting that they had either attended further formal treatment (e.g. residential rehabilitation programs, outpatient counselling) or mutual support groups in the 2 weeks after leaving the detoxification program. Logistic regression examined the predictors of further treatment attendance. The full model accounted for 21% of the variance in treatment attendance, with attitude and Implementation Intentions contributing significantly to the prediction. Findings from the present study would suggest that assisting clients to develop a specific treatment plan, as well as helping clients to build positive perceptions about subsequent treatment, will promote greater attendance at further treatment following detoxification. [Kelly PJ, Leung J, Deane FP, Lyons GCB. Predicting client attendance at further treatment following drug and alcohol detoxification: Theory of Planned Behaviour and Implementation Intentions. Drug Alcohol Rev 2016;35:678-685]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  15. Effects of depleted uranium chronic exposure on detoxification systems in vivo and in vitro

    International Nuclear Information System (INIS)

    Rouas, C.

    2010-01-01

    Uranium (U) is a heavy metal naturally presents in the environment. The aim of this work is to study effects of a U exposure on organs involved in the detoxification: the kidney and the liver (and notably the xenobiotics metabolizing enzymes (XME)). In order to mimic population chronic exposure, rats were contaminated during 9 months through the drinking water (40 mg/L). In vivo results show that U, in our experimental conditions, does not induce neither nephrotoxicity nor sensitivity to increase a renal toxicity induced by gentamicin. In the liver, U provokes impairments on the XME gene expression, particularly CYP3A. Nevertheless, paracetamole metabolism is modified only if it is administrated at a hepatotoxic dose. The in vitro results suggest an indirect effect of uranium on the XME, probably dependant of body adaptation mechanisms. Besides, in vitro studies were underline cytotoxic properties of U as well as the localisation of its soluble and/or participated forms in cytoplasmic and nuclear compartment. (author)

  16. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    Science.gov (United States)

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  17. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review.

    Science.gov (United States)

    Shahzad, Babar; Tanveer, Mohsin; Che, Zhao; Rehman, Abdul; Cheema, Sardar Alam; Sharma, Anket; Song, He; Rehman, Shams Ur; Zhaorong, Dong

    2018-01-01

    Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Common ground, not a battle ground. Violence prevention at a detoxification facility.

    Science.gov (United States)

    Adamson, Mary A; Vincent, Audrey A; Cundiff, Jeff

    2009-08-01

    This article evaluates the results of a workplace violence prevention program implemented in a Colorado detoxification facility. The program interventions are modeled after federal Occupational Safety and Health Administration guidelines and use theories from both nursing and criminology for philosophy and direction. Serving as its own control, the detoxification facility shares data measured over a 4-year period, demonstrating a sharp decline in assault rates after program implementation. The importance of administrative controls, environmental adjustments, recordkeeping and evaluation, and education and training are emphasized as key components of success. Copyright (c) 2009, SLACK Incorporated.

  19. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    Directory of Open Access Journals (Sweden)

    Yan Liangzhen

    2012-11-01

    Full Text Available Abstract Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450, glutathione S-transferases (GST, and carboxyl/cholinesterases (CCE. However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75% were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a

  20. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    OpenAIRE

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2012-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. O...

  1. Enzyme immunoassay for DDT analysis in Lebanese soils

    International Nuclear Information System (INIS)

    Bashour, I.; Dagher, S.; Shammas, G.; Sukkariyah, B.; Kawar, N.

    2000-01-01

    Full text: The use of enzyme-linked immunosorbent assay (ELISA) technique in estimating pesticide residue in soils is a faster, less expensive and easier method to use than the gas chromatography (GC) analysis technique..In the test, DDT pesticide residues in the simple compete with enzyme (horseradish peroxidase)-labeled DDT for a limited number of antibody binding sites on the inside surfaces of the test wells; the envirologix plate kit was tested for the measurement of total DDT in virgin and fortified (0-1000 ng g exp-1) soil samples of different properties from Lebanon. Extraction of DDT from soil was done by shaking the samples for 16 hours on a mechanical shaker with 90% methanol without any clean-up steps. Then the samples were allowed to stand for 30 minutes and an aliquot was taken from the clear supernatant. The DDT in the extract was measured in triplicate by GC and ELISA. The results indicated that the two techniques were highly correlated (r2 =0.9671-0.9973). Differences in soils physical and chemical properties did not accuracy of the detection limits of ELISA when compared to GC-ECD results. Immunoassay technique is a suitable method for rapid and accurate measurement of DDT residue in mineral Lebanese soils

  2. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  3. 75 FR 62323 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to...

    Science.gov (United States)

    2010-10-08

    ... Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to Labeling... the pesticide container and containment regulations to provide an 8-month extension of the labeling... titled ``Pesticide Management and Disposal; Standards for Pesticide Containers and Containment'' (71 FR...

  4. Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins.

    Science.gov (United States)

    Burgess, Kevin M N; Renaud, Justin B; McDowell, Tim; Sumarah, Mark W

    2016-09-16

    Fumonisins, notably FB1, FB2, FB3, and FB4, are economically important mycotoxins produced by a number Fusarium sp. that occur on corn, rice, and sorghum as well as by Aspergillus sp. on grapes. The fumonisin scaffold is comprised of a C18 polyketide backbone functionalized with two tricarballylic esters and an alanine derived amine. These functional groups contribute to fumonisin's ability to inhibit sphingolipid biosynthesis in animals, plants, and yeasts. We report for the first time the isolation and structure elucidation of two classes of nonaminated fumonisins (FPy and FLa) produced by Aspergillus welwitschiae. Using a Lemna minor (duckweed) bioassay, these new compounds were significantly less toxic in comparison to the fumonisin B mycotoxins, providing new insight into the mechanism of fumonisin toxicity. Time course fermentations monitoring the production of FB4, FPy4, and FLa4, as well as (13)C and (15)N stable isotope incorporation, suggest a novel postbiosynthetic oxidative deamination process for fumonisins. This pathway was further supported by a feeding study with FB1, a fumonisin not produced by Aspergillus sp., which resulted in its transformation to FPy1. This study demonstrates that Aspergillus have the ability to produce enzymes that could be used for fumonisin detoxification.

  5. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  6. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance.

    Science.gov (United States)

    Schama, Renata; Pedrini, Nicolás; Juárez, M Patricia; Nelson, David R; Torres, André Q; Valle, Denise; Mesquita, Rafael D

    2016-02-01

    Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than

  7. Methadone detoxification of tramadol dependence.

    Science.gov (United States)

    Leo, R J; Narendran, R; DeGuiseppe, B

    2000-10-01

    Tramadol hydrochloride is a centrally acting analgesic with a partial affinity for the opiate receptor (mu), having an analgesic potency estimated to be one tenth that of morphine. While preclinical investigations suggested that abuse liability associated with tramadol use is low, there are increasing numbers of cases reported to the U.S. Food and Drug Administration of abuse, dependence, and withdrawal associated with tramadol use. A case of a patient with tramadol dependence requiring detoxification with methadone is presented. Acute management of significant tramadol dependence has not yet been reported in the literature. Long-term treatment issues are also discussed.

  8. Defining Molecular Sensors to Assess Long-Term Effects of Pesticides on Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Fanny L'Héritier

    2014-09-01

    Full Text Available The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1. Importantly, a crosstalk exists between estrogen receptor α (ERα and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17β-estradiol into 2-hydroxyestradiol. However, (ERα does not repress the CYP1B1 gene, which encodes an enzyme that converts 17β-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR–ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.

  9. Pesticide regulations and farm worker safety: the need to improve pesticide regulations in Viet Nam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Miller, Greg; Rutherford, Shannon; Chu, Cordia

    2012-06-01

    Agricultural pesticide use in Viet Nam has more than tripled since 1990. However, pesticide legislation and regulations have not been developed in response to this large increase in usage, as a result of which pesticides pose a serious threat to human health and the environment. This paper identifies the need to improve pesticide regulations in Viet Nam through a comparative analysis of pesticide regulations in Viet Nam and the United States of America, where the rate of acute poisoning among agricultural workers is much lower than in Viet Nam and where information pertaining to pesticide regulations is made accessible to the public. The analysis identified several measures that would help to improve Viet Nam's pesticide regulations. These include enhancing pesticide legislation, clarifying the specific roles and active involvement of both the environmental and health sectors; performing a comprehensive risk-benefit evaluation of pesticide registration and management practices; improving regulations on pesticide suspension and cancellation, transport, storage and disposal; developing import and export policies and enhancing pesticide-related occupational safety programmes.

  10. Opioid detoxification : from controlled clinical trial to clinical practice

    NARCIS (Netherlands)

    Dijkstra, Boukje A G; De Jong, Cor A J; Wensing, Michel; Krabbe, Paul F M; van der Staak, Cees P F

    2010-01-01

    Controlled clinical trials have high internal validity but suffer from difficulties in external validity. This study evaluates the generalizability of the results of a controlled clinical trial on rapid detoxification in the everyday clinical practice of two addiction treatment centers. The results

  11. Evaluation System for Pesticides (ESPE). 1. Agricultural pesticides

    NARCIS (Netherlands)

    Emans HJB; Beek MA; Linders JBHJ

    1992-01-01

    In this report a risk assessment or evaluation system for agricultural pesticides is presented, which estimates the hazards for man and environment resulting from the use of these pesticides. The evaluation system has also been placed within the context of the Uniform System for the Evaluation of

  12. Outcomes of adult heroin users v. abstinent users four years after presenting for heroin detoxification treatment

    Directory of Open Access Journals (Sweden)

    Zureida Khan

    2014-08-01

    Full Text Available Background. There are no studies in South Africa (SA on the outcomes following detoxification and psychosocial rehabilitation of heroin-dependent patients. Objective. To compare the demographic, clinical, forensic and treatment data of active heroin users v. users who were abstinent at the time of interview 4 years after attending the Opioid Detoxification Unit at Stikland Hospital in the Western Cape Province, SA.  Method. Participants included patients above the age of 16 years who had been admitted to the Opioid Detoxification Unit at Stikland Hospital for heroin detoxification between July 2006 and June 2007. Participants were individually interviewed (either in person or tele­phonically using a structured self-report questionnaire to collect demographic, clinical, forensic and treatment data 4 years following heroin detoxification treatment at this unit.  Results. Of the participants, 60% were abstinent and a large portion (34% attributed this to social support. Furthermore, there was a significant (p=0.04 difference in the longest period of abstinence between the past user group and active users, with more participants in the past user group being abstinent for 18 months or longer (n=24, 57% than in the active users group (n=8, 29%. Active users (n=18, 64% had significantly (p=0.03 more legal problems than abstinent users (n=14, 33%. Most participants (n=38, 54% relapsed within 3 months after index detoxification and rehabilitation.  Conclusion. Active users had more legal problems than abstinent users, with social support structures playing a pivotal role in abstinence. Future research should assess the impact of interventions such as post-discharge social support programmes on criminality and heroin use in those that relapse following treatment.

  13. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    Science.gov (United States)

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  14. Pesticide Environmental Accounting: A method for assessing the external costs of individual pesticide applications

    International Nuclear Information System (INIS)

    Leach, A.W.; Mumford, J.D.

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts. - A method to estimate the external costs of a pesticide application based on the ecotoxicology, environmental behaviour and application rate of an active ingredient

  15. Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications.

    Science.gov (United States)

    Leach, A W; Mumford, J D

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts.

  16. Toxicologic study of carboxyatractyloside (active principle in cocklebur--Xanthium strumarium) in rats treated with enzyme inducers and inhibitors and glutathione precursor and depletor.

    Science.gov (United States)

    Hatch, R C; Jain, A V; Weiss, R; Clark, J D

    1982-01-01

    Male rats (10 rats/group) were treated with phenobarbital (PB), phenylbutazone (PBZ), stanozolol (3 inducers of cytochrome P450-dependent enzymes), piperonyl butoxide (PBO; a P450 inhibitor), cobaltous chloride (CoCl2; an inhibitor of hemoprotein synthesis), 5,6-benzoflavone (BNF; an inducer of cytochrome P448 dependent enzymes), cysteine [CYS; a glutathione (GSH) precursor], or ethyl maleate (EM; a GSH depletor). The rats were then given a calculated LD50 dosage (13.5 mg/kg of body weight) of carboxyatractyloside (CAT) intraperitoneally. Clinical signs of toxicosis, duration of illness, lethality, gross lesions, and hepatic and renal histopathologic lesions were recorded. Seemingly, (i) CAT toxicosis has independent lethal and cytotoxic components (PBZ decreased lethality and cytotoxicity; CoCl2 decreased cytotoxicity but not lethality; BNF decreased duration of illness, and perhaps lethality, but not cytotoxicity); (ii) CAT cytotoxicity could be partly due to an active metabolite formed by de novo-synthesized, P450-/P448-independent hemoprotein (PBZ and CoCl2 had anticytotoxic effects, but PB, stanozolol, PBO, and BNF did not); (iii) CAT detoxification may occur partly through a hemoprotein-independent, PBZ-inducible enzyme, and partly through a P448-dependent (BNF-inducible) enzyme; and (iv) CAT detoxification apparently is not P450 or GSH-dependent because PB, stanozolol, and CYS had no beneficial effects, and PBO, CoCl2, and EM did not enhance toxicosis. Metabolism of CAT may have a role in its cytotoxic and lethal effects.

  17. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1.

    Science.gov (United States)

    Tallur, Preeti N; Megadi, Veena B; Ninnekar, Harichandra Z

    2008-02-01

    A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin.

  18. Pesticide exposure on sloths (Bradypus variegatus and Choloepus hoffmanni) in an agricultural landscape of Northeastern Costa Rica.

    Science.gov (United States)

    Pinnock Branford, Margaret Verónica; de la Cruz, Elba; Solano, Karla; Ramírez, Oscar

    2014-01-01

    Between 2005 and 2008, wild Bradypus variegatus and Choloepus hoffmanni inhabiting an agricultural landscape and captive animals from a rescue center in Northeastern Costa Rica were studied to assess exposure to pesticides. A total of 54 animals were sampled: 42 wild sloths captured at an agricultural landscape and 12 captive animals from a rescue center. Pesticides' active ingredients were determined in three sample matrices: hair, aqueous mixture (paws' wash) and cotton gauze (mouth clean) based on multi-residue gas chromatography methods. Recoveries tests ranged from 73 to 146% and relative standard deviations were less than 20% throughout all the recovery tests. Active ingredients detected in sloths samples were ametryn, chlorothalonil, chlorpyrifos, diazinon, difenoconazole, ethoprophos and thiabendazole. These active ingredients were used in intensive agricultural production for bananas, pineapples and other crops. Blood plasma cholinesterase activity (PChE) was determined by the Ellman method modified for micro plates. Enzyme activity determination was normalized to protein content in the samples according to Bradford method. Wild sloth PChE activity was similar for both species while sloths in captivity showed differences between species. Enzyme activity was significantly lower for two-toed sloths. This study showed that sloths were exposed to pesticides that caused acute and chronic effect in mammals and can also be a threat to other wildlife species. There is a need to better understand the potential effects of exposure to pesticides in sloths and other wild mammal populations, especially those threatened or endangered. More studies in this field must be carried out on the wildlife fauna inhabiting the agricultural landscape and its surroundings.

  19. Biomarkers of Sensitivity and Exposure in Washington State Pesticide Handlers

    Science.gov (United States)

    Keifer, M.C.; Checkoway, H.; De Roos, A.J.; Farin, F.M.; Fenske, R.A.; Richter, R.J.; van Belle, G.; Furlong, C.E.

    2011-01-01

    Organophosphate (OP) and N-methyl-carbamate (CB) insecticides are widely used in agriculture in the US and abroad. These compounds – which inhibit acetylcholinesterase (AChE) enzyme activity – continue to be responsible for a high proportion of pesticide poisonings among US agricultural workers. It is possible that some individuals may be especially susceptible to health effects related to OP/CB exposure. The paraoxonase (PON1) enzyme metabolizes the highly toxic oxon forms of some OPs, and an individual's PON1 status may be an important determinant of his or her sensitivity to these chemicals. This chapter discusses methods used to characterize individual PON1 status and reviews previous epidemiologic studies that have evaluated PON1-related sensitivity to OPs in relation to various health endpoints. It also describes an ongoing longitudinal study among OP-exposed agricultural pesticide handlers who are participating in a recently implemented cholinesterase monitoring program in Washington State. This study will evaluate handlers' PON1 status as a hypothesized determinant of butyrylcholinesterase (BuChE) inhibition. Such studies will be useful to determine how regulatory risk assessments might account for differences in PON1-related OP sensitivity when characterizing inter-individual variability in risk related to OP exposure. Recent work assessing newer and more sensitive biomarkers of OP exposure is also discussed briefly in this chapter. PMID:20221867

  20. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    Science.gov (United States)

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  2. Understanding Pesticide Risks: Toxicity and Formulation

    OpenAIRE

    Muntz, Helen; Miller, Rhonda; Alston, Diane

    2016-01-01

    This fact sheet provides information about pesticide risks to human health, primary means of pesticide exposure, standardized measures of pesticide toxicity, pesticide signal words and type of pesticide formulations.

  3. Pesticide Environmental Stewardship Program (PESP)

    Science.gov (United States)

    PESP is an EPA partnership program that works with the nation's pesticide-user community to promote IPM practices. Pesticide users can reduce the risks from pests and pesticides. Members include organizations and companies in the pesticide-user community.

  4. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Science.gov (United States)

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  5. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  6. Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes.

    Science.gov (United States)

    Newton, Matilda S; Arcus, Vickery L; Patrick, Wayne M

    2015-06-06

    The evolution of enzymes is often viewed as following a smooth and steady trajectory, from barely functional primordial catalysts to the highly active and specific enzymes that we observe today. In this review, we summarize experimental data that suggest a different reality. Modern examples, such as the emergence of enzymes that hydrolyse human-made pesticides, demonstrate that evolution can be extraordinarily rapid. Experiments to infer and resurrect ancient sequences suggest that some of the first organisms present on the Earth are likely to have possessed highly active enzymes. Reconciling these observations, we argue that rapid bursts of strong selection for increased catalytic efficiency are interspersed with much longer periods in which the catalytic power of an enzyme erodes, through neutral drift and selection for other properties such as cellular energy efficiency or regulation. Thus, many enzymes may have already passed their catalytic peaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Differences in depression severity and frequency of relapses in opiate addicts treated with methadone or opiate blocker after detoxification

    OpenAIRE

    Jovanović Tatjana; Lazarević Dušan; Nikolić Gordana

    2012-01-01

    Background/Aim. Relapse of opiate dependence is a common occurrence after detoxification and introduction of opiate addicts in abstinence from opiates. Clinical evaluation showed that over 90% of opiate addicts exhibit depressive manifestations during detoxification, or develop post-detoxification depression. The aim of this study was to determine differences in the frequency of relapses, severity and course of depression during a of 6-month period, and previous patterns of use of opioi...

  8. [Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].

    Science.gov (United States)

    Ciochină, Al D; Untu, Alina; Iacob, Gh

    2010-01-01

    The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.

  9. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    Science.gov (United States)

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  10. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  11. Furfural tolerance and detoxification mechanism in Candida tropicalis.

    Science.gov (United States)

    Wang, Shizeng; Cheng, Gang; Joshua, Chijioke; He, Zijun; Sun, Xinxiao; Li, Ruimin; Liu, Lexuan; Yuan, Qipeng

    2016-01-01

    Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis 's robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation. Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis 's half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis , the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis ( ctADH1 ) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1 , we found that C. tropicalis 's furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli 's furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased

  12. Sources of exposure to and public health implications of organophosphate pesticides

    Directory of Open Access Journals (Sweden)

    Kushik Jaga

    2003-09-01

    Full Text Available OBJECTIVE: To review the public health significance of organophosphate pesticide exposure in the United States of America. Since the situation of high organophosphate pesticide exposure and the concomitant health risks in the developing countries of the world is well known, this article seeks to highlight the public health significance of organophosphate exposure in the United States, where it is less common than in many other nations. Looking at the situation in the United States would serve to further emphasize the seriousness of organophosphate pesticide-related health issues in developing countries. METHODS: A search for journal articles on organophosphate pesticides and organophosphate exposure was done on the PubMed electronic bibliographic database system of the National Library of Medicine of the United States. To supplement that search, information on organophosphate toxicity, biological monitoring, and regulation of pesticides was obtained from other published articles, textbooks, and relevant Internet sites. RESULTS: Organophosphate pesticides are a group of chemicals that are mainly used in agriculture. Organophosphates inhibit the activity of both the cholinesterase (ChE enzymes-red blood cell (RBC ChE and serum ChE-resulting in the cholinergic features of organophosphate toxicity. A 50% reduction in serum ChE activity from the baseline is an indication of acute organophosphate toxicity. The RBC ChE activity, which is less rapidly depressed than the serum ChE activity, is a measure of chronic exposure to organophosphates. Exposures to organophosphates are broadly classified into two categories: occupational and environmental. Occupational exposures occur among agricultural workers (including migrant farmworkers, industrial workers, pest control exterminators, and other workers. Nonoccupational exposure affects a large segment of the general population in the United States. Residential exposures come from organophosphate pesticide

  13. Differential spontaneous recovery across cognitive abilities during detoxification period in alcohol-dependence.

    Directory of Open Access Journals (Sweden)

    Géraldine Petit

    Full Text Available There is a lack of consensus regarding the extent to which cognitive dysfunctions may recover upon cessation of alcohol intake by alcohol-dependents (AD, and the divergent findings are most likely due to methodological differences between the various studies. The present study was aimed at conducting a very strict longitudinal study of cognitive recovery in terms of assessment points, the duration of abstinence, control of age and duration of the addiction, and by use of individual analyses in addition to mean group comparisons. Our study further focused on the 2-3 week phase of alcohol detoxification that is already known to positively affect many biological, emotional, motivational, as well as neural variables, followed by longer-term therapies for which good cognitive functioning is needed.41 AD inpatients undergoing a detoxification program, and 41 matched controls, were evaluated twice in terms of five cognitive functions (i.e., short-term memory, working memory, inhibition, cognitive flexibility, and verbal fluency within a three-week interval [on the first day (T1 and the 18th day (T2 of abstinence for AD patients]. Emotional (positive and negative affectivity and depression and motivational (craving variables were also measured at both evaluation times.Although verbal fluency, short-term memory, and cognitive flexibility did not appear to be affected, the patients exhibited impaired inhibition and working memory at T1. While no recovery of inhibition was found to occur, the average working memory performance of the patients was comparable to that of the controls at T2. Improvements in emotional and motivational dimensions were also observed, although they did not correlate with the ones in working memory. Individual analysis showed that not all participants were impaired or recover the same functions.While inhibition deficits appear to persist after 18 days of detoxification, deficits in working memory, which is a central component of

  14. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  15. Cytotoxicity of TiO{sub 2} nanoparticles and their detoxification in a freshwater system

    Energy Technology Data Exchange (ETDEWEB)

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M.; Chaudhri, Apoorvi; Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mandal, A.B. [Chemical Laboratory, Central Leather Research Institute, Chennai (India); Mukherjee, Amitava, E-mail: amitav@vit.ac.in [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2013-08-15

    Highlights: •TiO{sub 2} NPs cytotoxicity at low exposure levels (≤1 μg/mL) to freshwater algae. •ROS generation, NP adsorption and internalization contributors to toxicity. •Observational evidence of genotoxicity by nanoparticles in an algal cell. •Reduced bioavailability thus detoxification of NPs by microalgae. •Possible role of EPS in detoxification. -- Abstract: In the current study, two aspects concerning (i) the cytotoxicity potential of TiO{sub 2} nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO{sub 2} NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration–sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects.

  16. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  17. Personal exposure to pesticide among workers engaged in pesticide container recycling operations.

    Science.gov (United States)

    Guidotti, T L; Yoshida, K; Clough, V

    1994-12-01

    Pesticide container handling operations in western Canada were examined to determine the exposure of workers to residual pesticide in sorting, metal-container crushing, metal-container shredding, plastic-container shredding, metal washing, and metal melting. Environmental exposure monitoring and biological monitoring were applied, including measurement of pesticide deposition density on outer clothing (test coveralls and other protective wear), deposition on fabric and gauze patches under the outer clothing, inhalation of airborne pesticide residues, dislodgement of pesticide residues by hand washing, and pre- and postexposure urinary excretion of pesticide (2,4-D). Exposure levels were highly variable; some variability was accounted for by work practices or lapses in protection. The highest levels of exposure were observed for metal washing, metal crushing, and metal shredding; sorting and plastic shredding were intermediate, and metal melting was associated with very little exposure. Urinary 2,4-D excretion, as an indicator of internal dose, correlated most closely with exposure by the inhalation route, and both were highest for metal washing and shredding. Deposition of pesticide on garments was highest for metal crushing. Melting of washed metal does not appear to present a significant hazard of exposure. Recommendations are proposed for the protection of workers emphasizing health and safety guidelines, worker education, personal hygiene, exposure and health monitoring, and record-keeping, and specific recommendations for each process. These recommendations apply to all pesticide container recycling operations except melting of washed metal containers.

  18. Microbial detoxification of waste rubber material by wood-rotting fungi.

    Science.gov (United States)

    Bredberg, Katarina; Andersson, B Erik; Landfors, Eva; Holst, Olle

    2002-07-01

    The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible.

  19. Ultrasonic process for detoxification of groundwater

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, H.S.; Livengood, C.D.

    1991-01-01

    In this paper, we present the results of an investigation of the ultrasonic irradiation of carbon tetrachloride at various pH values, temperatures, and power intensities. Kinetic data and selected chemical mechanism are discussed and proposed. To study oxidant efficiency, chemical oxidants, such as hydrogen peroxide, are also considered. This work is part of a project entitled ''Ultrasonic Process for Detoxification of Groundwater and Soil,'' sponsored by the US Department of Energy, Office of Technology Development, to develop an innovative process for the effective destruction of chlorinated organics in soil and groundwater

  20. Pesticide Program Dialogue Committee and Pesticide Regulatory Reform Meetings

    Science.gov (United States)

    EPA’s Office of Pesticide Programs will hold a public meeting of the Pesticide Program Dialogue Committee (PPDC) on Wednesday, May 3, from 9:00 a.m. to 4:45 p.m., and on Thursday, May 4, from 8:30 a.m. to noon.

  1. Organophosphate pesticides-induced changes in the redox status of rat tissues and protective effects of antioxidant vitamins.

    Science.gov (United States)

    Mishra, Vibhuti; Srivastava, Nalini

    2015-04-01

    Organophosphates (OPs) pesticides are among the most toxic synthetic chemicals purposefully added in the environment. The common use of OP insecticides in public health and agriculture results in an environmental pollution and a number of acute and chronic poisoning events. Present study was aimed to evaluate the potential of monocrotophos and quinalphos to effect the redox status and glutathione (GSH) homeostasis in rat tissues and find out whether antioxidant vitamins have some protection on the pesticide-induced alterations. The results showed that these pesticides alone or in combination, caused decrease in the levels of GSH and the corresponding increase in the levels of GSSG, decreasing the GSH/GSSG ratio. The results also showed that NADPH/NADP(+) and NADH/NAD(+) ratios were decreased in the liver and brain of rats on exposure with mococrotophos, quinalphos, and their mixture. These pesticides, alone or in combination, caused alterations in the activities of GSH reductase and glucose-6-phosphate dehydrogenase in the rat tissues. However, the expression of the GSH recycling enzymes did not show significant alterations as compared to control. From the results, it can be concluded that these pesticides generate oxidative stress but their effects were not synergistic when given together and prior feeding of antioxidant vitamins tend to reduce the toxicities of these pesticides. Copyright © 2013 Wiley Periodicals, Inc.

  2. Pesticide Exposure in Children

    Science.gov (United States)

    Roberts, James R.; Karr, Catherine J.

    2018-01-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  3. 76 FR 41246 - Pesticide Program Dialogue Committee, Pesticide Registration Improvement Act Process Improvement...

    Science.gov (United States)

    2011-07-13

    ... Committee, Pesticide Registration Improvement Act Process Improvement Workgroup; Notice of Public Meeting...) Process Improvement Work Group. EPA plans to meet its ESA consultation obligations through the pesticide... a pesticide during the registration review process. This meeting of the PRIA Process Improvement...

  4. Growth characteristics of Dayak Borneo yam (Dioscorea hispida and detoxification techniques as alternative food

    Directory of Open Access Journals (Sweden)

    RUDITO

    2017-03-01

    Full Text Available Abstract. Rudito, Suwarto, Azkiyah L, Witono Y, Saragih B, Arung ET. 2017. Growth characteristics of Dayak Borneo yam (Dioscorea hispida and detoxification techniques as alternative food. Pros Sem Nas Masy Biodiv Indon 3: 99-103. Finding of local food sources to enhance food security areas. This study focuses on the characteristics of growth Dayak Borneo yam observation, toxic substances and detoxification techniques development of non nutritional. The objective of the research was to find out a more concrete picture, as well as comparing it with Java yam non nutritional components as a basis for further exploration of alternative food. Observations indicate that the plant growth of Dayak Borneo yam had specific characteristics, and can be grown in intercropping with other crops. Yam tubers have negative image due to the toxins contained by this commodity, as well as technology management (detoxification and processing of yam products that have not been controlled by the community. But based on the results of physical and chemical detoxification, indicates that the Dayak Borneo yam can be exploited further as food. Dayak Borneo yam need to be developed modification process in raw materials of Dayak Borneo yam as modified starch through fermentation techniques which also intended to obtain intermediate product from which Dayak Borneo yam has a larger functionality as a food ingredient.

  5. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Tanaka, Kan; Ishihama, Akira

    2016-09-01

    YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).

  6. 75 FR 33705 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to...

    Science.gov (United States)

    2010-06-15

    ... Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to Labeling... the pesticide container and containment regulations to provide a 4-month extension of the 40 CFR 156... pesticide labels to comply with the label requirements in the container and containment regulations. DATES...

  7. Shortening Anesthesia Duration does not Affect Severity of Withdrawal Syndrome in Patients Undergoing Ultra Rapid Opioid Detoxification

    Directory of Open Access Journals (Sweden)

    Shoaleh Shami

    2010-02-01

    Full Text Available Ultra rapid opioid detoxification (UROD is one of the new methods of detoxification. This method of detoxification involves putting patients under general anesthesia and actively giving them opioid antagonists. The objective of this study was to evaluate effects of anesthesia duration in UROD on severity of withdrawal syndrome. Sixty addicted patients seeking UROD procedure assigned randomly to one of the 2hr, 4hr or 6hr anesthesia duration groups. Premedication and anesthesia procedure (induction and maintenance were the same for three groups. Detoxification was done for all patients with 50 mg oral naltroxane (prior to induction and 20 mg intravenous naloxane (8 mg/bolus and 12 mg/infusion. Blood pressure, heart rate and respiratory rate were automatically measured and recorded every 5 minutes. The severity of withdrawal syndrome was measured and recorded every one hour during anesthesia, 2hours post-anesthesia, and 12 and 24 hours following the induction of anesthesia according to the Wang Scale modified by Lomier (WSMBL. Patients aged 20-58 in three groups. Three cases experienced delirium after detoxification that lasted 24 hours in one. Severity of withdrawal syndrome in patients of groups 2, 4 and 6 hour were 8.7, 7.4 and 5.1 respectively during anesthesia and 12.3, 11.1 and 13.9 after 18 hours of anesthesia. Results of this study showed that, in standard settings, UROD is a safe method for detoxification and has low complications. The withdrawal symptoms during and after anesthesia are low. Shortening the duration of anesthesia has no affect on severity of withdrawal syndrome during and after anesthesia.

  8. Effect of pesticide applications on soil microbial activity and on 14C-methyl parathion dissipation

    International Nuclear Information System (INIS)

    Peres, Terezinha Bonanho

    2000-01-01

    Some crops, as cotton, need different pesticide application to control pests and diseases. These compounds reach soil and may affect the soil microbial activity. As the microorganisms play important role on the nutrient cycling, changes in their activities may affect the soil fertility. The influence of several pesticides on soil microbial activity of the 0-15 cm and 15-30 cm depth of the soil profile, and the 14 C-methyl parathion dissipation was studied under influence of other pesticide applications. The influence of pesticides on the microorganisms was followed in an experimental area of the Instituto Biologico, that was divided in two subareas, both under cotton crop. Columns of PVC was buried in both subareas and a solution of 14 C-methyl parathion diluted in the technical compound was applied on the soil surface of each column. One subarea received all the recommended pesticides for the cotton crop besides the 14 C-methyl parathion. The other subarea received only 14 C-methyl parathion solution on the columns soil surface. The soil microbial activity of both subareas was estimated by measurements of dehydrogenase, arylsulfatase and arginine deaminase enzymes. Further, the availability of total nitrogen in the soil was also measured. The dissipation of 14 C-methyl parathion was studied by radiocarbon recovery in soil extracts and combustion of extracted soil and quantification by radiometric techniques. (author)

  9. Who needs inpatient detox? Development and implementation of a hospitalist protocol for the evaluation of patients for alcohol detoxification.

    Science.gov (United States)

    Stephens, John R; Liles, E Allen; Dancel, Ria; Gilchrist, Michael; Kirsch, Jonathan; DeWalt, Darren A

    2014-04-01

    Clinicians caring for patients seeking alcohol detoxification face many challenges, including lack of evidence-based guidelines for treatment and high recidivism rates. To develop a standardized protocol for determining which alcohol dependent patients seeking detoxification need inpatient versus outpatient treatment, and to study the protocol's implementation. Review of best evidence by ad hoc task force and subsequent creation of standardized protocol. Prospective observational evaluation of initial protocol implementation. Patients presenting for alcohol detoxification. Development and implementation of a protocol for evaluation and treatment of patients requesting alcohol detoxification. Number of admissions per month with primary alcohol related diagnosis (DRG), 30-day readmission rate, and length of stay, all measured before and after protocol implementation. We identified one randomized clinical trial and three cohort studies to inform the choice of inpatient versus outpatient detoxification, along with one prior protocol in this population, and combined that data with clinical experience to create an institutional protocol. After implementation, the average number of alcohol related admissions was 15.9 per month, compared with 18.9 per month before implementation (p = 0.037). There was no difference in readmission rate or length of stay. Creation and utilization of a protocol led to standardization of care for patients requesting detoxification from alcohol. Initial evaluation of protocol implementation showed a decrease in number of admissions.

  10. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  11. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Wei; Zhang, Hongquan; Le, X Chris; Li, Xing-Fang

    2014-10-01

    Halobenzoquinones (HBQs) are a new class of drinking water disinfection byproducts (DBPs) and are capable of producing reactive oxygen species and causing oxidative damage to proteins and DNA in T24 human bladder carcinoma cells. However, the exact mechanism of the cytotoxicity of HBQs is unknown. Here, we investigated the role of glutathione (GSH) and GSH-related enzymes including glutathione S-transferase (GST) and glutathione peroxidase (GPx) in defense against HBQ-induced cytotoxicity in T24 cells. The HBQs are 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,6-dibromobenzoquinone (DBBQ). We found that depletion of cellular GSH could sensitize cells to HBQs and extracellular GSH supplementation could attenuate HBQ-induced cytotoxicity. HBQs caused significant cellular GSH depletion and increased cellular GST activities in a concentration-dependent manner. Our mass spectrometry study confirms that HBQs can conjugate with GSH, explaining in part the mechanism of GSH depletion by HBQs. The effects of HBQs on GPx activity are compound dependent; DCMBQ and DBBQ decrease cellular GPx activities, whereas DCBQ and TriCBQ have no significant effects. Pearson correlation analysis shows that the cellular GSH level is inversely correlated with ROS production and cellular GST activity in HBQ-treated cells. These results support a GSH and GSH-related enzyme-mediated detoxification mechanism of HBQs in T24 cells. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR.

    Science.gov (United States)

    Bigley, Andrew N; Mabanglo, Mark F; Harvey, Steven P; Raushel, Frank M

    2015-09-08

    The V-type organophosphorus nerve agents are among the most hazardous compounds known. Previous efforts to evolve the bacterial enzyme phosphotriesterase (PTE) for the hydrolytic decontamination of VX resulted in the identification of the variant L7ep-3a, which has a kcat value more than 2 orders of magnitude higher than that of wild-type PTE for the hydrolysis of VX. Because of the relatively small size of the O-ethyl, methylphosphonate center in VX, stereoselectivity is not a major concern. However, the Russian V-agent, VR, contains a larger O-isobutyl, methylphosphonate center, making stereoselectivity a significant issue since the SP-enantiomer is expected to be significantly more toxic than the RP-enantiomer. The three-dimensional structure of the L7ep-3a variant was determined to a resolution of 2.01 Å (PDB id: 4ZST ). The active site of the L7ep-3a mutant has revealed a network of hydrogen bonding interactions between Asp-301, Tyr-257, Gln-254, and the hydroxide that bridges the two metal ions. A series of new analogues that mimic VX and VR has helped to identify critical structural features for the development of new enzyme variants that are further enhanced for the catalytic detoxification of VR and VX. The best of these mutants has been shown to have a reversed stereochemical preference for the hydrolysis of VR-chiral center analogues. This mutant hydrolyzes the two enantiomers of VR 160- and 600-fold faster than wild-type PTE hydrolyzes the SP-enantiomer of VR.

  13. Pesticides and their effects on wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Driver, C.J.

    1994-07-01

    About 560 active ingredients are currently used as pesticides. Applications of these pesticides are made to agricultural lands and other areas inhabited by wildlife. Unfortunately, many agricultural-use pesticides also entail some measure of risk to organisms other than the pest species. Because testing of pesticides prior to registration cannot evaluate all the potential environmental-pesticide-wildlife/fish interactions, current methods of risk assessment do not always provide sufficient safety to nontarget organisms. This is evidenced by die-offs of fish and wildlife from applications of pesticides at environmentally {open_quotes}safe{close_quotes} rates, the linking of population declines of some species with agrochemical use, and observations of survival-threatening behavioral changes in laboratory and field animals exposed to typical field levels of pesticides. It is important to note, however, that the majority of pesticides, when properly applied, have not caused significant injury to wildlife. A brief summary of pesticide effects on wildlife and fish are presented for the common classes of pesticides in use today.

  14. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  15. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  16. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  17. Nitrilase enzymes and their role in plant–microbe interactions

    Science.gov (United States)

    Howden, Andrew J. M.; Preston, Gail M.

    2009-01-01

    Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant–microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth‐promoting microorganisms, and their activities may have a significant impact on the outcome of plant–microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant‐associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. PMID:21255276

  18. Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method.

    Science.gov (United States)

    Gu, Shuqing; Lu, Youlan; Ding, Yaping; Li, Li; Zhang, Fenfen; Wu, Qingsheng

    2013-09-24

    A simple but robust droplet-based microfluidic system was developed for dose-response enzyme inhibition assay by combining concentration gradient generation method with electrochemical detection method. A slotted-vials array and a tapered tip capillary were used for reagents introduction and concentration gradient generation, and a polydimethylsiloxane (PDMS) microfluidic chip integrated with microelectrodes was used for droplet generation and electrochemical detection. Effects of oil flow rate and surfactant on electrochemical sensing were investigated. This system was validated by measuring dose-response curves of three types of acetylcholinesterase (AChE) inhibitors, including carbamate pesticide, organophosphorus pesticide, and therapeutic drugs regulating Alzheimer's disease. Carbaryl, chlorpyrifos, and tacrine were used as model analytes, respectively, and their IC50 (half maximal inhibitory concentration) values were determined. A whole enzyme inhibition assay was completed in 6 min, and the total consumption of reagents was less than 5 μL. This microfluidic system is applicable to many biochemical reactions, such as drug screening and kinetic studies, as long as one of the reactants or products is electrochemically active. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    OpenAIRE

    Borini, Paulo; Guimarães, Romeu Cardoso

    1999-01-01

    Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehy...

  20. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  1. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  2. Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Dennis William E

    2009-04-01

    Full Text Available Abstract Background The wide use of organophosphorus (OP pesticides makes them an important public health concern. Persistent effects of exposure and the mechanism of neuronal degeneration are continuing issues in OP toxicology. To elucidate early steps in the mechanisms of OP toxicity, we studied alterations in global gene and protein expression in Caenorhabditis elegans exposed to OPs using microarrays and mass spectrometry. We tested two structurally distinct OPs (dichlorvos and fenamiphos and employed a mechanistically different third neurotoxicant, mefloquine, as an out-group for analysis. Treatment levels used concentrations of chemical sufficient to prevent the development of 10%, 50% or 90% of mid-vulval L4 larvae into early gravid adults (EGA at 24 h after exposure in a defined, bacteria-free medium. Results After 8 h of exposure, the expression of 87 genes responded specifically to OP treatment. The abundance of 34 proteins also changed in OP-exposed worms. Many of the genes and proteins affected by the OPs are expressed in neuronal and muscle tissues and are involved in lipid metabolism, cell adhesion, apoptosis/cell death, and detoxification. Twenty-two genes were differentially affected by the two OPs; a large proportion of these genes encode cytochrome P450s, UDP-glucuronosyl/UDP-glucosyltransferases, or P-glycoproteins. The abundance of transcripts and the proteins they encode were well correlated. Conclusion Exposure to OPs elicits a pattern of changes in gene expression in exposed worms distinct from that of the unrelated neurotoxicant, mefloquine. The functional roles and the tissue location of the genes and proteins whose expression is modulated in response to exposure is consistent with the known effects of OPs, including damage to muscle due to persistent hypercontraction, neuronal cell death, and phase I and phase II detoxification. Further, the two different OPs evoked distinguishable changes in gene expression; about half

  3. Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers.

    Science.gov (United States)

    Baharuddin, Mohd Rafee B; Sahid, Ismail B; Noor, Mohamad Azhar B Mohd; Sulaiman, Norela; Othman, Fadzil

    2011-01-01

    A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.

  4. Long-term lessons on pesticide leaching obtained via the Danish Pesticide Leaching Assessment Programme

    DEFF Research Database (Denmark)

    Rosenbom, Anette E.; Olsen, Preben; Plauborg, Finn

    To avoid any unacceptable influence on the environment posed by pesticides and their degradation products, all pesticides used in the European Union needs authorization. The authorization procedure includes assessing the leaching risk of both pesticides and their degradation products...

  5. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants

    International Nuclear Information System (INIS)

    Christou, Anastasis; Antoniou, Chrystalla; Christodoulou, Charalampia; Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas; Fatta-Kassinos, Despo; Fotopoulos, Vasileios

    2016-01-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10 μg L −1 ) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H 2 O 2 and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H + -ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H 2 O 2 in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H + -ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. - Highlights: • PhACs were detected in higher concentrations in roots compared with leaves. • Stress effects were local and exacerbated when PhACs were applied in mixture. • H 2 O 2 may be involved in signal transduction and detoxification responses. • GSTs, H + -ATPase and CytcOx contribute to the detoxification of PhACs in plants. • Results

  6. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Christou, Anastasis [Agricultural Research Institute, P.O. Box 22016, 1516 Nicosia (Cyprus); Antoniou, Chrystalla; Christodoulou, Charalampia [Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos (Cyprus); Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas [NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Fatta-Kassinos, Despo [Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Fotopoulos, Vasileios, E-mail: vassilis.fotopoulos@cut.ac.cy [Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos (Cyprus)

    2016-07-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10 μg L{sup −1}) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H{sub 2}O{sub 2} and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H{sup +}-ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H{sub 2}O{sub 2} in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H{sup +}-ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. - Highlights: • PhACs were detected in higher concentrations in roots compared with leaves. • Stress effects were local and exacerbated when PhACs were applied in mixture. • H{sub 2}O{sub 2} may be involved in signal transduction and detoxification responses. • GSTs, H{sup +}-ATPase and CytcOx contribute to the

  7. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    Science.gov (United States)

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pesticide bioconcentration modelling for fruit trees.

    Science.gov (United States)

    Paraíba, Lourival Costa

    2007-01-01

    The model presented allows simulating the pesticide concentration evolution in fruit trees and estimating the pesticide bioconcentration factor in fruits. Pesticides are non-ionic organic compounds that are degraded in soils cropped with woody species, fruit trees and other perennials. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (K(Wood,W)), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (k(EGS)). The modeling started and was developed from a previous model "Fruit Tree Model" (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The FTM model for pesticides (FTM-p) was applied to a hypothetic mango plant cropping (Mangifera indica) treated with paclobutrazol (growth regulator) added to the soil. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.

  9. Use of Strychnos Nux-Vomica (Azraqi) Seeds in Unani System of Medicine: Role of Detoxification

    OpenAIRE

    Akbar, Seema; Khan, Shamshad A; Masood, Akbar; Iqbal, M

    2010-01-01

    Some plants used in Unani system of medicine are toxic, even deadly poisonous. The drugs having such plants as their components are detoxified before they are dispensed to the patients. One such drug, capsule Hudar, has Strychnos nux-vomica L. (Azraqi) seeds as one of its components and is very effectively used to elevate blood pressure. Ancient manuscripts describe many methods of its detoxification. It has been found that the detoxification processes studied reduce the strychnine content, a...

  10. Use of Strychnos nux-vomica (Azraqi) seeds in Unani system of medicine: role of detoxification.

    Science.gov (United States)

    Akbar, Seema; Khan, Shamshad A; Masood, Akbar; Iqbal, M

    2010-01-01

    Some plants used in Unani system of medicine are toxic, even deadly poisonous. The drugs having such plants as their components are detoxified before they are dispensed to the patients. One such drug, capsule Hudar, has Strychnos nux-vomica L. (Azraqi) seeds as one of its components and is very effectively used to elevate blood pressure. Ancient manuscripts describe many methods of its detoxification. It has been found that the detoxification processes studied reduce the strychnine content, as determined either by using uv-vis spectrophotometer or HPLC, present in Strychnos nux vomica seeds which is responsible for Strychnos nux vomica toxicity. The decrease in strychnine amount was best when the seeds were immersed for detoxification in excess of water for 5 days, in milk for 2 days followed by their boiling in milk. Strychnine in small amounts has been reported to give subjective feeling of stimulation.

  11. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    Science.gov (United States)

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Pesticide Worker Safety Cooperative Agreements

    Science.gov (United States)

    The worker safety program cooperative agreements fund projects to educate pesticide applicators, handlers, and farmworkers on working safely with, and around, pesticides. Read about pesticide related grant opportunities and reports from previous grants.

  13. Tracer work in pesticide research

    International Nuclear Information System (INIS)

    Gonzales, B.P.

    1989-01-01

    Innumerable studies on the large number of pesticides being used throughout the world led to some adverse findings on the properties and behavior of these chemicals and their degradation products in revelation to potential toxicity and environmental pollution. However, it is also a fact (difficult to accept as it may) that the use of pesticides as an indirect means of increasing food production cannot yet be dispensed with despite the potential dangers attributed to it. What can be done is to insure its judicious application which means minimizing its effectiveness in controlling pest infestations. To be able to do this it is necessary to know not only what pesticide is to be used against a given pest but also the fate of pesticide after application to a particular environment under prevailing conditions. Knowledge of the distribution and persistence of the parent compounds under metabolites will also help either, to confirm or to dispel the alleged dangers posed by them. Radiotracer methodology is particularly effective for this type of work because it permits highly sensitive analysis with minimum clean-up and permits one to determine even the bound residues which defies ordinary extraction procedures. Some studies made are studies on fate of pesticides in plant after foliar application to plant needs, uptake and translocation of systemic pesticides, fate of pesticides in soil, bioaccumulation of pesticide by aquatic organisms, etc. This particular study is on distribution of pesticide among the components of a rice/fish ecosystem. This project aims to generate data from experiments conducted in a model ecosystem using radiolabelled lindane and carbo-furan. In both cases, results show a decline in extractable species from the recommended dosage of pesticide application although they tend to imbibe a considerable amount of pesticide. It is hoped that depuration in additional experiments will bring useful results. (Auth.)

  14. PESTICIDES: BENEFITS AND HAZARDS

    Directory of Open Access Journals (Sweden)

    Ivan Maksymiv

    2015-05-01

    Full Text Available Pesticides are an integral part of modern life used to prevent growth of unwanted living  organisms. Despite the fact that scientific statements coming from many toxicological works provide indication on the low risk of the pesticides and their residues, the community especially last years is deeply concerned about massive application of pesticides in diverse fields. Therefore evaluation of hazard risks particularly in long term perspective is very important. In the fact there are at least two clearly different approaches for evaluation of pesticide using: the first one is defined as an objective or probabilistic risk assessment, while the second one is the potential economic and agriculture benefits. Therefore, in this review the author has considered scientifically based assessment of positive and negative effects of pesticide application and discusses possible approaches to find balance between them.

  15. Pesticides: Benefaction or Pandora's Box? A synopsis of the environmental aspects of 243 pesticides

    NARCIS (Netherlands)

    Linders JBHJ; Jansma JW; Mensink BJWG; Otermann K; ACT

    1994-01-01

    The report provides an overview of physical, chemical and environmental data of 243 pesticides. The data mentioned are based on confidential information supplied by the manufacturers of the pesticides. For all pesticides mentioned a Final Environmental File, which is public, is derived. Tables with

  16. Pesticide Instrumental Analysis

    International Nuclear Information System (INIS)

    Samir, E.; Fonseca, E.; Baldyga, N.; Acosta, A.; Gonzalez, F.; Felicita, F.; Tomasso, M.; Esquivel, D.; Parada, A.; Enriquez, P.; Amilibia, M.

    2012-01-01

    This workshop was the evaluation of the pesticides impact on the vegetable matrix with the purpose to determine the analysis by GC / M S. The working material were lettuce matrix, chard and a mix of green leaves and pesticides.

  17. Occupational Pesticide Exposures and Respiratory Health

    Science.gov (United States)

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.; Senthilselvan, Ambikaipakan

    2013-01-01

    Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting. PMID:24287863

  18. Food and Pesticides

    Science.gov (United States)

    EPA sets limits on how much of a pesticide may be used on food during growing and processing, and how much can remain on the food you buy. Learn about regulation of pesticides on food and how you can limit exposure.

  19. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice.

    Science.gov (United States)

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1 , and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  20. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  1. Increased Frequency of Rheumatoid Arthritis and Allergic Rhinitis among Pesticide Sprayers and Associations with Pesticide Use.

    Science.gov (United States)

    Koureas, Michalis; Rachiotis, George; Tsakalof, Andreas; Hadjichristodoulou, Christos

    2017-08-01

    Objective : The aim of this study was to identify diseases linked with the pesticide sprayer occupation and explore possible associations with exposure history data. Methods : Α cross sectional study was conducted among pesticide sprayers ( n = 80) and the general population ( n = 90) in Thessaly (Greece). Medical history, demographic characteristics and detailed exposure history were recorded by conducting personal interviews. Lifetime exposure indicators were calculated for several pesticide chemical subclasses. Moreover, organophosphate metabolite levels were quantified in urine samples of all participants by using gas chromatography -mass spectrometry (GC-MS). Multinomial analysis was used to determine associations between occupational pesticide exposure and diseases or disorders. Results : In the pesticide sprayers group, significantly higher frequencies for rheumatoid arthritis (RA) and allergic rhinitis were observed compared with the control group ( p = 0.002 and p = 0.024 respectively). Within the pesticide sprayers group, high lifetime pesticide exposure was associated with increased risk for reporting RA (OR: 43.07 95% CI: 3.09-600.67) and allergic rhinitis (OR: 9.72 95% CI: 2.31-40.89), compared with low pesticide exposure. Exposure to organophsphate, guanidine and quinone pesticides were associated with RA while organophosphates, pyrethroids and paraquat were associated with allergic rhinitis. Despite the higher levels of certain pesticide metabolites observed among participants with rheumatoid arthritis, the differences were not statistically significant. One metabolite (diethylthiophosphate) was found to be significantly increased in allergic rhinitis cases ( p = 0.037). Conclusion s : The results from the current study suggest a possible association of occupational pesticide exposure with RA and allergic rhinitis that should be further investigated.

  2. Complete detoxification is the most effective treatment of medication-overuse headache

    DEFF Research Database (Denmark)

    Carlsen, Louise Ninett; Munksgaard, Signe Bruun; Jensen, Rigmor Højland

    2018-01-01

    /month by 46% (95% CI 34-58) compared with 22% (95% CI 11-34) in program-B ( p = 0.005), and 70% in program A versus 42% in program B were reverted to episodic headache ( p = 0.04). Migraine-days/month were reduced by 7.2 in program A ( p 0.001) and 3.6 in program B ( p = 0.002) after 6 months. Conclusion......Background There is lack of evidence on how to detoxify medication-overuse headache. Aim To compare the effect of complete stop of acute medication with restricted intake. Methods Medication-overuse headache patients were included in a prospective, outpatient study and randomized to two months...... Both detoxification programs were very effective. Detoxification without analgesics or acute migraine-medication was the most effective program. Trial registration Clinicaltrials.gov (NCT02903329)....

  3. Pesticide use and application: An Indian scenario

    International Nuclear Information System (INIS)

    Abhilash, P.C.; Singh, Nandita

    2009-01-01

    Agricultural development continues to remain the most important objective of Indian planning and policy. In the process of development of agriculture, pesticides have become an important tool as a plant protection agent for boosting food production. Further, pesticides play a significant role by keeping many dreadful diseases. However, exposure to pesticides both occupationally and environmentally causes a range of human health problems. It has been observed that the pesticides exposures are increasingly linked to immune suppression, hormone disruption, diminished intelligence, reproductive abnormalities and cancer. Currently, India is the largest producer of pesticides in Asia and ranks twelfth in the world for the use of pesticides. A vast majority of the population in India is engaged in agriculture and is therefore exposed to the pesticides used in agriculture. Although Indian average consumption of pesticide is far lower than many other developed economies, the problem of pesticide residue is very high in India. Pesticide residue in several crops has also affected the export of agricultural commodities in the last few years. In this context, pesticide safety, regulation of pesticide use, proper application technologies, and integrated pest management are some of the key strategies for minimizing human exposure to pesticides. There is a dearth of studies related to these issues in India. Therefore, the thrust of this paper was to review the technology of application of pesticides in India and recommend future strategies for the rational use of pesticides and minimizing the problems related to health and environment.

  4. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the drosophilidae.

    Science.gov (United States)

    Gloss, Andrew D; Vassão, Daniel G; Hailey, Alexander L; Nelson Dittrich, Anna C; Schramm, Katharina; Reichelt, Michael; Rast, Timothy J; Weichsel, Andrzej; Cravens, Matthew G; Gershenzon, Jonathan; Montfort, William R; Whiteman, Noah K

    2014-09-01

    Chemically defended plant tissues present formidable barriers to herbivores. Although mechanisms to resist plant defenses have been identified in ancient herbivorous lineages, adaptations to overcome plant defenses during transitions to herbivory remain relatively unexplored. The fly genus Scaptomyza is nested within the genus Drosophila and includes species that feed on the living tissue of mustard plants (Brassicaceae), yet this lineage is derived from microbe-feeding ancestors. We found that mustard-feeding Scaptomyza species and microbe-feeding Drosophila melanogaster detoxify mustard oils, the primary chemical defenses in the Brassicaceae, using the widely conserved mercapturic acid pathway. This detoxification strategy differs from other specialist herbivores of mustard plants, which possess derived mechanisms to obviate mustard oil formation. To investigate whether mustard feeding is coupled with evolution in the mercapturic acid pathway, we profiled functional and molecular evolutionary changes in the enzyme glutathione S-transferase D1 (GSTD1), which catalyzes the first step of the mercapturic acid pathway and is induced by mustard defense products in Scaptomyza. GSTD1 acquired elevated activity against mustard oils in one mustard-feeding Scaptomyza species in which GstD1 was duplicated. Structural analysis and mutagenesis revealed that substitutions at conserved residues within and near the substrate-binding cleft account for most of this increase in activity against mustard oils. Functional evolution of GSTD1 was coupled with signatures of episodic positive selection in GstD1 after the evolution of herbivory. Overall, we found that preexisting functions of generalized detoxification systems, and their refinement by natural selection, could play a central role in the evolution of herbivory. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  5. Decoloration and detoxification of effluents by ionizing radiation

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; Conceição Pereira, Maria da; Higa, Marcela C.

    2016-01-01

    Three distinct textile samples were investigated for color and toxicity (S1–chemical/textile industry; S2–final textile effluent; S3 - standard textile produced effluent–untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism. - Highlights: • 2.5 kGy was enough for decoloration and detoxification of S2 and S3. • S1 effluents were very toxic and required at least 20 kGy for detoxification. • Radiation processing reduced toxicity for 100% of treated samples. • V. fischeri was the best tool for toxicity measurements.

  6. Extracorporeal Detoxification in Victims with Severe Concomitant Injury

    Directory of Open Access Journals (Sweden)

    S. Ye. Khoroshilov

    2009-01-01

    Full Text Available Objective: to improve the results of victims with massive crushes of soft tissues in severe concomitant injury (SCI, by applying extracorporeal detoxification techniques as soon as possible. Subjects and methods. The results of examination and treatment were studied in 41 victims with SCI treated at the N. N. Burdenko Main Military Clinical Hospital in 2006 to 2008. In the early posttraumatic period (on days 1—3, all the victims (n=41 were divided into 2 groups. Group 1 victims (n=19 underwent hemodiafiltration (HDF with replacement at 35 ml/kg/hr; Group 2 (n=22 had plasmapheresis. Results. Early HDF applied to Group 1 victims could achieve 32, 44, and 37% reductions in the elevated levels creatine phosphokinase, myoglobin, and middle-sized molecules, respectively. In Group 2, plasmapheresis showed a lower effect (19, 25, and 26% reductions. Furthermore, there was a decrease in total protein in Group 1, which was absent in Group 2. Conclusion. The timely use of extracorporeal detoxification techniques in victims with massive crushes of soft tissues in the early posttraumatic period prevents the development of fatal complications of SCI, at the same time HDF is more effective and safe than plasmapheresis. Key words: severe concomitant injury, rhabdomyolysis, myoglobin, plasmapheresis, hemodiafiltration.

  7. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    International Nuclear Information System (INIS)

    Fu, Zidong Donna; Klaassen, Curtis D.

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs

  8. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.

  9. Summary of Validation of Multi-Pesticide Methods for Various Pesticide Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    The validation of multi-pesticide methods applicable for various types of pesticide formulations is treated. In a worked-out practical example, i.e. lambda cyhalothrin, the theoretical considerations outlined in the General Guidance section are put into practice. GC conditions, selection of an internal standard and criteria for an acceptable repeatability of injections are outlined, followed by sample preparation, calibration, batch analysis and confirmation of results through comparison using different separation columns. Complete sets of data are displayed in tabular form for other pesticide active ingredients and real formulations. (author)

  10. 40 CFR 273.3 - Applicability-pesticides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-pesticides. 273.3... (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.3 Applicability—pesticides. (a) Pesticides covered under this part 273. The requirements of this part apply to persons managing pesticides, as...

  11. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  12. [Cases of acute pesticide poisoning in Colonia Puerto Pirapó, Itapúa, Paraguay, February, 2014].

    Science.gov (United States)

    Pedrozo, María Esther; Ocampos, Sandra; Galeano, Rosa; Ojeda, Andrea; Cabello, Agueda; De Assis, Dalva

    2017-06-01

    In Paraguay, pesticides are the causative agent in 13.7% of poisonings, especially organophosphorus compounds. Such poisoning produces the inhibition of acetylcholinesterase generating three possible clinical conditions: acute poisoning, intermediate syndrome or late neurotoxicity. We present 15 cases of acute poisoning, ten women and five men from a rural community between 5 and 67 years of age, whose symptoms began after using water contaminated by pesticides from the community network. The most common symptoms were nausea and vomiting, followed by abdominal pain, headache, fever, itching, red eyes and sweating. Five patients underwent blood tests for blood count, renal and liver function and serum cholinesterase, with results within the reference values; just one patient had high liver enzymes.In two samples from the community water supply network the active compound detected was profenophos. It is essential to train primary health care personnel to identify cases of acute pesticide poisoning in a timely manner to provide appropriate treatment, especially in rural areas. Additionally, it is necessary that responsible institutions monitor compliance with environmental regulations in these areas to avoid such incidents.

  13. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    Lebov, Jill F; Engel, Lawrence S; Richardson, David; Hogan, Susan L; Sandler, Dale P; Hoppin, Jane A

    2015-11-01

    Pesticide exposure has been found to cause renal damage and dysfunction in experimental studies, but epidemiological research on the renal effects of chronic low-level pesticide exposure is limited. We investigated the relationships between end-stage renal disease (ESRD) among wives of licensed pesticide applicators (N=31,142) in the Agricultural Health Study (AHS) and (1) personal pesticide use, (2) exposure to the husband's pesticide use, and (3) other pesticide-associated farming and household activities. AHS participants reported pesticide exposure via self-administered questionnaires at enrollment (1993-1997). ESRD cases were identified via linkage to the United States Renal Data System. Associations between ESRD and pesticide exposures were estimated with Cox proportional hazard regression models controlling for age at enrollment. Models of associations with farming and household factors were additionally adjusted for personal use of pesticides. We identified 98 ESRD cases diagnosed between enrollment and 31 December 2011. Although women who ever applied pesticides (56% of cohort) were less likely than those who did not apply to develop ESRD (Hazard Ratio (HR): 0.42; 95% CI: 0.28, 0.64), among women who did apply pesticides, the rate of ESRD was significantly elevated among those who reported the highest (vs. lowest) cumulative general pesticide use (HR: 4.22; 95% CI: 1.26, 14.20). Among wives who never applied pesticides, ESRD was associated with husbands' ever use of paraquat (HR=1.99; 95% CI: 1.14, 3.47) and butylate (HR=1.71; 95% CI: 1.00, 2.95), with a positive exposure-response pattern for husband's cumulative use of these pesticides. ESRD may be associated with direct and/or indirect exposure to pesticides among farm women. Future studies should evaluate indirect exposure risk among other rural populations. Published by Elsevier Inc.

  14. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study✩

    Science.gov (United States)

    Lebov, Jill F.; Engel, Lawrence S.; Richardson, David; Hogan, Susan L.; Sandler, Dale P.; Hoppin, Jane A.

    2015-01-01

    Background Pesticide exposure has been found to cause renal damage and dysfunction in experimental studies, but epidemiological research on the renal effects of chronic low-level pesticide exposure is limited. We investigated the relationships between end-stage renal disease (ESRD) among wives of licensed pesticide applicators (N = 31,142) in the Agricultural Health Study (AHS) and (1) personal pesticide use, (2) exposure to the husband's pesticide use, and (3) other pesticide-associated farming and household activities. Methods AHS participants reported pesticide exposure via self-administered questionnaires at enrollment (1993–1997). ESRD cases were identified via linkage to the United States Renal Data System. Associations between ESRD and pesticide exposures were estimated with Cox proportional hazard regression models controlling for age at enrollment. Models of associations with farming and household factors were additionally adjusted for personal use of pesticides. Results We identified 98 ESRD cases diagnosed between enrollment and 31 December 2011. Although women who ever applied pesticides (56% of cohort) were less likely than those who did not apply to develop ESRD (Hazard Ratio (HR): 0.42; 95% CI: 0.28, 0.64), among women who did apply pesticides, the rate of ESRD was significantly elevated among those who reported the highest (vs. lowest) cumulative general pesticide use (HR: 4.22; 95% CI: 1.26, 14.20). Among wives who never applied pesticides, ESRD was associated with husbands' ever use of paraquat (HR = 1.99; 95% CI: 1.14, 3.47) and butylate (HR = 1.71; 95% CI: 1.00, 2.95), with a positive exposure–response pattern for husband’s cumulative use of these pesticides. Conclusions ESRD may be associated with direct and/or indirect exposure to pesticides among farm women. Future studies should evaluate indirect exposure risk among other rural populations. PMID:26505650

  15. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  16. The Danish Pesticide Leaching Assessment Programme

    DEFF Research Database (Denmark)

    Rosenbom, Annette Elisabeth; Brüsch, Walter Michael; Juhler, Rene K.

    In 1998, the Danish Parliament initiated the Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme aimed at evaluating the leaching risk of pesticides under field conditions. The objective of the PLAP is to improve the scientific foundation for decision......-making in the Danish regulation of pesticides. The specific aim is to analyse whether pesticides applied in accordance with current regulations leach to groundwater in unacceptable concentrations. The programme currently evaluates the leaching risk of 41 pesticides and 40 degradation products at five agricultural......, thiamethoxam, tribenuronmethyl, and triasulfuron) did not leach during the 1999-2009 monitoring period. 13 of the applied pesticides exhibited pronounced leaching of the pesticide and/or their degradation product(-s) 1 m b.g.s. in yearly average concentrations exceeding 0.1 μg/l (maximum allowable...

  17. Impact of Detoxification Techniques on Pulmonary Gas Exchange Function in Patients with Generalized Peritonitis

    Directory of Open Access Journals (Sweden)

    R. A. Mlinnik

    2012-01-01

    Full Text Available Objective: to analyze the impact of different detoxification techniques on pulmonary gas exchange function in patients with generalized peritonitis complicated by multiple organ failure. Subjects and methods. One hundred and thirty patients with generalized peritonitis were examined. According to the used detoxification techniques, the patients were divided into 5 groups. All the patients underwent a comprehensive examination, the key element of which was the evaluation of gas exchange parameters. Results. Membrane plasmapheresis and plasmapheresis with sodium hypochlorite infusion to the plasma filter in patients with peritonitis are shown to improve pulmonary blood oxygenation.

  18. Vendor-based restrictions on pesticide sales to prevent pesticide self-poisoning - a pilot study

    Directory of Open Access Journals (Sweden)

    Manjula Weerasinghe

    2018-02-01

    Full Text Available Abstract Background In South Asia, up to 20% of people ingesting pesticides for self-poisoning purchase the pesticide from a shop with the sole intention of self-harm. Individuals who are intoxicated with alcohol and/or non-farmers represent 72% of such high-risk individuals. We aimed to test the feasibility and acceptability of vendor-based restrictions on pesticide sales for such high-risk individuals. Methods We conducted a pilot study in 14 (rural = 7, urban = 7 pesticide shops in Anuradhapura District of Sri Lanka. A two-hour training program was delivered to 28 pesticide vendors; the aim of the training was to help vendors recognize and respond to customers at high risk of pesticide self-poisoning. Knowledge and attitudes of vendors towards preventing access to pesticides for self-poisoning at baseline and in a three month follow-up was evaluated by questionnaire. Vendors were interviewed to explore the practice skills taught in the training and their assessment of the program. Results The scores of knowledge and attitudes of the vendors significantly increased by 23% (95% CI 15%–32%, p < 0.001 and by 16% (95% CI 9%–23%, p < 0.001 respectively in the follow-up. Fifteen (60% vendors reported refusing sell pesticides to a high-risk person (non-farmer or intoxicated person in the follow-up compared to three (12% at baseline. Vendors reported that they were aware from community feedback that they had prevented at least seven suicide attempts. On four identified occasions, vendors in urban shops had been unable to recognize the self-harming intention of customers who then ingested the pesticide. Only 2 (8% vendors were dissatisfied with the training and 23 (92% said they would recommend it to other vendors. Conclusions Our study suggests that vendor-based sales restriction in regions with high rates of self-poisoning has the potential to reduce access to pesticides for self-poisoning. A large-scale study of the effectiveness

  19. Detoxification of wood preserving waste under ambient, enhanced and chemical pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.S.; Brown, K.W.; Dale, B.E.; Donnelly, K.C.; He, L.Y.; Markiewicz, K.V. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Detoxification of pentachlorophenol-containing wood preserving waste was monitored under ambient, enhanced and chemical pretreatment conditions for genotoxicity and parent compound removal. Samples were collected throughout the treatment periods and sequentially extracted with dichloromethane and methanol with the Tecator Soxtec apparatus. The organic extracts were analyzed on GC/ECD and GC/MS. The extract mutagenic and genotoxic potentials were evaluated with and without metabolic activation with the Salmonella Microsomal and E. coli Prophage Induction assays. The Salmonella mutagenic responses of extracts from Weswood soil amended with wood preserving waste and treated under ambient conditions were 2.0, 34.6 and 2.4 times greater than the solvent control on days 0, 540 and 1,200 respectively. Organic extracts of soil amended with wood preserving waste and treated under enhanced conditions in a solid-phase rotating drum bioreactor had mutagenic potentials of 3.4, 4.9 and 3.5 on days 0, 14 and 30, respectively. Extracts from wood preserving waste sludge treated with potassium polyethylene glycol were shown to have mutagenic potentials of 2.8, 6.1 and 3.8 at 0, 10 and 30 minutes. The results indicate that the initial products of the wood preserving waste detoxification under all treatment conditions appear to have greater genotoxic potentials than the starting material. The results also suggest that a more rapid detoxification occurs under enhanced and chemical pretreatment conditions.

  20. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers.

    Science.gov (United States)

    Chiu, Yu-Han; Williams, Paige L; Mínguez-Alarcón, Lidia; Gillman, Matthew; Sun, Qi; Ospina, Maria; Calafat, Antonia M; Hauser, Russ; Chavarro, Jorge E

    2018-01-01

    We developed a pesticide residue burden score (PRBS) based on a food frequency questionnaire and surveillance data on food pesticide residues to characterize dietary exposure over the past year. In the present study, we evaluated the association of the PRBS with urinary concentrations of pesticide biomarkers. Fruit and vegetable (FV) intake was classified as having high (PRBS≥4) or low (PRBSEARTH study. Two urine samples per man were analyzed for seven biomarkers of organophosphate and pyrethroid insecticides, and the herbicide 2,4-dichlorophenoxyacetic acid. We used generalized estimating equations to analyze the association of the PRBS with urinary concentrations of pesticide biomarkers. Urinary concentrations of pesticide biomarkers were positively related to high pesticide FV intake but inversely related to low pesticide FV intake. The molar sum of urinary concentrations of pesticide biomarkers was 21% (95% confidence interval (CI): 2%, 44%) higher for each one serving/day increase in high pesticide FV intake, and 10% (95% CI: 1%, 18%) lower for each one serving/day increase in low pesticide FV intake. Furthermore, intake of high pesticide FVs positively related to most individual urinary biomarkers. Our findings support the usefulness of the PRBS approach to characterize dietary exposure to select pesticides.

  1. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    Science.gov (United States)

    Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2013-09-23

    The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Evolved pesticide tolerance in amphibians: Predicting mechanisms based on pesticide novelty and mode of action

    International Nuclear Information System (INIS)

    Hua, Jessica; Jones, Devin K.; Mattes, Brian M.; Cothran, Rickey D.; Relyea, Rick A.; Hoverman, Jason T.

    2015-01-01

    We examined 10 wood frog populations distributed along an agricultural gradient for their tolerance to six pesticides (carbaryl, malathion, cypermethrin, permethrin, imidacloprid, and thiamethoxam) that differed in date of first registration (pesticide novelty) and mode-of-action (MOA). Our goals were to assess whether: 1) tolerance was correlated with distance to agriculture for each pesticide, 2) pesticide novelty predicted the likelihood of evolved tolerance, and 3) populations display cross-tolerance between pesticides that share and differ in MOA. Wood frog populations located close to agriculture were more tolerant to carbaryl and malathion than populations far from agriculture. Moreover, the strength of the relationship between distance to agriculture and tolerance was stronger for older pesticides compared to newer pesticides. Finally, we found evidence for cross-tolerance between carbaryl and malathion (two pesticides that share MOA). This study provides one of the most comprehensive approaches for understanding patterns of evolved tolerance in non-pest species. - Highlights: • We explored patterns of tolerance to six insecticides across 10 wood frog populations. • We found evidence that wood frogs have evolved tolerance to carbaryl and malathion. • The likelihood of evolved tolerance was stronger for older compared to newer pesticides. • We found evidence for cross-tolerance between carbaryl and malathion. • This is one of the most comprehensive approaches studying evolved tolerance in a non-pest species. - Using 10 wood frog populations, we detected evidence for evolved tolerance, found that the evolved tolerance depends on insecticide novelty, and found evidence for cross-tolerance.

  4. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.

    Science.gov (United States)

    Nai, Yu-Shin; Chen, Tsui-Yao; Chen, Yi-Cheng; Chen, Chun-Ting; Chen, Bor-Yann; Chen, Yue-Wen

    2017-10-01

    Significant pesticide residues are among the most serious problems for sustainable agriculture. In the beekeeping environment, pesticides not only impact a honey bee's survival, but they also contaminate bee products. Taiwan's agricultural environment has suffered from pesticide stress that was higher than that found in Europe and America. This study deciphered problems of pesticide residues in fresh honey bee pollen samples collected from 14 monitoring apiaries in Taiwan, which reflected significant contaminations within the honey bee population. In total, 155 pollen samples were screened for 232 pesticides, and 56 pesticides were detected. Among the residues, fluvalinate and chlorpyrifos showed the highest concentrations, followed by carbendazim, carbaryl, chlorfenapyr, imidacloprid, ethion, and flufenoxuron. The average frequency of pesticide residues detected in pollen samples was ca. 74.8%. The amounts and types of pesticides were higher in winter and in southwestern Taiwan. Moreover, five of these pollen samples were contaminated with 11-15 pesticides, with average levels between 1,560 and 6,390 μg/kg. Compared with the literature, this study emphasized that pollen gathered by honey bee was highly contaminated with more pesticides in Taiwan than in the America, France, and Spain. The ubiquity of pesticides in the pollen samples was likely due to the field applications of common pesticides. Recently, the Taiwanese government began to improve the pesticide policy. According to the resurvey data in 2016, there were reductions in several pesticide contamination parameters in pollen samples from west to southwest Taiwan. A long-term investigation of pollen pesticide residues should be conducted to inspect pesticides usage in Taiwan's agriculture. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    Lebov, Jill F; Engel, Lawrence S; Richardson, David; Hogan, Susan L; Hoppin, Jane A; Sandler, Dale P

    2016-01-01

    Experimental studies suggest a relationship between pesticide exposure and renal impairment, but epidemiological evidence is limited. We evaluated the association between exposure to 39 specific pesticides and end-stage renal disease (ESRD) incidence in the Agricultural Health Study, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Via linkage to the US Renal Data System, we identified 320 ESRD cases diagnosed between enrolment (1993-1997) and December 2011 among 55 580 male licensed pesticide applicators. Participants provided information on use of pesticides via self-administered questionnaires. Lifetime pesticide use was defined as the product of duration and frequency of use and then modified by an intensity factor to account for differences in pesticide application practices. Cox proportional hazards models, adjusted for age and state, were used to estimate associations between ESRD and: (1) ordinal categories of intensity-weighted lifetime use of 39 pesticides, (2) poisoning and high-level pesticide exposures and (3) pesticide exposure resulting in a medical visit or hospitalisation. Positive exposure-response trends were observed for the herbicides alachlor, atrazine, metolachlor, paraquat, and pendimethalin, and the insecticide permethrin. More than one medical visit due to pesticide use (HR=2.13; 95% CI 1.17 to 3.89) and hospitalisation due to pesticide use (HR=3.05; 95% CI 1.67 to 5.58) were significantly associated with ESRD. Our findings support an association between ESRD and chronic exposure to specific pesticides, and suggest pesticide exposures resulting in medical visits may increase the risk of ESRD. Clinicaltrials.gov NCT00352924. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii.

    Science.gov (United States)

    Madeira, Jose Valdo; Macedo, Juliana Alves; Macedo, Gabriela Alves

    2011-08-01

    In this work, we introduce a biological detoxification method that converts toxic waste from castor beans into animal feed material. This method simultaneously induces the production of tannase and phytase by Paecilomyces variotii; both enzymes have high levels of activity and have the potential to be used in feedstuffs because they decrease overall anti-nutritional factors. The maximum tannase and phytase activities obtained were 2600 and 260 U/g after 48 and 72 h, respectively. SDS-PAGE electrophoresis of the fermented castor cake extracts revealed a reduction in ricin bands during fermentation, and the bands were no longer visible after 48 h. The cytotoxicity of the extracts was evaluated by MTT testing on RAW cells, and a progressive increase in cellular viability was obtained, reaching almost 100% after 72 h of fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  8. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Science.gov (United States)

    2010-01-01

    Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH) approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as

  9. Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems

    Science.gov (United States)

    Bai, Xiaojuan; Sun, Changpo; Xu, Jing; Liu, Di; Han, Yangying; Wu, Songling; Luo, Xiaohong

    2018-02-01

    Graphene oxide (GO) and its functionalized systems have very unique structural advantages as excellent adsorbent or substrate material in the removal of organic contaminants. Herein, we reported a strategy to establish functionalized GO system (FGO) using amphiphilic molecules didodecyldimethylammonium bromide (DDAB) as a modifier for the detoxification of zearalenone (ZEN) from corn oil. The adsorption property for the removal of ZEN from edible corn oils under different experimental conditions such as pH, amphiphilic molecules, time and temperature was investigated in detail. The morphology structure, adsorption isotherm, adsorption kinetics and the recyclability of FGO systems have also been researched, systematically. The FGO systems exhibit a higher adsorption efficiency, recyclability and thermostability in comparison with the traditional adsorbent materials. It provides an insight into the detoxification of mycotoxin from edible oils by graphene-based new materials.

  10. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  11. A consistent framework for modeling inorganic pesticides: Adaptation of life cycle inventory models to metal-base pesticides

    DEFF Research Database (Denmark)

    Peña, N.A.; Anton, A.; Fantke, Peter

    2016-01-01

    emission factors (percentages) or dynamic models base on specific application scenarios that describe only the behavior of organic pesticides. Currently fixed emission fractions for pesticides dearth to account for the influence of pesticide-specific function to crop type and application methods....... On the other hand the dynamic models need to account for the variability in this interactions in emissions of inorganic pesticides. This lack of appropriate models to estimate emission fractions of inorganic pesticides results in a lower accuracy when accounting for emissions in agriculture......, and it will influence the outcomes of the impact profile. The pesticide emission model PestLCI 2.0 is the most advanced currently available inventory model for LCA intended to provide an estimation of organic pesticide emission fractions to the environment. We use this model as starting point for quantifying emission...

  12. Administration of venlafaxine after chronic methadone detoxification blocks post-depression relapse in rats

    Directory of Open Access Journals (Sweden)

    Meysam Fadaei-Kenarsary

    2017-08-01

    Full Text Available ABSTRACT Relapse is highly prevalent after detoxification and depression. Due to the advantages of venlafaxine compared with other antidepressants, it is expected that venlafaxine administration may reduce relapse after detoxification and depression. This study aimed to evaluate the effects of venlafaxine on depression-induced relapse to morphine dependence after methadone detoxification. Eighty Sprague-Dawley rats were habituated and conditioned with morphine (10 mg/kg, S.C., for 4 days. After that, primary forced swimming and conditioned place preference (CPP were tested. They were followed by methadone (70 mg/kg/day, P.O., for 7 days administration, extinguishing, forced swimming stress (FSS and administration of venlafaxine (80 mg/kg/day, I.P., for 7 days. Finally same tests were performed. Administration of venlafaxine resulted in a decrement in final preference scores associated with a prime morphine injection (PMI compared to the primary scores in methadone treated (MTD+ animals. In a swimming test, venlafaxine increased the amount of final floating and decreased final activity scores compared with the primary scores after administration of methadone. Venlafaxine reduced locomotor activity in MTD+ animals in the final test with PMI. There was a positive correlation between the final activity and preference scores after PMI. In conclusion, venlafaxine improved anxiety and depression-induced relapse on methadone detoxified rats.

  13. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    Science.gov (United States)

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  14. Pacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays.

    Science.gov (United States)

    Moreau, Pierrick; Burgeot, Thierry; Renault, Tristan

    2014-04-01

    Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides on oyster susceptibility to infectious agents. Massive mortality outbreaks reported in this species, mainly in spring and summer, may suggest an important role played by the seasonal use of pesticides and freshwater input in estuarine areas where oyster farms are frequently located. To understand the impact of some pesticides detected in French waters, their effects on Pacific oyster hemocytes were studied through short-term in vitro experiments. Bivalve immunity is mainly supported by hemocytes eliminating pathogens by phagocytosis and producing compounds including lysosomal enzymes and antimicrobial molecules. In this study, oyster hemocytes were incubated with a mixture of 14 pesticides and metaldehyde alone, a molecule used to eliminate land mollusks. Hemocyte parameters including dead/alive cells, nonspecific esterase activities, intracytoplasmic calcium, lysosome number and activity, and phagocytosis were monitored by flow cytometry. No significant effect of pesticides tested at different concentrations was reported on oyster hemocytes maintained in vitro for short-term periods in the present study. It could be assumed that these oyster cells were resistant to pesticide exposure in tested conditions and developing in vivo assays appears as necessary to better understand the effects of pollutants on immune system in mollusks.

  15. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose.

    Science.gov (United States)

    Wang, Hanyu; Ouyang, Yidan; Zhou, Chang; Xiao, Difan; Guo, Yaping; Wu, Lan; Li, Xi; Gu, Yunfu; Xiang, Quanju; Zhao, Ke; Yu, Xiumei; Zou, Likou; Ma, Menggen

    2017-12-01

    Aldehydes generated as by-products during the pretreatment of lignocellulose are the key inhibitors to Saccharomyces cerevisiae, which is considered as the most promising microorganism for industrial production of biofuel, xylitol as well as other special chemicals from lignocellulose. S. cerevisiae has the inherent ability to in situ detoxify aldehydes to corresponding alcohols by multiple aldehyde reductases. Herein, we report that an uncharacterized open reading frame YKL071W from S. cerevisiae encodes a novel "classical" short-chain dehydrogenase/reductase (SDR) protein with NADH-dependent enzymatic activities for reduction of furfural (FF), glycolaldehyde (GA), formaldehyde (FA), and benzaldehyde (BZA). This enzyme showed much better specific activities for reduction of GA and FF than FA and BZA, and displayed much higher Km and Kcat/Km but lower Vmax and Kcat for reduction of GA than FF. For this enzyme, the optimum pH was 5.5 and 6.0 for reduction of GA and FF, and the optimum temperature was 30 °C for reduction of GA and FF. Both pH and temperature affected stability of this enzyme in a similar trend for reduction of GA and FF. Cu 2+ , Zn 2+ , Ni 2+ , and Fe 3+ had severe inhibition effects on enzyme activities of Ykl071wp for reduction of GA and FF. Transcription of YKL071W in S. cerevisiae was significantly upregulated under GA and FF stress conditions, and its transcription is most probably regulated by transcription factor genes of YAP1, CAD1, PDR3, and STB5. This research provides guidelines to identify more uncharacterized genes with reductase activities for detoxification of aldehydes derived from lignocellulose in S. cerevisiae.

  16. Pesticide Use and Self-Reported Symptoms of Acute Pesticide Poisoning among Aquatic Farmers in Phnom Penh, Cambodia

    Directory of Open Access Journals (Sweden)

    Hanne Klith Jensen

    2011-01-01

    Full Text Available Organophosphates and carbamates (OPs/CMs are known for their acetylcholinesterase inhibiting character. A cross-sectional study of pesticide handling practices and self-perceived symptoms of acute pesticide poisoning was conducted using questionnaire-based interviews with 89 pesticide sprayers in Boeung Cheung Ek (BCE Lake, Phnom Penh, Cambodia. The study showed that 50% of the pesticides used belonged to WHO class I + II and personal protection among the farmers were inadequate. A majority of the farmers (88% had experienced symptoms of acute pesticide poisoning, and this was significantly associated with the number of hours spent spraying with OPs/CMs (OR = 1.14, CI 95%: 1.02–1.28. The higher educated farmers reduced their risk of poisoning by 55% for each extra personal protective measure they adapted (OR = 0.45, CI 95%: 0.22–0.91. These findings suggest that improving safe pesticide management practices among the farmers and enforcing the effective banning of the most toxic pesticides will considerably reduce the number of acute pesticide poisoning episodes.

  17. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  18. Preferences for Aftercare Among Persons Seeking Short-Term Opioid Detoxification.

    Science.gov (United States)

    Stein, Michael D; Anderson, Bradley J; Bailey, Genie L

    2015-12-01

    Without aftercare treatment, the period following discharge from short-term inpatient detoxification for opioid dependence presents a high risk of relapse. Yet the role of patient preference in treatment selection is rarely discussed in the substance-abuse literature. We surveyed 485 persons initiating inpatient opioid detoxification who were predominantly male (71.3%) and had detoxed in the past (73.2%). When asked to choose the one treatment that would work best for them after discharge, 43% of participants selected medication-assisted treatment (MAT), 29% preferred residential, 12% selected drug-free counseling, 12% NA/AA meetings only, and 4% preferred no additional treatment. Residential treatment preference was significantly associated with homelessness, having been in a detox program within the past year, and having pending legal problems, indicating that there is a distinct profile of detox patients who prefer residential treatment despite its limited availability. Detox program staff should work with patients to understand reasons for treatment preferences to optimize aftercare services. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate

    Directory of Open Access Journals (Sweden)

    Parvin Most

    2015-01-01

    Full Text Available Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys2–11-Gly (PCs. Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS, which directly or indirectly influence metabolic processes. Reduced glutathione (GSH attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str, also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  20. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  1. Nitrilase enzymes and their role in plant-microbe interactions.

    Science.gov (United States)

    Howden, Andrew J M; Preston, Gail M

    2009-07-01

    Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant-microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth-promoting microorganisms, and their activities may have a significant impact on the outcome of plant-microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant-associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Quantification and detoxification of aflatoxin in food items

    Energy Technology Data Exchange (ETDEWEB)

    Nisa, A. U.; Hina, S.; Ejaz, N. [Pakistan Council of Scientific and Industrial Research Laboratories, Lahore (Pakistan). Dept. of Food and Biotechnology

    2013-07-15

    The present study was conducted to quantify and detoxify the antitoxins in food items. For this purpose, total 30 samples of food were collected. The samples were quantified using thin layer chromatography (TLC) for the presence of aflatoxin level in food items. Out of them aflatoxins were not found in 10 samples. Remaining 20 aflatoxins +ve samples were treated with various chemical solutions i.e. 0.1% HCl, 0.3%HCl, 0.5% HCI, 10% citric acid, 30% citric acid, 50% calcium hydroxide, 0.2 and 0.3% NaOCl, 96% ethanol and 99% acetone for detoxification. The aflatoxins were reduced to 55.1%, 90.9%, 28.08% and 80.0% in Super Sella rice, Super Basmati rice, Brown rice and White rice, respectively. The aflatoxin level was reduced in maize grain, damaged wheat, peanut, figs and dates upto 31.3 %, 64.3 %, 63.6%, 42.7% and 19.8%, respectively. Aflatoxins were detoxified in cereals Dal Chana, Dal Mash, Dal Masoor, turmeric (Haldi) and Nigela seeds (Kalwangi) upto 70.5%, 83.0%, 46.2%, 82.09% and 36.9%, respectively. Reduction of aflatoxins was carried out 39.7 %,7.l % 39.5% 82.0% and 62.0% in red chilli, makhana, corn flakes, desert (Kheer Mix) and pistachio. The significant results (p = 0.042) of detoxification of aflatoxins in food items were obtained from present study. (author)

  3. Quantification and detoxification of aflatoxin in food items

    International Nuclear Information System (INIS)

    Nisa, A.U.; Hina, S.; Ejaz, N.

    2013-01-01

    The present study was conducted to quantify and detoxify the antitoxins in food items. For this purpose, total 30 samples of food were collected. The samples were quantified using thin layer chromatography (TLC) for the presence of aflatoxin level in food items. Out of them aflatoxins were not found in 10 samples. Remaining 20 aflatoxins +ve samples were treated with various chemical solutions i.e. 0.1% HCl, 0.3%HCl, 0.5% HCI, 10% citric acid, 30% citric acid, 50% calcium hydroxide, 0.2 and 0.3% NaOCl, 96% ethanol and 99% acetone for detoxification. The aflatoxins were reduced to 55.1%, 90.9%, 28.08% and 80.0% in Super Sella rice, Super Basmati rice, Brown rice and White rice, respectively. The aflatoxin level was reduced in maize grain, damaged wheat, peanut, figs and dates upto 31.3 %, 64.3 %, 63.6%, 42.7% and 19.8%, respectively. Aflatoxins were detoxified in cereals Dal Chana, Dal Mash, Dal Masoor, turmeric (Haldi) and Nigela seeds (Kalwangi) upto 70.5%, 83.0%, 46.2%, 82.09% and 36.9%, respectively. Reduction of aflatoxins was carried out 39.7 %,7.l % 39.5% 82.0% and 62.0% in red chilli, makhana, corn flakes, desert (Kheer Mix) and pistachio. The significant results (p = 0.042) of detoxification of aflatoxins in food items were obtained from present study. (author)

  4. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  5. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  6. Effects of florfenicol on the antioxidant status, detoxification system and biomolecule damage in the swimming crab (Portunus trituberculatus).

    Science.gov (United States)

    Ren, Xianyun; Wang, Zhuqing; Gao, Baoquan; Liu, Ping; Li, Jian

    2017-09-01

    Florfenicol (FLR) is the most commonly used antibacterial agent in aquaculture because of its wide spectrum of activity and few side-effects. We characterized the toxicokinetics of FLR in the swimming crab (Portunus trituberculatus) after intravenous (IV) dosing (20, 40 and 80mg/kg). The results showed that FLR significantly suppressed the antioxidant system of the hepatopancreas. FLR induced transcriptional expression of phase I and phase II detoxification genes (CYP3 and GST, respectively) in a dose- and clearance time-dependent manner and altered the expression of their corresponding enzymes (erythromycin N-demethylase and glutathione S-transferase, respectively). Moreover, FLR induced the transcription of ATP-binding cassette (ABC) transporter subfamily B (ABCB) and subfamily G (ABCG), although ABCG transcription was not induced by FLR at 20mg/kg. Additionally, higher FLR doses caused significant biomolecule damage during the first 48h after delivery. This study will provide an improved understanding of the exact mechanism underlying toxicity in aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    International Nuclear Information System (INIS)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-01-01

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H_2O_2 concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K_C_A_T and K_C_A_T/K_M values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H_2O_2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H_2O_2 concentration, while the optimal pH and H_2O_2 concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL"−"1 SBP in 30 min reaction time, while an HRP dose of 0.3 U mL"−"1 was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K_C_A_T) and catalytic efficiency (K_C_A_T/K_M) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  8. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes.

    Science.gov (United States)

    Jacquet, Pauline; Daudé, David; Bzdrenga, Janek; Masson, Patrick; Elias, Mikael; Chabrière, Eric

    2016-05-01

    Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.

  9. 2011 EPA Pesticide General Permit (PGP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2011 EPA Pesticide General Permit (PGP) covers discharges of biological pesticides, and chemical pesticides that leave a residue, in areas where EPA is the NPDES...

  10. Pesticide Product Label System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the...

  11. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions.

    Directory of Open Access Journals (Sweden)

    Jian Wei eHe

    2016-04-01

    Full Text Available Deoxynivalenol (DON is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30 oC, and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 µg DON/h/108 cells. The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.

  12. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  13. The Role of the Cephalopod Digestive Gland in the Storage and Detoxification of Marine Pollutants

    Directory of Open Access Journals (Sweden)

    Pedro M. Costa

    2017-04-01

    Full Text Available The relevance of cephalopods for fisheries and even aquaculture, is raising concerns on the relationship between these molluscs and environmental stressors, from climate change to pollution. However, how these organisms cope with environmental toxicants is far less understood than for other molluscs, especially bivalves, which are frontline models in aquatic toxicology. Although, sharing the same basic body plan, cephalopods hold distinct adaptations, often unique, as they are active predators with high growth and metabolic rates. Most studies on the digestive gland, the analog to the vertebrate liver, focused on metal bioaccumulation and its relation to environmental concentrations, with indication for the involvement of special cellular structures (like spherulae and proteins. Although the functioning of phase I and II enzymes of detoxification in molluscs is controversial, there is evidence for CYP-mediated bioactivation, albeit with lower activity than vertebrates, but this issue needs yet much research. Through novel molecular tools, toxicology-relevant genes and proteins are being unraveled, from metallothioneins to heat-shock proteins and phase II conjugation enzymes, which highlights the importance of increasing genomic annotation as paramount to understand toxicant-specific pathways. However, little is known on how organic toxicants are stored, metabolized and eliminated, albeit some evidence from biomarker approaches, particularly those related to oxidative stress, suggesting that these molluscs' digestive gland is indeed responsive to chemical aggression. Additionally, cause-effect relationships between pollutants and toxicopathic effects are little understood, thus compromising, if not the deployment of these organisms for biomonitoring, at least understanding how they are affected by anthropogenically-induced global change.

  14. Pesticide leaching through sandy and loamy fields – Long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme

    International Nuclear Information System (INIS)

    Rosenbom, Annette E.; Olsen, Preben; Plauborg, Finn; Grant, Ruth; Juhler, René K.; Brüsch, Walter; Kjær, Jeanne

    2015-01-01

    The European Union authorization procedure for pesticides includes an assessment of the leaching risk posed by pesticides and their degradation products (DP) with the aim of avoiding any unacceptable influence on groundwater. Twelve-year's results of the Danish Pesticide Leaching Assessment Programme reveal shortcomings to the procedure by having assessed leaching into groundwater of 43 pesticides applied in accordance with current regulations on agricultural fields, and 47 of their DP. Three types of leaching scenario were not fully captured by the procedure: long-term leaching of DP of pesticides applied on potato crops cultivated in sand, leaching of strongly sorbing pesticides after autumn application on loam, and leaching of various pesticides and their DP following early summer application on loam. Rapid preferential transport that bypasses the retardation of the plow layer primarily in autumn, but also during early summer, seems to dominate leaching in a number of those scenarios. - Highlights: • Field-results reveal shortcomings in the EU authorization procedure for pesticides. • The plough layer can be bypassed via preferential transport in e.g. wormholes. • Pesticides properties are decisive for leaching pattern on the sandy fields. • The hydrogeological settings control the leaching patterns on the loamy fields. • Pesticide detection frequency seems to be independent of the month of the year. - Long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme reveals shortcomings in the European Union authorization procedure for pesticides

  15. Quality control of pesticide products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    In light of an established need for more efficient analytical procedures, this publication, which documents the findings of an IAEA coordinated research project (CRP) on “Quality Control of Pesticide Products”, simplifies the existing protocol for pesticide analysis while simultaneously upholding existing standards of quality. This publication includes both a report on the development work done in the CRP and a training manual for use by pesticide analysis laboratories. Based on peer reviewed and internationally recognized methods published by the Association of Analytical Communities (AOAC) and the Collaborative International Pesticides Analytical Council (CIPAC), this report provides laboratories with versatile tools to enhance the analysis of pesticide chemicals and to extend the scope of available analytical repertoires. Adoption of the proposed analytical methodologies promises to reduce laboratories’ use of solvents and the time spent on reconfiguration and set-up of analytical equipment.

  16. Quality control of pesticide products

    International Nuclear Information System (INIS)

    2009-07-01

    In light of an established need for more efficient analytical procedures, this publication, which documents the findings of an IAEA coordinated research project (CRP) on “Quality Control of Pesticide Products”, simplifies the existing protocol for pesticide analysis while simultaneously upholding existing standards of quality. This publication includes both a report on the development work done in the CRP and a training manual for use by pesticide analysis laboratories. Based on peer reviewed and internationally recognized methods published by the Association of Analytical Communities (AOAC) and the Collaborative International Pesticides Analytical Council (CIPAC), this report provides laboratories with versatile tools to enhance the analysis of pesticide chemicals and to extend the scope of available analytical repertoires. Adoption of the proposed analytical methodologies promises to reduce laboratories’ use of solvents and the time spent on reconfiguration and set-up of analytical equipment

  17. Use of labelled pesticides in pesticide research studies and problems in the interpretation of the data

    International Nuclear Information System (INIS)

    Sree Ramulu, U.S.; Krishnamoorthy, K.K.

    1980-01-01

    The introduction of labelled pesticides has helped to solve number of problems connected with the formation and degradation of pesticides, factors influencing the above, location of the metabolites in the plants etc. However in most of the studies, the active ingredient has been labelled and diluted and applied at the recommended doses. But the efficacy of the pesticide is modified by the method of formulation, nature of fillers, emulsifiers, solvents, size of droplets etc. Hence the utility as well as the limitations in the use of labelled pesticides in the formulations are discussed. Also due to the variations in the half life of the radioisotopes used for labelling, the use of labelled pesticides for long as well as short duration crops has also been indicated. Autoradiography has become an useful tool in studying the movement of pesticide in the plant, and insects and also locating the regions of high concentration of pesticides and their residues. Though useful, the production of artefacts caused by exudation of cell sap, and other exudates, thickness of samples, increasing time of contact in the case of low energy radioisotope labelled compounds etc. have prevented the use of this technique on a wide scale. The problems in the preparation of autoradiographs of the plant specimens treated with labelled pesticides are also discussed. (author)

  18. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    International Nuclear Information System (INIS)

    Chi Tran, Thi Kim; Vu, Duc Chinh; Thuy Ung, Thi Dieu; Nguyen, Hai Yen; Nguyen, Ngoc Hai; Dao, Tran Cao; Pham, Thu Nga; Nguyen, Quang Liem

    2012-01-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor. (paper)

  19. Household pesticide usage in the United States.

    Science.gov (United States)

    Savage, E P; Keefe, T J; Wheeler, H W; Mounce, L; Helwic, L; Applehans, F; Goes, E; Goes, T; Mihlan, G; Rench, J; Taylor, D K

    1981-01-01

    A total of 10,000 U.S. households in 25 standard metropolitan statistical areas and 25 counties were included in the United States. More than 8,200 households granted an interview. Nine of every ten households in the United States used some types of pesticide in their house, garden, or yard. Households in the southeastern United States used the most pesticides. Although more than 500 different pesticide formulations were used by the sampled households, 15 pesticides accounted for 65.5% of all pesticides reported in this study. Thirteen of these 15 pesticides were insecticides, one was a herbicide, and one was a rodenticide.

  20. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  1. Social factors and readmission after inpatient detoxification in older alcohol-dependent patients

    NARCIS (Netherlands)

    van den Berg, Julia F.; van den Brink, Wim; Kist, Nicolien; Hermes, Jolanda S. J.; Kok, Rob M.

    2015-01-01

    Alcohol dependence is often a chronic relapsing disorder with frequent admissions to inpatient facilities. This study in older alcohol-dependent inpatients investigates the role of social factors in readmissions after inpatient detoxification. In a prospective study, 132 older alcohol-dependent

  2. Status of pesticides pollution in Tanzania - A review.

    Science.gov (United States)

    Elibariki, Raheli; Maguta, Mihayo Musabila

    2017-07-01

    Various studies have been conducted in Tanzania to assess the magnitude of pesticides pollution associated with pesticides application, storage, disposal as well as knowledge of farmers on pesticides handling. The studies analysed samples from different matrices covering vegetation, biota, water, sediments and soil. The objective of this review was to summarise the results of pesticides residues reported in different components of the environment to give a clear picture of pesticides pollution status in the country for law enforcement as well as for taking precaution measures. Gaps which need to be filled in order to establish a comprehensive understanding on pesticides pollution in the country have also been highlighted. Reviewed studies revealed that, most of the samples contained pesticides below permissible limits (WHO, FAO, US-EPA) except for few samples such as water from Kikavu river, Kilimanjaro region and Kilolo district, Iringa region which were detected with some Organochlorine pesticides (OCPs) above WHO permissible limits. Some soil samples from the former storage sites also contained pesticides above FAO permissible limits. Pesticides and their metabolites were also detected both in vegetation, food and biota samples. The prevalent pesticides in the reviewed studies were the organochlorines such as Dichlorodiphenyltrichloroethane (DDT), endosulfan and Hexachlorocyclohexane (HCH). Surveys to assess farmer's knowledge on pesticides handling observed poor understanding of farmers on pesticides storage, application and disposal. Decontamination of former storage areas, continuous monitoring of pesticide applications and training of farmers on proper handling of pesticides are highly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans.

    Directory of Open Access Journals (Sweden)

    Christine A Bahlai

    Full Text Available BACKGROUND: Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates. CONCLUSIONS/SIGNIFICANCE: These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment, because generalizations based on chemical origin do not hold true in all cases.

  4. Changes in Nutrition-Related Behaviors in Alcohol-Dependent Patients After Outpatient Detoxification: The Role of Chocolate.

    Science.gov (United States)

    Stickel, Anna; Rohdemann, Maren; Landes, Tom; Engel, Katharina; Banas, Roman; Heinz, Andreas; Müller, Christian A

    2016-01-01

    Previous studies have reported changes in nutrition-related behaviors in alcohol-dependent patients after alcohol detoxification, but prospective studies assessing the effects of these changes on maintaining abstinence are lacking. To assess changes in craving and consumption of chocolate and other sweets over time up to six months after outpatient alcohol detoxification treatment and to detect differences in abstinent versus nonabstinent patients. One hundred and fifty alcohol-dependent patients were included in this prospective observational study. Participants completed self-report questionnaires on nutrition-related behaviors and craving before detoxification treatment (baseline, t1), one week (t2), one month (t3), and six months later (t4). Significant changes in craving for and consumption of chocolate as well as in craving for other sweets were observed over time. Increases were most prominent within the first month. Patients who remained abstinent until t3 consumed three times more chocolate than nonabstainers. One quarter of the patients switched from being rare (t1) to frequent (t3) chocolate eaters, and 84% of these remained abstinent until t3. No significant correlations were found between craving for alcohol and craving for or consumption of chocolate or other sweets. In the first month after outpatient alcohol detoxification treatment, significant changes in nutrition-related behaviors were observed. These changes were not associated with alcohol craving. For a subgroup, increasing the frequency of chocolate consumption might be a temporary protective factor with respect to alcohol relapse.

  5. Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification.

    Science.gov (United States)

    Tanwar, Beenu; Modgil, Rajni; Goyal, Ankit

    2018-04-25

    The present investigation was aimed to study the effect of detoxification on the nutrients and antinutrients of wild apricot kernel followed by its hypocholesterolemic effect in male Wistar albino rats. The results revealed a non-significant (p > 0.05) effect of detoxification on the proximate composition except total carbohydrates and protein content. However, detoxification led to a significant (p acid (76.82%), β-carotene (25.90%), dietary fiber constituents (10.51-28.92%), minerals (4.76-31.08%) and antinutritional factors (23.92-77.05%) (phenolics, tannins, trypsin inhibitor activity, saponins, phytic acid, alkaloids, flavonoids, oxalates) along with the complete removal (100%) of bitter and potentially toxic hydrocyanic acid (HCN). The quality parameters of kernel oil indicated no adverse effects of detoxification on free fatty acids, lipase activity, acid value and peroxide value, which remained well below the maximum permissible limit. Blood lipid profile demonstrated that the detoxified apricot kernel group exhibited significantly (p < 0.05) increased levels of HDL-cholesterol (48.79%) and triglycerides (15.09%), and decreased levels of total blood cholesterol (6.99%), LDL-C (22.95%) and VLDL-C (7.90%) compared to that of the raw (untreated) kernel group. Overall, it can be concluded that wild apricot kernel flour could be detoxified efficiently by employing a simple, safe, domestic and cost-effective method, which further has the potential for formulating protein supplements and value-added food products.

  6. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential.

    Science.gov (United States)

    Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng

    2015-11-01

    Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.

  7. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål to Analyze Its Adaptation to BPH-Resistant Rice

    Directory of Open Access Journals (Sweden)

    Lei Peng

    2017-11-01

    Full Text Available Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  8. Pesticide use and self-reported symptoms of acute pesticide poisoning among aquatic farmers in Phnom Penh, Cambodia

    DEFF Research Database (Denmark)

    Jensen, Hanne Klith; Konradsen, Flemming; Jørs, Erik

    2011-01-01

    Organophosphates and carbamates (OPs/CMs) are known for their acetylcholinesterase inhibiting character. A cross-sectional study of pesticide handling practices and self-perceived symptoms of acute pesticide poisoning was conducted using questionnaire-based interviews with 89 pesticide sprayers...... in Boeung Cheung Ek (BCE) Lake, Phnom Penh, Cambodia. The study showed that 50% of the pesticides used belonged to WHO class I + II and personal protection among the farmers were inadequate. A majority of the farmers (88%) had experienced symptoms of acute pesticide poisoning, and this was significantly...... associated with the number of hours spent spraying with OPs/CMs (OR = 1.14, CI 95%: 1.02-1.28). The higher educated farmers reduced their risk of poisoning by 55% for each extra personal protective measure they adapted (OR = 0.45, CI 95%: 0.22-0.91). These findings suggest that improving safe pesticide...

  9. Predictive acute toxicity tests with pesticides.

    Science.gov (United States)

    Brown, V K

    1983-01-01

    By definition pesticides are biocidal products and this implies a probability that pesticides may be acutely toxic to species other than the designated target species. The ways in which pesticides are manufactured, formulated, packaged, distributed and used necessitates a potential for the exposure of non-target species although the technology exists to minimize adventitious exposure. The occurrence of deliberate exposure of non-target species due to the misuse of pesticides is known to happen. The array of predictive acute toxicity tests carried out on pesticides and involving the use of laboratory animals can be justified as providing data on which hazard assessment can be based. This paper addresses the justification and rationale of this statement.

  10. National Pesticide Information Center

    Science.gov (United States)

    ... How can I protect my pets when using pesticides around them? More FAQs FAQ Comics Video FAQs From NPIC: Fact Sheets Videos Web Apps Podcasts Outreach Materials NPIC Professional Resources Social Media: National Pesticide Information Center Tweets by NPICatOSU Please read our ...

  11. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides.

    Science.gov (United States)

    Lozowicka, B; Kaczynski, P; Paritova, Capital A Cyrillic Е; Kuzembekova, G B; Abzhalieva, A B; Sarsembayeva, N B; Alihan, K

    2014-02-01

    This paper presents the first study of pesticide residue results in grain from Kazakhstan. A total of 80 samples: barley, oat, rye, and wheat were collected and tested in the accredited laboratory. Among 180 pesticides, 10 active substances were detected. Banned pesticides, such as DDTs, γ-HCH, aldrin and diazinon were found in cereal grain. Chlorpyrifos methyl and pirimiphos methyl were the most frequently detected residues. No residues were found in 77.5% of the samples, 13.75% contained pesticide residues at or below MRLs, and 8.75% above MRLs. The greatest percentage of samples with residues (29%) was noted for wheat, and the lowest for rye (20%). Obtained data were used to estimate potential health risks associated with exposure to these pesticides. The highest estimated daily intakes (EDIs) were as follows: 789% of the ADI for aldrin (wheat) and 49.8% of the ADI for pirimiphos methyl (wheat and rye). The acute risk from aldrin and tebuconazole in wheat was 315.9% and 98.7% ARfD, respectively. The results show that despite the highest EDIs of pesticide residues in cereals, the current situation could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring of pesticide residues in grain is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pesticide leaching through sandy and loamy fields - long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme.

    Science.gov (United States)

    Rosenbom, Annette E; Olsen, Preben; Plauborg, Finn; Grant, Ruth; Juhler, René K; Brüsch, Walter; Kjær, Jeanne

    2015-06-01

    The European Union authorization procedure for pesticides includes an assessment of the leaching risk posed by pesticides and their degradation products (DP) with the aim of avoiding any unacceptable influence on groundwater. Twelve-year's results of the Danish Pesticide Leaching Assessment Programme reveal shortcomings to the procedure by having assessed leaching into groundwater of 43 pesticides applied in accordance with current regulations on agricultural fields, and 47 of their DP. Three types of leaching scenario were not fully captured by the procedure: long-term leaching of DP of pesticides applied on potato crops cultivated in sand, leaching of strongly sorbing pesticides after autumn application on loam, and leaching of various pesticides and their DP following early summer application on loam. Rapid preferential transport that bypasses the retardation of the plow layer primarily in autumn, but also during early summer, seems to dominate leaching in a number of those scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cyanide detoxification in an insect herbivore: Molecular identification of β-cyanoalanine synthases from Pieris rapae.

    Science.gov (United States)

    van Ohlen, Maike; Herfurth, Anna-Maria; Kerbstadt, Henrike; Wittstock, Ute

    2016-03-01

    Cyanogenic compounds occur widely in the plant kingdom. Therefore, many herbivores are adapted to the presence of these compounds in their diet by either avoiding cyanide release or by efficient cyanide detoxification mechanisms. The mechanisms of adaptation are not fully understood. Larvae of Pieris rapae (Lepidoptera: Pieridae) are specialist herbivores on glucosinolate-containing plants. They are exposed to cyanide during metabolism of phenylacetonitrile, a product of benzylglucosinolate breakdown catalyzed by plant myrosinases and larval nitrile-specifier protein (NSP) in the gut. Cyanide is metabolized to β-cyanoalanine and thiocyanate in the larvae. Here, we demonstrate that larvae of P. rapae possess β-cyanoalanine activity in their gut. We have identified three gut-expressed cDNAs designated PrBSAS1-PrBSAS3 which encode proteins with similarity to β-substituted alanine synthases (BSAS). Characterization of recombinant PrBSAS1-PrBSAS3 shows that they possess β-cyanoalanine activity. In phylogenetic trees, PrBSAS1-PrBSAS3, the first characterized insect BSAS, group together with a characterized mite β-cyanoalanine synthase and bacterial enzymes indicating a similar evolutionary history. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water.

    Science.gov (United States)

    Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar

    2018-01-17

    Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.

  15. Detoxifying enzyme studies on cotton leafhopper, Amrasca biguttula biguttula (Ishida, resistance to neonicotinoid insecticides in field populations in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Halappa Banakar

    2016-12-01

    Full Text Available The cotton leafhopper (Amrasca biguttula biguttula Ishida is considered to be an alarming insect pest causing both quantitative and qualitative loss in cotton. In situ bioassay studies were done and the role of detoxifying enzymes in conferring resistance to neonicotinoid groups of insecticides in low (MUD, medium (DVG, high (HVR and very high (GLB pesticide usage areas of Karnataka were determined. Bioassay studies showed that imidacloprid, thiamethoxam, acetamiprid, thiacloprid and clothianidin registered varying levels of resistance for all the locations studied. The resistance ratio was high in imidacloprid (3.35, 8.57, 9.15 and 12.27 fold respectively and the lowest in dinoferuran (1.86, 5.13, 6.71 and 9.88 fold respectively. Furthermore, the enzyme activity ratio (glutathione-S-transferase was relatively greater, and corresponded to the higher LC50 values of neonicotinoids for very high, high, medium and low pesticide usage areas. Our study suggested that the higher activity of the detoxifying enzyme in the resistance population of cotton leafhopper apparently has a significant role in endowing resistance to neonicotinoid groups of insecticides. However, this study recommends using neonicotinoids in cotton growing areas with caution.

  16. Effectiveness of household lockable pesticide storage to reduce pesticide self-poisoning in rural Asia

    DEFF Research Database (Denmark)

    Pearson, Melissa; Metcalfe, Chris; Jayamanne, Shaluka

    2017-01-01

    groups (293·3 per 100 000 person-years of follow-up in the intervention group vs 318·0 per 100 000 in the control group; rate ratio [RR] 0·93, 95% CI 0·80–1·08; p=0·33). We found no evidence of switching from pesticide self-poisoning to other forms of self-harm, with no significant difference...... in the number of fatal (82 in the intervention group vs 67 in the control group; RR 1·22, 0·88–1·68]) or non-fatal (1135 vs 1153; RR 0·97, 0·86–1·08) self-harm events involving all methods. Interpretation: We found no evidence that means reduction through improved household pesticide storage reduces pesticide......Background: Agricultural pesticide self-poisoning is a major public health problem in rural Asia. The use of safer household pesticide storage has been promoted to prevent deaths, but there is no evidence of effectiveness. We aimed to test the effectiveness of lockable household containers...

  17. Oxidation and detoxification of trivalent arsenic species

    International Nuclear Information System (INIS)

    Aposhian, H. Vasken; Zakharyan, Robert A.; Avram, Mihaela D.; Kopplin, Michael J.; Wollenberg, Michael L.

    2003-01-01

    Arsenic compounds with a +3 oxidation state are more toxic than analogous compounds with a +5 oxidation state, for example, arsenite versus arsenate, monomethylarsonous acid (MMA III ) versus monomethylarsonic acid (MMA V ), and dimethylarsinous acid (DMA III ) versus dimethylarsinic acid (DMA V ). It is no longer believed that the methylation of arsenite is the beginning of a methylation-mediated detoxication pathway. The oxidation of these +3 compounds to their less toxic +5 analogs by hydrogen peroxide needs investigation and consideration as a potential mechanism for detoxification. Xanthine oxidase uses oxygen to oxidize hypoxanthine to xanthine to uric acid. Hydrogen peroxide and reactive oxygen are also products. The oxidation of +3 arsenicals by the hydrogen peroxide produced in the xanthine oxidase reaction was blocked by catalase or allopurinol but not by scavengers of the hydroxy radical, e.g., mannitol or potassium iodide. Melatonin, the singlet oxygen radical scavenger, did not inhibit the oxidation. The production of H 2 O 2 by xanthine oxidase may be an important route for decreasing the toxicity of trivalent arsenic species by oxidizing them to their less toxic pentavalent analogs. In addition, there are many other reactions that produce hydrogen peroxide in the cell. Although chemists have used hydrogen peroxide for the oxidation of arsenite to arsenate to purify water, we are not aware of any published account of its potential importance in the detoxification of trivalent arsenicals in biological systems. At present, this oxidation of the +3 oxidation state arsenicals is based on evidence from in vitro experiments. In vivo experiments are needed to substantiate the role and importance of H 2 O 2 in arsenic detoxication in mammals

  18. Types of pesticides and determination of their residues

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2010-01-01

    The pesticide is any material or component used to protect from pests. Its toxic effect is related to the chemical structure, which can be divided into 3 types : 1- Metal pesticides : Sulphur, cupper, zinc, mercury; 2- Vegetal pesticides : advanced and less toxic to the general health; 3- Synthetic organo pesticides : organo chlorine, organophosphorous, carbamate and pyrethroids. Pesticides in the soil undergo biological dissociation according to their concentration and chemical structure. High concentration of the pesticides in the soil may lead to fertility decrease due to destruction of micro-organisms by the pesticides. Many methods are used to analyze the residues of pesticides in plant or soil : 1- Chromatographic methods : Gas chromatography, gas liquid chromatography and high performance liquid chromatography; 2- Spectroscopy methods : spectrophotometer and mass spectrometer; 3- Isotopic methods : based on tracers technique which is the most sensitive and accurate method and can estimate minor amounts of the pesticides. (author)

  19. Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEAR(pesticides) index.

    Science.gov (United States)

    Münze, Ronald; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Kaske, Oliver; Beketov, Mikhail A; Hundt, Matthias; Bauer, Coretta; Schüürmann, Gerrit; Möder, Monika; Liess, Matthias

    2015-12-15

    Pesticides negatively affect biodiversity and ecosystem function in aquatic environments. In the present study, we investigated the effects of pesticides on stream macroinvertebrates at 19 sites in a rural area dominated by forest cover and arable land in Central Germany. Pesticide exposure was quantified with Chemcatcher® passive samplers equipped with a diffusion-limiting membrane. Ecological effects on macroinvertebrate communities and on the ecosystem function detritus breakdown were identified using the indicator system SPEARpesticides and the leaf litter degradation rates, respectively. A decrease in the abundance of pesticide-vulnerable taxa and a reduction in leaf litter decomposition rates were observed at sites contaminated with the banned insecticide Carbofuran (Toxic Units≥-2.8), confirming the effect thresholds from previous studies. The results show that Chemcatcher® passive samplers with a diffusion-limiting membrane reliably detect ecologically relevant pesticide pollution, and we suggest Chemcatcher® passive samplers and SPEARpesticides as a promising combination to assess pesticide exposure and effects in rivers and streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The use and disposal of household pesticides

    International Nuclear Information System (INIS)

    Grey, Charlotte N.B.; Nieuwenhuijsen, Mark J.; Golding, Jean

    2005-01-01

    Most pesticides are synthetic chemicals manufactured specifically for their toxic properties to the target species, and widely used globally. Several epidemiological studies in the United States have suggested health concerns arising from the chronic exposure of young children to pesticides in the domestic environment. In the UK very little is currently known about how nonoccupational pesticides are being used or disposed of. Any use of pesticides is a potential risk factor for children's exposure, and any potential exposure is likely to be reduced by the parents' adopting precautionary behaviour when using these pesticide products. This was investigated using a sample of 147 parents from the Avon Longitudinal Study of Parents and Children cohort in and around Bristol, through an in-depth interview between August and November 2001. The results of this study add to the understanding of the underlying behaviour of parents applying pesticide products in the home environment in the UK. Pesticides are readily available, and are normally purchased in do-it-yourself shops and supermarkets and mostly disposed of in domestic waste. Safety was stated by 45% of parents to be the most important factor to consider when buying a pesticide. When buying pesticide products, labels were stated to be the most important source of information about pesticides. However, a third of parents stated they would not follow the product label exactly when using a product, just under half felt labels were both inadequate and hard to understand, and about 10% of parents would not take notice of warnings on the pesticide label. Less than half of parents would use gloves when applying a pesticide, although the use of protective equipment such as gloves during the application of pesticides could greatly reduce the exposure. It is a public health concern that the instructions on the labels of products may not always be understood or followed, and further understanding of user behaviour is needed

  1. Pesticide Program Dialogue Committee (PPDC)

    Science.gov (United States)

    The Pesticide Program Dialogue Committee, a permanent, broadly representative advisory committee, meets with EPA on a regular basis to discuss pesticide regulatory, policy, and program implementation issues.

  2. Pesticide Product Information System (PPIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Information System contains information concerning all pesticide products registered in the United States. It includes registrant name and...

  3. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  4. Influence of different disease control pesticide strategies on multiple pesticide residue levels in apple

    DEFF Research Database (Denmark)

    Poulsen, Mette Erecius; Naef, A.; Gasser, S.

    2009-01-01

    Seven pesticide application strategies were investigated to control apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) and, at the same time.. fulfil the new quality standards implemented by some German retailers. These demand that pesticide residues should be below 80....... The trials were conducted at two sites in Switzerland, in 2007, and all strategies and applications were in accordance with actual practice. Four replicates of apple samples from each strategy were then analysed for pesticide residues. The incidence of infection with apple scab and powdery mildew were...... monitored during the season in order to evaluate the efficacy of the different strategies. The efficacies of the different strategies against apple scab and powdery mildew were between 84% and 100% successful. In general, the level of pesticide residues found correlated with application rate and time...

  5. Control of Pesticides 2001

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    comply with the label-claimed content. The tolerance of deviation from the label-claimed content of active ingredient is set by the Danish pesticide regulation. Three different groups of products covered by the pesticide regulation have been included in the 2001 analytical chemical authority control: 1...

  6. Can Chlorella pyrenoidosa be a bioindicator for hazardous solid waste detoxification?

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Li-Fang, E-mail: hulif127@163.com [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Long, Yu-Yang; Shen, Dong-Sheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Jiang, Chen-Jing [The Second Institute of Oceanography, SOA, Hangzhou 310012 (China)

    2012-02-01

    Four kinds of solid waste residue (SWR, S1 to S4) from different stages in a sequential detoxification process were chosen. The biotoxicity of the leachates from S1 to S4 was tested by Chlorella pyrenoidosa. The growth inhibition, the chlorophyll a (chla) and chlorophyll b (chlb) concentrations, and the ultrastructural morphology of cells of C. pyrenoidosa were studied. It shows that the growth inhibition of C. pyrenoidosa significantly increased with increasing leachate concentration when exposed to the leachates from S1, S2, S3, and S4, respectively. It well reflects the toxicity difference of leachate from SWR at different treatment stages, namely S1 > S2 > S3 > S4. Correspondingly, the chla and chlb concentrations of C. pyrenoidosa increased gradually as SWR was treated deeply. Leachate disrupted chlorophyll synthesis and inhibited cell growth. The changing of the ultrastructural morphology of cells under different leachate exposures, such as volume of chloroplasts and quantity of thylakoids reducing, confirmed the toxicity decrease of leachates from different stages. C. pyrenoidosa is a good bioindicator for hazardous solid waste detoxification. The EC{sub 50} at difference scenarios also suggests that it was feasible to estimate ecological toxicity of leachates to C. pyrenoidosa after exposure times of 72 h. C. pyrenoidosa can be introduced to evaluate the effect of hazardous solid waste disposal by biotoxicity assessment. - Highlights: Black-Right-Pointing-Pointer The detoxification process of hazardous solid waste was evaluated by Chlorella pyrenoidosa. Black-Right-Pointing-Pointer The best exposure time of ecological toxicity assessment of Chlorella pyrenoidosa was presented. Black-Right-Pointing-Pointer The possible toxicity of the hazardous solid waste at different disposal stage on Chlorella pyrenoidosa was explored from cell tissue.

  7. Reproductive disorders associated with pesticide exposure.

    Science.gov (United States)

    Frazier, Linda M

    2007-01-01

    Exposure of men or women to certain pesticides at sufficient doses may increase the risk for sperm abnormalities, decreased fertility, a deficit of male children, spontaneous abortion, birth defects or fetal growth retardation. Pesticides from workplace or environmental exposures enter breast milk. Certain pesticides have been linked to developmental neurobehavioral problems, altered function of immune cells and possibly childhood leukemia. In well-designed epidemiologic studies, adverse reproductive or developmental effects have been associated with mixed pesticide exposure in occupational settings, particularly when personal protective equipment is not used. Every class of pesticides has at least one agent capable of affecting a reproductive or developmental endpoint in laboratory animals or people, including organophosphates, carbamates, pyrethroids, herbicides, fungicides, fumigants and especially organochlorines. Many of the most toxic pesticides have been banned or restricted in developed nations, but high exposures to these agents are still occurring in the most impoverished countries around the globe. Protective clothing, masks and gloves are more difficult to tolerate in hot, humid weather, or may be unavailable or unaffordable. Counseling patients who are concerned about reproductive and developmental effects of pesticides often involves helping them assess their exposure levels, weigh risks and benefits, and adopt practices to reduce or eliminate their absorbed dose. Patients may not realize that by the first prenatal care visit, most disruptions of organogenesis have already occurred. Planning ahead provides the best chance of lowering risk from pesticides and remediating other risk factors before conception.

  8. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    International Nuclear Information System (INIS)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    Highlights: • High solids (30% dry matter) pretreatment, enzymatic hydrolysis and fermentation. • Horizontal rotary reactor for hydrolysis and fermentation. • In situ hydrolysates detoxification using inhibitors adsorbing PEI polymer. • 50% of inhibitors recovered as by-product, recyclability of PEI polymer up to 5 times. • 76% of maximum theoretical ethanol was fermented at final concentration of 51 g/kg. - Abstract: Performing the bioethanol production process at high solids loading is a requirement for economic feasibility at industrial scale. So far this has successfully been achieved using wheat straw and other agricultural residues at 30% of water insoluble solids (WIS), but for softwood species (i.e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to ∼20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble polyelectrolyte polymer (polyethylenimine, PEI) to absorb inhibitory compounds in the material. On average 50% removal and recovery of the main inhibitors (HMF, furfural, acetic acid and formic acid) was achieved dosing 1.5% w/w of soluble PEI. The use of PEI was compatible with operating the process at high solids loadings and enabled fermentation of hydrolysates, which

  9. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    International Nuclear Information System (INIS)

    Mehos, M.; Turchi, C.; Pacheco, J.; Boegel, A.J.; Merrill, T.; Stanley, R.

    1992-08-01

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors

  10. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2006-10-01

    Full Text Available This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i the design of novel matrices for enzymeimmobilisation, (ii new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH or parathion hydrolase (PH and (v thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations.

  11. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments.

  12. Antimicrobial Pesticide Use Site Index

    Science.gov (United States)

    This Use Site Index provides guidance to assist applicants for antimicrobial pesticide registration by helping them identify the data requirements necessary to register a pesticide or support their product registrations.

  13. Pesticides in Brazilian freshwaters: a critical review.

    Science.gov (United States)

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.

  14. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  15. Fact Sheets on Pesticides in Schools.

    Science.gov (United States)

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide…

  16. Tips for Reducing Pesticide Impacts on Wildlife

    Science.gov (United States)

    This Web page provides tips for pesticide users in residential and agricultural settings, as well as tips for certified pesticide applicators for ways to protect wildlife from potentially harmful effects of pesticides.

  17. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent

    International Nuclear Information System (INIS)

    Santos-Juanes, L.; Amat, A.M.; Arques, A.; Bernabeu, A.; Silvestre, M.; Vicente, R.; Ano, E.

    2008-01-01

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC 50 of 0.5 mg/l was determined for CN - and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO 2 , but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu 2+ and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay

  18. Kinetics of Natural Detoxification of Hydrogen Cyanide Contained In Retted Cassava Roots

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available This work presents the kinetics of natural detoxification of hydrogen cyanide contained in retted cassava roots. Retting is traditional fermentation of cassava, performed to soften the roots. During retting, cyanide diffuses into water used for the retting. The fresh cassava roots (bitter and sweet varieties used for this experiment were separately retted at ambient 0 temperature of 30 C. The cyanide content and pH were monitored daily. From the analysis of the experimental results, a first order consecutive rate equation is an adequate tool for explaining the mechanism of HCN reduction (or decay in retted cassava roots. The detoxification constants for the bound cyanide in the bitter and sweet cassava roots were 0.378/day and 0.438/day respectively, while that of the free hydrogen cyanide were 0.63/day and 0.74/day for the bitter and sweet varieties respectively. Cassava tubers from different species cannot be fermented with the same retting condition unless they have same or close functional properties.

  19. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Juanes, L.; Amat, A.M. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Arques, A. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain)], E-mail: aarques@txp.upv.es; Bernabeu, A.; Silvestre, M.; Vicente, R. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Ano, E. [Departamento de Gestion e Innovacion, Area de producto y desarrollo sostenible, Asociacion de Investigacion de la Industria del Juguete, Conexas y Afines (AIJU), Avda. de la industria, 23, 03440 Ibi (Spain)], E-mail: m.ambiente@aiju.info

    2008-05-30

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC{sub 50} of 0.5 mg/l was determined for CN{sup -} and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO{sub 2}, but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu{sup 2+} and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay.

  20. Rice (Oryza sativa) Laccases Involved in Modification and Detoxification of Herbicides Atrazine and Isoproturon Residues in Plants.

    Science.gov (United States)

    Huang, Meng Tian; Lu, Yi Chen; Zhang, Shuang; Luo, Fang; Yang, Hong

    2016-08-24

    Atrazine (ATR) and isoproturon (IPU) as herbicides have become serious environmental contaminants due to their overuse in crop production. Although ATR and IPU in soils are easily absorbed by many crops, the mechanisms for their degradation or detoxification in plants are poorly understood. This study identified a group of novel genes encoding laccases (EC 1.10.3.2) that are possibly involved in catabolism or detoxification of ATR and IPU residues in rice. Transcriptome profiling shows at least 22 differentially expressed laccase genes in ATR/IPU-exposed rice. Some of the laccase genes were validated by RT-PCR analysis. The biochemical properties of the laccases were analyzed, and their activities in rice were induced under ATR/IPU exposure. To investigate the roles of laccases in degrading or detoxifying ATR/IPU in rice, transgenic yeast cells (Pichia pastoris X-33) expressing two rice laccase genes (LOC_Os01g63180 and LOC_Os12g15680) were generated. Both transformants were found to accumulate less ATR/IPU compared to the control. The ATR/IPU-degraded products in the transformed yeast cells using UPLC-TOF-MS/MS were further characterized. Two metabolites, hydroxy-dehydrogenated atrazine (HDHA) and 2-OH-isopropyl-IPU, catalyzed by laccases were detected in the eukaryotic cells. These results indicate that the laccase-coding genes identified here could confer degradation or detoxification of the herbicides and suggest that the laccases could be one of the important enzymatic pathways responsible for ATR/IPU degradation/detoxification in rice.

  1. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Directory of Open Access Journals (Sweden)

    Christos A. Damalas

    2011-05-01

    Full Text Available Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms, many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence, and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization

  2. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Science.gov (United States)

    Damalas, Christos A.; Eleftherohorinos, Ilias G.

    2011-01-01

    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already

  3. Human Health Benchmarks for Pesticides

    Data.gov (United States)

    U.S. Environmental Protection Agency — Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source...

  4. Spreading the Word about Pesticide Hazards and Alternatives.

    Science.gov (United States)

    Grier, Norma

    1993-01-01

    Presents a pamphlet and four brochures about pesticide hazards, pesticide use and alternatives, special impacts on children, lawn and garden pest management, and pesticides in food. Discusses the whys and ways of using these materials to inform people about pesticide issues. (MDH)

  5. Nullity of GSTT1/GSTM1 related to pesticides is associated with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Marcela Augusta de Souza Pinhel

    2013-08-01

    Full Text Available Genetic and environmental factors affect the pathogenesis of Parkinson's disease (PD. Genetic variants of the enzyme glutathione S-transferases (GST may be related to the disease. This study aimed to evaluate the influence of genetic variants of GST (GSTT1/GSTM1 and their association with the exposure to environmental toxins in PD patients. We studied 254 patients with PD and 169 controls. The GSTM1/GSTT1 variants were analyzed by polymerase chain reaction. We applied the Fisher's exact test and the χ2 test for statistical analysis (p<0.05. The present and absence for GSTT1 and GSTM1 were similar in patients and controls. The null for GSTT1 and GSTM1 (0/0 and exposure to pesticides prevailed in patients (18% compared to controls (13%, p=0.014. This study suggests the association between PD and previous exposure to pesticides, whose effect may be enhanced in combination with null for GSTT1/GSTM1.

  6. Skid row alcoholism--an objective definition for use in detoxification and treatment planning.

    Science.gov (United States)

    Halikas, J A; Lyttle, M D; Morse, C L

    1984-05-01

    Objective criteria were used to separate skid row alcoholics from others in a public detoxification program. The two groups thus formed were found to have different characteristics, which could lead to more individualized and effective treatment planning in such settings.

  7. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  8. Craving by imagery cue reactivity in opiate dependence following detoxification

    OpenAIRE

    Behera, Debakanta; Goswami, Utpal; Khastgir, Udayan; Kumar, Satindra

    2003-01-01

    Background: Frequent relapses in opioid addiction may be a result of abstinentemergent craving. Exposure to various stimuli associated with drug use (drug cues) may trigger craving as a conditioned response to ?drug cues?. Aims: The present study explored the effects of imagery cue exposure on psychophysiological mechanisms of craving, viz. autonomic arousal, in detoxified opiate addicts. Methodology: Opiate dependent subjects (N=38) following detoxification underwent imagery cue reactivity t...

  9. Long-Term Persistence of Pesticides and TPs in Archived Agricultural Soil Samples and Comparison with Pesticide Application.

    Science.gov (United States)

    Chiaia-Hernandez, Aurea C; Keller, Armin; Wächter, Daniel; Steinlin, Christine; Camenzuli, Louise; Hollender, Juliane; Krauss, Martin

    2017-09-19

    For polar and more degradable pesticides, not many data on long-term persistence in soil under field conditions and real application practices exist. To assess the persistence of pesticides in soil, a multiple-compound screening method (log K ow 1.7-5.5) was developed based on pressurized liquid extraction, QuEChERS and LC-HRMS. The method was applied to study 80 polar pesticides and >90 transformation products (TPs) in archived topsoil samples from the Swiss Soil Monitoring Network (NABO) from 1995 to 2008 with known pesticide application patterns. The results reveal large variations between crop type and field sites. For the majority of the sites 10-15 pesticides were identified with a detection rate of 45% at concentrations between 1 and 330 μg/kg dw in soil. Furthermore, TPs were detected in 47% of the cases where the "parent-compound" was applied. Overall, residues of about 80% of all applied pesticides could be detected with half of these found as TPs with a persistence of more than a decade.

  10. Apply Pesticides Correctly: A Guide for Commercial Applicators.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This document provides practical information needed by commercial pesticide applicators to meet the minimum Federal regulation requirements for the use of various pesticides. The text and accompanying illustrations cover the seven major topics of pests, pest control, pesticides, labels and labeling, using pesticides safely, application equipment,…

  11. Effect of repeated applications of pesticides used on cotton on soil properties

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghaly, M.; Soliman, S.M.; Taha, H.

    2001-01-01

    Repeated application of monocrotophos, methomyl and carbaryl for four years considerably reduced microbial counts, iron reduction, nitrification and arginine deaminase activity in soil. The microbial activities seemed to recover several weeks following pesticide application. The inhibition of enzyme activities was in general more obvious during the second to the fourth years. The maximum inhibition of iron reduction capacity and arginine deaminase activity was observed by the end of the fourth year and amounted to about 90% of control values. No pronounced effect of the used insecticides on respiration and dehydrogenase activity could be detected over the experimental period. (author)

  12. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.

    Science.gov (United States)

    Vanderborght, Jan; Tiktak, Aaldrik; Boesten, Jos J T I; Vereecken, Harry

    2011-03-01

    For the registration of pesticides in the European Union, model simulations for worst-case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst-case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst-case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to 'scenario uncertainty'. Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry.

  13. Development of methods for screening pesticide residues in plant matrices in Ghana

    International Nuclear Information System (INIS)

    Lowor, Samuel Tetteh

    1999-12-01

    TLC has been used in combination with micro-extraction and clean-up methods to provide an alternative cost effective analytical procedure for screening pesticide residues in plant matrices. Thirty-five (35) agrochemicals, which are used in priority crops in Ghana, were used in this study. Ethylacetate extraction in the presence of anhydrous sodium sulphate, followed by gel permeation chromatographic clean up and additional purification on silica gel cartridges provided clean extracts enabling the application of 300mg sample equivalent on the TLC plates. Detection method involving the use of O-tolidine was found to be suitable for general screening of residues, having medium sensitivity for several compounds. The method involving the use of silver nitrate was the only one found to be most suitable for detecting the organo chlorine pesticides. Lindane was the most sensitive to this reagent and had a Minimum Detectable Quantity (MDQ) value of 5ng/5 uL. This method was suitable for use on only alumina plates and detection was also possible even under sunlight. The enzyme inhibition methods were very sensitive to the carbamate and phosphoric acid type insecticides with MDQ values between 0.2 and 2000ng. Other detection methods involving p-nitrobenzene, p-dimethylaminobenzaldehyde and photosynthesis inhibition were also tried and discussed. The database developed has been successfully used for screening and semiquantitative determination of some ranges of pesticide residue in soil and plant matrices. (au)

  14. Structural Variation in Bacterial Glyoxalase I Enzymes: Investigation of the Metalloenzyme Glyoxalase I from Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Suttisansanee U.; Swaminathan S.; Lau, K.; Lagishetty, S.; Rao, K. N.; Sauder, J. M.; Burley, S. K.; Honek, J. F.

    2011-11-04

    The glyoxalase system catalyzes the conversion of toxic, metabolically produced {alpha}-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn{sup 2+} and non-Zn{sup 2+} activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni{sup 2+}/Co{sup 2+}-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn{sup 2+}-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.

  15. 77 FR 38285 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2012-06-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2012-0101; FRL-9348-5] Pesticide Products... announces receipt of applications to register pesticide products containing new active ingredients not... Pollution Prevention Division (7511P) or the Registration Division (7505P), Office of Pesticide Programs...

  16. 33 CFR 274.7 - Authorization of pesticide use.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Authorization of pesticide use... of pesticide use. (a) Programs approved in § 274.6(b) must be those as described on the pesticide label. Pesticide uses which are different from the registered use, require amendment of the label...

  17. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  18. 77 FR 74003 - Pesticides; Draft Guidance for Pesticide Registrants on Antimicrobial Pesticide Products With...

    Science.gov (United States)

    2012-12-12

    ... Insecticide, Fungicide, and Rodenticide Act (FIFRA) or are required to register pesticides. The following list... remediation, on nonporous and porous surfaces, for residual activity, for mold prevention, and in heating...

  19. The Pesticide Risk Beliefs Inventory: A Quantitative Instrument for the Assessment of Beliefs about Pesticide Risks

    OpenAIRE

    LePrevost, Catherine E.; Blanchard, Margaret R.; Cope, W. Gregory

    2011-01-01

    Recent media attention has focused on the risks that agricultural pesticides pose to the environment and human health; thus, these topics provide focal areas for scientists and science educators to enhance public understanding of basic toxicology concepts. This study details the development of a quantitative inventory to gauge pesticide risk beliefs. The goal of the inventory was to characterize misconceptions and knowledge gaps, as well as expert-like beliefs, concerning pesticide risk. This...

  20. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  1. Impairment of cognitive abilities and decision making after chronic use of alcohol: the impact of multiple detoxifications.

    Science.gov (United States)

    Loeber, Sabine; Duka, Theodora; Welzel, Helga; Nakovics, Helmut; Heinz, Andreas; Flor, Herta; Mann, Karl

    2009-01-01

    In the present study, the effect of previous detoxifications on prefrontal function and decision making was examined in alcohol-dependent patients. Further, we examined whether the length of abstinence affects cognitive function. Forty-eight alcohol-dependent patients were recruited from an inpatient detoxification treatment facility and cognitive function was compared to a control group of 36 healthy controls. The patient population was then divided into a group of patients with less than two previous detoxifications (LO-detox group, n = 27) and a group of patients with two or more previous detoxifications (HI-detox group, n = 21) and cognitive function was compared. In addition, cognitive function of recently (i.e. less than 16 days; median split) and longer abstinent patients was compared. We assessed prefrontal function, memory function and intelligence. Alcoholics, when compared to healthy controls, performed worse with regard to the performance index Attention/Executive function. Cognitive impairment in these tasks was pronounced in recently abstinent patients. We found no significant differences between HI-detox and LO-detox patients with regard to the Attention/Executive function. However, in the IOWA gambling Task, the HI-detox group seemed to be less able to learn to choose cards from the more advantageous decks over time. Our results provide additional evidence for cognitive impairment of alcohol-dependent patients with regard to tasks sensitive to frontal lobe function and underline the importance of abstinence for these impairments to recover. We found only little evidence for the impairing effects of repeated withdrawal on prefrontal function and we suggest that executive function is affected earlier in dependence.

  2. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  3. Residential exposures to pesticides and childhood leukaemia

    International Nuclear Information System (INIS)

    Metayer, C.; Buffler, P. A.

    2008-01-01

    Like many chemicals, carcinogenicity of pesticides is poorly characterised in humans, especially in children, so that the present knowledge about childhood leukaemia risk derives primarily from epidemiological studies. Overall, case-control studies published in the last decade have reported positive associations with home use of insecticides, mostly before the child's birth, while findings for herbicides are mixed. Previous studies relied solely on self-reports, therefore lacking information on active ingredients and effects of potential recall bias. Few series to date have examined the influence of children's genetic susceptibility related to transport and metabolism of pesticides. To overcome these limitations, investigators of the Northern California Childhood Leukaemia Study (NCCLS) have undertaken, in collaboration with a multidisciplinary team, a comprehensive assessment of residential pesticide exposure, including: (1) quality control of self-reports; (2) home pesticide inventory and linkage to the Environmental Protection Agency to obtain data on active ingredients; (3) collection and laboratory analyses of ∼600 home dust samples for over 60 pesticides and (4) geographic information studies using California environmental databases to assess exposure to agricultural pesticides. The NCCLS is also conducting large-scale geno-typing to evaluate the role of genes in xenobiotic pathways relevant to the transport and metabolism of pesticides. A better quantification of children's exposures to pesticides at home is critical to the evaluation of childhood leukaemia risk, especially for future gene-environment interaction studies. (authors)

  4. Simulating Effects of Forest Management Practices on Pesticide.

    Science.gov (United States)

    M.C. Smith; W.G. Knisel; J.L. Michael; D.G. Neary

    1993-01-01

    The GLEAMS model pesticide component was modified to simulate up to 245 pesticides simultaneously, and the revised model was used to pesticide pesticide application windows for forest site preparation and pine release. Five herbicides were made for soils representing four hydrologic soil groups in four climatic regions of the southeastern United States. Five herbicides...

  5. Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2014-01-01

    The main body of research on pesticide removal with membranes has looked at pesticides used for pest control, but during transport from surface to groundwater aquifers, pesticides are transformed. Therefore the real polluting compounds are often transformation products, and this vastly increases ...

  6. 40 CFR 152.10 - Products that are not pesticides because they are not intended for a pesticidal purpose.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Products that are not pesticides because they are not intended for a pesticidal purpose. 152.10 Section 152.10 Protection of Environment... pesticidal purpose. A product that is not intended to prevent, destroy, repel, or mitigate a pest, or to...

  7. Treatment outcome of alcohol use disorder outpatients with or without medically assisted detoxification

    NARCIS (Netherlands)

    Merkx, Maarten J. M.; Schippers, Gerard M.; Koeter, Maarten W. J.; de Wildt, Wencke A. J. M.; Vedel, Ellen; Goudriaan, Anna E.; van den Brink, Wim

    2014-01-01

    Little is known about the incremental effects of medically assisted detoxification on outpatient treatment for alcohol use disorders. The objective of this study was to compare drinking outcomes in a psychosocial treatment program between two groups of heavy drinking patients who had an alcohol use

  8. 42 CFR 2.34 - Disclosures to prevent multiple enrollments in detoxification and maintenance treatment programs.

    Science.gov (United States)

    2010-10-01

    ... eliminate adverse physiological or psychological effects incident to withdrawal from the sustained use of a... individual for dependence upon heroin or other morphine-like drugs. Member program means a detoxification...

  9. Pesticide modelling for a small catchment using SWAT-2000.

    Science.gov (United States)

    Kannan, Narayanan; White, Sue M; Worrall, Fred; Whelan, Mick J

    2006-01-01

    Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.

  10. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes.

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J Shawn; Okoro, Emmanuel U; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and

  11. Decontamination of spills and residues of some pesticides and of protective clothing worn during the handling of the pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Armour, M.A.; Nelson, C.; Sather, P. Briker, Y. [Univ. of Alberta, Edmonton (Canada)] [and others

    1996-12-31

    Users of pesticides may have waste or surplus quantities or spills for disposal. One alternative is to deactivate the pesticide at the handling site by using a straightforward chemical reaction. This option can be practical for those who use relatively small quantities of a large variety of pesticides, for example, greenhouse workers, small farmers, and agricultural researchers. This paper describes practical on-site methods for the disposal of spills or small waste quantities of five commonly used pesticides, Diazinon, Chlorpyrifos, Iprodione, 2,4-D, and Captan. These have been tested in the laboratory for the rate of disappearance of the pesticide, the degree of conversion to nontoxic products, the nature and identity of the products, the practicality of the method, and the ease of reproducibility. Methods selected were shown to be safe for the operator, reliable, and reproducible. Greater than 99% of the starting material had to be reacted under reasonable conditions and length of time. Detailed descriptions of the reactions are presented, so that they can be performed with reproducible results. Protective clothing worn during the handling and application of pesticides may become contaminated. Simple laundering does not always remove all of the pesticide residues. Thus, chronic dermal exposure may result from the pesticide-contaminated clothing. Appropriate methods of laundering using specific pretreatments have been determined. 7 refs.

  12. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  13. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity

    International Nuclear Information System (INIS)

    Kehrig, Helena A.; Hauser-Davis, Rachel A.; Seixas, Tercia G.; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M.

    2016-01-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hg inorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hg inorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hg inorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. - Highlights: • Se aids in MeHg detoxification in dolphin liver, forming Hg-Se amorphous crystals. • MT was involved in liver Hg inorg detoxification and GSH was associated to muscle Hg. • Feeding habits seem to influence muscle GSH, suggesting different diving capacities. • MT, GSH and Se and Hg in different forms were investigated in two dolphin species. • Hepatic Hg, MeHg and Hg inorg increased with higher Se concentrations. - “Coastal dolphins showed Se-mediated detoxification of MeHg and MT-mediated detoxification of Hg inorg , while GSH suggests different diving capacities”.

  14. Assisted inhibition effect of acetylcholinesterase with n-octylphosphonic acid and application in high sensitive detection of organophosphorous pesticides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry.

    Science.gov (United States)

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Guo, Yinlong

    2011-11-14

    A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 10(2)-10(3) folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L(-1) for high toxic pesticides and 0.05 μg L(-1) for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A review: radiolabeled synthesis of pesticides

    International Nuclear Information System (INIS)

    Li Juying; Han Ailiang; Wang Haiyan; Wang Wei; Ye Qingfu

    2010-01-01

    Isotope tracer technique has been widely applied in studies of metabolism, mode action, fate and environmental behavior of pesticides. In such studies, the key point is to obtain suitable radiolabelled compounds. However, the radiotracers, especially the labelled pesticides which are novel compounds with complex structures and longer synthesis routes, are usually unavailable from domestic and /or foreign markets. Therefore, it is essential to explore the synthesis methods of radiolabelled pesticides, which are quite different from the conventional nonradiosynthesis, and are requested to obtain higher yield. This article is a review on current status of choosing the available radionuclide and labelled position, the main synthesis methods and problems in the process of preparing radiolabelled pesticides. (authors)

  16. 38 CFR 1.478 - Disclosures to prevent multiple enrollments in detoxification and maintenance treatment programs...

    Science.gov (United States)

    2010-07-01

    ... psychological effects incident to withdrawal from the sustained use of a narcotic drug. (3) Maintenance... heroin or other morphine-like drugs. (4) Member program means a non-VA detoxification treatment or...

  17. Non-persistent pesticides removal in constructed wetlands

    Science.gov (United States)

    Tu, Yue; Jiang, Lei; Li, Haixiang

    2018-03-01

    The heavy use of non-persistent pesticides, resulting in the accumulation of environment and destroy the aquatic environment. This paper presents the research status of using CWs to treat non-persistent pesticides in water. The removal mechanisms are mainly physical deposition, chemical hydrolysis and plant absorption. Analysis of the factors that affect the removal effect are mainly the nature of pesticides, HRT, plants. Some scholars have proposed that secondary products of non-persistent pesticides may be more harmful to the environment, However, the relevant reports are scarce.

  18. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  19. Earthworm tolerance to residual agricultural pesticide contamination

    DEFF Research Database (Denmark)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara

    2014-01-01

    of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus ®, 0.1 μg active...

  20. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States

    Science.gov (United States)

    Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; Vanengelsdorp, Dennis

    2016-09-01

    This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.

  1. 40 CFR 168.22 - Advertising of unregistered pesticides, unregistered uses of registered pesticides and FIFRA...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Advertising of unregistered pesticides... ENFORCEMENT POLICIES AND INTERPRETATIONS Advertising § 168.22 Advertising of unregistered pesticides.... EPA interprets these provisions as extending to advertisements in any advertising medium to which...

  2. Better ways of using pesticides

    International Nuclear Information System (INIS)

    Hussain, M.

    1992-01-01

    The primary role of agriculture is to produce a reliable supply of wholesome food to feed the world's population, safely and without adverse effects on the environment. Pesticides have a crucial part to play in reducing the loss of food during production and after harvesting, and this article discusses how the use of pesticides can be made more efficient. Two particular examples of safer and more effective pesticide delivery systems are described, relating to tsetse fly control in Africa and to the control of weeds in a rice paddy or rice-fish mixed ecosystem. 45 refs, 6 figs

  3. 40 CFR 158.2160 - Microbial pesticides product performance data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Microbial pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Microbial Pesticides § 158.2160 Microbial pesticides product performance data requirements. Product performance data must be developed for...

  4. On Enzyme-Based Anticancer Molecular Dietary Manipulations

    Directory of Open Access Journals (Sweden)

    Andrea Sapone

    2012-01-01

    Full Text Available Evidence from both epidemiological and experimental observations has fuelled the belief that the high consumption of fruits and vegetables rich in nutrients and phytochemicals may help prevent cancer and heart disease in humans. This concept has been drastically simplified from the dietary approaches to the use of single bioactive components both as a single supplement or in functional foods to manipulate xenobiotic metabolism. These procedures, which aim to induce mutagen/carcinogen detoxification or inhibit their bioactivation, fail to take into account the multiple and paradoxical biological outcomes of enzyme modulators that make their effects unpredictable. Here, we show that the idea that the physiological roles of specific catalysts may be easily manipulated by regular long-term administration of isolated nutrients and other chemicals derived from food plants is not viable. In contrast, we claim that the consumption of healthy diets is most likely to reduce mutagenesis and cancer risk, and that both research endeavours and dietary recommendations should be redirected away from single molecules to dietary patterns as a main strategy for public health policy.

  5. 40 CFR 161.55 - Agricultural vs. non-agricultural pesticides.

    Science.gov (United States)

    2010-07-01

    ... pesticides. 161.55 Section 161.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES General Provisions § 161.55 Agricultural vs. non-agricultural pesticides. Section 25(a)(1) of FIFRA instructs the...

  6. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  7. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al- Ayadhi Laila Y

    2011-11-01

    Full Text Available Abstract Background Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects. Methods 20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH, total (GSH+GSSG, glutathione status (GSH/GSSG, glutathione reductase (GR, glutathione- s-transferase (GST, thioredoxin (Trx, thioredoxin reductase (TrxR and peroxidoxins (Prxs I and III were determined. Results Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects. Conclusion The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.

  8. 40 CFR 158.510 - Tiered testing options for nonfood pesticides.

    Science.gov (United States)

    2010-07-01

    ... pesticides. 158.510 Section 158.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Toxicology § 158.510 Tiered testing options for nonfood pesticides. For nonfood use pesticides only, applicants have two options for generating and submitting...

  9. Evolution of a major drug metabolizing enzyme defect in the domestic cat and other felidae: phylogenetic timing and the role of hypercarnivory.

    Directory of Open Access Journals (Sweden)

    Binu Shrestha

    2011-03-01

    Full Text Available The domestic cat (Felis catus shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea and northern elephant seal (Mirounga angustirostris showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter. Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0 as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.

  10. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  11. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  12. Pesticide Health and Safety Information

    Science.gov (United States)

    Animal Health Safe Use Practices Pest Control Food Safety Low Risk Pesticides Integrated Pest Management directed by the product label. Pesticides may be ingested if stored improperly in food or beverage ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife

  13. The role of pH in heavy metal detoxification by biosorption from ...

    African Journals Online (AJOL)

    The high level of toxic metal pollution in the environment is a result of increased human activities. The hydrogen ion concentration of solutions has been known to affect reactions in solutions. The role of pH in As(V), Pb(II) and Hg(II) ions detoxification by bio-sorption from aqueous solutions using coconut fiber and sawdust ...

  14. Methadone Detoxification Versus Traditional Gradual Decrease in the Consumed Amount of Refined Opium Dross (Shireh: The Preferred Method for Controlling Withdrawal Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammadreza Farsinejad

    2012-08-01

    Full Text Available Background: The aim of this study was to compare the effectiveness of methadone detoxification with traditional method of gradual decrement in the abused amount of the refined opium dross (Shireh to control withdrawal syndrome in Shireh-addicted patients. Methods: In this study, two groups of Shireh addicts were compared. The first group was treated by methadone and the second group by gradual decrement in the amount of consumed Shireh. Those experiencing the adverse effects of the treatment were excluded from the study. Methadone dose was calculated based on the amount of the Shireh consumed and detoxification was performed during a 21-day period. In the second group, the amount of the consumed Shireh was gradually decreased within 21 days and some of the withdrawal symptoms were selected as indicators for patient evaluation. Results: A total of 35 patients (16 versus 19 patients in the first and second groups were evaluated. Their mean age was 43 ± 4 years and all were male. A statistically significant difference was found between these two groups in terms of severity and duration of withdrawal symptoms within the first five days and their duration after the 21st day of the onset of detoxification (P< 0.05. Conclusion: In comparison with methadone detoxification, traditional method of gradually decreasing the consumed amount of Shireh controls the severity and duration of withdrawal symptoms better in the course of detoxification.

  15. Impacts of pesticides in a Central California estuary.

    Science.gov (United States)

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured

  16. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    Little existing information was available describing pesticide occurrence in ground water of Wyoming, so the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture and the Wyoming Department of Environmental Quality on behalf of the Wyoming Ground-water and Pesticides Strategy Committee, collected ground-water samples twice (during late summer/early fall and spring) from 296 wells during 1995-2006 to characterize pesticide occurrence. Sampling focused on the State's ground water that was mapped as the most vulnerable to pesticide contamination because of either inherent hydrogeologic sensitivity (for example, shallow water table or highly permeable aquifer materials) or a combination of sensitivity and associated land use. Because of variations in reporting limits among different compounds and for the same compound during this study, pesticide detections were recensored to two different assessment levels to facilitate qualitative and quantitative examination of pesticide detection frequencies - a common assessment level (CAL) of 0.07 microgram per liter and an assessment level that differed by compound, referred to herein as a compound-specific assessment level (CSAL). Because of severe data censoring (fewer than 50 percent of the data are greater than laboratory reporting limits), categorical statistical methods were used exclusively for quantitative comparisons of pesticide detection frequencies between seasons and among various natural and anthropogenic (human-related) characteristics. One or more pesticides were detected at concentrations greater than the CAL in water from about 23 percent of wells sampled in the fall and from about 22 percent of wells sampled in the spring. Mixtures of two or more pesticides occurred at concentrations greater than the CAL in about 9 percent of wells sampled in the fall and in about 10 percent of wells sampled in the spring. At least 74 percent of pesticides detected were classified as herbicides

  17. 75 FR 13284 - Pesticide Program Dialogue Committee; Request for Nominations to the Pesticide Program Dialogue...

    Science.gov (United States)

    2010-03-19

    ... particular interest to persons who work in agricultural settings or persons who are concerned about... entities may include, but are not limited to: Agricultural workers and farmers; pesticide industry and... and special ecosystems from potential risks posed by pesticides. The Charter for EPA's PPDC was...

  18. Citizen's Guide to Pest Control and Pesticide Safety

    Science.gov (United States)

    ... contain pesticide residues. In addition, birds such as ducks and geese may absorb pesticide residues if they ... Where do you store your pesticides? A nationwide study conducted by EPA revealed that almost half (approximately ...

  19. A screening framework for pesticide substitution in agriculture

    DEFF Research Database (Denmark)

    Steingrímsdóttir, María Magnea; Petersen, Annette; Fantke, Peter

    2018-01-01

    Farmers lack science-based tools to flexibly and rapidly identify more sustainable pesticides. To address this gap, we present a screening-level substitution framework to compare and rank pesticides using a consistent set of indicators including registration, pest resistance, human toxicity...... substitution list, performed worst. Total costs across considered pesticides range from 23 to 302 €/ha. Our framework constitutes an operational starting point for identifying sustainable pesticides by farmers and other stakeholders and highlights (a) the need to consider various relevant aspects influencing...... and aquatic ecotoxicity impact potentials, and market price. Toxicity-related damage costs and application costs were combined with application dosages to yield total costs per pesticide. We applied and tested our framework in a case study on pesticides applied to lettuce in Denmark. Our results indicate...

  20. Pesticide risk assessment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Richard N [Environmental Protection Agency, Washington, DC (United States)

    1992-07-01

    In recognition of potential risks, all pesticides distributed and sold in the United States must fulfil extensive registration requirements for the Environmental Protection Agency (EPA). Registration is a licensing procedure where industry must submit data to demonstrate the safety of pesticidal substances and products before they can be used commercially. The regulatory control of pesticides is unique among chemicals in the U.S. in that testing beyond initial registration may be imposed by the Agency throughout the commercial life of the chemical, as long as there is adequate justification. Registration requirements are gauged to the nature of potential exposures. For instance, more data are generally needed for food use registrations than for non-food uses because of direct consumption of treated foods by the whole U.S. population. Unlike pesticide practices in many countries and authorities, as in the European Community where agricultural pesticides, non-agricultural pesticides and genetically engineered microbial agents are handled by separate directives, all pesticide activities are covered in the U.S. by the Federal Insecticide, Fungicide and Rodenticide Act. This statute covers pesticide uses on foods and animal feed and a number of non-food applications like forest and horticultural uses, residential lawn care, in-home applications, and disinfectants/sterilants. Traditional inorganic and organic chemicals are covered, as well as biological agents like pheromones. Naturally occurring and genetically altered microorganisms also come under the definition of pesticides, but multicellular animals are exempt from regulation as pesticides. Pesticide registration in the U.S. as in many other countries may be a long-term, resource intensive undertaking. Not uncommonly the process from beginning to complete registration may take 4 to 10 years and cost about $10 million. To meet the responsibilities of reviewing studies, overseeing 400 active ingredients and 35

  1. Pesticide risk assessment in the United States

    International Nuclear Information System (INIS)

    Hill, Richard N.

    1992-01-01

    In recognition of potential risks, all pesticides distributed and sold in the United States must fulfil extensive registration requirements for the Environmental Protection Agency (EPA). Registration is a licensing procedure where industry must submit data to demonstrate the safety of pesticidal substances and products before they can be used commercially. The regulatory control of pesticides is unique among chemicals in the U.S. in that testing beyond initial registration may be imposed by the Agency throughout the commercial life of the chemical, as long as there is adequate justification. Registration requirements are gauged to the nature of potential exposures. For instance, more data are generally needed for food use registrations than for non-food uses because of direct consumption of treated foods by the whole U.S. population. Unlike pesticide practices in many countries and authorities, as in the European Community where agricultural pesticides, non-agricultural pesticides and genetically engineered microbial agents are handled by separate directives, all pesticide activities are covered in the U.S. by the Federal Insecticide, Fungicide and Rodenticide Act. This statute covers pesticide uses on foods and animal feed and a number of non-food applications like forest and horticultural uses, residential lawn care, in-home applications, and disinfectants/sterilants. Traditional inorganic and organic chemicals are covered, as well as biological agents like pheromones. Naturally occurring and genetically altered microorganisms also come under the definition of pesticides, but multicellular animals are exempt from regulation as pesticides. Pesticide registration in the U.S. as in many other countries may be a long-term, resource intensive undertaking. Not uncommonly the process from beginning to complete registration may take 4 to 10 years and cost about $10 million. To meet the responsibilities of reviewing studies, overseeing 400 active ingredients and 35

  2. Utilization of Boxes for Pesticide Storage in Sri Lanka

    DEFF Research Database (Denmark)

    Pieris, Ravi; Weerasinghe, Manjula; Abeywickrama, Tharaka

    2017-01-01

    Pesticide self-poisoning is now considered one of the two most common methods of suicide worldwide. Encouraging safe storage of pesticides is one particular approach aimed at reducing pesticide self-poisoning. CropLife Sri Lanka (the local association of pesticide manufacturers), with the aid of ...

  3. Quantum chemistry in environmental pesticide risk assessment.

    Science.gov (United States)

    Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar

    2017-11-01

    The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. 40 CFR 158.2170 - Experimental use permit data requirements-microbial pesticides.

    Science.gov (United States)

    2010-07-01

    ... requirements-microbial pesticides. 158.2170 Section 158.2170 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Microbial Pesticides § 158.2170 Experimental use permit data requirements—microbial pesticides. (a) For all microbial pesticides. (1) The...

  5. Food processing as a means for pesticide residue dissipation

    Directory of Open Access Journals (Sweden)

    Đorđević Tijana

    2016-01-01

    Full Text Available Pesticides are one of the major inputs used for increasing agricultural productivity of crops. However, their inadequate application may produce large quantities of residues in the environment and, once the environment is contaminated with pesticides, they may easily enter into the human food chain through plants, creating a potentially serious health hazard. Nowadays, consumers are becoming more aware of the importance of safe and high quality food products. Thus it is pertinent to explore simple, cost-effective strategies for decontaminating food from pesticides. Various food processing techniques, at industrial and/or domestical level, have been found to significantly reduce the contents of pesticide residues in most food materials. The extent of reduction varies with the nature of pesticides, type of commodity and processing steps. Pesticides, especially those with limited movement and penetration ability, can be removed with reasonable efficiency by washing, and the effectiveness of washing depends on pesticide solubility in water or in different chemical solvents. Peeling of fruit and vegetable skin can dislodge pesticide residues to varying degrees, depending on constitution of a commodity, chemical nature of the pesticide and environmental conditions. Different heat treatments (drying, pasteurization, sterilization, blanching, steaming, boiling, cooking, frying or roasting during various food preparation and preservation processes can cause losses of pesticide residues through evaporation, co-distillation and/or thermal degradation. Product manufactures, from the simplest grain milling, through oil extraction and processing, juicing/pureeing or canning of fruits and vegetables, to complex bakery and dairy production, malting and brewing, wine making and various fermentation processes, play a role in the reduction of pesticide contents, whereby each operation involved during processing usually adds to a cumulative effect of reduction of

  6. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    Science.gov (United States)

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.

  7. Pesticide Reevaluation

    Science.gov (United States)

    Learn about the process for periodically evaluating registered pesticides to ensure they meet current science standards for risk assessment, as required by the Federal Insecticide Fungicide and Rodenticide Act.

  8. Pesticide risks around the home (image)

    Science.gov (United States)

    Pesticides are substances which kill or deter unwanted pests, such as insects or rodents. These substances can ... avoid an accidental ingestion is to keep all pesticides out of the reach of children.

  9. Pesticide registration, distribution and use practices in Ghana

    NARCIS (Netherlands)

    Onwona Kwakye, Michael; Mengistie, Belay; Ofosu-Anim, John; Nuer, Alexander Tetteh K.; Den Brink, van Paul J.

    2018-01-01

    Ghana has implemented regulation on the registration, distribution and usage of pesticides in order to evaluate their environmental and human health effects. However, environmental monitoring and certified laboratories for pesticide analysis are lacking. Pesticide misuse, misapplication,

  10. Pesticide transport simulation in a tropical catchment by SWAT

    International Nuclear Information System (INIS)

    Bannwarth, M.A.; Sangchan, W.; Hugenschmidt, C.; Lamers, M.; Ingwersen, J.; Ziegler, A.D.; Streck, T.

    2014-01-01

    The application of agrochemicals in Southeast Asia is increasing in rate, variety and toxicity with alarming speed. Understanding the behavior of these different contaminants within the environment require comprehensive monitoring programs as well as accurate simulations with hydrological models. We used the SWAT hydrological model to simulate the fate of three different pesticides, one of each usage type (herbicide, fungicide and insecticide) in a mountainous catchment in Northern Thailand. Three key parameters were identified: the sorption coefficient, the decay coefficient and the coefficient controlling pesticide percolation. We yielded satisfactory results simulating pesticide load dynamics during the calibration period (NSE: 0.92–0.67); the results during the validation period were also acceptable (NSE: 0.61–0.28). The results of this study are an important step in understanding the modeling behavior of these pesticides in SWAT and will help to identify thresholds of worst-case scenarios in order to assess the risk for the environment. - Highlights: • We performed a global LH-sensitivity analysis of all pesticide related parameters. • Key physical parameters are associated to percolation, degradation and sorption. • We simulated the measured loads of three different pesticides. • We performed an uncertainty analysis of all pesticide simulations. • All Pesticides differed considerably in their sensitivity and simulation behavior. - Pesticide load simulations of three pesticides were modeled by SWAT, providing clues on how to handle pesticides in future SWAT studies

  11. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sarah A. Winter

    2016-10-01

    Full Text Available The present study employed mass spectrometry (ICP-MS to measure the internal cadmium concentrations (Cdint in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC transporters (e.g., HMT-1 and MRP-1 and phytochelatin synthase (PCS, we compared wild-type (WT and different mutant strains of C. elegans. As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1Δ, pcs-1Δ, and hmt-1Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1Δ and WT than in hmt-1Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1Δ. Cd release (detoxification was found to be maximal in mrp-1Δ, minimal in hmt-1Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals, which keeps internal Cd (or metal

  12. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Winter, Sarah A; Dölling, Ramona; Knopf, Burkhard; Mendelski, Martha N; Schäfers, Christoph; Paul, Rüdiger J

    2016-10-01

    The present study employed mass spectrometry (ICP-MS) to measure the internal cadmium concentrations (Cd int ) in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC) transporters (e.g., HMT-1 and MRP-1) and phytochelatin synthase (PCS), we compared wild-type (WT) and different mutant strains of C. elegans . As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1 Δ, pcs-1 Δ, and hmt-1 Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1 Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1 Δ and WT than in hmt-1 Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1 Δ. Cd release (detoxification) was found to be maximal in mrp-1 Δ, minimal in hmt-1 Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1 Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1 Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress) primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals), which keeps internal Cd (or

  13. Disposal of unwanted pesticides in Stellenbosch, South Africa

    International Nuclear Information System (INIS)

    Aqiel Dalvie, Mohamed; Africa, Algernon; London, Leslie

    2006-01-01

    Background: Unwanted pesticides in developing countries are major environmental health threats. This study followed-up a previous audit of unwanted and obsolete pesticides on farms in a rural district of South Africa six years after a National Retrieval Project (NPR) was undertaken. Methods: A descriptive survey of 37 farms that had been in possession of unwanted pesticides in a 1995 survey and a purposive sample of 34 neighbouring farms, was carried out. The survey data included farm details; details of unwanted pesticide stocks, volumes of empty containers and safety and hygiene of pesticide stores. In addition, management was asked if they had been informed about and participated in the 1997 NPR and similarly whether they were aware of the retrieval planned by the African Stockpiles Programme (ASP). Results: Forty (56%) farms were in possession of obsolete pesticides of which 24 (59%) were farms that had unwanted stocks in the previous survey. There were more than 9 tonnes of these pesticides, 50% more than in the previous survey, including 20 chemicals banned, withdrawn or restricted in South Africa or classified as WHO Class I toxicity. Over 2800 kg of pesticides (30%) were not identifiable. None of the farms participated in the NPR, although 47 knew of the initiative. Only six farmers (9%) knew of the ASP initiative. Fifty-nine farms (83%) had empty containers on the premises. Most pesticide stores (67%) had floors contaminated with chemicals. Conclusion: The survey found that despite the NPR, the problem of unwanted pesticides in the study area and probably throughout South Africa has deteriorated. National and international policies should control the problem at source and encourage more sustainable agriculture

  14. Prevalence of pesticides in postconsumer agrochemical polymeric packaging.

    Science.gov (United States)

    Eras, J; Costa, J; Vilaró, F; Pelacho, A M; Canela-Garayoa, R; Martin-Closas, L

    2017-02-15

    Pesticide remains contained in agrochemical packaging waste are a source of uncontrolled risk for human health; they are also a quality feedstock for the plastic recycling industry. Many governments have recently started to establish laws and regulations to develop systems for recovering and recycling the polymeric packages used for pesticides. There is also a demand in having a procedure to control the suitability of the pesticide packages to be reused. We have developed a two-step operation process to assess the pesticide residues in agricultural containers made of a variety of polymeric matrices. The procedure is based on an extraction with a solvent mixture followed by UPLC-MS/MS determination. Solvents for neutral pesticides were selected considering the Hildebrand solubility (δ) of solvents and polymers together with those estimated for the pesticides. The proposed technique is effective in recovering imbibed pesticides in polymeric matrices. Also, a simplified extraction procedure has been tested to become a routine method for these wastes. We have found that in many cases a significant amount of pesticides remain into the polymeric matrix, even after a standardized cleaning; the impact of releasing these hazardous compounds into the environment is to be of further consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  16. Impact of pesticides on plant growth promotion of Vigna radiata and non-target microbes: comparison between chemical- and bio-pesticides.

    Science.gov (United States)

    Gupta, Sukriti; Gupta, Rashi; Sharma, Shilpi

    2014-08-01

    To compare the target and non-target effects of two chemical-pesticides (chlorpyrifos and endosulfan) with that of a bio-pesticide (azadirachtin), Vigna radiata (mung bean) was grown in a randomized pot experiment with recommended and higher application rates of pesticides. Colony counts enumerating specific microbial populations, viz. fungi, Pseudomonas, nitrogen-fixing bacteria, and phosphate-solubilizing microorganisms, were performed. In addition, several plant growth parameters such as root and shoot lengths were also monitored. It was observed that the pesticides exerted a suppressive effect on different microbial communities under study in the initial 30 days period. The bacterial and fungal populations in chlorpyrifos treated plants increased thereafter. Endosulfan resulted in enhancement of fungi and nitrogen-fixing bacteria, although phosphate-solubilizing microorganisms were suppressed at higher application rates. Azadirachtin, which is gaining popularity owing to its biological origin, did not result in enhancement of any microbial populations; on the other hand, it had a deleterious effect on phosphate-solubilizing bacteria. This study is the first to evaluate the non-target effects of pesticides with a comparison between chemical- and bio-pesticides, and also stresses the importance of critical investigation of bio-pesticides before their wide spread application in agriculture.

  17. How We Engage Our Pesticide Stakeholders

    Science.gov (United States)

    The success of EPA's pesticide program is directly connected to our efforts to engage all stakeholders. In addition to meetings on pesticide-specific actions, we sponsor advisory committees that include diverse, independent stakeholders.

  18. Pesticide residues in locally available cereals and vegetables

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Santos, F.L.; Bonoan, L.S.

    1976-03-01

    Vegetable samples (pechay, cabbage, lettuce, green beans and tomatoes) bought from public markets in the Metro Manila area were analyzed for pesticide residues using gas chromatography. The samples analyzed in 1968-69 contained high levels of chlorinated pesticides such as DDT, Aldrin, Endrin, and Thiodan, while in the samples analyzed in January 1976, no chlorinated and organophosphate pesticides were detected. Cereal samples (rice, corn and sorghum) were obtained from the National Grains Authority and analyzed for pesticide residues and bromine residues. Total bromine residues was determined by neutron activation analysis. In most of the samples analyzed, the concentrations of pesticide residues were below the tolerance levels set by the FAO/WHO Committee on Pesticide Residues in Foods. An exception was one rice sample from Thailand, the bromine residue content (110ppm) of which exceeds the tolerance level of 50ppm

  19. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  20. Removal of pesticides from white and red wines by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Doulia, Danae S., E-mail: ntoulia@mail.ntua.gr [Laboratory of Organic Chemical Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Politechniou, GR-15780 Athens (Greece); Anagnos, Efstathios K. [Laboratory of Organic Chemical Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Politechniou, GR-15780 Athens (Greece); Liapis, Konstantinos S. [Pesticide Residue Laboratory, Benaki Phytopathological Institute, 7 Ekalis Str., Kiphissia, Athens GR-14561 (Greece); Klimentzos, Demetrios A. [Laboratory of Organic Chemical Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Politechniou, GR-15780 Athens (Greece)

    2016-11-05

    Highlights: • Various mixtures of 23 pesticides were determined by SPE and GC-ECD in wine. • The removal of pesticides is affected by the type of membrane and wine. • The higher the pesticide’s hydrophobicity, the higher its removal. • Antagonistic and synergistic effects of pesticides in wines were estimated. - Abstract: The aim of this work is the investigation of microfiltration in removing pesticides from a white and a red Greek wine. Six membranes with pore size 0.45 μm were investigated. Two mixtures of 23 and 9 pesticides, and single pesticide solutions were added in the wine. The pesticides tested belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the filtered fortified wine. Distinct behavior was exhibited by each membrane. Cellulose acetate and cellulose nitrate showed higher mean pesticide removal for both wines, followed by polyethersulfone, regenerated cellulose, and polyamides. The filtration effectiveness was correlated to the membrane type and to the pesticide chemical structure and properties (octanol-water partition coefficient, water solubility) and compared for the wines tested. In most cases, the more hydrophobic pesticides (pyrethroids and aldrin) showed higher removal from red wine than white wine. Adsorption on membranes was increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecule. The removal of each pesticide from its single solution was generally higher than that from its mixtures, allowing the estimation of the antagonistic and synergistic effects of pesticides in the mixtures.