WorldWideScience

Sample records for deterministic safety analysis

  1. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  2. Deterministic and probabilistic approach to safety analysis

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1980-01-01

    The examples discussed in this paper show that reliability analysis methods fairly well can be applied in order to interpret deterministic safety criteria in quantitative terms. For further improved extension of applied reliability analysis it has turned out that the influence of operational and control systems and of component protection devices should be considered with the aid of reliability analysis methods in detail. Of course, an extension of probabilistic analysis must be accompanied by further development of the methods and a broadening of the data base. (orig.)

  3. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  4. The dialectical thinking about deterministic and probabilistic safety analysis

    International Nuclear Information System (INIS)

    Qian Yongbai; Tong Jiejuan; Zhang Zuoyi; He Xuhong

    2005-01-01

    There are two methods in designing and analysing the safety performance of a nuclear power plant, the traditional deterministic method and the probabilistic method. To date, the design of nuclear power plant is based on the deterministic method. It has been proved in practice that the deterministic method is effective on current nuclear power plant. However, the probabilistic method (Probabilistic Safety Assessment - PSA) considers a much wider range of faults, takes an integrated look at the plant as a whole, and uses realistic criteria for the performance of the systems and constructions of the plant. PSA can be seen, in principle, to provide a broader and realistic perspective on safety issues than the deterministic approaches. In this paper, the historical origins and development trend of above two methods are reviewed and summarized in brief. Based on the discussion of two application cases - one is the changes to specific design provisions of the general design criteria (GDC) and the other is the risk-informed categorization of structure, system and component, it can be concluded that the deterministic method and probabilistic method are dialectical and unified, and that they are being merged into each other gradually, and being used in coordination. (authors)

  5. Human Resources Readiness as TSO for Deterministic Safety Analysis on the First NPP in Indonesia

    International Nuclear Information System (INIS)

    Sony Tjahyani, D. T.

    2010-01-01

    In government regulation no. 43 year 2006 it is mentioned that preliminary safety analysis report and final safety analysis report are one of requirements which should be applied in construction and operation licensing for commercial power reactor (NPPs). The purpose of safety analysis report is to confirm the adequacy and efficiency of provisions within the defence in depth of nuclear reactor. Deterministic analysis is used on the safety analysis report. One of the TSO task is to evaluate this report based on request of operator or regulatory body. This paper discusses about human resources readiness as TSO for deterministic safety analysis on the first NPP in Indonesia. The assessment is done by comparing the analysis step on SS-23 and SS-30 with human resources status of BATAN currently. The assessment results showed that human resources for deterministic safety analysis are ready as TSO especially to review preliminary safety analysis report and to revise final safety analysis report in licensing on the first NPP in Indonesia. Otherwise, to prepare the safety analysis report is still needed many competency human resources. (author)

  6. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  7. Incidents in nuclear research reactor examined by deterministic probability and probabilistic safety analysis

    International Nuclear Information System (INIS)

    Lopes, Valdir Maciel

    2010-01-01

    This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)

  8. Deterministic uncertainty analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1987-01-01

    Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig

  9. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  10. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  11. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  12. An approach to model reactor core nodalization for deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M

  13. A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Rai, Ajit; Zio, Enrico

    2016-01-01

    The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental Accelerator Driven System (LBE-XADS). - Highlights: • We integrate dynamic aspects into the definition of a safety margins. • We consider stochastic and epistemic uncertainties affecting the system dynamics. • Uncertainties are handled by Order Statistics (OS). • We estimate the system grace time during accidental scenarios. • We apply the approach to an LBE-XADS accidental scenario.

  14. Integrated Deterministic-Probabilistic Safety Assessment Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Vorobyev, Y.; Sanchez-Perea, M.; Queral, C.; Jimenez Varas, G.; Rebollo, M. J.; Mena, L.; Gomez-Magin, J.

    2014-02-01

    IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses. (Author)

  15. Deterministic uncertainty analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1987-12-01

    This paper presents a deterministic uncertainty analysis (DUA) method for calculating uncertainties that has the potential to significantly reduce the number of computer runs compared to conventional statistical analysis. The method is based upon the availability of derivative and sensitivity data such as that calculated using the well known direct or adjoint sensitivity analysis techniques. Formation of response surfaces using derivative data and the propagation of input probability distributions are discussed relative to their role in the DUA method. A sample problem that models the flow of water through a borehole is used as a basis to compare the cumulative distribution function of the flow rate as calculated by the standard statistical methods and the DUA method. Propogation of uncertainties by the DUA method is compared for ten cases in which the number of reference model runs was varied from one to ten. The DUA method gives a more accurate representation of the true cumulative distribution of the flow rate based upon as few as two model executions compared to fifty model executions using a statistical approach. 16 refs., 4 figs., 5 tabs

  16. RDS; A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Mohd Faiz Salim; Ridha Roslan; Mohd Rizal Mamat

    2013-01-01

    Full-text: Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBIMOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges. (author)

  17. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-01-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges

  18. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  19. Applications of the 3-D Deterministic Transport Attila(regsign) for Core Safety Analysis

    International Nuclear Information System (INIS)

    Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.

    2004-01-01

    An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila(reg s ign)) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future

  20. Deterministic Safety Technology for RBMK Reactors

    Directory of Open Access Journals (Sweden)

    F. D'Auria

    2008-01-01

    The paper summarizes the activities performed at NIKIET in Moscow and at University of Pisa (UNIPI in Pisa. A top-down approach is pursued in structuring the executive summary that includes the following sections: (i the safety needed for the RBMK NPP, (ii the roadmap, (iii\tthe adopted computational tools, (iv\tkey findings, (v\tEmphasis is given to the multiple pressure tube rupture (MPTR issue and the individual channel monitoring (ICM proposal.

  1. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition); Analisis determinista de seguridad para centrales nucleares. Guia de Seguridad Especifica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  2. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    International Nuclear Information System (INIS)

    Zio, Enrico

    2014-01-01

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives

  3. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico, E-mail: enrico.zio@ecp.fr [Ecole Centrale Paris and Supelec, Chair on System Science and the Energetic Challenge, European Foundation for New Energy – Electricite de France (EDF), Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2014-12-15

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives.

  4. Deterministic sensitivity analysis for the numerical simulation of contaminants transport

    International Nuclear Information System (INIS)

    Marchand, E.

    2007-12-01

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  5. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition); Детерминистический анализ безопасности атомных электростанций. Специальное руководство по безопасности

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References.

  6. Deterministic and Probabilistic Analysis of NPP Communication Bridge Resistance Due to Extreme Loads

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents the experiences from the deterministic and probability analysis of the reliability of communication bridge structure resistance due to extreme loads - wind and earthquake. On the example of the steel bridge between two NPP buildings is considered the efficiency of the bracing systems. The advantages and disadvantages of the deterministic and probabilistic analysis of the structure resistance are discussed. The advantages of the utilization the LHS method to analyze the safety and reliability of the structures is presented

  7. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  8. DETERMINISTIC METHODS USED IN FINANCIAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    MICULEAC Melania Elena

    2014-06-01

    Full Text Available The deterministic methods are those quantitative methods that have as a goal to appreciate through numerical quantification the creation and expression mechanisms of factorial and causal, influence and propagation relations of effects, where the phenomenon can be expressed through a direct functional relation of cause-effect. The functional and deterministic relations are the causal relations where at a certain value of the characteristics corresponds a well defined value of the resulting phenomenon. They can express directly the correlation between the phenomenon and the influence factors, under the form of a function-type mathematical formula.

  9. The Safety Assessment of OPR-1000 for Station Blackout Applying Combined Deterministic and Probabilistic Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu; Ahn, Seung-Hoon; Cho, Dae-Hyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    This is termed station blackout (SBO). However, it does not generally include the loss of available AC power to safety buses fed by station batteries through inverters or by alternate AC sources. Historically, risk analysis results have indicated that SBO was a significant contributor to overall core damage frequency. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident, which is a typical beyond design basis accident and important contributor to overall plant risk, is performed by applying the combined deterministic and probabilistic procedure (CDPP). In addition, discussions are made for reevaluation of SBO risk at OPR-1000 by eliminating excessive conservatism in existing PSA. The safety assessment of OPR-1000 for SBO accident, which is a typical BDBA and significant contributor to overall plant risk, was performed by applying the combined deterministic and probabilistic procedure. However, the reference analysis showed that the CDF and CCDP did not meet the acceptable risk, and it was confirmed that the SBO risk should be reevaluated. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it was demonstrated that the proposed CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.

  10. A combined deterministic and probabilistic procedure for safety assessment of components with cracks - Handbook.

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Bergman, Mats; Brickstad, Bjoern; Weilin Zang; Sattari-Far, Iradj; Andersson, Peder; Sund, Goeran; Dahlberg, Lars; Nilsson, Fred (Inspecta Technology AB, Stockholm (Sweden))

    2008-07-01

    SSM has supported research work for the further development of a previously developed procedure/handbook (SKI Report 99:49) for assessment of detected cracks and tolerance for defect analysis. During the operative use of the handbook it was identified needs to update the deterministic part of the procedure and to introduce a new probabilistic flaw evaluation procedure. Another identified need was a better description of the theoretical basis to the computer program. The principal aim of the project has been to update the deterministic part of the recently developed procedure and to introduce a new probabilistic flaw evaluation procedure. Other objectives of the project have been to validate the conservatism of the procedure, make the procedure well defined and easy to use and make the handbook that documents the procedure as complete as possible. The procedure/handbook and computer program ProSACC, Probabilistic Safety Assessment of Components with Cracks, has been extensively revised within this project. The major differences compared to the last revision are within the following areas: It is now possible to deal with a combination of deterministic and probabilistic data. It is possible to include J-controlled stable crack growth. The appendices on material data to be used for nuclear applications and on residual stresses are revised. A new deterministic safety evaluation system is included. The conservatism in the method for evaluation of the secondary stresses for ductile materials is reduced. A new geometry, a circular bar with a circumferential surface crack has been introduced. The results of this project will be of use to SSM in safety assessments of components with cracks and in assessments of the interval between the inspections of components in nuclear power plants

  11. Inherent Conservatism in Deterministic Quasi-Static Structural Analysis

    Science.gov (United States)

    Verderaime, V.

    1997-01-01

    The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

  12. Deterministic analysis of mid scale outdoor fire

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2003-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. Mathematical fire model called FDS (Fire Dynamic Simulator) is used in the presented work. A CFD (Computational Fluid Dynamic) model using LES (Large Eddie Simulation) is used to calculate fire development and spread of combustion products in the environment. The fire source is located in the vicinity of the hazardous plant, power, chemical etc. The article presents the brief background of the FDS computer program and the initial and boundary conditions used in the mathematical model. Results discuss output data and check the validity of results. The work also presents some corrections of the physical model used, which influence the quality of results. The obtained results were discussed and compared with the Fire Safety Analysis report included in the Probabilistic Safety Assessment of Krsko nuclear power plant. (author)

  13. Deterministic and Probabilistic Analysis against Anticipated Transient Without Scram

    International Nuclear Information System (INIS)

    Choi, Sun Mi; Kim, Ji Hwan; Seok, Ho

    2016-01-01

    An Anticipated Transient Without Scram (ATWS) is an Anticipated Operational Occurrences (AOOs) accompanied by a failure of the reactor trip when required. By a suitable combination of inherent characteristics and diverse systems, the reactor design needs to reduce the probability of the ATWS and to limit any Core Damage and prevent loss of integrity of the reactor coolant pressure boundary if it happens. This study focuses on the deterministic analysis for the ATWS events with respect to Reactor Coolant System (RCS) over-pressure and fuel integrity for the EU-APR. Additionally, this report presents the Probabilistic Safety Assessment (PSA) reflecting those diverse systems. The analysis performed for the ATWS event indicates that the NSSS could be reached to controlled and safe state due to the addition of boron into the core via the EBS pump flow upon the EBAS by DPS. Decay heat is removed through MSADVs and the auxiliary feedwater. During the ATWS event, RCS pressure boundary is maintained by the operation of primary and secondary safety valves. Consequently, the acceptance criteria were satisfied by installing DPS and EBS in addition to the inherent safety characteristics

  14. Deterministic and Probabilistic Analysis against Anticipated Transient Without Scram

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Mi; Kim, Ji Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of); Seok, Ho [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    An Anticipated Transient Without Scram (ATWS) is an Anticipated Operational Occurrences (AOOs) accompanied by a failure of the reactor trip when required. By a suitable combination of inherent characteristics and diverse systems, the reactor design needs to reduce the probability of the ATWS and to limit any Core Damage and prevent loss of integrity of the reactor coolant pressure boundary if it happens. This study focuses on the deterministic analysis for the ATWS events with respect to Reactor Coolant System (RCS) over-pressure and fuel integrity for the EU-APR. Additionally, this report presents the Probabilistic Safety Assessment (PSA) reflecting those diverse systems. The analysis performed for the ATWS event indicates that the NSSS could be reached to controlled and safe state due to the addition of boron into the core via the EBS pump flow upon the EBAS by DPS. Decay heat is removed through MSADVs and the auxiliary feedwater. During the ATWS event, RCS pressure boundary is maintained by the operation of primary and secondary safety valves. Consequently, the acceptance criteria were satisfied by installing DPS and EBS in addition to the inherent safety characteristics.

  15. The safety assessment of OPR-1000 nuclear power plant for station blackout accident applying the combined deterministic and probabilistic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu, E-mail: littlewing@kins.re.kr [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-08-15

    Highlights: • The combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. • The safety assessment of OPR-1000 nuclear power plant for SBO accident is performed by applying the CDPP. • By estimating the offsite power restoration time appropriately, the SBO risk is reevaluated. • It is concluded that the CDPP is applicable to safety assessment of BDBAs without significant erosion of the safety margin. - Abstract: Station blackout (SBO) is a typical beyond design basis accident (BDBA) and significant contributor to overall plant risk. The risk analysis of SBO could be important basis of rulemaking, accident mitigation strategy, etc. Recently, studies on the integrated approach of deterministic and probabilistic method for nuclear safety in nuclear power plants have been done, and among them, the combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. In the CDPP, the conditional exceedance probability obtained by the best estimate plus uncertainty method acts as go-between deterministic and probabilistic safety assessments, resulting in more reliable values of core damage frequency and conditional core damage probability. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident was performed by applying the CDPP. It was confirmed that the SBO risk should be reevaluated by eliminating excessive conservatism in existing probabilistic safety assessment to meet the targeted core damage frequency and conditional core damage probability. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it is concluded that the CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.

  16. Analysis of pinching in deterministic particle separation

    Science.gov (United States)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  17. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  18. Incidents in nuclear research reactor examined by deterministic probability and probabilistic safety analysis; Incidentes em reatores nucleares de pesquisa examinados por analise de probabilidade deterministica e analise probabilistica de seguranca

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Valdir Maciel

    2010-07-01

    This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)

  19. Use of the deterministic safety analyses in support to the NPP Krsko modification

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Debrecin, N.; Grgic, D.; Bajs, T.; Spalj, S.

    2004-01-01

    The ultimate goal of the safety analysis is to verify that Nuclear Power Plant (NPP) meets safety and operational requirements. To this aim it is necessary to demonstrate that plant safety has not been deteriorated in the case of the modifications to the plant Systems, Structures and Components (SSC) or changes to the plant procedures. In addition, safety analyses are needed in the case of reassessment of an existing plant. The reasons for reassessment may be different, e.g. due to the changes in the methodology and assumptions used in the original design, if the original design basis or acceptance criteria may no longer be adequate, if the safety analysis tools used may have been superseded by more sophisticated methods or if the original design basis may no longer be met. The operation of the NPP Krsko has experienced numerous changes from the original design for the majority of the reasons that have been mentioned before. On the other side, the application of the large best-estimate thermalhydraulic codes has evolved to the wide spread support in the operation of the NPP: compliance with the regulatory goals, support to the PSA studies, analysis of the operational transients, plant modifications studies, equipment qualification, training of the operators, preparation of the operating procedures, etc. This trend has been followed at the Faculty of Electrical Engineering Zagreb (FER) and applied to the on-going needs due to the modifications and changes at NPP Krsko. In this paper, an overview of the deterministic safety analyses performed at FER in the support to the NPP Krsko modifications and changes is presented.(author)

  20. Development and application of a deterministic-realistic hybrid methodology for LOCA licensing analysis

    International Nuclear Information System (INIS)

    Liang, Thomas K.S.; Chou, Ling-Yao; Zhang, Zhongwei; Hsueh, Hsiang-Yu; Lee, Min

    2011-01-01

    Highlights: → A new LOCA licensing methodology (DRHM, deterministic-realistic hybrid methodology) was developed. → DRHM involves conservative Appendix K physical models and statistical treatment of plant status uncertainties. → DRHM can generate 50-100 K PCT margin as compared to a traditional Appendix K methodology. - Abstract: It is well recognized that a realistic LOCA analysis with uncertainty quantification can generate greater safety margin as compared with classical conservative LOCA analysis using Appendix K evaluation models. The associated margin can be more than 200 K. To quantify uncertainty in BELOCA analysis, generally there are two kinds of uncertainties required to be identified and quantified, which involve model uncertainties and plant status uncertainties. Particularly, it will take huge effort to systematically quantify individual model uncertainty of a best estimate LOCA code, such as RELAP5 and TRAC. Instead of applying a full ranged BELOCA methodology to cover both model and plant status uncertainties, a deterministic-realistic hybrid methodology (DRHM) was developed to support LOCA licensing analysis. Regarding the DRHM methodology, Appendix K deterministic evaluation models are adopted to ensure model conservatism, while CSAU methodology is applied to quantify the effect of plant status uncertainty on PCT calculation. Generally, DRHM methodology can generate about 80-100 K margin on PCT as compared to Appendix K bounding state LOCA analysis.

  1. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  2. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  3. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  4. Towards the certification of non-deterministic control systems for safety-critical applications: analysing aviation analogies for possible certification strategies

    CSIR Research Space (South Africa)

    Burger, CR

    2011-11-01

    Full Text Available Current certification criteria for safety-critical systems exclude non-deterministic control systems. This paper investigates the feasibility of using human-like monitoring strategies to achieve safe non-deterministic control using multiple...

  5. Deterministic sensitivity analysis for the numerical simulation of contaminants transport; Analyse de sensibilite deterministe pour la simulation numerique du transfert de contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E

    2007-12-15

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  6. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  7. Top event prevention analysis: A deterministic use of PRA

    International Nuclear Information System (INIS)

    Worrell, R.B.; Blanchard, D.P.

    1996-01-01

    This paper describes the application of Top Event Prevention Analysis. The analysis finds prevention sets which are combinations of basic events that can prevent the occurrence of a fault tree top event such as core damage. The problem analyzed in this application is that of choosing a subset of Motor-Operated Valves (MOVs) for testing under the Generic Letter 89-10 program such that the desired level of safety is achieved while providing economic relief from the burden of testing all safety-related valves. A brief summary of the method is given, and the process used to produce a core damage expression from Level 1 PRA models for a PWR is described. The analysis provides an alternative to the use of importance measures for finding the important combination of events in a core damage expression. This application of Top Event Prevention Analysis to the MOV problem was achieve with currently available software

  8. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  9. Safety analysis - current and future regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, T., E-mail: Terry.Jamieson@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  10. Safety analysis - current and future regulatory challenges

    International Nuclear Information System (INIS)

    Jamieson, T.

    2015-01-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  11. Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents the source of the data analyzed in the manuscript " Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII...

  12. Bayesian analysis of deterministic and stochastic prisoner's dilemma games

    Directory of Open Access Journals (Sweden)

    Howard Kunreuther

    2009-08-01

    Full Text Available This paper compares the behavior of individuals playing a classic two-person deterministic prisoner's dilemma (PD game with choice data obtained from repeated interdependent security prisoner's dilemma games with varying probabilities of loss and the ability to learn (or not learn about the actions of one's counterpart, an area of recent interest in experimental economics. This novel data set, from a series of controlled laboratory experiments, is analyzed using Bayesian hierarchical methods, the first application of such methods in this research domain. We find that individuals are much more likely to be cooperative when payoffs are deterministic than when the outcomes are probabilistic. A key factor explaining this difference is that subjects in a stochastic PD game respond not just to what their counterparts did but also to whether or not they suffered a loss. These findings are interpreted in the context of behavioral theories of commitment, altruism and reciprocity. The work provides a linkage between Bayesian statistics, experimental economics, and consumer psychology.

  13. Verification of Overall Safety Factors In Deterministic Design Of Model Tested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2001-01-01

    The paper deals with concepts of safety implementation in design. An overall safety factor concept is evaluated on the basis of a reliability analysis of a model tested rubble mound breakwater with monolithic super structure. Also discussed are design load identification and failure mode limit...

  14. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  15. Aspects of cell calculations in deterministic reactor core analysis

    International Nuclear Information System (INIS)

    Varvayanni, M.; Savva, P.; Catsaros, N.

    2011-01-01

    Τhe capability of achieving optimum utilization of the deterministic neutronic codes is very important, since, although elaborate tools, they are still widely used for nuclear reactor core analyses, due to specific advantages that they present compared to Monte Carlo codes. The user of a deterministic neutronic code system has to make some significant physical assumptions if correct results are to be obtained. A decisive first step at which such assumptions are required is the one-dimensional cell calculations, which provide the neutronic properties of the homogenized core cells and collapse the cross sections into user-defined energy groups. One of the most crucial determinations required at the above stage and significantly influencing the subsequent three-dimensional calculations of reactivity, concerns the transverse leakages, associated to each one-dimensional, user-defined core cell. For the appropriate definition of the transverse leakages several parameters concerning the core configuration must be taken into account. Moreover, the suitability of the assumptions made for the transverse cell leakages, depends on earlier user decisions, such as those made for the core partition into homogeneous cells. In the present work, the sensitivity of the calculated core reactivity to the determined leakages of the individual cells constituting the core, is studied. Moreover, appropriate assumptions concerning the transverse leakages in the one-dimensional cell calculations are searched out. The study is performed examining also the influence of the core size and the reflector existence, while the effect of the decisions made for the core partition into homogenous cells is investigated. In addition, the effect of broadened moderator channels formed within the core (e.g. by removing fuel plates to create space for control rod hosting) is also examined. Since the study required a large number of conceptual core configurations, experimental data could not be available for

  16. UPC Scaling-up methodology for Deterministic Safety Assessment and Support to Plant Operation

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Quiroga, V.; Reventós, F.; Batet, Il.

    2015-07-01

    Best Estimate codes along with necessary nodalizations are widely used tools in nuclear engineering for both Deterministic Safety Assessment (DSA) and Support to Plant Operation and Control. In this framework, the application of quality assurance procedures in both codes and nodalizations becomes an essential step prior any significant study. Along these lines the present paper introduces the UPC SCUP, a systematic methodology based on the extrapolation of the Integral Test Facilities (ITF) post-test simulations by means of scaling analyses. In that sense, SCUP fulfills a gap in current nodalization qualification procedures, the related with the validation of NPP nodalizations for Design Basis Accidents conditions. Three are the pillars that support SCUP: judicial selection of the experimental transients, full confidence in the quality of the ITF simulations, and simplicity in justifying discrepancies that appear between ITF and NPP counterpart transients. The techniques that are presented include the socalled Kv scaled calculations as well as the use of two new approaches, ”Hybrid nodalizations” and ”Scaled-up nodalizations”. These last two methods have revealed themselves to be very helpful in producing the required qualification and in promoting further improvements in nodalization. The study of both LSTF and PKL counterpart tests have allowed to qualify the methodology by the comparison with experimental data. Post-test simulations at different sizes allowed to define which phenomena could be well reproduced by system codes and which not, in this way also establishing the basis for the extrapolation to an NPP scaled calculation. Furthermore, the application of the UPC SCUP methodology demonstrated that selected phenomena can be scaled-up and explained between counterpart simulations by carefully considering the differences in scale and design. (Author)

  17. Probabilistic and deterministic safety study of the transportation of liquefied gases in the vicinity of a nuclear site

    International Nuclear Information System (INIS)

    Gobert, T.; Lannoy, A.

    1982-01-01

    The safety analyses for nuclear power plants devotes special attention to the evaluation of hazards which may be induced by industrial activity in the environment of nuclear sites. For instance, explosion of a drifting gas cloud resulting from an accidental release of liquefied gas may jeopardize the plant safety. The paper presents the methodology, both probabilistic and deterministic, followed by Electricite de France to evaluate these risks. It particularly shows that the probabilistic approach is strongly linked with the definition of ''design basis accidents'' and the evaluation of their effects

  18. Using the deterministic factor systems in the analysis of return on ...

    African Journals Online (AJOL)

    Using the deterministic factor systems in the analysis of return on equity. ... or equal the profitability of bank deposits, the business of the organization is not efficient. ... Application of quantitative and qualitative indicators in the analysis allows to ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  19. Safety of long-distance pipelines. Probabilistic and deterministic aspects; Sicherheit von Rohrfernleitungen. Probabilistik und Deterministik im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Hollaender, Robert [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement

    2013-03-15

    The Committee for Long-Distance Pipelines (Berlin, Federal Republic of Germany) reported on the relation between deterministic and probabilistic approaches in order to contribute to a better understanding of the safety management of long-distance pipelines. The respective strengths and weaknesses as well as the deterministic and probabilistic fundamentals of the safety management are described. The comparison includes fundamental aspects, but is essentially determined by the special character of the technical plant 'long-distance pipeline' as an infrastructure project in the area. This special feature results to special operation conditions and related responsibilities. However, our legal system 'long-distance pipeline' does not grant the same legal position in comparison to other infrastructural facilities such as streets and railways. Thus, the question whether and in what manner the impacts from the land-use in the environment of long-distance pipelines have to be considered is again and again the initial point for the discussion on probabilistic and deterministic approaches.

  20. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  1. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    International Nuclear Information System (INIS)

    Wang Zhi-Gang; Gao Rui-Mei; Fan Xiao-Ming; Han Qi-Xing

    2014-01-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ 0 , a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ 0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ 0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ 0 , when the stochastic system obeys some conditions and ℛ 0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations. (general)

  2. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  3. Deterministic factor analysis: methods of integro-differentiation of non-integral order

    Directory of Open Access Journals (Sweden)

    Valentina V. Tarasova

    2016-12-01

    Full Text Available Objective to summarize the methods of deterministic factor economic analysis namely the differential calculus and the integral method. nbsp Methods mathematical methods for integrodifferentiation of nonintegral order the theory of derivatives and integrals of fractional nonintegral order. Results the basic concepts are formulated and the new methods are developed that take into account the memory and nonlocality effects in the quantitative description of the influence of individual factors on the change in the effective economic indicator. Two methods are proposed for integrodifferentiation of nonintegral order for the deterministic factor analysis of economic processes with memory and nonlocality. It is shown that the method of integrodifferentiation of nonintegral order can give more accurate results compared with standard methods method of differentiation using the first order derivatives and the integral method using the integration of the first order for a wide class of functions describing effective economic indicators. Scientific novelty the new methods of deterministic factor analysis are proposed the method of differential calculus of nonintegral order and the integral method of nonintegral order. Practical significance the basic concepts and formulas of the article can be used in scientific and analytical activity for factor analysis of economic processes. The proposed method for integrodifferentiation of nonintegral order extends the capabilities of the determined factorial economic analysis. The new quantitative method of deterministic factor analysis may become the beginning of quantitative studies of economic agents behavior with memory hereditarity and spatial nonlocality. The proposed methods of deterministic factor analysis can be used in the study of economic processes which follow the exponential law in which the indicators endogenous variables are power functions of the factors exogenous variables including the processes

  4. Hydrologically complemented deterministic slope stability analysis in part of Indian Lesser Himalaya

    Directory of Open Access Journals (Sweden)

    John Mathew

    2016-09-01

    Full Text Available This study uses a deterministic approach to evaluate the factor of safety (FS of the terrain for different hydrological conditions, in part of Indian Lesser Himalaya. The results indicate sudden increase in the percentage unstable area from 7.5% to 13.8% for rainfall intensity variation from 50 to 100 mm/day. For the rainfall intensity of 15 August 2007 which caused many landslides in the study area, 18.5% of the total area was unstable and it increases to 21.7%, 23.5% and 24.7%, respectively, for rainfall intensities corresponding to 10, 25 and 50 year return periods. This increment stagnates at about 260 mm/day, making about 25% of the area unstable. Higher rainfall intensities make progressively gentler slopes unstable, but limited to 25 degrees of slope in this area. The area underlain by granitic gneiss showed 23.1% of area as unstable for 135 mm/day of rainfall intensity, and was followed by those areas underlain by amphibolite (16%, limestone (13.7% and quartzite (10.4%. Receiver operating characteristic (ROC curve analysis has given 84.2% accuracy for the model. Conversion of FS to failure probability through Z scores enables identification unstable or marginally unstable areas, for planning selective slope stabilization measures.

  5. Deterministic methods for sensitivity and uncertainty analysis in large-scale computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Oblow, E.M.; Pin, F.G.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.; Lucius, J.L.

    1987-01-01

    The fields of sensitivity and uncertainty analysis are dominated by statistical techniques when large-scale modeling codes are being analyzed. This paper reports on the development and availability of two systems, GRESS and ADGEN, that make use of computer calculus compilers to automate the implementation of deterministic sensitivity analysis capability into existing computer models. This automation removes the traditional limitation of deterministic sensitivity methods. The paper describes a deterministic uncertainty analysis method (DUA) that uses derivative information as a basis to propagate parameter probability distributions to obtain result probability distributions. The paper demonstrates the deterministic approach to sensitivity and uncertainty analysis as applied to a sample problem that models the flow of water through a borehole. The sample problem is used as a basis to compare the cumulative distribution function of the flow rate as calculated by the standard statistical methods and the DUA method. The DUA method gives a more accurate result based upon only two model executions compared to fifty executions in the statistical case

  6. Deterministic sensitivity and uncertainty analysis for large-scale computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Pin, F.G.; Oblow, E.M.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.

    1988-01-01

    The fields of sensitivity and uncertainty analysis have traditionally been dominated by statistical techniques when large-scale modeling codes are being analyzed. These methods are able to estimate sensitivities, generate response surfaces, and estimate response probability distributions given the input parameter probability distributions. Because the statistical methods are computationally costly, they are usually applied only to problems with relatively small parameter sets. Deterministic methods, on the other hand, are very efficient and can handle large data sets, but generally require simpler models because of the considerable programming effort required for their implementation. The first part of this paper reports on the development and availability of two systems, GRESS and ADGEN, that make use of computer calculus compilers to automate the implementation of deterministic sensitivity analysis capability into existing computer models. This automation removes the traditional limitation of deterministic sensitivity methods. This second part of the paper describes a deterministic uncertainty analysis method (DUA) that uses derivative information as a basis to propagate parameter probability distributions to obtain result probability distributions. This paper is applicable to low-level radioactive waste disposal system performance assessment

  7. Sensitivity analysis technique for application to deterministic models

    International Nuclear Information System (INIS)

    Ishigami, T.; Cazzoli, E.; Khatib-Rahbar, M.; Unwin, S.D.

    1987-01-01

    The characterization of sever accident source terms for light water reactors should include consideration of uncertainties. An important element of any uncertainty analysis is an evaluation of the sensitivity of the output probability distributions reflecting source term uncertainties to assumptions regarding the input probability distributions. Historically, response surface methods (RSMs) were developed to replace physical models using, for example, regression techniques, with simplified models for example, regression techniques, with simplified models for extensive calculations. The purpose of this paper is to present a new method for sensitivity analysis that does not utilize RSM, but instead relies directly on the results obtained from the original computer code calculations. The merits of this approach are demonstrated by application of the proposed method to the suppression pool aerosol removal code (SPARC), and the results are compared with those obtained by sensitivity analysis with (a) the code itself, (b) a regression model, and (c) Iman's method

  8. Deterministic Local Sensitivity Analysis of Augmented Systems - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan G.; Ionescu-Bujor, Mihaela

    2005-01-01

    This work provides the theoretical foundation for the modular implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for large-scale simulation systems. The implementation of the ASAP commences with a selected code module and then proceeds by augmenting the size of the adjoint sensitivity system, module by module, until the entire system is completed. Notably, the adjoint sensitivity system for the augmented system can often be solved by using the same numerical methods used for solving the original, nonaugmented adjoint system, particularly when the matrix representation of the adjoint operator for the augmented system can be inverted by partitioning

  9. Top event prevention analysis - a deterministic use of PRA

    International Nuclear Information System (INIS)

    Blanchard, D.P.; Worrell, R.B.

    1995-01-01

    Risk importance measures are popular for many applications of probabilistic analysis. Inherent in the derivation of risk importance measures are implicit assumptions that those using these numerical results should be aware of in their decision making. These assumptions and potential limitations include the following: (1) The risk importance measures are derived for a single event at a time and are therefore valid only if all other event probabilities are unchanged at their current values. (2) The results for which risk importance measures are derived may not be complete for reasons such as truncation

  10. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  11. Random versus Deterministic Descent in RNA Energy Landscape Analysis

    Directory of Open Access Journals (Sweden)

    Luke Day

    2016-01-01

    Full Text Available Identifying sets of metastable conformations is a major research topic in RNA energy landscape analysis, and recently several methods have been proposed for finding local minima in landscapes spawned by RNA secondary structures. An important and time-critical component of such methods is steepest, or gradient, descent in attraction basins of local minima. We analyse the speed-up achievable by randomised descent in attraction basins in the context of large sample sets where the size has an order of magnitude in the region of ~106. While the gain for each individual sample might be marginal, the overall run-time improvement can be significant. Moreover, for the two nongradient methods we analysed for partial energy landscapes induced by ten different RNA sequences, we obtained that the number of observed local minima is on average larger by 7.3% and 3.5%, respectively. The run-time improvement is approximately 16.6% and 6.8% on average over the ten partial energy landscapes. For the large sample size we selected for descent procedures, the coverage of local minima is very high up to energy values of the region where the samples were randomly selected from the partial energy landscapes; that is, the difference to the total set of local minima is mainly due to the upper area of the energy landscapes.

  12. Deterministic sensitivity and uncertainty analysis for large-scale computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Pin, F.G.; Oblow, E.M.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.

    1988-01-01

    This paper presents a comprehensive approach to sensitivity and uncertainty analysis of large-scale computer models that is analytic (deterministic) in principle and that is firmly based on the model equations. The theory and application of two systems based upon computer calculus, GRESS and ADGEN, are discussed relative to their role in calculating model derivatives and sensitivities without a prohibitive initial manpower investment. Storage and computational requirements for these two systems are compared for a gradient-enhanced version of the PRESTO-II computer model. A Deterministic Uncertainty Analysis (DUA) method that retains the characteristics of analytically computing result uncertainties based upon parameter probability distributions is then introduced and results from recent studies are shown. 29 refs., 4 figs., 1 tab

  13. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement

    International Nuclear Information System (INIS)

    Sheng Yubo; Deng Fuguo

    2010-01-01

    Entanglement purification is a very important element for long-distance quantum communication. Different from all the existing entanglement purification protocols (EPPs) in which two parties can only obtain some quantum systems in a mixed entangled state with a higher fidelity probabilistically by consuming quantum resources exponentially, here we present a deterministic EPP with hyperentanglement. Using this protocol, the two parties can, in principle, obtain deterministically maximally entangled pure states in polarization without destroying any less-entangled photon pair, which will improve the efficiency of long-distance quantum communication exponentially. Meanwhile, it will be shown that this EPP can be used to complete nonlocal Bell-state analysis perfectly. We also discuss this EPP in a practical transmission.

  14. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    Science.gov (United States)

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  15. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON and DONJON are applied and verified in calculations of research reactors. • Continuous-energy Monte Carlo calculations by RMC are chosen as the references. • “ECCO” option of DRAGON is suitable for the calculations of research reactors. • Manual modifications of cross-sections are not necessary with DRAGON and DONJON. • DRAGON and DONJON agree well with RMC if appropriate treatments are applied. - Abstract: Simulation of the behavior of the plate-type research reactors such as JRR-3M and CARR poses a challenge for traditional neutronics calculation tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity and large leakage of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON and DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic approach. The goal of this research is to examine the capability of the deterministic code system DRAGON and DONJON to reliably simulate the research reactors. The results indicate that the DRAGON and DONJON code system agrees well with the continuous-energy Monte Carlo simulation on both k eff and flux distributions if the appropriate treatments (such as the ECCO option) are applied

  16. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  17. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  18. Deterministic sensitivity analysis of two-phase flow systems: forward and adjoint methods. Final report

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1984-07-01

    This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations

  19. Rare event computation in deterministic chaotic systems using genealogical particle analysis

    International Nuclear Information System (INIS)

    Wouters, J; Bouchet, F

    2016-01-01

    In this paper we address the use of rare event computation techniques to estimate small over-threshold probabilities of observables in deterministic dynamical systems. We demonstrate that genealogical particle analysis algorithms can be successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein–Uhlenbeck system to illustrate a number of implementation issues. We also show how a time-dependent objective function based on the fluctuation path to a high threshold can greatly improve the performance of the estimator compared to a fixed-in-time objective function. (paper)

  20. Comparison of a deterministic and probabilistic analysis of the radiological impact in a PHWR nuclear station

    International Nuclear Information System (INIS)

    Mora, J. C.; Lopez, F. O.; Amado, V.; Robles, B.

    2013-01-01

    This paper presents the results obtained from the evaluation of probabilistic compared with the results obtained in a deterministic way. The following table shows an example of the results obtained for the concentration of Cs137 and Co60 in water and sediments in the Parana River, where the central pour water discharges: Both evaluations got very similar results, obtaining differences between both versions lower than 5%, both for the liquid to the gaseous effluents. Also an analysis of sensitivity of parameters used in simulation of dispersion in air, checking that the parameter presenting greater influence is the height of the fireplace while the minor's influence was weighted speed. (Author)

  1. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt

  2. Sensitivity/uncertainty analysis of a borehole scenario comparing Latin Hypercube Sampling and deterministic sensitivity approaches

    International Nuclear Information System (INIS)

    Harper, W.V.; Gupta, S.K.

    1983-10-01

    A computer code was used to study steady-state flow for a hypothetical borehole scenario. The model consists of three coupled equations with only eight parameters and three dependent variables. This study focused on steady-state flow as the performance measure of interest. Two different approaches to sensitivity/uncertainty analysis were used on this code. One approach, based on Latin Hypercube Sampling (LHS), is a statistical sampling method, whereas, the second approach is based on the deterministic evaluation of sensitivities. The LHS technique is easy to apply and should work well for codes with a moderate number of parameters. Of deterministic techniques, the direct method is preferred when there are many performance measures of interest and a moderate number of parameters. The adjoint method is recommended when there are a limited number of performance measures and an unlimited number of parameters. This unlimited number of parameters capability can be extremely useful for finite element or finite difference codes with a large number of grid blocks. The Office of Nuclear Waste Isolation will use the technique most appropriate for an individual situation. For example, the adjoint method may be used to reduce the scope to a size that can be readily handled by a technique such as LHS. Other techniques for sensitivity/uncertainty analysis, e.g., kriging followed by conditional simulation, will be used also. 15 references, 4 figures, 9 tables

  3. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  4. Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems

    International Nuclear Information System (INIS)

    Deco, Gustavo; Marti, Daniel

    2007-01-01

    The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability

  5. Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems

    Science.gov (United States)

    Deco, Gustavo; Martí, Daniel

    2007-03-01

    The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability.

  6. Safety assurance of non-deterministic flight controllers in aircraft applications

    Science.gov (United States)

    Noriega, Alfonso

    Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results

  7. Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations

    International Nuclear Information System (INIS)

    Karanki, D.R.; Rahman, S.; Dang, V.N.; Zerkak, O.

    2017-01-01

    The coupling of plant simulation models and stochastic models representing failure events in Dynamic Event Trees (DET) is a framework used to model the dynamic interactions among physical processes, equipment failures, and operator responses. The integration of physical and stochastic models may additionally enhance the treatment of uncertainties. Probabilistic Safety Assessments as currently implemented propagate the (epistemic) uncertainties in failure probabilities, rates, and frequencies; while the uncertainties in the physical model (parameters) are not propagated. The coupling of deterministic (physical) and probabilistic models in integrated simulations such as DET allows both types of uncertainties to be considered. However, integrated accident simulations with epistemic uncertainties will challenge even today's high performance computing infrastructure, especially for simulations of inherently complex nuclear or chemical plants. Conversely, intentionally limiting computations for practical reasons would compromise accuracy of results. This work investigates how to tradeoff accuracy and computations to quantify risk in light of both uncertainties and accident dynamics. A simple depleting tank problem that can be solved analytically is considered to examine the adequacy of a discrete DET approach. The results show that optimal allocation of computational resources between epistemic and aleatory calculations by means of convergence studies ensures accuracy within a limited budget. - Highlights: • Accident simulations considering uncertainties require intensive computations. • Tradeoff between accuracy and accident simulations is a challenge. • Optimal allocation between epistemic & aleatory computations ensures the tradeoff. • Online convergence gives an early indication of computational requirements. • Uncertainty propagation in DDET is examined on a tank problem solved analytically.

  8. On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.

    Science.gov (United States)

    Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi

    2017-07-08

    Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.

  9. Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

    Directory of Open Access Journals (Sweden)

    A. Campanile

    2018-01-01

    Full Text Available The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

  10. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  11. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    Science.gov (United States)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  12. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    Science.gov (United States)

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  13. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    Science.gov (United States)

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  14. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  15. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  16. Deterministic and probabilistic crack growth analysis for the JRC Ispra 1/5 scale pressure vessel n0 R2

    International Nuclear Information System (INIS)

    Bruckner-Foit, A.; Munz, D.

    1989-10-01

    A deterministic and a probabilistic crack growth analysis is presented for the major defects found in the welds during ultrasonic pre-service inspection. The deterministic analysis includes first a determination of the number of load cycles until crack initiation, then a cycle-by-cycle calculation of the growth of the embedded elliptical cracks, followed by an evaluation of the growth of the semi-elliptical surface crack formed after the crack considered has broken through the wall and, finally, a determination of the critical crack size and shape. In the probabilistic analysis, a Monte-Carlo simulation is performed with a sample of cracks where the statistical distributions of the crack dimensions describe the uncertainty in sizing of the ultrasonic inspection. The distributions of crack depth, crack length and location are evaluated as a function of the number of load cycles. In the simulation, the fracture mechanics model of the deterministic analysis is employed for each random crack. The results of the deterministic and probabilistic crack growth analysis are compared with the results of the second in-service inspection where stable extension of some of the cracks had been observed. It is found that the prediction and the experiment agree only with a probability of the order of 5% or less

  17. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  18. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  19. Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heo, W.; Kim, W.; Kim, Y. [Korea Advanced Institute of Science and Technology - KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Yun, S. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)

  20. Efficient Integrative Multi-SNP Association Analysis via Deterministic Approximation of Posteriors.

    Science.gov (United States)

    Wen, Xiaoquan; Lee, Yeji; Luca, Francesca; Pique-Regi, Roger

    2016-06-02

    With the increasing availability of functional genomic data, incorporating genomic annotations into genetic association analysis has become a standard procedure. However, the existing methods often lack rigor and/or computational efficiency and consequently do not maximize the utility of functional annotations. In this paper, we propose a rigorous inference procedure to perform integrative association analysis incorporating genomic annotations for both traditional GWASs and emerging molecular QTL mapping studies. In particular, we propose an algorithm, named deterministic approximation of posteriors (DAP), which enables highly efficient and accurate joint enrichment analysis and identification of multiple causal variants. We use a series of simulation studies to highlight the power and computational efficiency of our proposed approach and further demonstrate it by analyzing the cross-population eQTL data from the GEUVADIS project and the multi-tissue eQTL data from the GTEx project. In particular, we find that genetic variants predicted to disrupt transcription factor binding sites are enriched in cis-eQTLs across all tissues. Moreover, the enrichment estimates obtained across the tissues are correlated with the cell types for which the annotations are derived. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Performance Analysis of Recurrence Matrix Statistics for the Detection of Deterministic Signals in Noise

    National Research Council Canada - National Science Library

    Michalowicz, Joseph V; Nichols, Jonathan M; Bucholtz, Frank

    2008-01-01

    Understanding the limitations to detecting deterministic signals in the presence of noise, especially additive, white Gaussian noise, is of importance for the design of LPI systems and anti-LPI signal defense...

  2. Deterministic Tectonic Origin Tsunami Hazard Analysis for the Eastern Mediterranean and its Connected Seas

    Science.gov (United States)

    Necmioglu, O.; Meral Ozel, N.

    2014-12-01

    Accurate earthquake source parameters are essential for any tsunami hazard assessment and mitigation, including early warning systems. Complex tectonic setting makes the a priori accurate assumptions of earthquake source parameters difficult and characterization of the faulting type is a challenge. Information on tsunamigenic sources is of crucial importance in the Eastern Mediterranean and its Connected Seas, especially considering the short arrival times and lack of offshore sea-level measurements. In addition, the scientific community have had to abandon the paradigm of a ''maximum earthquake'' predictable from simple tectonic parameters (Ruff and Kanamori, 1980) in the wake of the 2004 Sumatra event (Okal, 2010) and one of the lessons learnt from the 2011 Tohoku event was that tsunami hazard maps may need to be prepared for infrequent gigantic earthquakes as well as more frequent smaller-sized earthquakes (Satake, 2011). We have initiated an extensive modeling study to perform a deterministic Tsunami Hazard Analysis for the Eastern Mediterranean and its Connected Seas. Characteristic earthquake source parameters (strike, dip, rake, depth, Mwmax) at each 0.5° x 0.5° size bin for 0-40 km depth (total of 310 bins) and for 40-100 km depth (total of 92 bins) in the Eastern Mediterranean, Aegean and Black Sea region (30°N-48°N and 22°E-44°E) have been assigned from the harmonization of the available databases and previous studies. These parameters have been used as input parameters for the deterministic tsunami hazard modeling. Nested Tsunami simulations of 6h duration with a coarse (2 arc-min) and medium (1 arc-min) grid resolution have been simulated at EC-JRC premises for Black Sea and Eastern and Central Mediterranean (30°N-41.5°N and 8°E-37°E) for each source defined using shallow water finite-difference SWAN code (Mader, 2004) for the magnitude range of 6.5 - Mwmax defined for that bin with a Mw increment of 0.1. Results show that not only the

  3. Design and Analysis of a Low Latency Deterministic Network MAC for Wireless Sensor Networks.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin

    2017-09-22

    The IEEE 802.15.4e standard has four different superframe structures for different applications. Use of a low latency deterministic network (LLDN) superframe for the wireless sensor network is one of them, which can operate in a star topology. In this paper, a new channel access mechanism for IEEE 802.15.4e-based LLDN shared slots is proposed, and analytical models are designed based on this channel access mechanism. A prediction model is designed to estimate the possible number of retransmission slots based on the number of failed transmissions. Performance analysis in terms of data transmission reliability, delay, throughput and energy consumption are provided based on our proposed designs. Our designs are validated for simulation and analytical results, and it is observed that the simulation results well match with the analytical ones. Besides, our designs are compared with the IEEE 802.15.4 MAC mechanism, and it is shown that ours outperforms in terms of throughput, energy consumption, delay and reliability.

  4. Derivation and analysis of the Feynman-alpha formula for deterministically pulsed sources

    International Nuclear Information System (INIS)

    Wright, J.; Pazsit, I.

    2004-03-01

    The purpose or this report is to give a detailed description of the calculation of the Feynman-alpha formula with deterministically pulsed sources. In contrast to previous calculations, Laplace transform and complex function methods are used to arrive at a compact solution in form of a Fourier series-like expansion. The advantage of this method is that it is capable to treat various pulse shapes. In particular, in addition to square- and Dirac delta pulses, a more realistic Gauss-shaped pulse is also considered here. The final solution of the modified variance-to-mean, that is the Feynman Y(t) function, can be quantitatively evaluated fast and with little computational effort. The analytical solutions obtained are then analysed quantitatively. The behaviour of the number or neutrons in the system is investigated in detail, together with the transient that follows the switching on of the source. An analysis of the behaviour of the Feynman Y(t) function was made with respect to the pulse width and repetition frequency. Lastly, the possibility of using me formulae for the extraction of the parameter alpha from a simulated measurement is also investigated

  5. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation

    International Nuclear Information System (INIS)

    Pishkenari, Hossein Nejat; Behzad, Mehdi; Meghdari, Ali

    2008-01-01

    The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. This paper is devoted to the analysis of nonlinear behavior of amplitude modulation (AM) and frequency modulation (FM) modes of atomic force microscopy. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Using perturbation methods such as averaging, and Fourier transform nonlinear equations of motion are analytically solved and the advantageous results are extracted from this nonlinear analysis. The results of the proposed techniques for AM-AFM, clearly depict the existence of two stable and one unstable (saddle) solutions for some of exciting parameters under deterministic vibration. The basin of attraction of two stable solutions is different and dependent on the exciting frequency. From this analysis the range of the frequency which will result in a unique periodic response can be obtained and used in practical experiments. Furthermore the analytical responses determined by perturbation techniques can be used to detect the parameter region where the chaotic motion is avoided. On the other hand for FM-AFM, the relation between frequency shift and the system parameters can be extracted and used for investigation of the system nonlinear behavior. The nonlinear behavior of the oscillating tip can easily explain the observed shift of frequency as a function of tip sample distance. Also in this paper we have investigated the AM-AFM system response under a random excitation. Using two different methods we have obtained the statistical properties of the tip motion. The results show that we can use the mean square value of tip motion to image the sample when the excitation signal is random

  6. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, Hossein Nejat [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Behzad, Mehdi [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Meghdari, Ali [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-08-15

    The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. This paper is devoted to the analysis of nonlinear behavior of amplitude modulation (AM) and frequency modulation (FM) modes of atomic force microscopy. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Using perturbation methods such as averaging, and Fourier transform nonlinear equations of motion are analytically solved and the advantageous results are extracted from this nonlinear analysis. The results of the proposed techniques for AM-AFM, clearly depict the existence of two stable and one unstable (saddle) solutions for some of exciting parameters under deterministic vibration. The basin of attraction of two stable solutions is different and dependent on the exciting frequency. From this analysis the range of the frequency which will result in a unique periodic response can be obtained and used in practical experiments. Furthermore the analytical responses determined by perturbation techniques can be used to detect the parameter region where the chaotic motion is avoided. On the other hand for FM-AFM, the relation between frequency shift and the system parameters can be extracted and used for investigation of the system nonlinear behavior. The nonlinear behavior of the oscillating tip can easily explain the observed shift of frequency as a function of tip sample distance. Also in this paper we have investigated the AM-AFM system response under a random excitation. Using two different methods we have obtained the statistical properties of the tip motion. The results show that we can use the mean square value of tip motion to image the sample when the excitation signal is random.

  7. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  8. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  9. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  10. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  11. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  12. Use of deterministic sampling for exploring likelihoods in linkage analysis for quantitative traits.

    NARCIS (Netherlands)

    Mackinnon, M.J.; Beek, van der S.; Kinghorn, B.P.

    1996-01-01

    Deterministic sampling was used to numerically evaluate the expected log-likelihood surfaces of QTL-marker linkage models in large pedigrees with simple structures. By calculating the expected values of likelihoods, questions of power of experimental designs, bias in parameter estimates, approximate

  13. A DETERMINISTIC GEOMETRIC REPRESENTATION OF TEMPORAL RAINFALL: SENSITIVITY ANALYSIS FOR A STORM IN BOSTON. (R824780)

    Science.gov (United States)

    In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s ...

  14. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  15. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  16. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes

    International Nuclear Information System (INIS)

    Loulou, Richard; Labriet, Maryse; Kanudia, Amit

    2009-01-01

    This article analyzes the feasibility of attaining a variety of climate targets during the 21st century, under alternative cooperation regimes by groups of countries. Five climate targets of increasing severity are analyzed, following the EMF-22 experiment. Each target is attempted under two cooperation regimes, a First Best scenario where all countries fully cooperate from 2012 on, and a Second Best scenario where the World is partitioned into three groups, and each group of countries enters the cooperation at a different date, and implement emission abatement actions in a progressive manner, once in the coalition. The resulting ten combinations are simulated via the ETSAP-TIAM technology based, integrated assessment model. In addition to the 10 separate case analyses, the article proposes a probabilistic treatment of three targets under the First Best scenario, and shows that the three forcing targets may in fact be interpreted as a single target on global temperature change, while assuming that the climate sensitivity C s is uncertain. It is shown that such an interpretation is possible only if the probability distribution of C s is carefully chosen. The analysis of the results shows that the lowest forcing level is unattainable unless immediate coordinated action is undertaken by all countries, and even so only at a high global cost. The middle and the high forcing levels are feasible at affordable global costs, even under the Second Best scenario. Another original contribution of this article is to explain why certain combinations of technological choices are made by the model, and in particular why the climate target clearly supersedes the usually accepted objective of improving energy efficiency. The analysis shows that under some climate targets, it is not optimal to improve energy efficiency, but rather to take advantage of certain technologies that help to reach the climate objective, but that happen to be less energy efficient than even the technologies

  17. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    Science.gov (United States)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  18. Sargent-IV Project. Development of new methodologies for safety analysis of Generation IV reactors; Proyecto SARGEB-IV. Desarrollo de nuevas metodologias de analisis de seguridad para reactores de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Gallego, E.; Jimenez, G.

    2013-07-01

    The main result of this paper is the proposal for the addition of new ingredients in the safety analysis methodologies for Generation-IV reactors that integrates the features of probabilistic safety analysis within deterministic. This ensures a higher degree of integration between the classical deterministic and probabilistic methodologies.

  19. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  20. ELSY neutronic analysis by deterministic and Monte Carlo methods. An innovative concept for the control rod systems

    International Nuclear Information System (INIS)

    Artioli, Carlo; Sarotto, Massimo; Grasso, Giacomo; Krepel, Jiri

    2009-01-01

    This paper deals with the neutronic design of ELSY (the European Lead-cooled SYstem), a 600 MW e Fast Reactor developed within the 6th EURATOM Framework Programme. ELSY aims at being an 'adiabatic' system (as far as possible) in order to fulfill both the requirements of sustainability and proliferation resistance. It represents the European solution for the Lead Fast Reactor (LFR), one of the six candidate typologies proposed by the Generation-IV International Forum (GIF). The analysis of the ELSY reference configuration, with typical pure MOX loading, is here presented. An introductory investigation of the adiabatic and, possibly, the burner options viability is also achieved by providing a rough estimate of the Minor Actinides (MAs) equilibrium concentrations and time constants. One of the main challenge-points in the design of the core, made up of wrapper-less square Fuel Assemblies (FAs) according to the common scheme of PWRs, is the small delta-T between the coolant average outlet temperature (480degC) and the allowable cladding one (550degC): it requires a rather flat radial power distribution, obtained by segmenting the core in three zones with different enrichments. Three different control sets have been introduced in order to achieve the required reliability for reactor shutdown and safety systems: eight traditional concept Control Rod (CR) assemblies together with two independent systems of sparse control 'Finger Absorber' Rods (FARs), small B 4 C rods that can be inserted, in principle, in the center of each FA. One of the two finger absorber systems includes a subset of rods devoted to the regulation of the criticality swing during the cycle: their number can be limited indeed since the small reactivity swing (some hundreds pcm) due to the about unitary breeding ratio. Such an innovative solution can also be positioned in order to maintain an optimal power flattening during the fuel cycle. To verify the feasibility of this solution, a very detailed

  1. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  2. Accidents of loss of flow for the ETTR-2 reactor; deterministic analysis

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The main objective for reactor safety is to keep the fuel in a thermally safe condition with adequate safety margins during all operational modes (normal-abnormal and accidental states). To achieve this purpose an accident analysis of different design base accident (DBA) as loss of flow accident (LOFA), is required assessing reactor safety. The present work concerns this transients applied to Egypt Test and Research Reactor ETRR-3 (new reactor). An accident analysis code FLOWTR is developed to investigate the thermal behaviour of the core during such flow transients. The active core is simulated by two channels: 1 - hot channel (HC), and 2 - average channel (AC) representing the remainder of the core. Each channel is divided into four axial sections. The external loop, core plenums, and core chimney are simulated by different dynamic loops. The code includes modules for pump cast down, flow regimes, decay heat, temperature distributions, and feedback coefficients. FLOWTR is verified against results from RETRAN code, THERMIC code and commissioning tests for null transient case. The comparison shows a good agreement. The study indicates that for LOFA transients, provided the scram system is available, the core is shutdown safely by low flow signal (496.6 kg/s) at 1.4 s were the HC temperature reaches the maximum value, 45.64 o C after shutdown. On the other hand, if the scram system is unavailable, and at t = 47.33 s, the core flow decreases to 67.41 kg/s, the HC temperature increases to 164.02 o C, and the HC clad surface heat flux exceeds its critical value of 400.00 W/cm 2 resulting of fuel burnout. (author)

  3. Accident simulator development for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Amendola, A.; Mancini, G.

    1985-01-01

    This paper describes the basic features of a new concept of incident simulator, Response System Analyzed (RSA) which is being developed within the CEC JRC Research Program on Reactor Safety. Focusing on somewhat different aims than actual simulators, RSA development extends the field of application of simulators to the area of risk and reliability analysis and in particular to the identification of relevant sequences, to the modeling of human behavior and to the validation of operating procedures. The fundamental components of the project, i.e. the deterministic transient model of the plant, the automatic probabilistic driver and the human possible intervention modeling, are discussed in connection with the problem of their dynamic interaction. The analyses so far performed by separately testing RSA on significant study cases have shown encouraging results and have proven the feasibility of the overall program

  4. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  5. Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results

    International Nuclear Information System (INIS)

    Mohanta, Dusmanta Kumar; Sadhu, Pradip Kumar; Chakrabarti, R.

    2007-01-01

    This paper presents a comparison of results for optimization of captive power plant maintenance scheduling using genetic algorithm (GA) as well as hybrid GA/simulated annealing (SA) techniques. As utilities catered by captive power plants are very sensitive to power failure, therefore both deterministic and stochastic reliability objective functions have been considered to incorporate statutory safety regulations for maintenance of boilers, turbines and generators. The significant contribution of this paper is to incorporate stochastic feature of generating units and that of load using levelized risk method. Another significant contribution of this paper is to evaluate confidence interval for loss of load probability (LOLP) because some variations from optimum schedule are anticipated while executing maintenance schedules due to different real-life unforeseen exigencies. Such exigencies are incorporated in terms of near-optimum schedules obtained from hybrid GA/SA technique during the final stages of convergence. Case studies corroborate that same optimum schedules are obtained using GA and hybrid GA/SA for respective deterministic and stochastic formulations. The comparison of results in terms of interval of confidence for LOLP indicates that levelized risk method adequately incorporates the stochastic nature of power system as compared with levelized reserve method. Also the interval of confidence for LOLP denotes the possible risk in a quantified manner and it is of immense use from perspective of captive power plants intended for quality power

  6. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    improvement of nuclear safety in the participating host organization and host member countries. To achieve this goal, the EM is to establish a process of discussion and comparison of gap findings, which will lead to sharing of information, experience, strengths and weaknesses among the participants, and foster regional cooperation to improve the weaknesses and improve safety generally. The pilot mission was conducted from 28 October to 1 November for one week at the National Nuclear Agency (BATAN) in Indonesia by the mission team formulated with 6 international experts who have considerable knowledge and experience in the field of safety analysis such as the deterministic safety analysis (DSA) and probabilistic safety analysis (PSA). Some comments and recommendations were given to BATAN management to support the establishment and maintenance of safety analysis capability and human resource, organizational and training aspects. Those aspects are important as a measure of the progress being made and an indicator of areas in SATG within the framework of the Extra-budgetary Programme on the Safety of Nuclear Installations in Southeast Asia, the Pacific, and Far East Countries (the EBP-Asia) or other cooperation programme, such as the IAEA Technical Cooperation programme. Provided in 2013 the Review of Gap Analysis for BATAN (Indonesian Nuclear Safety Regulatory Body) could be good reference for all other newcomer countries which started or plans nuclear power plant installation. (authors)

  7. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  8. Proceedings of a NEA workshop on probabilistic structure integrity analysis and its relationship to deterministic analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This workshop was hosted jointly by the Swedish Nuclear Power Inspectorate (SKi) and the Swedish Royal Institute of Technology (KTH). It was sponsored by the Principal Working Group 3 (PWG-3) of the NEA CSNI. PWG-3 deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with metal components has three mains areas of activity: non-destructive examination; fracture mechanics; and material degradation. The topic of this workshop is primarily probabilistic fracture mechanics, but probabilistic integrity analysis includes NDE and materials degradation also. Session 1 (5 papers) was devoted to the development of probabilistic models; Session 2 (5 papers) to the random modelling of defects and material properties; Session 3 (8 papers) to the applications of probabilistic modelling to nuclear components; Sessions 4 is a concluding panel discussion

  9. Proceedings of a NEA workshop on probabilistic structure integrity analysis and its relationship to deterministic analysis

    International Nuclear Information System (INIS)

    1996-01-01

    This workshop was hosted jointly by the Swedish Nuclear Power Inspectorate (SKi) and the Swedish Royal Institute of Technology (KTH). It was sponsored by the Principal Working Group 3 (PWG-3) of the NEA CSNI. PWG-3 deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with metal components has three mains areas of activity: non-destructive examination; fracture mechanics; and material degradation. The topic of this workshop is primarily probabilistic fracture mechanics, but probabilistic integrity analysis includes NDE and materials degradation also. Session 1 (5 papers) was devoted to the development of probabilistic models; Session 2 (5 papers) to the random modelling of defects and material properties; Session 3 (8 papers) to the applications of probabilistic modelling to nuclear components; Sessions 4 is a concluding panel discussion

  10. Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data

    Science.gov (United States)

    Larkin, Steven Paul

    Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical Pm

  11. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  12. Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Hongyuan Qiu

    2016-01-01

    Full Text Available Using a finite element model, this paper investigates the torsional vibration of a drill string under combined deterministic excitation and random excitation. The random excitation is caused by the random friction coefficients between the drill bit and the bottom of the hole and assumed as white noise. Simulation shows that the responses under random excitation become random too, and the probabilistic distribution of the responses at each discretized time instant is obtained. The two points, entering and leaving the stick stage, are examined with special attention. The results indicate that the two points become random under random excitation, and the distributions are not normal even when the excitation is assumed as Gaussian white noise.

  13. Sensitivity analysis of the titan hybrid deterministic transport code for SPECT simulation

    International Nuclear Information System (INIS)

    Royston, Katherine K.; Haghighat, Alireza

    2011-01-01

    Single photon emission computed tomography (SPECT) has been traditionally simulated using Monte Carlo methods. The TITAN code is a hybrid deterministic transport code that has recently been applied to the simulation of a SPECT myocardial perfusion study. For modeling SPECT, the TITAN code uses a discrete ordinates method in the phantom region and a combined simplified ray-tracing algorithm with a fictitious angular quadrature technique to simulate the collimator and generate projection images. In this paper, we compare the results of an experiment with a physical phantom with predictions from the MCNP5 and TITAN codes. While the results of the two codes are in good agreement, they differ from the experimental data by ∼ 21%. In order to understand these large differences, we conduct a sensitivity study by examining the effect of different parameters including heart size, collimator position, collimator simulation parameter, and number of energy groups. (author)

  14. Deterministic and stochastic transport theories for the analysis of complex nuclear systems

    International Nuclear Information System (INIS)

    Giffard, F.X.

    2000-01-01

    In the field of reactor and fuel cycle physics, particle transport plays an important role. Neutronic design, operation and evaluation calculations of nuclear systems make use of large and powerful computer codes. However, current limitations in terms of computer resources make it necessary to introduce simplifications and approximations in order to keep calculation time and cost within reasonable limits. Two different types of methods are available in these codes. The first one is the deterministic method, which is applicable in most practical cases but requires approximations. The other method is the Monte Carlo method, which does not make these approximations but which generally requires exceedingly long running times. The main motivation of this work is to investigate the possibility of a combined use of the two methods in such a way as to retain their advantages while avoiding their drawbacks. Our work has mainly focused on the speed-up of 3-D continuous energy Monte Carlo calculations (TRIPOLI-4 code) by means of an optimized biasing scheme derived from importance maps obtained from the deterministic code ERANOS. The application of this method to two different practical shielding-type problems has demonstrated its efficiency: speed-up factors of 100 have been reached. In addition, the method offers the advantage of being easily implemented as it is not very sensitive to the choice of the importance mesh grid. It has also been demonstrated that significant speed-ups can be achieved by this method in the case of coupled neutron-gamma transport problems, provided that the interdependence of the neutron and photon importance maps is taken into account. Complementary studies are necessary to tackle a problem brought out by this work, namely undesirable jumps in the Monte Carlo variance estimates. (author)

  15. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2015-02-01

    Full Text Available One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs, mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  16. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  17. Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

    Directory of Open Access Journals (Sweden)

    I. Kioutsioukis

    2016-12-01

    Full Text Available Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism. Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3, nitrogen dioxide (NO2 and particulate matter (PM10. Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII. The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station's best deterministic model at no more than 60 % of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3 and lower for PM10, associated with the extent of potential changes in the joint

  18. Transmutation approximations for the application of hybrid Monte Carlo/deterministic neutron transport to shutdown dose rate analysis

    International Nuclear Information System (INIS)

    Biondo, Elliott D.; Wilson, Paul P. H.

    2017-01-01

    In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation of an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 _± 5 • _1_0_"_4 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.

  19. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  20. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  1. Performance analysis of multidimensional wavefront algorithms with application to deterministic particle transport

    International Nuclear Information System (INIS)

    Hoisie, A.; Lubeck, O.; Wasserman, H.

    1998-01-01

    The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, the authors analyze two problem sizes. Their model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor

  2. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  3. Modern licensing approaches for analysis of important to safety processes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Andreeva, M.; Groudev, P.; Pavlova, M.; Stoyanov, S.

    2008-01-01

    It is presented within the paper the modern approaches for analysis of important to safety assessment processes in Nuclear Power Plants, included Bulgarian Regulatory Agency's requirements for quantity assessment of these processes applying deterministic and probabilistic approaches for establishing and confirming the design basis and defence-in-depth effectiveness. (authors)

  4. Deterministic Graphical Games Revisited

    DEFF Research Database (Denmark)

    Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro

    2012-01-01

    Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them......, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...

  5. Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems

    DEFF Research Database (Denmark)

    De Carvalho, Elisabeth; Omar, Samir; Slock, Dirk

    2013-01-01

    We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low...... to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML......, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML...

  6. Direct deterministic method for neutronics analysis and computation of asymptotic burnup distribution in a recirculating pebble-bed reactor

    International Nuclear Information System (INIS)

    Terry, W.K.; Gougar, H.D.; Ougouag, A.M.

    2002-01-01

    A new deterministic method has been developed for the neutronics analysis of a pebble-bed reactor (PBR). The method accounts for the flow of pebbles explicitly and couples the flow to the neutronics. The method allows modeling of once-through cycles as well as cycles in which pebbles are recirculated through the core an arbitrary number of times. This new work is distinguished from older methods by the systematically semi-analytical approach it takes. In particular, whereas older methods use the finite-difference approach (or an equivalent one) for the discretization and the solution of the burnup equation, the present work integrates the relevant differential equation analytically in discrete and complementary sub-domains of the reactor. Like some of the finite-difference codes, the new method obtains the asymptotic fuel-loading pattern directly, without modeling any intermediate loading pattern. This is a significant advantage for the design and optimization of the asymptotic fuel-loading pattern. The new method is capable of modeling directly both the once-through-then-out fuel cycle and the pebble recirculating fuel cycle. Although it currently includes a finite-difference neutronics solver, the new method has been implemented into a modular code that incorporates the framework for the future coupling to an efficient solver such as a nodal method and to modern cross section preparation capabilities. In its current state, the deterministic method presented here is capable of quick and efficient design and optimization calculations for the in-core PBR fuel cycle. The method can also be used as a practical 'scoping' tool. It could, for example, be applied to determine the potential of the PBR for resisting nuclear-weapons proliferation and to optimize proliferation-resistant features. However, the purpose of this paper is to show that the method itself is viable. Refinements to the code are under way, with the objective of producing a powerful reactor physics

  7. Reliability Analysis and Calibration of Partial Safety Factors for Redundant Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1998-01-01

    Redundancy is important to include in the design and analysis of structural systems. In most codes of practice redundancy is not directly taken into account. In the paper various definitions of a deterministic and reliability based redundancy measure are reviewed. It is described how reundancy can...... be included in the safety system and how partial safety factors can be calibrated. An example is presented illustrating how redundancy is taken into account in the safety system in e.g. the Danish codes. The example shows how partial safety factors can be calibrated to comply with the safety level...

  8. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  9. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  10. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  11. Development of Deterministic and Probabilistic Fracture Mechanics Analysis Code PROFAS-RV for Reactor Pressure Vessel - Progress of the Work

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Lee, Bong Sang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, a deterministic/probabilistic fracture mechanics analysis program for reactor pressure vessel, PROFAS-RV, is developed. This program can evaluate failure probability of RPV using recent radiation embrittlement model of 10CFR50.61a and stress intensity factor calculation method of RCC-MRx code as well as the required basic functions of PFM program. Applications of some new radiation embrittlement model, material database, calculation method of stress intensity factors, and others which can improve fracture mechanics assessment of RPV are introduced. The purpose of this study is to develop a probabilistic fracture mechanics (PFM) analysis program for RPV considering above modification and application of newly developed models and calculation methods. In this paper, it deals with the development progress of the PFM analysis program for RPV, PROFAS-RV. The PROFAS-RV is being tested with other codes, and it is expected to revise and upgrade by reflecting the latest model and calculation method continuously. These efforts can minimize the uncertainty of the integrity evaluation for the reactor pressure vessel.

  12. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  13. Analysis and development of deterministic and stochastic neutron noise computing techniques with applications to thermal and fast reactors

    International Nuclear Information System (INIS)

    Rouchon, Amelie

    2016-01-01

    Neutron noise analysis addresses the description of small time-dependent flux fluctuations induced by small global or local perturbations of the macroscopic cross-sections. These fluctuations may occur in nuclear reactors due to density fluctuations of the coolant, to vibrations of fuel elements, control rods, or any other structures in the core. In power reactors, ex-core and in-core detectors can be used to monitor neutron noise with the aim of detecting possible anomalies and taking the necessary measures for continuous safe power production. The objective of this thesis is to develop techniques for neutron noise analysis and especially to implement a neutron noise solver in the deterministic transport code APOLLO3 developed at CEA. A new Monte Carlo algorithm that solves the transport equations for the neutron noise has been also developed. In addition, a new vibration model has been developed. Moreover, a method based on the determination of a new steady state has been proposed for the linear and the nonlinear full theory so as to improve the traditional neutron noise theory. In order to test these new developments we have performed neutron noise simulations in one-dimensional systems and in a large pressurized water reactor with heavy baffle in two and three dimensions with APOLLO3 in diffusion and transport theories. (author) [fr

  14. Analysis of natural circulation BWR dynamics with stochastic and deterministic methods

    International Nuclear Information System (INIS)

    VanderHagen, T.H.; Van Dam, H.; Hoogenboom, J.E.; Kleiss, E.B.J.; Nissen, W.H.M.; Oosterkamp, W.J.

    1986-01-01

    Reactor kinetic, thermal hydraulic and total plant stability of a natural convection cooled BWR was studied using noise analysis and by evaluation of process responses to control rod steps and to steamflow control valve steps. An estimate of the fuel thermal time constant and an impression of the recirculation flow response to power variations was obtained. A sophisticated noise analysis method resulted in more insight into the fluctuations of the coolant velocity

  15. Deterministic versus Stochastic Sensitivity Analysis in Investment Problems : An Environmental Case Study

    NARCIS (Netherlands)

    van Groenendaal, W.J.H.; Kleijnen, J.P.C.

    2001-01-01

    Sensitivity analysis in investment problems is an important tool to determine which factors can jeopardize the future of the investment.Information on the probability distribution of those factors that affect the investment is mostly lacking.In those situations the analysts have two options: (i)

  16. Deterministic economic analysis of feedlot Red Angus young steers: slaughter weights and bonus

    Directory of Open Access Journals (Sweden)

    Paulo Santana Pacheco

    2015-03-01

    Full Text Available The joint analysis of indicators of the investment project is very relevant in making decisions, resulting in more consistent information regarding risk assessment and its confrontation with the possibility of return. This research aimed to evaluate the economic feasibility of Red Angus young steers finished in feedlot, slaughtered at 340, 373, 396 or 430kg with use of various financial indicators, marketed with or without bonus. The purchase of feeder cattle and feeding were variable costs with a higher share in the total cost. In the analysis with bonus, the regression analysis to gross margin, net margin, net present value, benefit:cost index and additional return on investment showed quadratic behavior, with the point of maximum at 406kg (R$ 185.17, 406kg (R$ 161.76 , 393kg (R$ 128.29, 392kg (1.12, 392kg (11.98%, respectively. In the analysis without bonus, gross margin and net margin showed a quadratic response (346kg, with R$ 110.31 and R$ 86.90, respectively, while for the other indicators, there was a linear reduction as an increase in slaughter weight.

  17. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  18. Deterministic Graphical Games Revisited

    DEFF Research Database (Denmark)

    Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro

    2008-01-01

    We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem....

  19. An empirical method to measure the relative efficiency of dairy producers using deterministic frontier analysis

    Directory of Open Access Journals (Sweden)

    Shahram RostamPour

    2012-01-01

    Full Text Available The purpose of this paper is to measure the relative efficiencies of various cow husbandries. The proposed model of this paper uses distribution free analysis to measure the performance of different units responsible for taking care of cows. We gather the necessary information of all units including number of cows, amount of internet usage, number of subunits for taking care of cows, amount of forage produced in each province for grazing livestock and average hour per person training courses as independent variables and consider the amount of produced milk as dependent variable. The necessary information are collected from all available units located in different provinces of Iran and the production function is estimated using a linear programming model. The results indicate that the capital city of Iran, Tehran, holds the highest technical efficiency, the lowest efficiency belongs to province of Ilam and other provinces mostly performs poorly.

  20. Nonlinear Markov processes: Deterministic case

    International Nuclear Information System (INIS)

    Frank, T.D.

    2008-01-01

    Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution

  1. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  2. Present status of reactor physics in the United States and Japan-II. 1. Deterministic Transport Methods for Reactor Analysis

    International Nuclear Information System (INIS)

    Adams, Marvin L.

    2001-01-01

    We discuss deterministic transport methods used today in neutronic analysis of nuclear reactors. This discussion is not exhaustive; our goal is to provide an overview of the methods that are most widely used for analyzing light water reactors (LWRs) and that (in our opinion) hold the most promise for the future. The current practice of LWR analysis involves the following steps: 1. Evaluate cross sections from measurements and models. 2. Obtain weighted-average cross sections over dozens to hundreds of energy intervals; the result is a 'fine-group' cross-section set. 3. [Optional] Modify the fine-group set: Further collapse it using information specific to your class of reactors and/or alter parameters so that computations better agree with experiments. The result is a 'many-group library'. 4. Perform pin cell transport calculations (usually one-dimensional cylindrical); use the results to collapse the many-group library to a medium-group set, and/or spatially average the cross sections over the pin cells. 5. Perform assembly-level transport calculations with the medium-group set. It is becoming common practice to use essentially exact geometry (no pin cell homogenization). It may soon become common to skip step 4 and use the many-group library. The output is a library of few-group cross sections, spatially averaged over the assembly, parameterized to cover the full range of operating conditions. 6. Perform full-core calculations with few-group diffusion theory that contains significant homogenizations and limited transport corrections. We discuss steps 4, 5, and 6 and focus mainly on step 5. One cannot review a large topic in a short summary without simplifying reality, omitting important details, and neglecting some methods that deserve attention; for this we apologize in advance. (author)

  3. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  4. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  5. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor

    International Nuclear Information System (INIS)

    Boustani, Ehsan; Amirkabir University of Technology, Tehran; Khakshournia, Samad

    2016-01-01

    In this paper two different computational approaches, a deterministic and a stochastic one, were used for calculation of the control rods worth of the Tehran research reactor. For the deterministic approach the MTRPC package composed of the WIMS code and diffusion code CITVAP was used, while for the stochastic one the Monte Carlo code MCNPX was applied. On comparing our results obtained by the Monte Carlo approach and those previously reported in the Safety Analysis Report (SAR) of Tehran research reactor produced by the deterministic approach large discrepancies were seen. To uncover the root cause of these discrepancies, some efforts were made and finally was discerned that the number of spatial mesh points in the deterministic approach was the critical cause of these discrepancies. Therefore, the mesh optimization was performed for different regions of the core such that the results of deterministic approach based on the optimized mesh points have a good agreement with those obtained by the Monte Carlo approach.

  6. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boustani, Ehsan [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.; Khakshournia, Samad [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.

    2016-12-15

    In this paper two different computational approaches, a deterministic and a stochastic one, were used for calculation of the control rods worth of the Tehran research reactor. For the deterministic approach the MTRPC package composed of the WIMS code and diffusion code CITVAP was used, while for the stochastic one the Monte Carlo code MCNPX was applied. On comparing our results obtained by the Monte Carlo approach and those previously reported in the Safety Analysis Report (SAR) of Tehran research reactor produced by the deterministic approach large discrepancies were seen. To uncover the root cause of these discrepancies, some efforts were made and finally was discerned that the number of spatial mesh points in the deterministic approach was the critical cause of these discrepancies. Therefore, the mesh optimization was performed for different regions of the core such that the results of deterministic approach based on the optimized mesh points have a good agreement with those obtained by the Monte Carlo approach.

  7. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  8. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  9. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  10. Deterministic quantitative risk assessment development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)

    2009-07-01

    Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)

  11. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  12. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  13. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  14. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  15. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  16. Pseudo-deterministic Algorithms

    OpenAIRE

    Goldwasser , Shafi

    2012-01-01

    International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...

  17. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)

    2006-12-18

    A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.

  18. A mathematical analysis of an exchange-traded horse race betting fund with deterministic payoff betting strategy for institutional investment to challenge EMH

    Directory of Open Access Journals (Sweden)

    Craig George Leslie Hopf

    2015-12-01

    Full Text Available This paper’s primary alternative hypothesis is Ha: profitable exchange-traded horserace betting fund with deterministic payoff exists for acceptable institutional portfolio return—risk. The primary hypothesis challenges the semi-strong efficient market hypothesis applied to horse race wagering. An optimal deterministic betting model (DBM is derived from the existing stochastic model fundamentals, mathematical pooling principles, and new theorem. The exchange-traded betting fund (ETBF is derived from force of interest first principles. An ETBF driven by DBM processes conjointly defines the research’s betting strategy. Alpha is excess return above financial benchmark, and invokes betting strategy alpha that is composed of model alpha and fund alpha. The results and analysis from statistical testing of a global stratified data sample of three hundred galloper horse races accepted at the ninety-five percent confidence-level positive betting strategy alpha, to endorse an exchange-traded horse race betting fund with deterministic payoff into financial market.

  19. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  20. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  1. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  2. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  3. Risk-based and deterministic regulation

    International Nuclear Information System (INIS)

    Fischer, L.E.; Brown, N.W.

    1995-07-01

    Both risk-based and deterministic methods are used for regulating the nuclear industry to protect the public safety and health from undue risk. The deterministic method is one where performance standards are specified for each kind of nuclear system or facility. The deterministic performance standards address normal operations and design basis events which include transient and accident conditions. The risk-based method uses probabilistic risk assessment methods to supplement the deterministic one by (1) addressing all possible events (including those beyond the design basis events), (2) using a systematic, logical process for identifying and evaluating accidents, and (3) considering alternative means to reduce accident frequency and/or consequences. Although both deterministic and risk-based methods have been successfully applied, there is need for a better understanding of their applications and supportive roles. This paper describes the relationship between the two methods and how they are used to develop and assess regulations in the nuclear industry. Preliminary guidance is suggested for determining the need for using risk based methods to supplement deterministic ones. However, it is recommended that more detailed guidance and criteria be developed for this purpose

  4. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  5. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  6. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  7. Formal Analysis and Design of Supervisor and User Interface Allowing for Non-Deterministic Choices Using Weak Bi-Simulation

    Directory of Open Access Journals (Sweden)

    Shazada Muhammad Umair Khan

    2018-01-01

    Full Text Available In human machine systems, a user display should contain sufficient information to encapsulate expressive and normative human operator behavior. Failure in such system that is commanded by supervisor can be difficult to anticipate because of unexpected interactions between the different users and machines. Currently, most interfaces have non-deterministic choices at state of machine. Inspired by the theories of single user of an interface established on discrete event system, we present a formal model of multiple users, multiple machines, a supervisor and a supervisor machine. The syntax and semantics of these models are based on the system specification using timed automata that adheres to desirable specification properties conducive to solving the non-deterministic choices for usability properties of the supervisor and user interface. Further, the succinct interface developed by applying the weak bi-simulation relation, where large classes of potentially equivalent states are refined into a smaller one, enables the supervisor and user to perform specified task correctly. Finally, the proposed approach is applied to a model of a manufacturing system with several users interacting with their machines, a supervisor with several users and a supervisor with a supervisor machine to illustrate the design procedure of human–machine systems. The formal specification is validated by z-eves toolset.

  8. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  9. RBE for deterministic effects

    International Nuclear Information System (INIS)

    1990-01-01

    In the present report, data on RBE values for effects in tissues of experimental animals and man are analysed to assess whether for specific tissues the present dose limits or annual limits of intake based on Q values, are adequate to prevent deterministic effects. (author)

  10. SIMMER as a safety analysis tool

    International Nuclear Information System (INIS)

    Smith, L.L.; Bell, C.R.; Bohl, W.R.; Bott, T.F.; Dearing, J.F.; Luck, L.B.

    1982-01-01

    SIMMER has been used for numerous applications in fast reactor safety, encompassing both accident and experiment analysis. Recent analyses of transition-phase behavior in potential core disruptive accidents have integrated SIMMER testing with the accident analysis. Results of both the accident analysis and the verification effort are presented as a comprehensive safety analysis program

  11. Prototype application of best estimate and uncertainty safety analysis methodology to large LOCA analysis

    International Nuclear Information System (INIS)

    Luxat, J.C.; Huget, R.G.

    2001-01-01

    Development of a methodology to perform best estimate and uncertainty nuclear safety analysis has been underway at Ontario Power Generation for the past two and one half years. A key driver for the methodology development, and one of the major challenges faced, is the need to re-establish demonstrated safety margins that have progressively been undermined through excessive and compounding conservatism in deterministic analyses. The major focus of the prototyping applications was to quantify the safety margins that exist at the probable range of high power operating conditions, rather than the highly improbable operating states associated with Limit of the Envelope (LOE) assumptions. In LOE, all parameters of significance to the consequences of a postulated accident are assumed to simultaneously deviate to their limiting values. Another equally important objective of the prototyping was to demonstrate the feasibility of conducting safety analysis as an incremental analysis activity, as opposed to a major re-analysis activity. The prototype analysis solely employed prior analyses of Bruce B large break LOCA events - no new computer simulations were undertaken. This is a significant and novel feature of the prototyping work. This methodology framework has been applied to a postulated large break LOCA in a Bruce generating unit on a prototype basis. This paper presents results of the application. (author)

  12. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  13. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  14. Independent deterministic analysis of the operational event with turbine valve closure and one atmospheric dump valve stuck open

    International Nuclear Information System (INIS)

    Rijova, N.

    2007-01-01

    The paper presents the results of the independent analysis of the operational event which took place on 07.11.2003 at Unit 1 of Rostov NPP. The event started with switching off the electrical generator of the turbine due to a short cut at the local switching substation. The turbine isolating valves closed to prevent damage of the turbine. The condenser dump valves (BRU-K) and the atmospheric dump valves (BRU-A) opened to release the vapour generated in the steam generators. After the pressure decrease in the steam generators BRU-K and BRU-A closed but one valve stuck opened. The emergency core cooling system was activated automatically. The main circulation pump of the loop corresponding to the steam generator with the stuck BRU-A was tripped. The stuck valve was closed by the operational stuff manually. No safety limits were violated. The analysis of the event was carried out using ATHLET code. A reasonable agreement was achieved between the calculated and measured values. (author)

  15. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  16. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  17. The probabilistic approach and the deterministic licensing procedure

    International Nuclear Information System (INIS)

    Fabian, H.; Feigel, A.; Gremm, O.

    1984-01-01

    If safety goals are given, the creativity of the engineers is necessary to transform the goals into actual safety measures. That is, safety goals are not sufficient for the derivation of a safety concept; the licensing process asks ''What does a safe plant look like.'' The answer connot be given by a probabilistic procedure, but need definite deterministic statements; the conclusion is, that the licensing process needs a deterministic approach. The probabilistic approach should be used in a complementary role in cases where deterministic criteria are not complete, not detailed enough or not consistent and additional arguments for decision making in connection with the adequacy of a specific measure are necessary. But also in these cases the probabilistic answer has to be transformed into a clear deterministic statement. (orig.)

  18. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  19. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 33.75 Section 33.75... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... consequences of all failures that can reasonably be expected to occur. This analysis will take into account, if...

  20. 14 CFR 35.15 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 35.15 Section 35.15... STANDARDS: PROPELLERS Design and Construction § 35.15 Safety analysis. (a)(1) The applicant must analyze the.... This analysis will take into account, if applicable: (i) The propeller system in a typical installation...

  1. Deterministic behavioural models for concurrency

    DEFF Research Database (Denmark)

    Sassone, Vladimiro; Nielsen, Mogens; Winskel, Glynn

    1993-01-01

    This paper offers three candidates for a deterministic, noninterleaving, behaviour model which generalizes Hoare traces to the noninterleaving situation. The three models are all proved equivalent in the rather strong sense of being equivalent as categories. The models are: deterministic labelled...... event structures, generalized trace languages in which the independence relation is context-dependent, and deterministic languages of pomsets....

  2. AST-500 safety analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Falikov, A A; Bakhmetiev, A M; Kuul, V S; Samoilov, O B [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    Characteristic AST-type NHR safety features and requirements are described briefly. The main approaches and results of design and beyond-design accidents analyses for the AST-500 NHR, and the results of probabilistic safety assessments are considered. It is concluded that the AST-500 possesses a high safety level in virtue of the development and realization in the design of self-protection, passivity and defence-in-depth principles. (author). 9 refs, 2 figs.

  3. The significance of the probabilistic safety analysis (PSA) in administrative procedures under nuclear law

    International Nuclear Information System (INIS)

    Berg, H.P.

    1994-01-01

    The probabilistic safety analysis (PSA) is a useful tool for safety relevant evaluation of nuclear power plant designed on the basis of deterministic specifications. The PSA yields data identifying reliable or less reliable systems, or frequent or less frequent failure modes to be taken into account for safety engineering. Performance of a PSA in administrative procedures under nuclear law, e.g. licensing, is an obligation laid down in a footnote to criterion 1.1 of the BMI safety criteria catalogue, which has been in force unaltered since 1977. The paper explains the application and achievements of PSA in the phase of reactor development concerned with the conceptual design basis and design features, using as an example the novel PWR. (orig./HP) [de

  4. The Process Synthesis Pyramid: Conceptual design of a Liquefied Energy Chain using Pinch Analysis,Exergy Analysis,Deterministic Optimization and Metaheuristic Searches

    International Nuclear Information System (INIS)

    Aspelund, Audun

    2012-01-01

    Process Synthesis (PS) is a term used to describe a class of general and systematic methods for the conceptual design of processing plants and energy systems. The term also refers to the development of the process flowsheet (structure or topology), the selection of unit operations and the determination of the most important operating conditions.In this thesis an attempt is made to characterize some of the most common methodologies in a PS pyramid and discuss their advantages and disadvantages as well as where in the design phase they could be used most efficiently. The thesis shows how design tools have been developed for subambient processes by combining and expanding PS methods such as Heuristic Rules, sequential modular Process Simulations, Pinch Analysis, Exergy Analysis, Mathematical Programming using Deterministic Optimization methods and optimization using Stochastic Optimization methods. The most important contributions to the process design community are three new methodologies that include the pressure as an important variable in heat exchanger network synthesis (HENS).The methodologies have been used to develop a novel and efficient energy chain based on stranded natural gas including power production with carbon capture and sequestration (CCS). This Liquefied Energy Chain consists of an offshore process a combined gas carrier and an onshore process. This energy chain is capable of efficiently exploiting resources that cannot be utilized economically today with minor Co2 emissions. Finally, a new Stochastic Optimization approach based on a Tabu Search (TS), the Nelder Mead method or Downhill Simplex Method (NMDS) and the sequential process simulator HYSYS is used to search for better solutions for the Liquefied Energy Chain with respect to minimum cost or maximum profit. (au)

  5. The Process Synthesis Pyramid: Conceptual design of a Liquefied Energy Chain using Pinch Analysis,Exergy Analysis,Deterministic Optimization and Metaheuristic Searches

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, Audun

    2012-07-01

    Process Synthesis (PS) is a term used to describe a class of general and systematic methods for the conceptual design of processing plants and energy systems. The term also refers to the development of the process flowsheet (structure or topology), the selection of unit operations and the determination of the most important operating conditions.In this thesis an attempt is made to characterize some of the most common methodologies in a PS pyramid and discuss their advantages and disadvantages as well as where in the design phase they could be used most efficiently. The thesis shows how design tools have been developed for subambient processes by combining and expanding PS methods such as Heuristic Rules, sequential modular Process Simulations, Pinch Analysis, Exergy Analysis, Mathematical Programming using Deterministic Optimization methods and optimization using Stochastic Optimization methods. The most important contributions to the process design community are three new methodologies that include the pressure as an important variable in heat exchanger network synthesis (HENS).The methodologies have been used to develop a novel and efficient energy chain based on stranded natural gas including power production with carbon capture and sequestration (CCS). This Liquefied Energy Chain consists of an offshore process a combined gas carrier and an onshore process. This energy chain is capable of efficiently exploiting resources that cannot be utilized economically today with minor Co2 emissions. Finally, a new Stochastic Optimization approach based on a Tabu Search (TS), the Nelder Mead method or Downhill Simplex Method (NMDS) and the sequential process simulator HYSYS is used to search for better solutions for the Liquefied Energy Chain with respect to minimum cost or maximum profit. (au)

  6. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  7. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  8. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  9. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  10. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  11. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  12. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  13. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    International Nuclear Information System (INIS)

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  14. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  15. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  16. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  17. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  18. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  19. Uncertainty analysis in safety assessment

    International Nuclear Information System (INIS)

    Lemos, Francisco Luiz de; Sullivan, Terry

    1997-01-01

    Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author)

  20. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  1. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  2. Uncertainty analysis in safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Francisco Luiz de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Sullivan, Terry [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author) 13 refs.; e-mail: lemos at bnl.gov; sulliva1 at bnl.gov

  3. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  4. Safety analysis in subsurface repositories

    International Nuclear Information System (INIS)

    1985-06-01

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.) [pt

  5. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  6. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  7. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  8. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  9. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  10. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  11. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  12. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  13. Airline Safety: A Comparative Analysis.

    Science.gov (United States)

    1987-01-01

    shrinking FAA inspector force handling a rapidly growing number of air carriers. These studies have always shown an improvement in airline safety in the...EhCLhEmohhhhhhhEoo EhhshhEEmhhhhE EhhEohhEshhhhE EhhhEEEohEohEE EohEEEmhshEmhE IEEE...mmmo 1-2. jI. Mi6 NEW - secuRily CLASSIFICATION OF THIS PAGE (When De

  14. Safety analysis and related studies

    International Nuclear Information System (INIS)

    Lelievre, J.

    1979-12-01

    Several examples of reactor safety studies are given. For light water reactors, the consequences of loss of coolant, the disposition of the fuel elements and the behaviour under irradiation of the steels used for containment are described. For fast reactors, the disposition of fuel elements in the case of cooling accidents and sodium fies are described. Examples given of studies not specific to a particular reactor type include studies of non-destructive testing and those of reliability

  15. Using Addenda in Documented Safety Analysis Reports

    International Nuclear Information System (INIS)

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  16. MSSV Modeling for Wolsong-1 Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Bok Ja; Choi, Chul Jin; Kim, Seoung Rae [KEPCO EandC, Daejeon (Korea, Republic of)

    2010-10-15

    The main steam safety valves (MSSVs) are installed on the main steam line to prevent the overpressurization of the system. MSSVs are held in closed position by spring force and the valves pop open by internal force when the main steam pressure increases to open set pressure. If the overpressure condition is relieved, the valves begin to close. For the safety analysis of anticipated accident condition, the safety systems are modeled conservatively to simulate the accident condition more severe. MSSVs are also modeled conservatively for the analysis of over-pressurization accidents. In this paper, the pressure transient is analyzed at over-pressurization condition to evaluate the conservatism for MSSV models

  17. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  18. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  19. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  20. Software safety analysis application in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Yih, S.; Wang, L. H.; Liao, B. C.; Lin, J. M.; Kao, T. M.

    2010-01-01

    This work performed a software safety analysis (SSA) in the installation phase of the Lungmen nuclear power plant (LMNPP) in Taiwan, under the cooperation of INER and TPC. The US Nuclear Regulatory Commission (USNRC) requests licensee to perform software safety analysis (SSA) and software verification and validation (SV and V) in each phase of software development life cycle with Branch Technical Position (BTP) 7-14. In this work, 37 safety grade digital instrumentation and control (I and C) systems were analyzed by Failure Mode and Effects Analysis (FMEA), which is suggested by IEEE Standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The FMEA showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (authors)

  1. Probabilistic safety analysis using microcomputer

    International Nuclear Information System (INIS)

    Futuro Filho, F.L.F.; Mendes, J.E.S.; Santos, M.J.P. dos

    1990-01-01

    The main steps of execution of a Probabilistic Safety Assessment (PSA) are presented in this report, as the study of the system description, construction of event trees and fault trees, and the calculation of overall unavailability of the systems. It is also presented the use of microcomputer in performing some tasks, highlightning the main characteristics of a software to perform adequately the job. A sample case of fault tree construction and calculation is presented, using the PSAPACK software, distributed by the IAEA (International Atomic Energy Agency) for training purpose. (author)

  2. Abstract interpretation over non-deterministic finite tree automate for set-based analysis of logic programs

    DEFF Research Database (Denmark)

    Gallagher, John Patrick; Puebla, G.

    2002-01-01

    , and describe its implementation. Both goal-dependent and goal-independent analysis are considered. Variations on the abstract domains operations are introduced, and we discuss the associated tradeoffs of precision and complexity. The experimental results indicate that this approach is a practical way...

  3. The Stochastic-Deterministic Transition in Discrete Fracture Network Models and its Implementation in a Safety Assessment Application by Means of Conditional Simulation

    Science.gov (United States)

    Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.

    2015-12-01

    In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to

  4. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  5. Application of Software Safety Analysis Methods

    International Nuclear Information System (INIS)

    Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.

    2009-01-01

    A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)

  6. From Safety Analysis to Formal Specification

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark; Ravn, Anders P.; Stavridou, Victoria

    1998-01-01

    Software for safety critical systems must deal with the hazards identified bysafety analysis. This paper investigates, how the results of onesafety analysis technique, fault trees, are interpreted as software safetyrequirements to be used in the program design process. We propose thatfault tree...... analysis and program development use the samesystem model. This model is formalized in areal-time, interval logic, based on a conventional dynamic systems modelwith state evolving over time. Fault trees are interpreted astemporal formulas, and it is shown how such formulas can be usedfor deriving safety...

  7. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  8. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  9. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  10. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  11. Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method*

    Directory of Open Access Journals (Sweden)

    Risner J.M.

    2016-01-01

    Full Text Available The Oak Ridge High Flux Isotope Reactor (HFIR, which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa, particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.

  12. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  13. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  14. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  15. Deterministic methods in radiation transport

    International Nuclear Information System (INIS)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community

  16. Accident Analysis and Highway Safety

    Directory of Open Access Journals (Sweden)

    Omar Noorliyana

    2017-01-01

    Full Text Available Since 2010, Federal Route FT050 (Jalan Batu Pahat-Kluang has undergone many changes, including the improvement of geometric features (i.e., construction of median, dedicated U-turns and additional lanes and upgrading the quality of the road surface. Unfortunately, even with these enhancements, accidents continue to occur along this route. This study covered both accident analysis and blackspot study. Accident point weightage was used to identify blackspot locations. The results reveal hazardous road locations and blackspot ranking along the route.

  17. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  18. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  19. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  20. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  1. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  2. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  3. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  4. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  5. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  6. Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

    Science.gov (United States)

    Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu

    2013-01-01

    With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

  7. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  8. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  9. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Suk, S. D.

    2002-05-01

    In the present study, the KALIMER safety analysis has been made for the transients considered in the design concept, hypothetical core disruptive accident (HCDA), and containment performance with the establishment of the design basis. Such analyses have not been possible without the computer code improvement, and the experience attained during this research period must have greatly contributed to the achievement of the self reliance in the domestic technology establishment on the safety analysis areas of the conceptual design. The safety analysis codes have been improved to extend their applicable ranges for detailed conceptual design, and a basic computer code system has been established for HCDA analysis. A code-to-code comparison analysis has been performed as a part of code verification attempt, and the leading edge technology of JNC also has been brought for the technology upgrade. In addition, the research and development on the area of the database establishment has been made for the efficient and systematic project implementation of the conceptual design, through performances on the development of a project scheduling management, integration of the individually developed technology, establishment of the product database, and so on, taking into account coupling of the activities conducted in each specific area

  10. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  11. Deterministic nonlinear systems a short course

    CERN Document Server

    Anishchenko, Vadim S; Strelkova, Galina I

    2014-01-01

    This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems.  This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.

  12. Advances in stochastic and deterministic global optimization

    CERN Document Server

    Zhigljavsky, Anatoly; Žilinskas, Julius

    2016-01-01

    Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...

  13. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  14. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  15. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  16. Requirement analysis of the safety-critical software implementation for the nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Hoon Seon; Jung, Jae Cheon; Kim, Jae Hack; Nam, Sang Ku; Kim, Hang Bae

    2005-01-01

    The safety critical software shall be implemented under the strict regulation and standards along with hardware qualification. In general, the safety critical software has been implemented using functional block language (FBL) and structured language like C in the real project. Software design shall comply with such characteristics as; modularity, simplicity, minimizing the use of sub-routine, and excluding the interrupt logic. To meet these prerequisites, we used the computer-aided software engineering (CASE) tool to substantiate the requirements traceability matrix that were manually developed using Word processors or Spreadsheets. And the coding standard and manual have been developed to confirm the quality of software development process, such as; readability, consistency, and maintainability in compliance with NUREG/CR-6463. System level preliminary hazard analysis (PHA) is performed by analyzing preliminary safety analysis report (PSAR) and FMEA document. The modularity concept is effectively implemented for the overall module configurations and functions using RTP software development tool. The response time imposed on the basis of the deterministic structure of the safety-critical software was measured

  17. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  18. Safety of GM crops: compositional analysis.

    Science.gov (United States)

    Brune, Philip D; Culler, Angela Hendrickson; Ridley, William P; Walker, Kate

    2013-09-04

    The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

  19. Qualitative safety analysis in accelerator based systems

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Chowdhury, Lekha M.

    2006-01-01

    In recent developments connected to high energy and high current accelerators, the accelerator driven systems (ADS) and the Radioactive Ion Beam (RIB) facilities come in the forefront of application. For medical and industrial applications high current accelerators often need to be located in populated areas. These facilities pose significant radiological hazard during their operation and accidental situations. We have done a qualitative evaluation of radiological safety analysis using the probabilistic safety analysis (PSA) methods for accelerator-based systems. The major contribution to hazard comes from a target rupture scenario in both ADS and RIB facilities. Other significant contributors to hazard in the facilities are also discussed using fault tree and event tree methodologies. (author)

  20. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  1. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...

  2. Computer graphics in reactor safety analysis

    International Nuclear Information System (INIS)

    Fiala, C.; Kulak, R.F.

    1989-01-01

    This paper describes a family of three computer graphics codes designed to assist the analyst in three areas: the modelling of complex three-dimensional finite element models of reactor structures; the interpretation of computational results; and the reporting of the results of numerical simulations. The purpose and key features of each code are presented. The graphics output used in actual safety analysis are used to illustrate the capabilities of each code. 5 refs., 10 figs

  3. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  4. N Reactor updated safety analysis report, NUSAR

    International Nuclear Information System (INIS)

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  5. FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variable lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.

  6. Framework for applying probabilistic safety analysis in nuclear regulation

    International Nuclear Information System (INIS)

    Dimitrijevic, V.B.

    1997-01-01

    The traditional regulatory framework has served well to assure the protection of public health and safety. It has been recognized, however, that in a few circumstances, this deterministic framework has lead to an extensive expenditure on matters hat have little to do with the safe and reliable operation of the plant. Developments of plant-specific PSA have offered a new and powerful analytical tool in the evaluation of the safety of the plant. Using PSA insights as an aid to decision making in the regulatory process is now known as 'risk-based' or 'risk-informed' regulation. Numerous activities in the U.S. nuclear industry are focusing on applying this new approach to modify regulatory requirements. In addition, other approaches to regulations are in the developmental phase and are being evaluated. One is based on the performance monitoring and results and it is known as performance-based regulation. The other, called the blended approach, combines traditional deterministic principles with PSA insights and performance results. (author)

  7. Safety analysis of control rod drive computers

    International Nuclear Information System (INIS)

    Ehrenberger, W.; Rauch, G.; Schmeil, U.; Maertz, J.; Mainka, E.U.; Nordland, O.; Gloee, G.

    1985-01-01

    The analysis of the most significant user programmes revealed no errors in these programmes. The evaluation of approximately 82 cumulated years of operation demonstrated that the operating system of the control rod positioning processor has a reliability that is sufficiently good for the tasks this computer has to fulfil. Computers can be used for safety relevant tasks. The experience gained with the control rod positioning processor confirms that computers are not less reliable than conventional instrumentation and control system for comparable tasks. The examination and evaluation of computers for safety relevant tasks can be done with programme analysis or statistical evaluation of the operating experience. Programme analysis is recommended for seldom used and well structured programmes. For programmes with a long, cumulated operating time a statistical evaluation is more advisable. The effort for examination and evaluation is not greater than the corresponding effort for conventional instrumentation and control systems. This project has also revealed that, where it is technologically sensible, process controlling computers or microprocessors can be qualified for safety relevant tasks without undue effort. (orig./HP) [de

  8. Comparative analysis of safety related site characteristics

    International Nuclear Information System (INIS)

    Andersson, Johan

    2010-12-01

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  9. Comparative analysis of safety related site characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan (ed.)

    2010-12-15

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  10. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  11. Capsule safety analysis of PRTF irradiation facility

    International Nuclear Information System (INIS)

    Suwarto

    2013-01-01

    Power Ramp Test Facility (PRTF) is an irradiation facility used for fuel testing of power reactor. PRTF has a capsule which is a test fuel rod container. During operation, pressurized water of 160 bars flows through in the capsule. Due to the high pressure it should be analyzed the impact of the capsule on reactor core safety. This analysis has purpose to calculate the ability of capsule pressure capacity. The analysis was carried out by calculating pressure capacity. From the calculating results it can be concluded that the capsule with pressure capacity of 438 bars will be safe to prevent the operation pressure of PRTF. (author)

  12. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  13. System analysis of vehicle active safety problem

    Science.gov (United States)

    Buznikov, S. E.

    2018-02-01

    The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.

  14. A proposed approach for enhancing design safety assurance of future plants

    International Nuclear Information System (INIS)

    Oh, Kyu Myeng; Ahn, Sang Kyu; Lee, Chang Ju; Kim, Inn Seock

    2010-01-01

    This paper provides various insights from a detailed review of deterministic approaches typically applied to ensure design safety of nuclear power plants (NPPs) and risk-informed approaches proposed to evaluate safety of advanced reactors such as Generation IV reactors. Also considered herein are the risk-informed safety analysis (RISA) methodology suggested by Westinghouse as a means to improve the conventional accident analysis, together with the Technology Neutral Framework recently suggested by the U.S. NRC for safety evaluation of future plants. These insights from the comparative review of deterministic and risk-informed approaches could be used in further enhancing the methodology for design safety assurance of future plants

  15. French PWR safety philosophy

    International Nuclear Information System (INIS)

    Conte, M.

    1986-05-01

    Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents

  16. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  17. Design of deterministic OS for SPLC

    International Nuclear Information System (INIS)

    Son, Choul Woong; Kim, Dong Hoon; Son, Gwang Seop

    2012-01-01

    Existing safety PLCs for using in nuclear power plants operates based on priority based scheduling, in which the highest priority task runs first. This type of scheduling scheme determines processing priorities when multiple requests for processing or when there is a lack of resources available for processing, guaranteeing execution of higher priority tasks. This type of scheduling is prone to exhaustion of resources and continuous preemptions by devices with high priorities, and therefore there is uncertainty every period in terms of smooth running of the overall system. Hence, it is difficult to apply this type of scheme to where deterministic operation is required, such as in nuclear power plant. Also, existing PLCs either have no output logic with regard to devices' redundant selection or it was set in a fixed way, and as a result it was extremely inefficient to use them for redundant systems such as that of a nuclear power plant and their use was limited. Therefore, functional modules that can manage and control all devices need to be developed by improving on the way priorities are assigned among the devices, making it more flexible. A management module should be able to schedule all devices of the system, manage resources, analyze states of the devices, and give warnings in case of abnormal situations, such as device fail or resource scarcity and decide on how to handle it. Also, the management module should have output logic for device redundancy, as well as deterministic processing capabilities, such as with regard to device interrupt events

  18. ARIES-AT safety design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D.A. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States)]. E-mail: David.Petti@inl.gov; Merrill, B.J. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Moore, R.L. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Longhurst, G.R. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); El-Guebaly, L. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Mogahed, E. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Henderson, D. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wilson, P. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Abdou, A. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2006-01-15

    ARIES-AT is a 1000 MWe conceptual fusion power plant design with a very low projected cost of electricity. The design contains many innovative features to improve both the physics and engineering performance of the system. From the safety and environmental perspective, there is greater depth to the overall analysis than in past ARIES studies. For ARIES-AT, the overall spectrum of off-normal events to be examined has been broadened. They include conventional loss of coolant and loss of flow events, an ex-vessel loss of coolant, and in-vessel off-normal events that mobilize in-vessel inventories (e.g., tritium and tokamak dust) and bypass primary confinement such as a loss of vacuum and an in-vessel loss of coolant with bypass. This broader examination of accidents improves the robustness of the design from the safety perspective and gives additional confidence that the facility can meet the no-evacuation requirement under average weather conditions. We also provide a systematic assessment of the design to address key safety functions such as confinement, decay heat removal, and chemical energy control. In the area of waste management, both the volume of the component and its hazard are used to classify the waste. In comparison to previous ARIES designs, the overall waste volume is less because of the compact design.

  19. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Lee, Y. B.; Kwon, Y. M.; Suk, S. D.

    2005-03-01

    The MATRA-LMR-FB has been developed internally for the damage prevention as well as the safety assessment during a channel blockage accident and, as a the result, the quality of the code becomes comparable to that developed in the leading countries. For a code-to-code comparison, KAERI could have access to the SASSYS-1 through a bilateral collaboration between KAERI and ANL. The study could bring into the reliability improvements both on the reactivity models in the SSC-K and on the SSC-K prediction capability. It finally leads to the completion of the SSC-K version 1.3 resulting from the qualitative and quantitative code-to-code comparison. The preliminary analysis for a metal fueled LMR could also become possible with the MELT-III and the VENUS-II, which had originally been developed for the HCDA analysis with an oxidized fuel, by developing the relevant models For the development of the safety evaluation technology, the safety limits have been set up, and the analyses of the internal and external channel blockages in an assembly have also been performed. Besides, the more reliable analysis results on the key design concepts could be obtained by way of the methodology improvement resulting from the qualitative and quantitative comparison study. For an efficient and systematic control of the main project, the integration of the developed technologies and the establishment of their data base have been pursued. It has gone through the development of the process control with taking account of interfaces among the sub-projects, the overall coordination of the developed technologies, the data base for the design products, and so on

  20. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  1. Safety analysis reports. Current status (third key report)

    International Nuclear Information System (INIS)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  2. Ignalina Safety Analysis Group's report for the year 1998

    International Nuclear Information System (INIS)

    Uspuras, E.; Augutis, J.; Bubelis, E.; Cesna, B.; Kaliatka, A.

    1999-02-01

    Results of Ignalina NPP Safety Analysis Group's research are presented. The main fields of group's activities in 1998 were following: safety analysis of reactor's cooling system, safety analysis of accident localization system, investigation of the problem graphite - fuel channel, reactor core modelling, assistance to the regulatory body VATESI in drafting regulations and reviewing safety reports presented by Ignalina NPP during the process of licensing of unit 1

  3. The LaSalle probabilistic safety analysis

    International Nuclear Information System (INIS)

    Frederick, L.G.; Massin, H.L.; Crane, G.R.

    1987-01-01

    A probabilistic safety analysis has been performed for LaSalle County Station, a twin-unit General Electric BWR5 Mark II nuclear power plant. A primary objective of this PSA is to provide engineers with a useful and useable tool for making design decisions, performing technical specification optimization, evaluating proposed regulatory changes to equipment and procedures, and as an aid in operator training. Other objectives are to identify the hypothetical accident sequences that would contribute to core damage frequency, and to provide assurance that the total expected frequency of core-damaging accidents is below 10 -4 per reactor-year in response to suggested goals. (orig./HSCH)

  4. ESSAA: Embedded system safety analysis assistant

    Science.gov (United States)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  5. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  6. Mechanistic facility safety and source term analysis

    International Nuclear Information System (INIS)

    PLYS, M.G.

    1999-01-01

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here

  7. 324 building safety analysis report supplement

    International Nuclear Information System (INIS)

    Dodd, A.O.; Wittenbrock, N.G.

    1977-01-01

    Process engineering designs, major equipment and plant facilities to be utilized in commercial nuclear waste preparation and vitrification in the 324 Radiochemical Engineering Building are reviewed with regard to accident potential and consequences. This Safety Analysis Report Supplement compares calculated environmental doses anticipated from the Commercial Nuclear Waste Vitrification Project (CNWVP) routine operations with the average doses from past waste management operations conducted at the Hanford Project and finds them to be significantly less. The calculated CNWVP environmental doses are found to be far below presently applicable ERDA standards and standards proposed by the EPA for nuclear power operations

  8. Preliminary safety analysis of the Gorleben site

    International Nuclear Information System (INIS)

    Bracke, G.; Fischer-Appelt, K.

    2014-01-01

    The safety requirements governing the final disposal of heat-generating radioactive waste in Germany were implemented by the Federal Ministry of Environment, Natural Conservation and Nuclear Safety (BMU) in 2010. The Ministry considers as a fundamental objective the protection of man and the environment against the hazards of radioactive waste. Unreasonable burdens and obligation for future generations shall be avoided. The main safety principles are concentration and inclusion of radioactive and other pollutants in a containment-providing rock zone. Any release of radioactive nuclides may increase the risk for men and the environment only negligibly compared to natural radiation exposure. No intervention or maintenance work shall be necessary in the post-closure phase. Retrieval/recovery of the waste shall be possible up to 500 years after closure. The Gorleben salt dome has been discussed since the 1970's as a possible repository site for heat-generating radioactive waste in Germany. The objective of the project preliminary safety analysis of the Gorleben site (VSG) was to assess if repository concepts at the Gorleben site or other sites with a comparable geology could comply with these requirements based on currently available knowledge (Fischer-Appelt, 2013; Bracke, 2013). In addition to this it was assessed if methodological approaches can be used for a future site selection procedure and which technological and conceptual considerations can be transferred to other geological situations. The objective included the compilation and review of the available exploration data of the Gorleben site and on disposal in salt rock, the development of repository designs, and the identification of the needs for future R and D work and further site investigations. (authors)

  9. Generation and performance of a multigroup coupled neutron-gamma cross-section library for deterministic and Monte Carlo borehole logging analysis

    International Nuclear Information System (INIS)

    Kodeli, I.; Aldama, D. L.; De Leege, P. F. A.; Legrady, D.; Hoogenboom, J. E.; Cowan, P.

    2004-01-01

    As part of the IRTMBA (Improved Radiation Transport Modelling for Borehole Applications) project of the EU community's 5. framework program a special purpose multigroup cross-section library was prepared for use in deterministic and Monte Carlo oil well logging particle transport calculations. This library is expected to improve the prediction of the neutron and gamma spectra at the detector positions of the logging tool, and their use for the interpretation of the neutron logging measurements was studied. Preparation and testing of this library is described. (authors)

  10. Deterministic extraction from weak random sources

    CERN Document Server

    Gabizon, Ariel

    2011-01-01

    In this research monograph, the author constructs deterministic extractors for several types of sources, using a methodology of recycling randomness which enables increasing the output length of deterministic extractors to near optimal length.

  11. Deterministic chaos in the pitting phenomena of passivable alloys

    International Nuclear Information System (INIS)

    Hoerle, Stephane

    1998-01-01

    It was shown that electrochemical noise recorded in stable pitting conditions exhibits deterministic (even chaotic) features. The occurrence of deterministic behaviors depend on the material/solution severity. Thus, electrolyte composition ([Cl - ]/[NO 3 - ] ratio, pH), passive film thickness or alloy composition can change the deterministic features. Only one pit is sufficient to observe deterministic behaviors. The electrochemical noise signals are non-stationary, which is a hint of a change with time in the pit behavior (propagation speed or mean). Modifications of electrolyte composition reveals transitions between random and deterministic behaviors. Spontaneous transitions between deterministic behaviors of different features (bifurcation) are also evidenced. Such bifurcations enlighten various routes to chaos. The routes to chaos and the features of chaotic signals allow to suggest the modeling (continuous and discontinuous models are proposed) of the electrochemical mechanisms inside a pit, that describe quite well the experimental behaviors and the effect of the various parameters. The analysis of the chaotic behaviors of a pit leads to a better understanding of propagation mechanisms and give tools for pit monitoring. (author) [fr

  12. Deterministic hydrodynamics: Taking blood apart

    Science.gov (United States)

    Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.

    2006-10-01

    We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. cells | plasma | separation | microfabrication

  13. ICRP (1991) and deterministic effects

    International Nuclear Information System (INIS)

    Mole, R.H.

    1992-01-01

    A critical review of ICRP Publication 60 (1991) shows that considerable revisions are needed in both language and thinking about deterministic effects (DE). ICRP (1991) makes a welcome and clear distinction between change, caused by irradiation; damage, some degree of deleterious change, for example to cells, but not necessarily deleterious to the exposed individual; harm, clinically observable deleterious effects expressed in individuals or their descendants; and detriment, a complex concept combining the probability, severity and time of expression of harm (para42). (All added emphases come from the author.) Unfortunately these distinctions are not carried through into the discussion of deterministic effects (DE) and two important terms are left undefined. Presumably effect may refer to change, damage, harm or detriment, according to context. Clinically observable is also undefined although its meaning is crucial to any consideration of DE since DE are defined as causing observable harm (para 20). (Author)

  14. Probabilistic safety analysis applied to RBMK reactors

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Fernandez Ramos, P.

    1995-01-01

    The project financed by the European Union ''Revision of RBMK Reactor Safety was divided into nine Topic Groups dealing with different aspects of safety. The area covered by Topic Group 9 was Probabilistic Safety Analysis. TG9 will have touched on some of the problems discussed by other groups, although in terms of the systematic quantification of the impact of design characteristics and RBMK reactor operating practices on the risk of core damage. On account of the reduced time scale and the resources available for the project, the analysis was made using a simplified method based on the results of PSAs conducted in Western countries and on the judgement of the group members. The simplifies method is based on the concepts of Qualification, Redundancy and Automatic Actuation of the systems considered. PSA experience shows that systems complying with the above-mentioned concepts have a failure probability of 1.0E-3 when redundancy is simple, ie two similar equipment items capable of carrying out the same function. In general terms, this value can be considered to be dominated by potential common cause failures. The value considered above changes according to factors that have a positive effect upon it, such as an additional redundancy with a different equipment item (eg a turbo pumps and a motor pump), individual trains with good separations, etc, or a negative effect, such as the absence of suitable periodical tests, the need for operators to perform manual operations, etc. Similarly, possible actions required by the operator during accident sequences are assigned failure probability values between 1 and 1.0E-4, according to the complexity of the action (including local actions to be performed outside the control room) and the time available

  15. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  16. Short course on system safety analysis

    International Nuclear Information System (INIS)

    Sudmann, R.H.

    1992-01-01

    This course provides and introduction to methods generally used in safety analysis and accident investigation. It is a non-mathematical approach, directed toward a casual user. The participant will learn techniques allowing them to dissect a system or incident in order identify real or potential safety problems. These techniques will be applied to analyze events which have occurred within DOE facilities. As a manager or staff person with general oversight responsibilities, the participant should gain an awareness of the big picture and not just ''dig for facts.'' This can be accomplished by being alert and responsive to the atmosphere and condition of the plant; mood and impression of the worker and the behavioral climate. The techniques taught in the course can be used to identify critical areas or indicators. These indicators will signal problems before the ''facts'' will. Analysis techniques taught are used to gauge the breadth of the ''forest'' and not necessarily to identify the trees. For this course includes a technical background with experience in a chemical processing operations and a knowledge of basic chemistry and engineering is desirable. The course should help in a present or future assignment in an oversight role

  17. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  18. Safety and safety analysis. From CP1 to Fukushima

    International Nuclear Information System (INIS)

    Yadigaroglu, George

    2012-01-01

    The safety of nuclear installations has been a serious concern starting from the days of infancy of this technology. When Fermi and co-workers built the first nuclear reactor in 1941, the Chicago Pile-1 or CP1 at the University of Chicago, some basic safety principles still in use today were already part of this very simple experiment. During the fast-growth period in the 1960ies, a number of NPP systems were conceived, tested and some of them built, mainly in the US and in the Soviet Union, but also in the UK, in France and in Canada, before just a handful of nuclear systems dominated: the LWRs conquered some 3 quarters of the world market and their dominance continues till today. The fission process has been amazingly well ''designed'' by nature: a remarkably simple to produce, self-sustained reaction that can be easily controlled, modulated and adjusted by a variety of available materials. Fission leads to large release of energy that can be easily collected and transformed into useful work. The process has only a major drawback, the inexorable production and accumulation in the core of the radioactive fission products that also produce decay heat. Criticality considerations put apart, the major goal of reactor safety is the confinement and cooling of these fission products. Although safety has been a major concern from the very first nuclear developments, feedback and actions following incidents and accidents have contributed to continuous enhancements. In particular, the three major nuclear accidents, TMI, Chernobyl and Fukushima had or will hopefully have in the future major impacts on safety improvements. Lessons learned from TMI have greatly enhanced the safety of LWRs, while Chernobyl triggered a number of radio-ecology studies and improved the readiness for radiological crisis management. It is hoped that Fukushima will be the trigger for much stronger international oversight and harmonization of safety practices, something that has already been launched

  19. Safety and safety analysis. From CP1 to Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, George [ASCOMP GmbH, Zurich (Switzerland)

    2012-02-15

    The safety of nuclear installations has been a serious concern starting from the days of infancy of this technology. When Fermi and co-workers built the first nuclear reactor in 1941, the Chicago Pile-1 or CP1 at the University of Chicago, some basic safety principles still in use today were already part of this very simple experiment. During the fast-growth period in the 1960ies, a number of NPP systems were conceived, tested and some of them built, mainly in the US and in the Soviet Union, but also in the UK, in France and in Canada, before just a handful of nuclear systems dominated: the LWRs conquered some 3 quarters of the world market and their dominance continues till today. The fission process has been amazingly well ''designed'' by nature: a remarkably simple to produce, self-sustained reaction that can be easily controlled, modulated and adjusted by a variety of available materials. Fission leads to large release of energy that can be easily collected and transformed into useful work. The process has only a major drawback, the inexorable production and accumulation in the core of the radioactive fission products that also produce decay heat. Criticality considerations put apart, the major goal of reactor safety is the confinement and cooling of these fission products. Although safety has been a major concern from the very first nuclear developments, feedback and actions following incidents and accidents have contributed to continuous enhancements. In particular, the three major nuclear accidents, TMI, Chernobyl and Fukushima had or will hopefully have in the future major impacts on safety improvements. Lessons learned from TMI have greatly enhanced the safety of LWRs, while Chernobyl triggered a number of radio-ecology studies and improved the readiness for radiological crisis management. It is hoped that Fukushima will be the trigger for much stronger international oversight and harmonization of safety practices, something that has

  20. Application of a statistical thermal design procedure to evaluate the PWR DNBR safety analysis limits

    International Nuclear Information System (INIS)

    Robeyns, J.; Parmentier, F.; Peeters, G.

    2001-01-01

    In the framework of safety analysis for the Belgian nuclear power plants and for the reload compatibility studies, Tractebel Energy Engineering (TEE) has developed, to define a 95/95 DNBR criterion, a statistical thermal design method based on the analytical full statistical approach: the Statistical Thermal Design Procedure (STDP). In that methodology, each DNBR value in the core assemblies is calculated with an adapted CHF (Critical Heat Flux) correlation implemented in the sub-channel code Cobra for core thermal hydraulic analysis. The uncertainties of the correlation are represented by the statistical parameters calculated from an experimental database. The main objective of a sub-channel analysis is to prove that in all class 1 and class 2 situations, the minimum DNBR (Departure from Nucleate Boiling Ratio) remains higher than the Safety Analysis Limit (SAL). The SAL value is calculated from the Statistical Design Limit (SDL) value adjusted with some penalties and deterministic factors. The search of a realistic value for the SDL is the objective of the statistical thermal design methods. In this report, we apply a full statistical approach to define the DNBR criterion or SDL (Statistical Design Limit) with the strict observance of the design criteria defined in the Standard Review Plan. The same statistical approach is used to define the expected number of rods experiencing DNB. (author)

  1. Siting criteria based on the prevention of deterministic effects from plutonium inhalation exposures

    International Nuclear Information System (INIS)

    Sorensen, S.A.; Low, J.O.

    1998-01-01

    Siting criteria are established by regulatory authorities to evaluate potential accident scenarios associated with proposed nuclear facilities. The 0.25 Sv (25 rem) siting criteria adopted in the United States has been historically based on the prevention of deterministic effects from acute, whole-body exposures. The Department of Energy has extended the applicability of this criterion to radionuclides that deliver chronic, organ-specific irradiation through the specification of a 0.25 Sv (25 rem) committed effective dose equivalent siting criterion. A methodology is developed to determine siting criteria based on the prevention of deterministic effects from inhalation intakes of radionuclides which deliver chronic, organ-specific irradiation. Revised siting criteria, expressed in terms of committed effective dose equivalent, are proposed for nuclear facilities that handle primarily plutonium compounds. The analysis determined that a siting criterion of 1.2 Sv (120 rem) committed effective dose equivalent for inhalation exposures to weapons-grade plutonium meets the historical goal of preventing deterministic effects during a facility accident scenario. The criterion also meets the Nuclear Regulatory Commission and Department of Energy Nuclear Safety Goals provided that the frequency of the accident is sufficiently low

  2. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  3. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  4. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  5. Safety analysis of the VLJ repository

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.

    1991-05-01

    The VLJ repository is an underground disposal facility for the low and medium level waste generated at the Olkiluoto nuclear power plant. The repository is located within 1 km from TVO I and TVO II (2 x 710 MWe) BWR's on the Olkiluoto island at the west coast of Finland. It contains two rock silos excavated at the depth of 60...100 meters in the bedrock. Low level waste will be disposed of in a shotcreted rock silo. For bituminized medium level waste, a separate silo of reinforced concrete has been built inside the shotcreted rock silo. The post-closure safety analysis has been done for the Final Safety Analysis Report (FSAR) of the VLJ repository. In addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. In the reference scenario, radio-nuclides are assumed to be released from the bituminized waste within 500 years, the concrete silo is assumed to gradually disintegrate and finally to collapse at 5 000 years, all concrete in the silo is assumed to be also chemically depleted within 6 000 years, and all the seals of the repository are assumed to deteriorate within 12 000 years. The ability of alone natural barriers to restrict the release of radionuclides into the biosphere has been evaluated by means of scenarios where the degradation of engineered barriers has been assumed to take place at a still faster rate. In one of the disturbed evolution scenarios it has been assumed that the concrete silo for medium level waste is severely impaired immediately after sealing of the repository. Effects of gas generation and consequences of human intrusion have been evaluated, too. The results of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. In the reference scenario the maximum expectation value of the individual dose rate is 0.3 mSv/a

  6. Safety Analysis in Design and Assessment of the Physical Protection of the OKG NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, P., E-mail: par.lindahl@okg.eon.se [OKG Aktiebolag, Oskarshamn (Sweden)

    2014-10-15

    OKG AB operates a three unit nuclear power plant in the southern parts of Sweden. As a result of recent development of the legislation regarding physical protection of nuclear facilities, OKG has upgraded the protection against antagonistic actions. The new legislation includes requirements both on specific protective measures and on the performance of the physical protection as a whole. In short, the performance related requirements state that sufficient measures shall be implemented to protect against antagonistic actions, as defined by the regulator in the “Design Basis Threat” (DBT). Historically, physical protection and nuclear safety has been managed much as separate issues with different, sometimes contradicting, objectives. Now, insights from the work with the security upgrade have emphasized that physical protection needs to be regarded as an important part of the Defence-In-Depth (DiD) against nuclear accidents. Specifically, OKG has developed new DBT-based analysis methods, which may be characterized as probabilistically informed deterministic analysis, conformed to a format similar to the one used for conventional internal events analysis. The result is a powerful tool for design and assessment of the performance of the protection against antagonistic actions, using a nuclear safety perspective. (author)

  7. Current status of safety analysis report for ANPP

    International Nuclear Information System (INIS)

    Amirjanyan, A.

    1999-01-01

    Current situation concerning Armenian NPP safety analysis report is considered within the frame of accepted safety practice. Licensing procedure is being developed. Technical support group was established in the Armenian Nuclear Regulatory Authority (ANRA). The task of the group is to study modern methods of NPP in depth safety analysis for technical assistance for the ANRA, and perform independent safety assessments. ANRA will be obliged to demand assistance from various foreign organisations for preparation of different parts of the Safety Analysis Report like determination though certain parts can be prepared in Armenia

  8. Reactivity effect breakdown calculations with deterministic and stochastic perturbations analysis – JEFF-3.1.1 to JEFF3.2T1 (BRC-2009 actinides application

    Directory of Open Access Journals (Sweden)

    Morillon B.

    2013-03-01

    Full Text Available JEFF-3.1.1 is the reference nuclear data library in CEA for the design calculations of the next nuclear power plants. The validation of the new neutronics code systems is based on this library and changes in nuclear data should be looked at closely. Some new actinides evaluation files at high energies have been proposed by CEA/Bruyères-le-Chatel in 2009 and have been integrated in JEFF3.2T1 test release. For the new release JEFF-3.2, CEA will build new evaluation files for the actinides, which should be a combination of the new evaluated data coming from BRC-2009 in the high energy range and improvements or new evaluations in the resolved and unresolved resonance range from CEA-Cadarache. To prepare the building of these new files, benchmarking the BRC-2009 library in comparison with the JEFF-3.1.1 library was very important. The crucial points to evaluate were the improvements in the continuum range and the discrepancies in the resonance range. The present work presents for a selected set of benchmarks the discrepancies in the effective multiplication factor obtained while using the JEFF-3.1.1 or JEFF-3.2T1 library with the deterministic code package ERANOS/PARIS and the stochastic code TRIPOLI-4. They have both been used to calculate cross section perturbations or other nuclear data perturbations when possible. This has permittted to identify the origin of the discrepancies in reactivity calculations. In addition, this work also shows the importance of cross section processing validation. Actually, some fast neutron spectrum calculations have led to opposite tendancies between the deterministic code package and the stochastic code. Some particular nuclear data (MT=5 in ENDF terminology seem to be incompatible with the current MERGE or GECCO processing codes.

  9. The adaptive safety analysis and monitoring system

    Science.gov (United States)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  10. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  11. ARIES-RS safety design and analysis

    International Nuclear Information System (INIS)

    Steiner, D.; El-Guebaly, L.; Herring, S.; Khater, H.; Mogahed, E.; Thayer, R.; Tillack, M.S.

    1997-01-01

    The ARIES-RS safety design and analysis focused on achieving two objectives: (1) The avoidance of sheltering or evacuation in the event of an accident; and (2) the generation of only low-level waste, no greater than Class C. The ARIES-RS baseline design employs V-4Cr-4Ti as the blanket structural material and a low activation ferritic steel in the reflector and shield. In the event of a LOCA, the baseline design first wall maximum temperature falls in the range of 1100-1200 C. For this temperature range, the hazard assessment indicates that the dose at the site boundary will be less than 1 rem per year. Thus, no sheltering or evacuation would be required in the event of a LOCA. Although the baseline design satisfies the first safety objective noted above, a first wall maximum temperature of ∝1100-1200 C would likely compromise the integrity of the vanadium blanket structure and would require blanket replacement following such a temperature excursion. To avoid this situation, a modified blanket design incorporating supplemental heat removal is also proposed. Preliminary analysis of this modified design suggests that the first wall maximum temperature can be kept below the temperature range of concern, ∝1000-1100 C, in the event of a LOCA. When the ferritic steel used in the reflector and shield is one reduced in Ir and Ag impurities, all in-vessel components qualify for near-surface shallow land burial as Class C low-level waste. (orig.)

  12. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, W. Y.; Kim, H. T.; Rhee, B. W.; Yoon, C.; Kang, H. S.; Yoo, K. J.

    2005-03-01

    To improve the CANDU design/operation safety analysis codes and the CANDU safety analysis methodology, the following works have been done. From the development of the lattice codes (WIMS/CANDU), the lattice model simulates the real core lattice geometry and the effect of the pressure tube creep to the core lattice parameter has been evaluated. From the development of the 3-dimensional thermal-hydraulic analysis model of the moderator behavior (CFX4-CAMO), validation of the model against STERN Lab experiment has been executed. The butterfly-shaped grid structure and the 3-dimensional flow resistance model for porous media were developed and applied to the moderator analysis for Wolsong units 2/3/4. The single fuel channel analysis codes for blowdown and post-blowdown were unified by CATHENA. The 3-dimensional fuel channel analysis model (CFX-CACH) has been developed for validation of CATHENA fuel channel analysis model. The interlinking analysis system (CANVAS) of the thermal-hydraulic safety analysis codes for the primary heat transport system and containment system has been executed. The database system of core physics and thermal-hydraulics experimental data for safety analysis has been established on the URL: http://CANTHIS.kaeri.re.kr. For documentation and Standardization of the general safety analysis procedure, the general safety analysis procedure is developed and applied to a large break LOCA. The present research results can be utilized for establishment of the independent safety analysis technology and acquisition of the optimal safety analysis technology

  13. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  14. Safety philosophy for nuclear power plants in egypt

    International Nuclear Information System (INIS)

    Mervat, S.A.; Hammad, F.H.

    1988-01-01

    This work establishes the basic principles of a safety philosophy for nuclear power plants in egypt. A number of deterministic requirements stemming the multiple barriers and the defense-in-depth concept are emphasised. other requirements in the areas of siting, operational safety, safety analysis, special issues, and experience feedback are also identified. The role of international cooperation in nuclear safety technology-transfer and nuclear emergencies is highlighted. In addition probabilistic ally based guidelines are set for acceptable risk and dose limits

  15. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  16. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  17. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  18. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  19. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  20. Deterministic chaos in entangled eigenstates

    Science.gov (United States)

    Schlegel, K. G.; Förster, S.

    2008-05-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  1. Deterministic chaos in entangled eigenstates

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, K.G. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)], E-mail: guenter.schlegel@arcor.de; Foerster, S. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)

    2008-05-12

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  2. Deterministic chaos in entangled eigenstates

    International Nuclear Information System (INIS)

    Schlegel, K.G.; Foerster, S.

    2008-01-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator

  3. A deterministic width function model

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2003-01-01

    Full Text Available Use of a deterministic fractal-multifractal (FM geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States, that the FM approach may also be used to closely approximate existing width functions.

  4. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  5. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  6. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  7. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  8. Deterministic Versus Stochastic Interpretation of Continuously Monitored Sewer Systems

    DEFF Research Database (Denmark)

    Harremoës, Poul; Carstensen, Niels Jacob

    1994-01-01

    An analysis has been made of the uncertainty of input parameters to deterministic models for sewer systems. The analysis reveals a very significant uncertainty, which can be decreased, but not eliminated and has to be considered for engineering application. Stochastic models have a potential for ...

  9. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  10. Criticality safety analysis for mockup facility

    International Nuclear Information System (INIS)

    Shin, Young Joon; Shin, Hee Sung; Kim, Ik Soo; Oh, Seung Chul; Ro, Seung Gy; Bae, Kang Mok

    2000-03-01

    Benchmark calculations for SCALE4.4 CSAS6 module have been performed for 31 UO 2 fuel, 15MOX fuel and 10 metal material criticality experiments and then calculation biases of the SCALE 4.4 CSAS6 module have been revealed to be 0.00982, 0.00579 and 0.02347, respectively. When CSAS6 is applied to the criticality safety analysis for the mockup facility in which several kinds of nuclear material components are included, the calculation bias of CSAS6 is conservatively taken to be 0.02347. With the aid of this benchmarked code system, criticality safety analyses for the mockup facility at normal and hypothetical accidental conditions have been carried out. It appears that the maximum K eff is 0.28356 well below than the critical limit, K eff =0.95 at normal condition. In a hypothetical accidental condition, the maximum K eff is found to be 0.73527 much lower than the subcritical limit. For another hypothetical accidental condition the nuclear material leaks out of container and spread or lump in the floor, it was assumed that the nuclear material is shaped into a slab and water exists in the empty space of the nuclear material. K eff has been calculated as function of slab thickness and the volume ratio of water to nuclear material. The result shows that the K eff increases as the water volume ratio increases. It is also revealed that the K eff reaches to the maximum value when water if filled in the empty space of nuclear material. The maximum K eff value is 0.93960 lower than the subcritical limit

  11. Safety relief valve alternate analysis method

    International Nuclear Information System (INIS)

    Adams, R.H.; Javid, A.; Khatua, T.P.

    1981-01-01

    An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)

  12. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  13. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  14. Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe

    2013-01-01

    Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)

  15. Big Data Risk Analysis for Rail Safety?

    OpenAIRE

    Van Gulijk, Coen; Hughes, Peter; Figueres-Esteban, Miguel; Dacre, Marcus; Harrison, Chris; HUD; RSSB

    2015-01-01

    Computer scientists believe that the enormous amounts of data in the internet will unchain a management revolution of uncanny proportions. Yet, to date, the potential benefit of this revolution is scantily investigated for safety and risk management. This paper gives a brief overview of a research programme that investigates how the new internet-driven data-revolution could benefit safety and risk management for railway safety in the UK. The paper gives a brief overview the current activities...

  16. Safety management - policy, analysis and implementation

    International Nuclear Information System (INIS)

    Allen, F.R.

    1993-01-01

    The nuclear industry is moving towards a period of ever increasing emphasis on business performance and profitability. Safety has, of course, always been a major concern of management in the nuclear industry and elsewhere. The civil aviation industry , for example, has had a similar concern for safety. Other industry sectors are also developing safety management as a response to events within and outside their sectors. In this paper the way that the risk management process as a whole is being addressed is looked at. Can we use risk management, initially a safety-orientated tool, to improve business performance? (author)

  17. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  18. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  19. Development of the Database of Cables of Almaraz NPP as the fire deterministic analysis support; Elaboracion de la base de datos de cables de C.N. Almaraz como soporte de los analisis deterministas de incendios

    Energy Technology Data Exchange (ETDEWEB)

    Villar Sanchez, T.; Fernandez Ramos, P.; Garcia Romero, A.; Fuente Prieto, I.

    2013-07-01

    Within the process of transition to the NFPA-805, it requires a deterministic analysis of fire, for which it is necessary, on the one hand, the identification and location of the cables and equipment necessary and important for achieve and maintain safe, and stop on the other hand, the analysis of the different types of spurious multiple, based on the methodology described in the NEI 00-01 Rev. 2. the base Almaraz NPP cables data it collects this information and is a fundamental tool to analyze the capacity of the plant to achieve the stop safe in case of fire, which allows you to find possible vulnerabilities and take appropriate measures to improve the security of it.

  20. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  1. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    verification' are used differently in different countries. The way that these terms have been used in this Safety Guide is explained in Section 2. The term 'design' as used here includes the specifications for the safe operation and management of the plant. This Safety Guide identifies the key recommendations for carrying out the safety assessment and the independent verification. It provides detailed guidance in support of IAEA, Safety of Nuclear Power Plants: Design, Safety Standards Series No. NS-R-1 (2000), particularly in the area of safety analysis. However, this does not include all the technical details which are available and reference is made to other IAEA publications on specific design issues and safety analysis methods. Specific deterministic or probabilistic safety targets or radiological limits can vary in different countries and are the responsibility of the regulatory body. This Safety Guide provides some references to targets and limits established by international organizations. Operators, and sometimes designers, may also set their own safety targets which may be more stringent than those set by the regulator or may address different aspects of safety. In some countries operators are expected to do this as part of their 'ownership' of the entire safety case. This Safety Guide does not include specific recommendations for the safety assessment of those plant systems for which dedicated Safety Guides exist. Section 2 defines the terms 'safety assessment', 'safety analysis' and 'independent verification' and outlines their relationship. Section 3 gives the key recommendations for the safety assessment of the principal and plant design requirements. Section 4 gives the key recommendations for safety analysis. It describes the identification of postulated initiating events (PIEs), which are used throughout the safety assessment including the safety analysis, the deterministic transient analysis and severe accident analysis, and the probabilistic safety analysis

  2. An Analysis of Laboratory Safety in Texas.

    Science.gov (United States)

    Fuller, Edward J.; Picucci, Ali Callicoatte; Collins, James W.; Swann, Philip

    This paper reports on a survey to discover the types of laboratory accidents that occur in Texas public schools, the factors associated with such accidents, and the practices of schools with regard to current laboratory safety requirements. The purpose of the survey is to better understand safety conditions in Texas public schools and to help…

  3. Deterministic and stochastic CTMC models from Zika disease transmission

    Science.gov (United States)

    Zevika, Mona; Soewono, Edy

    2018-03-01

    Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.

  4. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  5. Safety Injection Tank Performance Analysis Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.

  6. Compositional Safety Analysis using Barrier Certificates

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pappas, George J.; Wisniewski, Rafael

    2012-01-01

    This paper proposes a compositional method for verifying the safety of a dynamical system, given as an interconnection of subsystems. The safety verification is conducted by the use of the barrier certificate method; hence, the contribution of this paper is to show how to obtain compositional...... conditions for safety verification. We show how to formulate the verification problem, as a composition of coupled subproblems, each given for one subsystem. Furthermore, we show how to find the compositional barrier certificates via linear and sum of squares programming problems. The proposed method makes...... it possible to verify the safety of higher dimensional systems, than the method for centrally computed barrier certificates. This is demonstrated by verifying the safety of an emergency shutdown of a wind turbine....

  7. Safety analysis of Oi nuclear power plant

    International Nuclear Information System (INIS)

    1979-01-01

    The transient phenomena in Oi nuclear power plant were analyzed, especially on the water level fluctuation and the capability of natural circulation in the primary loop, under the assumptions that the feed water for steam generators is totally lost, and the relief valve on the pressurizer, which is actuated due to the pressure rise in the primary system, is stuck and kept open. These assumptions are related to the TMI accident. The analysing conditions are 1) the main feed water flow is totally lost suddenly during the rated power operation of the reactor, 2) two motor-driven auxiliary feed water pumps are started manually fifteen minutes after the accident initiation, 3) one relief valve on the pressurizer is opened fifteen seconds after the accident initiation and kept open, 4) the reactor is scrammed thirty three seconds after the accident initiation, 5) the turbine is tripped 33.5 seconds after the accident initiation, etc. Two cases were analysed, namely 3,800 seconds and 1,200 seconds after the accident initiation. The analytical code RELEP4/Mod5/U2/J1 was utilized for this analysis. The level fluctuation in the pressurizer after the accident initiation, the flow rate fluctuation through the pressurizer relief valve, especially that of steam, liquid single phase and two phase flows, the water level in the upper plenum in the pressure vessel, the change of flow rate at core inlet, the average pressure in the core, and the temperature fluctuation of coolant in the core, the variation of void fraction in the core, and the change of surface temperature of fuel rods are presented as the analysis results, and they are evaluated. It is recognized that the plant safety is kept under the assumed accident conditions in the Oi nuclear power plant. (Nakai, Y.)

  8. Software FMEA analysis for safety-related application software

    International Nuclear Information System (INIS)

    Park, Gee-Yong; Kim, Dong Hoon; Lee, Dong Young

    2014-01-01

    Highlights: • We develop a modified FMEA analysis suited for applying to software architecture. • A template for failure modes on a specific software language is established. • A detailed-level software FMEA analysis on nuclear safety software is presented. - Abstract: A method of a software safety analysis is described in this paper for safety-related application software. The target software system is a software code installed at an Automatic Test and Interface Processor (ATIP) in a digital reactor protection system (DRPS). For the ATIP software safety analysis, at first, an overall safety or hazard analysis is performed over the software architecture and modules, and then a detailed safety analysis based on the software FMEA (Failure Modes and Effect Analysis) method is applied to the ATIP program. For an efficient analysis, the software FMEA analysis is carried out based on the so-called failure-mode template extracted from the function blocks used in the function block diagram (FBD) for the ATIP software. The software safety analysis by the software FMEA analysis, being applied to the ATIP software code, which has been integrated and passed through a very rigorous system test procedure, is proven to be able to provide very valuable results (i.e., software defects) that could not be identified during various system tests

  9. The Barselina Project Phase 4 Summary report. Ignalina Unit 2 Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Gunnar [ES-Konsult AB, Stockholm (Sweden); Hellstroem, P. [RELCON AB, Solna (Sweden); Zheltobriuch, G.; Bagdonas, A. [Ignalina Power Plant, Visaginas (Lithuania)

    1996-12-01

    The Barselina Project was initiated in the summer of 1991. The project is a multilateral co-operation between Lithuania, Russia and Sweden. The long range objective is to establish common perspectives and unified bases for assessment of severe accident risks and needs for remedial measures for the RBMK reactors. The Swedish BWR Barsebaeck is used as reference plant and the Lithuanian RBMK Ignalina as application plant. During phase 3, from March, 1993 to June, 1994, a full scope Probabilistic Safety Analysis (PSA) model of the Ignalina Nuclear Power Plant unit 2 (INPP-2) was developed to identify possible safety improvement of risk importance. The probabilistic methodology was applied on a plant specific basis for a channel type reactor of RBMK design. To increase the realism of the risk model a set of deterministic analyses were performed and plant/RBMK-specific data bases were developed and used. A general concept for analysing this type of reactor was developed. During phase 4, July 1994 to September 1996, the PSA was further developed, taking into account plant changes, improved modeling methods and extended plant information concerning dependencies (area events, dynamic effects, electrical and signal dependencies). The updated model is quantified and new results and conclusions are evaluated.

  10. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    , from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  11. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  12. Safety analysis of the nuclear chemistry Building 151

    International Nuclear Information System (INIS)

    Kvam, D.

    1984-01-01

    This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the low hazard classification. No further safety evaluation is indicated at this time. 5 tables

  13. Special characteristics of the safety analysis of HWRs

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor, and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (orig./RW)

  14. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  15. Transit safety & security statistics & analysis 2002 annual report (formerly SAMIS)

    Science.gov (United States)

    2004-12-01

    The Transit Safety & Security Statistics & Analysis 2002 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  16. Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)

    Science.gov (United States)

    2005-12-01

    The Transit Safety & Security Statistics & Analysis 2003 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  17. On the progress towards probabilistic basis for deterministic codes

    International Nuclear Information System (INIS)

    Ellyin, F.

    1975-01-01

    Fundamentals arguments for a probabilistic basis of codes are presented. A class of code formats is outlined in which explicit statistical measures of uncertainty of design variables are incorporated. The format looks very much like present codes (deterministic) except for having probabilistic background. An example is provided whereby the design factors are plotted against the safety index, the probability of failure, and the risk of mortality. The safety level of the present codes is also indicated. A decision regarding the new probabilistically based code parameters thus could be made with full knowledge of implied consequences

  18. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  19. Safety analysis report 231-Z Building

    Energy Technology Data Exchange (ETDEWEB)

    Powers, C.S.

    1989-03-01

    This report provides an intensive review of the nuclear safety of the operation of the 231-Z Building. For background information complete descriptions of the floor plan, building services, alarm systems, and glove box systems are included in this report. In addition, references are included to The Plutonium Laboratory Radiation Work Procedures, Safety Guides, 231-Z Operating Procedures Manual and Nuclear Materials accountability Procedures. Engineered and administrative features contribute to the overall safety of personnel, the building, and environs. The consequences of credible incidents were considered and are discussed.

  20. Deterministic 3D transport, sensitivity and uncertainty analysis of TPR and reaction rate measurements in HCPB Breeder Blanket mock-up benchmark

    International Nuclear Information System (INIS)

    Kodeli, I.

    2006-01-01

    The Helium-Cooled Pebble Bed (HCPB) Breeder Blanket mock-up benchmark experiment was analysed using the deterministic transport, sensitivity and uncertainty code system in order to determine the Tritium Production Rate (TPR) in the ceramic breeder and the neutron reaction rates in beryllium, both nominal values and the corresponding uncertainties. The experiment, performed in 2005 to validate the HCPB concept, consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets for the tritium breeding monitoring and activation foils, inserted at several axial and lateral locations in the block. In addition to the well established and validated procedure based on the 2-dimensional (2D) code DORT, a new approach for the 3D modelling was validated based on the TORT/GRTUNCL3D transport codes. The SUSD3D code, also in 3D geometry, was used for the cross-section sensitivity and uncertainty calculations. These studies are useful for the interpretation of the experimental measurements, in particular to assess the uncertainties linked to the basic nuclear data. The TPR, the neutron activation rates and the associated uncertainties were determined using the EFF-3.0 9 Be nuclear cross section and covariance data, and compared with those from other evaluations, like FENDL-2.1. Sensitivity profiles and nuclear data uncertainties of the TPR and detector reaction rates with respect to the cross-sections of 9 Be, 6 Li, 7 Li, O and C were determined at different positions in the experimental block. (author)

  1. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  2. Nonlinear deterministic structures and the randomness of protein sequences

    CERN Document Server

    Huang Yan Zhao

    2003-01-01

    To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.

  3. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  4. Deterministic Chaos in Radon Time Variation

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Radolic, V.; Faj, Z.; Stanic, D.

    2003-01-01

    Radon concentrations were continuously measured outdoors, in living room and basement in 10-minute intervals for a month. The radon time series were analyzed by comparing algorithms to extract phase-space dynamical information. The application of fractal methods enabled to explore the chaotic nature of radon in the atmosphere. The computed fractal dimensions, such as Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent (λ ) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0< H<0.5) indicated anti-persistent behavior (non random changes) of the time series, but the positive values of the λ pointed out the grate sensitivity on initial conditions and appearing deterministic chaos by radon time variations. The calculated fractal dimensions of attractors indicated more influencing (meteorological) parameters on radon in the atmosphere. (author)

  5. Radon time variations and deterministic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Planinic, J. E-mail: planinic@pedos.hr; Vukovic, B.; Radolic, V

    2004-07-01

    Radon concentrations were continuously measured outdoors, in the living room and in the basement at 10 min intervals for a month. Radon time series were analyzed by comparing algorithms to extract phase space dynamical information. The application of fractal methods enabled exploration of the chaotic nature of radon in atmosphere. The computed fractal dimensions, such as the Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent ({lambda}) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0deterministic chaos that appeared due to radon time variations. The calculated fractal dimensions of attractors indicated more influencing (meteorological) parameters on radon in the atmosphere.

  6. Radon time variations and deterministic chaos

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Radolic, V.

    2004-01-01

    Radon concentrations were continuously measured outdoors, in the living room and in the basement at 10 min intervals for a month. Radon time series were analyzed by comparing algorithms to extract phase space dynamical information. The application of fractal methods enabled exploration of the chaotic nature of radon in atmosphere. The computed fractal dimensions, such as the Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent (λ) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0< H<0.5) indicated anti-persistent behavior (non-random changes) of the time series, but the positive values of λ pointed out the grate sensitivity on initial conditions and the deterministic chaos that appeared due to radon time variations. The calculated fractal dimensions of attractors indicated more influencing (meteorological) parameters on radon in the atmosphere

  7. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  8. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  9. Probabilistic safety analysis and interpretation thereof

    International Nuclear Information System (INIS)

    Steininger, U.; Sacher, H.

    1999-01-01

    Increasing use of the instrumentation of PSA is being made in Germany for quantitative technical safety assessment, for example with regard to incidents which must be reported and forwarding of information, especially in the case of modification of nuclear plants. The Commission for Nuclear Reactor Safety recommends regular execution of PSA on a cycle period of ten years. According to the PSA guidance instructions, probabilistic analyses serve for assessing the degree of safety of the entire plant, expressed as the expectation value for the frequency of endangering conditions. The authors describe the method, action sequence and evaluation of the probabilistic safety analyses. The limits of probabilistic safety analyses arise in the practical implementation. Normally the guidance instructions for PSA are confined to the safety systems, so that in practice they are at best suitable for operational optimisation only to a limited extent. The present restriction of the analyses has a similar effect on power output operation of the plant. This seriously degrades the utilitarian value of these analyses for the plant operators. In order to further develop PSA as a supervisory and operational optimisation instrument, both authors consider it to be appropriate to bring together the specific know-how of analysts, manufacturers, plant operators and experts. (orig.) [de

  10. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  11. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  12. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  13. Meta-analysis of surgical safety checklist effects on teamwork, communication, morbidity, mortality, and safety.

    Science.gov (United States)

    Lyons, Vanessa E; Popejoy, Lori L

    2014-02-01

    The purpose of this study is to examine the effectiveness of surgical safety checklists on teamwork, communication, morbidity, mortality, and compliance with safety measures through meta-analysis. Four meta-analyses were conducted on 19 studies that met the inclusion criteria. The effect size of checklists on teamwork and communication was 1.180 (p = .003), on morbidity and mortality was 0.123 (p = .003) and 0.088 (p = .001), respectively, and on compliance with safety measures was 0.268 (p teamwork and communication, reduce morbidity and mortality, and improve compliance with safety measures. This meta-analysis is limited in its generalizability based on the limited number of studies and the inclusion of only published research. Future research is needed to examine possible moderating variables for the effects of surgical safety checklists.

  14. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  15. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  16. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  17. Applying importance-performance analysis to patient safety culture.

    Science.gov (United States)

    Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan

    2015-01-01

    The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.

  18. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  19. An analysis of safety control effectiveness

    International Nuclear Information System (INIS)

    Son, K.S.; Melchers, R.E.; Kal, W.M.

    2000-01-01

    The cost of injuries and 'accidents' to an organisation is very important in establishing how much it should spend on safety control. Despite the usefulness of information about the cost of a company's accidents, it is not customary accounting practice to make these data available. Of the two kinds of costs incurred by a company through occupational injuries and accidents, direct costs and indirect costs; the direct costs are much easier to estimate. However, the uninsured costs are usually more critical and should be estimated by each company. The authors investigate a general model to estimate the above costs and hence to establish efficient safety control. One construction company has been a pilot for this study. By analysing actual company data for three years, it is found that the efficient safety control cost should be 1.2-1.3% of total contract costs

  20. Simulation modeling and analysis in safety. II

    International Nuclear Information System (INIS)

    Ayoub, M.A.

    1981-01-01

    The paper introduces and illustrates simulation modeling as a viable approach for dealing with complex issues and decisions in safety and health. The author details two studies: evaluation of employee exposure to airborne radioactive materials and effectiveness of the safety organization. The first study seeks to define a policy to manage a facility used in testing employees for radiation contamination. An acceptable policy is one that would permit the testing of all employees as defined under regulatory requirements, while not exceeding available resources. The second study evaluates the relationship between safety performance and the characteristics of the organization, its management, its policy, and communication patterns among various functions and levels. Both studies use models where decisions are reached based on the prevailing conditions and occurrence of key events within the simulation environment. Finally, several problem areas suitable for simulation studies are highlighted. (Auth.)

  1. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  2. Safety analysis of the UTSI-CFFF superconducting magnet

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smith, R.P.; VanderArend, P.C.; Hsu, Y.H.

    1979-01-01

    In designing a large superconducting magnet such as the UTSI-CFFF dipole, great attention must be devoted to the safety of the magnet and personnel. The conductor for the UTSI-CFFF magnet incorporates much copper stabilizer, which both insures its cryostability, and contributes to the magnet safety. The quench analysis and the cryostat fault condition analysis are presented. Two analyses of exposed turns follow; the first shows that gas cooling protects uncovered turns; the second, that the cryostat pressure relief system protects them. Finally the failure mode and safety analysis is presented

  3. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    Cork, M.J.; Turi, J.A.

    1989-01-01

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  4. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  5. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  6. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo; Seong, Poong Hyun

    1997-01-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formed safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system

  7. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  8. Safety analysis in support of regulatory decision marking

    International Nuclear Information System (INIS)

    Pomier Baez, L.; Troncoso Fleitas, M.; Valhuerdi Debesa, C.; Valle Cepero, R.; Hernandez, J.L.

    1996-01-01

    Features of different safety analysis techniques by means of calculation thermohydraulic a probabilistic and severe accidents used in the safety assessment, as well as the development of these techniques in Cuba and their use in support of regulatory decision making are presented

  9. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  10. Integrated program of using of Probabilistic Safety Analysis in Spain

    International Nuclear Information System (INIS)

    1998-01-01

    Since 25 June 1986, when the CSN (Nuclear Safety Conseil) approve the Integrated Program of Probabilistic Safety Analysis, this program has articulated the main activities of CSN. This document summarize the activities developed during these years and reviews the Integrated programme

  11. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  12. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  13. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  14. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  15. An analysis of the traffic safety phenomenon.

    NARCIS (Netherlands)

    Asmussen, E. & Kranenburg, A.

    1982-01-01

    The lack of traffic safety is a combination of the critical coincidence of circumstances in the traffic of incidents (near-accidents) and accidents with unwanted (permanent) consequences, such as fatalities, injured and disabled persons and material damage. This definition covers the whole of the

  16. Safety Analysis of Stochastic Dynamical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...... that shows how the p-safe initial set is computed numerically....

  17. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  18. Analysis of high-pressure safety valves

    NARCIS (Netherlands)

    Beune, A.

    2009-01-01

    In presently used safety valve sizing standards the gas discharge capacity is based on a nozzle flow derived from ideal gas theory. At high pressures or low temperatures real gas effects can no longer be neglected, so the discharge coefficient corrected for flow losses cannot be assumed constant

  19. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  20. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  1. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  2. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  3. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  4. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo

    1997-02-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  5. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  6. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  7. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    International Nuclear Information System (INIS)

    1976-01-01

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  8. Quantitative Safety and Security Analysis from a Communication Perspective

    Directory of Open Access Journals (Sweden)

    Boris Malinowsky

    2015-12-01

    Full Text Available This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a real-time communication protocol for safety-critical scenarios, we can rely on the protocol’s individual safety and security properties. The resulting communication protocol satisfies selected safety and security properties for deployment in safety-critical use-case scenarios with security requirements. We look at handover situations in a IEEE 802.11 wireless setup between mobile nodes and access points. The trade-offs involve application-layer data goodput, probability of completed handovers, and effect on usable protocol slots, to quantify the impact of security from a lower-layer communication perspective on the communication protocols. The results are obtained using the network simulator ns-3.

  9. The State of Deterministic Thinking among Mothers of Autistic Children

    Directory of Open Access Journals (Sweden)

    Mehrnoush Esbati

    2011-10-01

    Full Text Available Objectives: The purpose of the present study was to investigate the effectiveness of cognitive-behavior education on decreasing deterministic thinking in mothers of children with autism spectrum disorders. Methods: Participants were 24 mothers of autistic children who were referred to counseling centers of Tehran and their children’s disorder had been diagnosed at least by a psychiatrist and a counselor. They were randomly selected and assigned into control and experimental groups. Measurement tool was Deterministic Thinking Questionnaire and both groups answered it before and after education and the answers were analyzed by analysis of covariance. Results: The results indicated that cognitive-behavior education decreased deterministic thinking among mothers of autistic children, it decreased four sub scale of deterministic thinking: interaction with others, absolute thinking, prediction of future, and negative events (P<0.05 as well. Discussions: By learning cognitive and behavioral techniques, parents of children with autism can reach higher level of psychological well-being and it is likely that these cognitive-behavioral skills would have a positive impact on general life satisfaction of mothers of children with autism.

  10. Comparison of deterministic and Monte Carlo methods in shielding design.

    Science.gov (United States)

    Oliveira, A D; Oliveira, C

    2005-01-01

    In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.

  11. Comparison of deterministic and Monte Carlo methods in shielding design

    International Nuclear Information System (INIS)

    Oliveira, A. D.; Oliveira, C.

    2005-01-01

    In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions. (authors)

  12. Spent fuel packaging and its safety analysis

    International Nuclear Information System (INIS)

    Takada, Kimitaka; Nakaoki, Kozo; Tamamura, Tadao; Matsuda, Fumio; Fukudome, Kazuyuki

    1983-01-01

    An all stainless steel B(U) type packaging is proposed to transport spent fuels discharged from research reactors and other radioactive materials. The package is used dry and provided with surface fins to absorb drop shock and to dissipate decay heat. Safety was analyzed for structural, thermal, containment shielding and criticality factors, and the integrity of the package was confirmed with the MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, and KENO computer codes. (author)

  13. Deterministic and unambiguous dense coding

    International Nuclear Information System (INIS)

    Wu Shengjun; Cohen, Scott M.; Sun Yuqing; Griffiths, Robert B.

    2006-01-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank D and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most L d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τ x ) Bob knows for sure that Alice sent message x, and when it fails (probability 1-τ x ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For D≤D a bound is obtained for L d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. [Phys. Rev. A71, 012311 (2005)]. For D>D it is shown that L d is strictly less than D 2 unless D is an integer multiple of D, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for D≤D, assuming τ x >0 for a set of DD messages, and a bound is obtained for the average . A bound on the average requires an additional assumption of encoding by isometries (unitaries when D=D) that are orthogonal for different messages. Both bounds are saturated when τ x is a constant independent of x, by a protocol based on one-shot entanglement concentration. For D>D it is shown that (at least) D 2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states

  14. Deterministic computation of functional integrals

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.

    1995-09-01

    A new method of numerical integration in functional spaces is described. This method is based on the rigorous definition of a functional integral in complete separable metric space and on the use of approximation formulas which we constructed for this kind of integral. The method is applicable to solution of some partial differential equations and to calculation of various characteristics in quantum physics. No preliminary discretization of space and time is required in this method, as well as no simplifying assumptions like semi-classical, mean field approximations, collective excitations, introduction of ''short-time'' propagators, etc are necessary in our approach. The constructed approximation formulas satisfy the condition of being exact on a given class of functionals, namely polynomial functionals of a given degree. The employment of these formulas replaces the evaluation of a functional integral by computation of the ''ordinary'' (Riemannian) integral of a low dimension, thus allowing to use the more preferable deterministic algorithms (normally - Gaussian quadratures) in computations rather than traditional stochastic (Monte Carlo) methods which are commonly used for solution of the problem under consideration. The results of application of the method to computation of the Green function of the Schroedinger equation in imaginary time as well as the study of some models of Euclidean quantum mechanics are presented. The comparison with results of other authors shows that our method gives significant (by an order of magnitude) economy of computer time and memory versus other known methods while providing the results with the same or better accuracy. The funcitonal measure of the Gaussian type is considered and some of its particular cases, namely conditional Wiener measure in quantum statistical mechanics and functional measure in a Schwartz distribution space in two-dimensional quantum field theory are studied in detail. Numerical examples demonstrating the

  15. Alcator C-MOD final safety analysis

    International Nuclear Information System (INIS)

    Fiore, C.L.

    1989-06-01

    This document is designed to address the safety issues involved with the Alcator C-Mod project. This report will begin with a brief description of the experimental objectives which will be followed by information concerning the site. The Alcator C-Mod experiment is a pulsed fusion experiment in which a plasma formed from small amounts of hydrogen or deuterium gas is confined in a magnetic field for short periods (∼1 s). No radioactive fuels or fissile materials are used in the device, so that no criticality hazard exists and no credible nuclear accident can occur. During deuterium operation, the production of a small number of neutrons from a short pulse could result in a small amount of short- and intermediate-lived radioactive isotopes being produced inside the experimental cell. This report will demonstrate that this does not pose an additional hazard to the general population. The health and safety hazards resulting from Alcator C-Mod occur to the workers on the experiment, each of which is described in its own chapter with the steps taken to minimize the risk to employees. These hazards include fire, chemicals and cryogenics, air quality, electrical, electromagnetic radiation, ionizing radiation, and mechanical and natural phenomena. None of these hazards is unique to the facility, and methods of protection from them are well defined and are discussed in the chapter which describes each hazard. The quality assurance program, critical to ensuring the safety aspects of the program, will also be described

  16. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  17. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    Science.gov (United States)

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  18. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  19. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  20. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  1. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  2. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    International Nuclear Information System (INIS)

    Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.

    2015-01-01

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  3. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  4. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  5. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  6. Deterministic blade row interactions in a centrifugal compressor stage

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.

    1991-01-01

    The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.

  7. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  8. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  9. Deterministic secure communication protocol without using entanglement

    OpenAIRE

    Cai, Qing-yu

    2003-01-01

    We show a deterministic secure direct communication protocol using single qubit in mixed state. The security of this protocol is based on the security proof of BB84 protocol. It can be realized with current technologies.

  10. Probabilistic safety analysis and radiological protection

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.; Goes, A.G.A.

    1990-05-01

    The author presents a brief description of NUREG-1150 and NUREG-0956, both documents of great importance in the risk area. Based on document's recommendations and following NUREG-1150 similar methodology, a calculation model is proposed in this publication, with the purpose of analyzing the consequences of a severe accident in Angra-I Power Station. The suggested model can be divided in two stages: the first one called front-end considers the power station system safety during the accident, and the second called back-end cares for accident consequences. 9 refs. (B.C.A.)

  11. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  12. Deterministic chaos in the processor load

    International Nuclear Information System (INIS)

    Halbiniak, Zbigniew; Jozwiak, Ireneusz J.

    2007-01-01

    In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case

  13. Evaluation of the risk associated with the storage of radioactive wastes. The deterministic approach

    International Nuclear Information System (INIS)

    Lewi, J.

    1988-07-01

    Radioactive waste storage facility safety depends on a certain number of barriers being placed between the waste and man. These barriers, certain of which are articial (the waste package and engineered barriers) and others are natural (geological formations), are of characteristics suited to the type of storage facility (surface storage or storage in deep geological formations). The combination of these different barriers provide protection for man, under all circumstances considered plausible. Justification, for the storage of given quantities of radionuclides, of the choice of the site, the artificial barriers and the overall storage architecture, is obtained by evaluation of the risk. It being this which provides a basis for determining the acceptability of the storage facility. One of the following two methods is normally used for evaluation of the risk: the deterministic method and the probabilistic method. This adress describes the deterministic method. This method is employed in France for the safety analysis of the projects and works of ANDRA, the national agency responsible for the management of radioactive waste. It should be remembered that in France, the La Manche surface storage centre for low and medium activity waste has been in existence since 1969, close to the reprocessing plant at La Hague and a second surface storage centre is to be commissioned around 1991 at Soulaines in centre of France (departement de l'Aube). Furthermore, geological surveying of four sites located in geological formations consisting of granite, schist, clay and salt were begun in 1987 for the selection in about three years time of a site for the creation of an underground laboratory. This could later be transformed, if safety is demonstrated, into a deep storage centre

  14. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  15. A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Tchouvelev, Andrei V.

    2014-03-01

    There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.

  16. SACS2: Dynamic and Formal Safety Analysis Method for Complex Safety Critical System

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2009-01-01

    Fault tree analysis (FTA) is one of the most widely used safety analysis technique in the development of safety critical systems. However, over the years, several drawbacks of the conventional FTA have become apparent. One major drawback is that conventional FTA uses only static gates and hence can not capture dynamic behaviors of the complex system precisely. Although several attempts such as dynamic fault tree (DFT), PANDORA, formal fault tree (FFT) and so on, have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. Second drawback of conventional FTA is its lack of rigorous semantics. Because it is informal in nature, safety analysis results heavily depend on an analyst's ability and are error-prone. Finally reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and timeconsuming for the complex systems. In this paper, we propose a new safety analysis method for complex safety critical system in qualitative manner. We introduce several temporal gates based on timed computational tree logic (TCTL) which can represent quantitative notion of time. Then, we translate the information of the fault trees into UPPAAL query language and the reasoning process is automatically done by UPPAAL which is the model checker for time critical system

  17. Safety design concept and analysis for the upgrading JRR-3

    International Nuclear Information System (INIS)

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  18. Preliminary safety analysis of unscrammed events for KLFR

    International Nuclear Information System (INIS)

    Kim, S.J.; Ha, G.S.

    2005-01-01

    The report presents the design features of KLFR; Safety Analysis Code; steady-state calculation results and analysis results of unscrammed events. The calculations of the steady-state and unscrammed events have been performed for the conceptual design of KLFR using SSC-K code. UTOP event results in no fuel damage and no centre-line melting. The inherent safety features are demonstrated through the analysis of ULOHS event. Although the analysis of ULOF has much uncertainties in the pump design, the analysis results show the inherent safety characteristics. 6% flow of rated flow of natural circulation is formed in the case of ULOF. In the metallic fuel rod, the cladding temperature is somewhat high due to the low heat transfer coefficient of lead. ULOHS event should be considered in design of RVACS for long-term cooling

  19. Upgrading the safety toolkit: Initiatives of the accident analysis subgroup

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Chung, D.Y.

    1999-01-01

    Since its inception, the Accident Analysis Subgroup (AAS) of the Energy Facility Contractors Group (EFCOG) has been a leading organization promoting development and application of appropriate methodologies for safety analysis of US Department of Energy (DOE) installations. The AAS, one of seven chartered by the EFCOG Safety Analysis Working Group, has performed an oversight function and provided direction to several technical groups. These efforts have been instrumental toward formal evaluation of computer models, improving the pedigree on high-use computer models, and development of the user-friendly Accident Analysis Guidebook (AAG). All of these improvements have improved the analytical toolkit for best complying with DOE orders and standards shaping safety analysis reports (SARs) and related documentation. Major support for these objectives has been through DOE/DP-45

  20. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  1. Nucelar reactor seismic safety analysis techniques

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.; Lewis, L.C.

    1979-04-01

    In order to provide insights into the seismic safety requirements for nuclear power plants, a probabilistic based systems model and computational procedure have been developed. This model and computational procedure will be used to identify where data and modeling uncertainties need to be decreased by studying the effect of these uncertainties on the probability of radioactive release and the probability of failure of various structures, systems, and components. From the estimates of failure and release probabilities and their uncertainties the most sensitive steps in the seismic methodologies can be identified. In addition, the procedure will measure the uncertainty due to random occurrences, e.g. seismic event probabilities, material property variability, etc. The paper discusses the elements of this systems model and computational procedure, the event-tree/fault-tree development, and the statistical techniques to be employed

  2. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    Campbell, T.A.

    1998-01-01

    In compliance with DOE Orders, an update of the 242-A SAR has been prepared, as documented in the referenced ECN. Several categories of changes were identified for inclusion in this revision of the SAR. These categories will be utilized to simplify the discussion of the changes for this USQ document. However, it is important to note that no new tests or experiments were included in this revision of the SAR. Editorial changes and/or informational updates to Chapters 9 and 11 were included as part of this revision. However, no changes to Operational Safety Requirements (OSRs) contained in Chapter 11 were required. General categories of changes included in this revision are listed

  3. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  4. Deterministic Properties of Serially Connected Distributed Lag Models

    Directory of Open Access Journals (Sweden)

    Piotr Nowak

    2013-01-01

    Full Text Available Distributed lag models are an important tool in modeling dynamic systems in economics. In the analysis of composite forms of such models, the component models are ordered in parallel (with the same independent variable and/or in series (where the independent variable is also the dependent variable in the preceding model. This paper presents an analysis of certain deterministic properties of composite distributed lag models composed of component distributed lag models arranged in sequence, and their asymptotic properties in particular. The models considered are in discrete form. Even though the paper focuses on deterministic properties of distributed lag models, the derivations are based on analytical tools commonly used in probability theory such as probability distributions and the central limit theorem. (original abstract

  5. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  6. Handbook of EOQ inventory problems stochastic and deterministic models and applications

    CERN Document Server

    Choi, Tsan-Ming

    2013-01-01

    This book explores deterministic and stochastic EOQ-model based problems and applications, presenting technical analyses of single-echelon EOQ model based inventory problems, and applications of the EOQ model for multi-echelon supply chain inventory analysis.

  7. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    1999-01-01

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  8. Core conversion effects on the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1982-07-01

    The safety related parameters of the 5 MW Democritus research reactor that will be affected by the scheduled core conversion to use LEU instead of HEU are considered. The analysis of the safety related items involved in such a core conversion, mainly the consequences due to MCA, DBA, etc., is of a general nature and can, therefore, be applied to other similar pool type reactors as well. (T.A.)

  9. Safety analysis report for packaging (onsite) steel drum

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  10. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  11. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  12. An intelligent hybrid system for surface coal mine safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lilic, N.; Obradovic, I.; Cvjetic, A. [University of Belgrade, Belgrade (Serbia)

    2010-06-15

    Analysis of safety in surface coal mines represents a very complex process. Published studies on mine safety analysis are usually based on research related to accidents statistics and hazard identification with risk assessment within the mining industry. Discussion in this paper is focused on the application of AI methods in the analysis of safety in mining environment. Complexity of the subject matter requires a high level of expert knowledge and great experience. The solution was found in the creation of a hybrid system PROTECTOR, whose knowledge base represents a formalization of the expert knowledge in the mine safety field. The main goal of the system is the estimation of mining environment as one of the significant components of general safety state in a mine. This global goal is subdivided into a hierarchical structure of subgoals where each subgoal can be viewed as the estimation of a set of parameters (gas, dust, climate, noise, vibration, illumination, geotechnical hazard) which determine the general mine safety state and category of hazard in mining environment. Both the hybrid nature of the system and the possibilities it offers are illustrated through a case study using field data related to an existing Serbian surface coal mine.

  13. Representation of human behaviour in probabilistic safety analysis

    International Nuclear Information System (INIS)

    Whittingham, R.B.

    1991-01-01

    This paper provides an overview of the representation of human behaviour in probabilistic safety assessment. Human performance problems which may result in errors leading to accidents are considered in terms of methods of identification using task analysis, screening analysis of critical errors, representation and quantification of human errors in fault trees and event trees and error reduction measures. (author) figs., tabs., 43 refs

  14. Analysis of the criticality safety of a nuclear fuel deposit

    International Nuclear Information System (INIS)

    Landeyro, P.A.; Mincarini, M.

    1987-01-01

    In the present work a safety analysis from criticality accidents of nuclear fuel deposits is performed. The analysis is performed utilizing two methods derived from different physical principes: 1) superficial density method, obtained from experimental research; 2) solid angle method, derived from transport theory

  15. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  16. Boundary conditions for pathways, safety analysis and basic criteria for low-level radiation waste site selection

    International Nuclear Information System (INIS)

    Saverot, P.

    1994-01-01

    There are three successive periods in the life of a disposal facility: the operating period, the institutional control period and the unrestricted site access period. The purpose of safety analysis of the disposal facility is to ensure that the radiological impacts for each period in the life of the facility are acceptable under all circumstances. Founded on a deterministic approach, this analysis leads to a determination of the maximum quantity of each radionuclide present in the facility at the beginning of the institutional control period in order for the impacts to be considered acceptable. Safety analysis involves the calculation of the radiological impacts of a given radiological inventory under a selected scenario, from all plausible scenarios of radionuclide migration to the environment in both normal and accident conditions, and taking into account other specified variables. The calculation itself involves an assessment of the quantities of radionuclides that could be released to the environment under the specific scenario selected and following identified pathways, and a determination of the resultant exposure, both internal and external, to the public. An iterative approach is used in the performance of pathways analyses. If the pathways analyses result in unacceptable radiological impacts, either the radiological inventory of the site is reduced or barrier characteristics not previously factored into the analysis are taken into account. New pathways analyses are then performed until the results are within the acceptable range. Once accepted by the safety authorities, the radiological inventory becomes the radiological capacity, which is the approved quantities of specific radionuclides that may be disposed of at the site. The following elaborates on the boundary conditions used in safety analyses and describes the types of pathways analyses performed for a LLW disposal facility

  17. Deterministic Approach to Detect Heart Sound Irregularities

    Directory of Open Access Journals (Sweden)

    Richard Mengko

    2017-07-01

    Full Text Available A new method to detect heart sound that does not require machine learning is proposed. The heart sound is a time series event which is generated by the heart mechanical system. From the analysis of heart sound S-transform and the understanding of how heart works, it can be deducted that each heart sound component has unique properties in terms of timing, frequency, and amplitude. Based on these facts, a deterministic method can be designed to identify each heart sound components. The recorded heart sound then can be printed with each component correctly labeled. This greatly help the physician to diagnose the heart problem. The result shows that most known heart sounds were successfully detected. There are some murmur cases where the detection failed. This can be improved by adding more heuristics including setting some initial parameters such as noise threshold accurately, taking into account the recording equipment and also the environmental condition. It is expected that this method can be integrated into an electronic stethoscope biomedical system.

  18. Deterministic dense coding and entanglement entropy

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.; McDonald, J. P.; Williams, H. T.

    2008-01-01

    We present an analytical study of the standard two-party deterministic dense-coding protocol, under which communication of perfectly distinguishable messages takes place via a qudit from a pair of nonmaximally entangled qudits in a pure state |ψ>. Our results include the following: (i) We prove that it is possible for a state |ψ> with lower entanglement entropy to support the sending of a greater number of perfectly distinguishable messages than one with higher entanglement entropy, confirming a result suggested via numerical analysis in Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. (ii) By explicit construction of families of local unitary operators, we verify, for dimensions d=3 and d=4, a conjecture of Mozes et al. about the minimum entanglement entropy that supports the sending of d+j messages, 2≤j≤d-1; moreover, we show that the j=2 and j=d-1 cases of the conjecture are valid in all dimensions. (iii) Given that |ψ> allows the sending of K messages and has √(λ 0 ) as its largest Schmidt coefficient, we show that the inequality λ 0 ≤d/K, established by Wu et al. [Phys. Rev. A 73, 042311 (2006)], must actually take the form λ 0 < d/K if K=d+1, while our constructions of local unitaries show that equality can be realized if K=d+2 or K=2d-1

  19. The Relation between Deterministic Thinking and Mental Health among Substance Abusers Involved in a Rehabilitation Program

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Younesi

    2015-06-01

    Full Text Available Objective: The current research is to investigate the relation between deterministic thinking and mental health among drug abusers, in which the role of  cognitive distortions is considered and clarified by focusing on deterministic thinking. Methods: The present study is descriptive and correlative. All individuals with experience of drug abuse who had been referred to the Shafagh Rehabilitation center (Kahrizak were considered as the statistical population. 110 individuals who were addicted to drugs (stimulants and Methamphetamine were selected from this population by purposeful sampling to answer questionnaires about deterministic thinking and general health. For data analysis Pearson coefficient correlation and regression analysis was used. Results: The results showed that there is a positive and significant relationship between deterministic thinking and the lack of mental health at the statistical level [r=%22, P<0.05], which had the closest relation to deterministic thinking among the factors of mental health, such as anxiety and depression. It was found that the two factors of deterministic thinking which function as the strongest variables that predict the lack of mental health are: definitiveness in predicting tragic events and future anticipation. Discussion: It seems that drug abusers suffer from deterministic thinking when they are confronted with difficult situations, so they are more affected by depression and anxiety. This way of thinking may play a major role in impelling or restraining drug addiction.

  20. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    .... The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used...

  1. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  2. Qinshan NPP large break LOCA safety analysis

    International Nuclear Information System (INIS)

    Shi Guobao; Tang Jiahuan; Zhou Quanfu; Wang Yangding

    1997-01-01

    Qinshan NPP is the first nuclear power plant in the mainland of China, a 300 MW(e) two-loop PWR. Large break LOCA is the design-basis accident of Qinshan NPP. Based on available computer codes, the own analysis method which complies with Appendix k of 10 CFR 50 has been established. The RELAP4/MOD7 code is employed for the calculations of blowdown, refill and reflood phase of the RCS respectively. The CONTEMPT-LT/028 code is used for the containment pressure and temperature analysis. The temperature transient in the hot rod is calculated using the FRAP-6T code. Conservative initial and functional assumptions were adopted during Qinshan NPP large break LOCA analysis. The results of the analysis show the applicable acceptance criteria for the loss-of-coolant accident are met

  3. Safety analysis of DUPIC fuel development facility

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Baek, S. Y.; Ahn, J. Y.

    2001-01-01

    Various experimental facilities are necessary in order to perform experimental verification for development of DUPIC fuel fabrication technology. In special, since highly radioactive material such as spent PWR fuel is used for this experiment, DUPIC fuel fabrication has to be performed in hot cell by remote handling. Therefore, it should be provided with proper engineering requirement and safety. M6 hot cell of IMEF which is to used for DUPIC fuel fabrication experiment was constructed as an α-γ hot cell for material examination of small amount of high-burnup fuel. The characteristics and amount of spent fuel for DUPIC fuel fabrication experiment will be different from the original design criteria. Therefore, the increased amount of spent fuel and different characteristics of experiment result in not only change of shielding and enviornmental evaluation results but new requirement of nuclear criticality evaluation. Therefore, this study includes evaluation of shielding, environmental effect and nuclear criticality in case that IMEF M6 hot cell is used for DUPIC fuel fabrication

  4. Safety analysis for reactivity insertion on ADS

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcia S.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work, an accelerator driven system (ADS) has been studied to fuel regeneration, partitioning and transmutation using fuel removed from LWR-spent fuel. This spent fuel was reprocessed by GANEX and then spiked with thorium. Monteburns 2.0 (MCNP5/ORIGEN 2.1) code was used to simulate burnup and neutronic parameters of the systems. However, these systems might be interrupted for some technical problems during few days or long periods to perform maintenance of accelerator systems without shutdown the fission system. Therefore, in this work, the aim was to investigate the nuclear fuel evolution in three different cases with reactivity insertions and variations in the functionality of the ADS. The evaluation has been performed for a burnup of 3 years, which are the most dangerous years in case of reactivity insertions. Therefore, in the first case the ADS during its burnup the external source (spallation source) is cutting off from the system several times during the first year of burnup. In the second case, it is simulated the reactor at different power from 0 (shutdown) to 1.5 times the 515MWt. The results shows the safety limits of the ADS for different situation. (author)

  5. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  6. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  7. Nonlinear free vibration analysis of elastically supported carbon nanotube-reinforced composite beam with the thermal environment in non-deterministic framework

    Directory of Open Access Journals (Sweden)

    Chaudhari Virendra Kumar

    2017-01-01

    Full Text Available This paper deals with the investigation of nonlinear free vibration behavior of elastically supported carbon nanotube reinforced composite (CNTRC beam subjected to thermal loading with random system properties. Material properties of each constituent’s material, volume fraction exponent and foundation parameters are considered as uncorrelated Gaussian random input variables. The beam is supported by a Pasternak foundation with Winkler cubic nonlinearity. The higher order shear deformation theory (HSDT with von-Karman non-linearity is used to formulate the governing equation using Hamilton principle. Convergence and validation study is carried out through the comparison with the available results in the literature for authenticity and accuracy of the present approach used in the analysis. First order perturbation technique (FOPT,Second order perturbation technique (SOPT and Monte Carlo simulation (MCS methods are employed to investigate the effect of geometric configuration, volume fraction exponent, foundation parameters, distribution of reinforcement and thermal loading on nonlinear vibration characteristics CNTRC beam.The present work signifies the accurate analysis of vibrational behaviour influences by different random variables. Results are presented in terms of mean, variance (COV and probability density function (PDF for various aforementioned parameters.

  8. A deterministic approach for performance assessment and optimization of power distribution units in Iran

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Omrani, H.

    2009-01-01

    This paper presents a deterministic approach for performance assessment and optimization of power distribution units in Iran. The deterministic approach is composed of data envelopment analysis (DEA), principal component analysis (PCA) and correlation techniques. Seventeen electricity distribution units have been considered for the purpose of this study. Previous studies have generally used input-output DEA models for benchmarking and evaluation of electricity distribution units. However, this study considers an integrated deterministic DEA-PCA approach since the DEA model should be verified and validated by a robust multivariate methodology such as PCA. Moreover, the DEA models are verified and validated by PCA, Spearman and Kendall's Tau correlation techniques, while previous studies do not have the verification and validation features. Also, both input- and output-oriented DEA models are used for sensitivity analysis of the input and output variables. Finally, this is the first study to present an integrated deterministic approach for assessment and optimization of power distributions in Iran

  9. Safety analysis of SISL process module

    International Nuclear Information System (INIS)

    1983-05-01

    This report provides an assessment of various postulated accidental occurrences within an experimental process module which is part of a Special Isotope Separation Laboratory (SISL) currently under construction at the Lawrence Livermore National Laboratory (LLNL). The process module will contain large amounts of molten uranium and various water-cooled structures within a vacuum vessel. Special emphasis is therefore given to potential accidental interactions of molten uranium with water leading to explosive and/or rapid steam formation, as well as uranium oxidation and the potential for combustion. Considerations are also given to the potential for vessel melt-through. Evaluations include mechanical and thermal interactions and design implications both in terms of design basis as well as once-in-a-lifetime accident scenarios. These scenarios include both single- and multiple-failure modes leading to various contact modes and locations within the process module for possible thermal interactions. The evaluations show that a vacuum vessel design based upon nominal operating conditions would appear sufficient to meet safety requirements in connection with both design basis as well as once-in-a-lifetime accidents. Controlled venting requirements for removal of steam and hydrogen in order to avoid possible long-term pressurization events are recommended. Depending upon the resulting accident conditions, the vacuum system (i.e., the roughing system) could also serve this purpose. Finally, based upon accident evaluations of this study, immediate shut-off of all coolant water following an incident leak is not recommended, as such action may have adverse effects in terms of cool-down requirements for the melt crucibles etc. These requirements have not been assessed as part of this study

  10. Probabilistic safety analysis of earth retaining structures during earthquakes

    Science.gov (United States)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  11. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  12. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  13. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  14. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  15. Design of deterministic interleaver for turbo codes

    International Nuclear Information System (INIS)

    Arif, M.A.; Sheikh, N.M.; Sheikh, A.U.H.

    2008-01-01

    The choice of suitable interleaver for turbo codes can improve the performance considerably. For long block lengths, random interleavers perform well, but for some applications it is desirable to keep the block length shorter to avoid latency. For such applications deterministic interleavers perform better. The performance and design of a deterministic interleaver for short frame turbo codes is considered in this paper. The main characteristic of this class of deterministic interleaver is that their algebraic design selects the best permutation generator such that the points in smaller subsets of the interleaved output are uniformly spread over the entire range of the information data frame. It is observed that the interleaver designed in this manner improves the minimum distance or reduces the multiplicity of first few spectral lines of minimum distance spectrum. Finally we introduce a circular shift in the permutation function to reduce the correlation between the parity bits corresponding to the original and interleaved data frames to improve the decoding capability of MAP (Maximum A Posteriori) probability decoder. Our solution to design a deterministic interleaver outperforms the semi-random interleavers and the deterministic interleavers reported in the literature. (author)

  16. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  17. LOCA analysis of SCWR-M with passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Fu, S.W. [Navy University of Engineering, Wuhan, Hubei (China); Xu, Z.H. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Nuclear Technology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2013-06-15

    Highlights: • Application of the ATHLET-SC code to the trans-critical analysis for SCWR. • Development of a passive safety system for SCWR-M. • Analysis of hot/cold leg LOCA behaviour with different break size. • Introduction of some mitigation measures for SCWR-M -- Abstract: A new SCWR conceptual design (mixed spectrum supercritical water cooled reactor: SCWR-M) is proposed by Shanghai Jiao Tong University (SJTU). R and D activities covering core design, safety system design and code development of SCWR-M are launched at SJTU. Safety system design and analysis is one of the key tasks during the development of SCWR-M. Considering the current advanced reactor design, a new passive safety system for SCWR-M including isolation cooling system (ICS), accumulator injection system (ACC), gravity driven cooling system (GDCS) and automatic depressurization system (ADS) is proposed. Based on the modified and preliminarily assessed system code ATHLET-SC, loss of coolant accident (LOCA) analysis for hot and cold leg is performed in this paper. Three different break sizes are analyzed to clarify the hot and cold LOCA characteristics of the SCWR-M. The influence of the break location and break size on the safety performance of SCWR-M is also concluded. Several measures to induce the core coolant flow and to mitigate core heating up are also discussed. The results achieved so far demonstrate the feasibility of the proposed passive safety system to keep the SCWR-M core at safety condition during loss of coolant accident.

  18. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  19. Safety analysis for boiling water reactors

    International Nuclear Information System (INIS)

    Kersting, E.; Linden, J. von; Mueller-Ecker, D.; Werner, W.

    1993-07-01

    This report is the translation of GRS-95 'Sicherheitsanalyse fuer Siedewasserreaktoren - Zusammenfassende Darstellung'. Recent analysis results -concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. (orig.)

  20. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process