Quantum Gravity as a Dissipative Deterministic System
Hooft, G. 't
1999-01-01
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in elementar
Quantum Gravity as a Dissipative Deterministic System
Hooft, G. 't
1999-01-01
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in elementar
Submicroscopic Deterministic Quantum Mechanics
Krasnoholovets, V
2002-01-01
So-called hidden variables introduced in quantum mechanics by de Broglie and Bohm have changed their initial enigmatic meanings and acquired quite reasonable outlines of real and measurable characteristics. The start viewpoint was the following: All the phenomena, which we observe in the quantum world, should reflect structural properties of the real space. Thus the scale 10^{-28} cm at which three fundamental interactions (electromagnetic, weak, and strong) intersect has been treated as the size of a building block of the space. The appearance of a massive particle is associated with a local deformation of the cellular space, i.e. deformation of a cell. The mechanics of a moving particle that has been constructed is deterministic by its nature and shows that the particle interacts with cells of the space creating elementary excitations called "inertons". The further study has disclosed that inertons are a substructure of the matter waves which are described by the orthodox wave \\psi-function formalism. The c...
Deterministic secure quantum communication using a single d-level system.
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-22
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
Deterministic secure quantum communication using a single d-level system
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-01-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
Torromé, Ricardo Gallego
2014-01-01
In this work, deterministic Cartan-Randers dynamical systems, a particular class of {\\it deterministic quantum models} associated to first order ordinary differential equations are considered. Then we show that {\\it diffeomorphism invariance}, a classical and a quantum versions of a Principle of Inertia, reversibility of the effective quantum dynamics and a {\\it covariant maximal universal acceleration} emerge from deterministic Cartan-Randers models. A geometric analytic mechanism for quantum measurement processes without reduction of wave packet appears naturally. The mechanism is applied heuristically to the quantum two slit experiment. The mechanism allows for protective measurement and usual Von Neumann measurements. Furthermore, a similar geometric-analytic mechanism is discovered to produce a lower bound for physical values for the eigenvalues of Hamiltonian for matter. As a side effect of such mechanism, a natural explanation for the Weak Equivalence Principle is obtained. This fact together with the ...
Giant acoustic atom: A single quantum system with a deterministic time delay
Guo, Lingzhen; Grimsmo, Arne; Kockum, Anton Frisk; Pletyukhov, Mikhail; Johansson, Göran
2017-05-01
We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the traveling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially decays polynomially in the form of pulses instead of a continuous exponential decay behavior, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. We find that two peaks appear in the inelastic (incoherent) power spectrum of the giant atom, a phenomenon which does not exist for a small atom. The time delay also gives rise to features in the reflectance, transmittance, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop.
A mathematical theory for deterministic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)
2007-05-15
Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.
Zhang, Tianyuan
2016-01-01
In this work we propose a novel approach to solve the Schr\\"{o}dinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased towards any determinant. Therefore, the PCI approach can equally well describe static an...
Zhang, Tianyuan; Evangelista, Francesco A
2016-09-13
In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG.
Deterministic coupling of a system of multiple quantum dots to a single photonic cavity mode
Lyasota, A.; Jarlov, C.; Gallo, P.; Rudra, A.; Dwir, B.; Kapon, E.
2017-07-01
We fabricated and studied a system comprising four site-controlled semiconductor quantum dots (QDs) embedded in a linear photonic crystal membrane cavity. The excellent position control and small spectral broadening permit coupling of the emission of all four QDs to the same photonic cavity modes. This is corroborated by co-polarization of the QD and cavity emission lines, as well as reduction in decay time, both with characteristic dependence on QD-cavity energy detuning. Scaling up to larger QD systems is discussed.
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2006-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2007-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is
Quantum secure direct communication and deterministic secure quantum communication
Institute of Scientific and Technical Information of China (English)
LONG Gui-lu; DENG Fu-guo; WANG Chuan; LI Xi-han; WEN Kai; WANG Wan-ying
2007-01-01
In this review article,we review the recent development of quantum secure direct communication(QSDC)and deterministic secure quantum communication(DSQC) which both are used to transmit secret message,including the criteria for QSDC,some interesting QSDC protocols,the DSQC protocols and QSDC network,etc.The difference between these two branches of quantum Communication is that DSOC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit,and QSDC does not.They are attractivebecause they are deterministic,in particular,the QSDC protocol is fully quantum mechanical.With sophisticated quantum technology in the future,the QSDC may become more and more popular.For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel,a quantum privacy amplification protocol has been proposed.It involves very simple CHC operations and reduces the information leakage to a negligible small level.Moreover,with the one-party quantum error correction,a relation has been established between classical linear codes and quantum one-party codes,hence it is convenient to transfer many good classical error correction codes to the quantum world.The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.
Entanglement and deterministic quantum computing with one qubit
Boyer, Michel; Brodutch, Aharon; Mor, Tal
2017-02-01
The role of entanglement and quantum correlations in complex physical systems and quantum information processing devices has become a topic of intense study in the past two decades. In this work we present tools for learning about entanglement and quantum correlations in dynamical systems where the quantum states are mixed and the eigenvalue spectrum is highly degenerate. We apply these results to the deterministic quantum computing with one qubit (DQC1) computation model and show that the states generated in a DQC1 circuit have an eigenvalue structure that makes them difficult to entangle, even when they are relatively far from the completely mixed state. Our results strengthen the conjecture that it may be possible to find quantum algorithms that do not generate entanglement and yet still have an exponential advantage over their classical counterparts.
Modeling of deterministic chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Lai, Y. [Department of Physics and Astronomy and Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Grebogi, C.; Kurths, J. [Department of Physics and Astrophysics, Universitaet Potsdam, Postfach 601553, D-14415 Potsdam (Germany)
1999-03-01
The success of deterministic modeling of a physical system relies on whether the solution of the model would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where periodic orbits embedded in the chaotic set have distinct number of unstable directions and, as a consequence, no model of the system produces reasonably long trajectories that are realized by nature. We argue and present physical examples indicating that, in such a case, though the model is deterministic and low dimensional, statistical quantities can still be reliably computed. {copyright} {ital 1999} {ital The American Physical Society}
How Does Quantum Uncertainty Emerge from Deterministic Bohmian Mechanics?
Solé, A.; Oriols, X.; Marian, D.; Zanghì, N.
2016-10-01
Bohmian mechanics is a theory that provides a consistent explanation of quantum phenomena in terms of point particles whose motion is guided by the wave function. In this theory, the state of a system of particles is defined by the actual positions of the particles and the wave function of the system; and the state of the system evolves deterministically. Thus, the Bohmian state can be compared with the state in classical mechanics, which is given by the positions and momenta of all the particles, and which also evolves deterministically. However, while in classical mechanics it is usually taken for granted and considered unproblematic that the state is, at least in principle, measurable, this is not the case in Bohmian mechanics. Due to the linearity of the quantum dynamical laws, one essential component of the Bohmian state, the wave function, is not directly measurable. Moreover, it turns out that the measurement of the other component of the state — the positions of the particles — must be mediated by the wave function; a fact that in turn implies that the positions of the particles, though measurable, are constrained by absolute uncertainty. This is the key to understanding how Bohmian mechanics, despite being deterministic, can account for all quantum predictions, including quantum randomness and uncertainty.
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-07-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.
An Architecture of Deterministic Quantum Central Processing Unit
Xue, Fei; Chen, Zeng-Bing; Shi, Mingjun; Zhou, Xianyi; Du, Jiangfeng; Han, Rongdian
2002-01-01
We present an architecture of QCPU(Quantum Central Processing Unit), based on the discrete quantum gate set, that can be programmed to approximate any n-qubit computation in a deterministic fashion. It can be built efficiently to implement computations with any required accuracy. QCPU makes it possible to implement universal quantum computation with a fixed, general purpose hardware. Thus the complexity of the quantum computation can be put into the software rather than the hardware.
Simulation of quantum computation : A deterministic event-based approach
Michielsen, K; De Raedt, K; De Raedt, H
2005-01-01
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Analysis of Photonic Quantum Nodes Based on Deterministic Single-Photon Raman Passage
Rosenblum, Serge
2014-01-01
The long-standing goal of deterministically controlling a single photon using another was recently realized in various experimental settings. Among these, a particularly attractive demonstration relied on deterministic single-photon Raman passage in a three-level Lambda system coupled to a single-mode waveguide. Beyond the ability to control the direction of propagation of one photon by the direction of another photon, this scheme can also perform as a passive quantum memory and a universal quantum gate. Relying on interference, this all-optical, coherent scheme requires no additional control fields, and can therefore form the basis for scalable quantum networks composed of passive quantum nodes that interact with each other only with single photon pulses. Here we present an analytical and numerical study of deterministic single-photon Raman passage, and characterise its limitations and the parameters for optimal operation. Specifically, we study the effect of losses and the presence of multiple excited state...
Deterministic quantum nonlinear optics with single atoms and virtual photons
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States
Institute of Scientific and Technical Information of China (English)
何广强; 朱俊; 曾贵华
2011-01-01
A continuous variable ping-pong scheme, which is utilized to generate deterministic private key, is proposed. The proposed scheme is implemented physically by using Ganssian-modulated squeezed states. The deterministic char- acteristic, i.e., no basis reconciliation between two parties, leads a nearly two-time efficiency comparing to the standard quantum key distribution schemes. Especially, the separate control mode does not need in the proposed scheme so that it is simpler and more available than previous ping-pong schemes. The attacker may be detected easily through the fidelity of the transmitted signal, and may not be successful in the beam splitter attack strategy.
Fully fault tolerant quantum computation with non-deterministic gates
Li, Ying; Stace, Thomas M; Benjamin, Simon C
2010-01-01
In certain approaches to quantum computing the operations between qubits are non-deterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should assumed to be failure prone. In the logical limit of this architecture each component contains only one qubit. Here we derive thresholds for fault tolerant quantum computation under such extreme paradigms. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded, meanwhile the rate of unknown errors should not exceed 2 in 10^4 operations.
Deterministic secure quantum communication over a collective-noise channel
Institute of Scientific and Technical Information of China (English)
GU Bin; PEI ShiXin; SONG Biao; ZHONG Kun
2009-01-01
We present two deterministic secure quantum communication schemes over a collective-noise. One is used to complete the secure quantum communication against a collective-rotation noise and the other is used against a collective-dephasing noise. The two parties of quantum communication can exploit the correlation of their subsystems to check eavesdropping efficiently. Although the sender should prepare a sequence of three-photon entangled states for accomplishing secure communication against a collective noise, the two parties need only single-photon measurements, rather than Bell-state measurements, which will make our schemes convenient in practical application.
Deterministic multimode photonic device for quantum-information processing
DEFF Research Database (Denmark)
Nielsen, Anne Ersbak Bang; Mølmer, Klaus
2010-01-01
We propose the implementation of a light source that can deterministically generate a rich variety of multimode quantum states. The desired states are encoded in the collective population of different ground hyperfine states of an atomic ensemble and converted to multimode photonic states...... by excitation to optically excited levels followed by cooperative spontaneous emission. Among our examples of applications, we demonstrate how two-photon-entangled states can be prepared and implemented in a protocol for a reference-frame-free quantum key distribution and how one-dimensional as well as higher...
Stochastic versus deterministic systems of differential equations
Ladde, G S
2003-01-01
This peerless reference/text unfurls a unified and systematic study of the two types of mathematical models of dynamic processes-stochastic and deterministic-as placed in the context of systems of stochastic differential equations. Using the tools of variational comparison, generalized variation of constants, and probability distribution as its methodological backbone, Stochastic Versus Deterministic Systems of Differential Equations addresses questions relating to the need for a stochastic mathematical model and the between-model contrast that arises in the absence of random disturbances/flu
Energy Technology Data Exchange (ETDEWEB)
Chen, Jingwei [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wei, L.F., E-mail: weilianfu@gmail.com [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China)
2015-10-23
Highlights: • A specific SCRAP technique is proposed to realize quantum gates in the circuit QED. • These quantum gates are insensitive to the durations of the applied pluses. • The implemented quantum gates are robustness against the operational imperfections. - Abstract: We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system.
[Deterministic and stochastic identification of neurophysiologic systems].
Piatigorskiĭ, B Ia; Kostiukov, A I; Chinarov, V A; Cherkasskiĭ, V L
1984-01-01
The paper deals with deterministic and stochastic identification methods applied to the concrete neurophysiological systems. The deterministic identification was carried out for the system: efferent fibres-muscle. The obtained transition characteristics demonstrated dynamic nonlinearity of the system. Identification of the neuronal model and the "afferent fibres-synapses-neuron" system in mollusc Planorbis corneus was carried out using the stochastic methods. For these purpose the Wiener method of stochastic identification was expanded for the case of pulse trains as input and output signals. The weight of the nonlinear component in the Wiener model and accuracy of the model prediction were quantitatively estimated. The results obtained proves the possibility of using these identification methods for various neurophysiological systems.
Jeannin, Mathieu; Bellet-Amalric, Edith; Kheng, Kuntheak; Nogues, Gilles
2016-01-01
We report on the deterministic coupling between single semiconducting nanowire quantum dots emitting in the visible and plasmonic Au nanoantennas. Both systems are separately carefully characterized through microphotoluminescence and cathodoluminescence. A two-step realignment process using cathodoluminescence allows for electron beam lithography of Au antennas near individual nanowire quantum dots with a precision of 50 nm. A complete set of optical properties are measured before and after antenna fabrication. They evidence both an increase of the NW absorption, and an improvement of the quantum dot emission rate up to a factor two in presence of the antenna.
Yan, Zhihui; Jia, Xiaojun
2017-06-01
A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.
Deterministic Computational Complexity of the Quantum Separability Problem
Ioannou, L M
2006-01-01
Ever since entanglement was identified as a computational and cryptographic resource, effort has been made to find an efficient way to tell whether a given density matrix represents an unentangled, or separable, state. Essentially, this is the quantum separability problem. In Section 1, I begin with a brief introduction to bipartite separability and entanglement, and a basic formal definition of the quantum separability problem. I conclude with a summary of one-sided tests for separability, including those involving semidefinite programming. In Section 2, I treat the separability problem as a computational decision problem and motivate its approximate formulations. After a review of basic complexity-theoretic notions, I discuss the computational complexity of the separability problem (including a Turing-NP-complete formulation of the problem and a proof of "strong NP-hardness" (based on a new NP-hardness proof by Gurvits)). In Section 3, I give a comprehensive survey and complexity analysis of deterministic a...
Quantum repeaters based on deterministic storage of a single photon in distant atomic ensembles
Energy Technology Data Exchange (ETDEWEB)
Aghamalyan, D. [Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak-2 0203 (Armenia); Malakyan, Yu. [Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak-2 0203 (Armenia); Centre of Strong Field Physics, Yerevan State University, 1 A. Manukian Street, Yerevan 0025 (Armenia)
2011-10-15
Quantum repeaters hold the promise to prevent the photon losses in communication channels. Most recently, the serious efforts have been applied to achieve scalable distribution of entanglement over long distances. However, the probabilistic nature of entanglement generation and realistic quantum memory storage times make the implementation of quantum repeaters an outstanding experimental challenge. We propose a quantum repeater protocol based on the deterministic storage of a single photon in atomic ensembles confined in distant high-finesse cavities and show that this system is capable of distributing the entanglement over long distances with a much higher rate as compared to previous protocols, thereby alleviating the limitations on the quantum memory lifetime by several orders of magnitude. Our scheme is robust with respect to phase fluctuations in the quantum channel, while the fidelity imperfection is fixed and negligibly small at each step of entanglement swapping.
Deterministic nonlinear systems a short course
Anishchenko, Vadim S; Strelkova, Galina I
2014-01-01
This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.
Song, Yi; Ni, Jiang-Li; Wang, Zhang-Yin; Lu, Yan; Han, Lian-Fang
2017-10-01
We present a new scheme for deterministically realizing the mutual interchange of quantum information between two distant parties via selected quantum states as the shared entangled resource. We first show the symmetric bidirectional remote state preparation (BRSP), where two single-qubit quantum states will be simultaneously exchanged in a deterministic manner provided that each of the users performs single-qubit von Neumann measurements with proper measurement bases as well as appropriate unitary operations, depending essentially on the outcomes of the prior measurements. Then we consider to extend the symmetric protocol to an asymmetric case, in which BRSP of a general single-qubit state and an arbitrary two-qubit state is investigated successfully. The necessary quantum operations and the employed quantum resources are feasible according to the present technology, resulting in that this protocol may be realizable in the realm of current physical experiment.
Institute of Scientific and Technical Information of China (English)
YUAN Hao; SONG Jun; HE Qin; HAN Lian-Fang; HOU Kui; HU Xiao-Yuan; SHI Shou-Hua
2008-01-01
We propose two schemes for quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit states are used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks can be ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-day technique.
Could quantum decoherence and measurement be deterministic phenomena?
Directory of Open Access Journals (Sweden)
Sparenberg Jean-Marc
2013-09-01
Full Text Available The apparent random outcome of a quantum measurement is conjectured to be fundamentally determined by the microscopic state of the macroscopic measurement apparatus. The apparatus state thus plays the role of a hidden variable which, in contrast with variables characterizing the measured microscopic system, is shown to lead to a violation of Bell’s inequalities and to agree with standard quantum mechanics. An explicit realization of this interpretation is explored (for details, see [1] for a primitive model of cloud chamber inspired by Mott [2]. Being highly non local, this interpretation of quantum mechanics is argued to open the way to faster-than-light information transfer.
Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.
Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2017-09-28
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.
Deterministic Photon Pairs and Coherent Optical Control of a Single Quantum Dot
Jayakumar, Harishankar; Predojević, Ana; Huber, Tobias; Kauten, Thomas; Solomon, Glenn S.; Weihs, Gregor
2013-03-01
The strong confinement of semiconductor excitons in a quantum dot gives rise to atomlike behavior. The full benefit of such a structure is best observed in resonant excitation where the excited state can be deterministically populated and coherently manipulated. Because of the large refractive index and device geometry it remains challenging to observe resonantly excited emission that is free from laser scattering in III/V self-assembled quantum dots. Here we exploit the biexciton binding energy to create an extremely clean single photon source via two-photon resonant excitation of an InAs/GaAs quantum dot. We observe complete suppression of the excitation laser and multiphoton emissions. Additionally, we perform full coherent control of the ground-biexciton state qubit and observe an extended coherence time using an all-optical echo technique. The deterministic coherent photon pair creation makes this system suitable for the generation of time-bin entanglement and experiments on the interaction of photons from dissimilar sources.
Non deterministic finite automata for power systems fault diagnostics
Directory of Open Access Journals (Sweden)
LINDEN, R.
2009-06-01
Full Text Available This paper introduces an application based on finite non-deterministic automata for power systems diagnosis. Automata for the simpler faults are presented and the proposed system is compared with an established expert system.
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D
2017-01-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D.
2017-05-01
An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120+/-32 nm, which may be improved with further optimization of the nanopillar dimensions.
Deterministic event-based simulation of quantum phenomena
De Raedt, K; De Raedt, H; Michielsen, K
2005-01-01
We propose and analyse simple deterministic algorithms that can be used to construct machines that have primitive learning capabilities. We demonstrate that locally connected networks of these machines can be used to perform blind classification on an event-by-event basis, without storing the inform
Scheme for deterministic Bell-state-measurement-free quantum teleportation
Yang, M; Yang, Ming; Cao, Zhuo-Liang
2004-01-01
A deterministic teleportation scheme for unknown atomic states is proposed in cavity QED. The Bell state measurement is not needed in the teleportation process, and the success probability can reach 1.0. In addition, the current scheme is insensitive to the cavity decay and thermal field.
Demonstration of deterministic and high fidelity squeezing of quantum information
DEFF Research Database (Denmark)
Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.
2007-01-01
By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an...
An Efficient Deterministic Quantum Algorithm for the Integer Square-free Decomposition Problem
Li, Jun; Peng, Xinhua; Du, Jiangfeng; Suter, Dieter
2011-01-01
Quantum computers are known to be qualitatively more powerful than classical computers, but so far only a small number of different algorithms have been discovered that actually use this potential. It would therefore be highly desirable to develop other types of quantum algorithms that widen the range of possible applications. Here we propose an efficient and deterministic quantum algorithm for finding the square-free part of a large integer - a problem for which no efficient classical algori...
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu
2016-02-01
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.
Nearly deterministic Bell measurement using quantum communication bus
Wang, Jia-Ming; Zhu, Meng-zheng; Wang, Dong; Ye, Liu
2017-03-01
We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.
Quantum field theoretic behavior of a deterministic cellular automaton
Hooft, G. 't; Isler, K.; Kalitzin, S.
1992-01-01
A certain class of cellular automata in 1 space + 1 time dimension is shown to be closely related to quantum field theories containing Dirac fermions. In the massless case this relation can be studied analytically, while the introduction of Dirac mass requires numerical simulations. We show that in
Quantum field theoretic behavior of a deterministic cellular automaton
Hooft, G. 't; Isler, K.; Kalitzin, S.
1992-01-01
A certain class of cellular automata in 1 space + 1 time dimension is shown to be closely related to quantum field theories containing Dirac fermions. In the massless case this relation can be studied analytically, while the introduction of Dirac mass requires numerical simulations. We show that in
An Efficient Deterministic Quantum Algorithm for the Integer Square-free Decomposition Problem
Li, Jun; Du, Jiangfeng; Suter, Dieter
2011-01-01
Quantum computers are known to be qualitatively more powerful than classical computers, but so far only a small number of different algorithms have been discovered that actually use this potential. It would therefore be highly desirable to develop other types of quantum algorithms that widen the range of possible applications. Here we propose an efficient and deterministic quantum algorithm for finding the square-free part of a large integer - a problem for which no efficient classical algorithm exists. The algorithm relies on properties of Gauss sums and uses the quantum Fourier transform. We give an explicit quantum network for the algorithm. Our algorithm introduces new concepts and methods that have not been used in quantum information processing so far and may be applicable to a wider class of problems.
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta
2016-07-01
Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.
Deterministic System Identification Using RBF Networks
Directory of Open Access Journals (Sweden)
Joilson Batista de Almeida Rego
2014-01-01
Full Text Available This paper presents an artificial intelligence application using a nonconventional mathematical tool: the radial basis function (RBF networks, aiming to identify the current plant of an induction motor or other nonlinear systems. Here, the objective is to present the RBF response to different nonlinear systems and analyze the obtained results. A RBF network is trained and simulated in order to obtain the dynamical solution with basin of attraction and equilibrium point for known and unknown system and establish a relationship between these dynamical systems and the RBF response. On the basis of several examples, the results indicating the effectiveness of this approach are demonstrated.
Deterministic quantum key distribution based on Gaussian-modulated EPR correlations
Institute of Scientific and Technical Information of China (English)
He Guang-Qiang; Zeng Gui-Hua
2006-01-01
This paper proposes a deterministic quantum key distribution scheme based on Gaussian-modulated continuous variable EPR correlations. This scheme can implement fast and efficient key distribution. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate optical parametric amplifier. For general beam splitter eavesdropping strategy, the secret information rate△I = I(α,β) - I(α,ε) is calculated in view of Shannon information theory. Finally the security analysis is presented.
Deterministic Secure Quantum Communication with Cluster State and Bell-Basis Measurements
Institute of Scientific and Technical Information of China (English)
YUAN Hao; HE Qin; HU Xiao-Yuan; HOU Kui; HAN Lian-Fang; SHI Shou-Hua
2008-01-01
We present a novel protocol for deterministic secure quantum communication by using the four-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bell-basis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two bits of information, and has a high intrinsic efficiency because almost all the instances except the decoy checking particles (its number is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.
The Deterministic Mine Burial Prediction System
2009-01-12
empirical model derived from the Joint North Sea Wave Project (JONSWAP) results [33]) with the default coefficient of 0.067. 12 Elmore et al. Fig...425-435, 1991. 30. R. Allard, J. Christiansen , T. Taxon, S. Williams, and D. Wakeham, “The Distributed Integrated Ocean Predicted System (DIOPS...dimensions; both should be set to 1. “X Step” and “Y Step” are the grid increments; for uniform grids, both should be set to 1. Set one of these numbers to
Uniform Deterministic Discrete Method for Three Dimensional Systems
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
For radiative direct exchange areas in three dimensional system,the Uniform Deterministic Discrete Method(UDDM) was adopted.The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs.The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numercal accuracy.
Institute of Scientific and Technical Information of China (English)
Li Wen-Dong; Zhang Jian-Li; Gu Yong-Jian
2006-01-01
Deterministic and exact teleportation can be achieved via two partially entangled pairs of particles[Gu Y J 2006 Opt.Comm.259 385].The key point of the protocol is a generalized measurement described by a positive operator valued measure, which can be realized by performing a unitary operation in the extended space and a conventional Von Neumann orthogonal measurement.By decomposing the evolution process from the initial state to the final state, we construct the quantum circuits for realizing the unitary operation with quantum Toffoli gates, and thus provide a physical means to realize the teleportation.Our method for constructing quantum circuits differs from the usual methods based on decomposition of unitary matrices, and is convenient for a large class of quantum processes involving generalized measurements.
Universal quantification for deterministic chaos in dynamical systems
Selvam, A M
1993-01-01
A cell dynamical system model for deterministic chaos enables precise quantification of the round-off error growth,i.e., deterministic chaos in digital computer realizations of mathematical models of continuum dynamical systems. The model predicts the following: (a) The phase space trajectory (strange attractor) when resolved as a function of the computer accuracy has intrinsic logarithmic spiral curvature with the quasiperiodic Penrose tiling pattern for the internal structure. (b) The universal constant for deterministic chaos is identified as the steady-state fractional round-off error k for each computational step and is equal to 1 /sqr(tau) (=0.382) where tau is the golden mean. (c) The Feigenbaum's universal constants a and d are functions of k and, further, the expression 2(a**2) = (pie)*d quantifies the steady-state ordered emergence of the fractal geometry of the strange attractor. (d) The power spectra of chaotic dynamical systems follow the universal and unique inverse power law form of the statist...
Deterministic entanglement distillation for secure double-server blind quantum computation
Sheng, Yu-Bo; Zhou, Lan
2015-01-01
Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565
Deterministic entanglement distillation for secure double-server blind quantum computation.
Sheng, Yu-Bo; Zhou, Lan
2015-01-15
Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
Gupta, Atma Ram; Kumar, Ashwani
2017-08-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: - Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. - Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. - Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
Institute of Scientific and Technical Information of China (English)
王朝; 刘建伟; 陈秀波; 毕亚港; 尚涛
2015-01-01
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communi-cation between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
Deterministic separation of arbitrary photon pair states in integrated quantum circuits
Marchildon, Ryan P
2015-01-01
Entangled photon pairs generated within integrated devices must often be spatially separated for their subsequent manipulation in quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti-coalescent two-photon quantum interference. However, such interference-facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, where the strong polarization and wavelength dependencies of integrated couplers -- as opposed to bulk-optics beamsplitters -- can have important implications for performance beyond the identical-photon regime. This paper provides a detailed review of IFPS and examines how these dependencies impact separation fidelity and interference visibility. Focus is given to IFPS mediated by an integrated directional coupler. The analysis applies equally to both on-chip and in-fiber implementations, and can be expanded to other coupler architectures such as multimode interferometers. When coupler dispersion is present, ...
Institute of Scientific and Technical Information of China (English)
HAN Lian-Fang; CHEN Yue-Ming; YUAN Hao
2009-01-01
We propose a deterministic quantum secure direct communication protocol by using dense coding.The two check photon sequences are used to check the securities of the channels between the message sender and the receiver.The continuous variable operations instead of the usual discrete unitary operations are performed on the travel photons so that the security of the present protocol can be enhanced.Therefore some specific attacks such as denial-of-service attack, intercept-measure-resend attack and invisible photon attack can be prevented in ideal quantum channel.In addition, the scheme is still secure in noise channel.Furthurmore, this protocol has the advantage of high capacity and can be realized in the experiment.
El-Orany, Faisal A A
2011-01-01
In [J.S. Shaari, M. Lucamarini, M.R.B. Wahiddin, Phys. Lett. A 358 (2006) 85-90] the deterministic six states protocol (6DP) for quantum communication has been developed. This protocol is based on three mutually unbiased bases and four encoding operators. Information is transmitted between the users via two qubits from different bases. Three attacks have been studied; namely intercept-resend attack (IRA), double-CNOT attack (2CNOTA) and quantum man-in-the-middle attack. In this Letter, we show that the IRA and 2CNOTA are not properly addressed. For instance, we show that the probability of detecting Eve in the control mode of the IRA is 70% instead of 50% in the previous study. Moreover, in the 2CNOTA, Eve can only obtain 50% of the data not all of it as argued earlier.
Testing for chaos in deterministic systems with noise
Gottwald, Georg A.; Melbourne, Ian
2005-12-01
Recently, we introduced a new test for distinguishing regular from chaotic dynamics in deterministic dynamical systems and argued that the test had certain advantages over the traditional test for chaos using the maximal Lyapunov exponent. In this paper, we investigate the capability of the test to cope with moderate amounts of noisy data. Comparisons are made between an improved version of our test and both the “tangent space method” and “direct method” for computing the maximal Lyapunov exponent. The evidence of numerical experiments, ranging from the logistic map to an eight-dimensional Lorenz system of differential equations (the Lorenz 96 system), suggests that our method is superior to tangent space methods and that it compares very favourably with direct methods.
Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao
2016-08-01
A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.
Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui
2016-06-01
In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.
Simple deterministic dynamical systems with fractal diffusion coefficients
Klages, R
1999-01-01
We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional periodic array of scatterers in which point particles move from cell to cell as defined by a piecewise linear map. The microscopic chaotic scattering process of the map can be changed by a control parameter. This induces a parameter dependence for the macroscopic diffusion coefficient. We calculate the diffusion coefficent and the largest eigenmodes of the system by using Markov partitions and by solving the eigenvalue problems of respective topological transition matrices. For different boundary conditions we find that the largest eigenmodes of the map match to the ones of the simple phenomenological diffusion equation. Our main result is that the difffusion coefficient exhibits a fractal structure by varying the system parameter. To understand the origin of this fractal structure, we give qualitative and quantitative arguments. These arguments relate the sequence of oscillations in the strength of the parameter-dep...
Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses
Directory of Open Access Journals (Sweden)
Peter Schnauber
2015-12-01
Full Text Available We report on enhancing the photon-extraction efficiency (PEE of deterministic quantum dot (QD microlenses via anti-reflection (AR coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta2O5, and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A statistical analysis of spectroscopic data reveals, that the AR-coating improves the light out-coupling of respective microlenses by a factor of 1.57 ± 0.71, in quantitative agreement with numerical calculations. Taking the enhancement factor into account, we predict improved out-coupling of light with a PEE of up to 50%. The quantum nature of emission from QDs integrated into AR-coated microlenses is demonstrated via photon auto-correlation measurements revealing strong suppression of two-photon emission events with g(2(0 = 0.05 ± 0.02. As such, these bright non-classical light sources are highly attractive with respect to applications in the field of quantum cryptography.
Two-Step Efficient Deterministic Secure Quantum Communication Using Three-Qubit W State
Institute of Scientific and Technical Information of China (English)
YUAN Hao; ZHOU Jun; ZHANG Gang; WEI Xiang-Fei; LIU Xiang-Yuan
2011-01-01
A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50％. Apart from this,it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.
Schatzl, Magdalena; Glaser, Martin; Brehm, Moritz; Simbula, Angelica; Galli, Matteo; Fromherz, Thomas; Schäffler, Friedrich
2016-01-01
We report on mapping of the local density of states in L3 photonic crystal resonators (PCR) via deterministically positioned single Ge quantum dots (QDs). Perfect site-control of Ge QDs on pre-patterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 L3 PCRs containing single QDs in systematically varying positions in the cavities. The alignment precision of the QD emitters was better than 20 nm. This type of parallel processing is essentially based on standard Si device technologies and is therefore scalable to any number and configuration of PCR structures. As a first demonstrator, we probed the coupling efficiency of a single Ge QD to the L3 cavity modes as a function of their spatial overlap. The results are in excellent agreement with finite-difference time-domain simulations.
Secure deterministic communication in a quantum loss channel using quantum error correction code
Institute of Scientific and Technical Information of China (English)
Wu Shuang; Liang Lin-Mei; Li Cheng-Zu
2007-01-01
The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.
DEFF Research Database (Denmark)
Gregersen, Niels
2016-01-01
device is a major challenge. Here, we report on the observation of bright single photon emission generated via pulsed, resonance fluorescence conditions from a single quantum dot (QD) deterministically centered in a micropillar cavity device via cryogenic optical lithography. The brightness of the QD...
The dynamical system of weathering: deterministic and stochastic analysis
Calabrese, S.; Parolari, A.; Porporato, A. M.
2016-12-01
The critical zone is fundamental to human society as it provides most of the ecosystem services such as food and fresh water. However, climate change and intense land use are threatening the critical zone, so that theoretical frameworks, to predict its future response, are needed. In this talk, a new modeling approach to evaluate the effect of hydrologic fluctuations on soil water chemistry and weathering reactions is analyzed by means of a dynamical system approach. In this model, equilibrium is assumed for the aqueous carbonate system while a kinetic law is adopted for the weathering reaction. Also, through an algebraic manipulation, we eliminate the equilibrium reactions and reduce the order of the system. We first analyze the deterministic temporal evolution, and study the stability of the nonlinear system and its trajectories, as a function of the hydro-climatic parameters. By introducing a stochastic rainfall forcing, we then analyze the system probabilistically, and through averaging techniques determine the inter-annual response of the nonlinear stochastic system to the climatic regime and hydrologic parameters (e.g., ET, soil texture). Some fundamental thermodynamic aspects of the chemical reactions are also discussed. By introducing the weathering reaction into the system, any mineral, such as calcium carbonate or a silicate mineral, can be considered.
Direct generation of linearly polarized single photons with a deterministic axis in quantum dots
Wang, Tong; Puchtler, Tim J.; Patra, Saroj K.; Zhu, Tongtong; Ali, Muhammad; Badcock, Tom J.; Ding, Tao; Oliver, Rachel A.; Schulz, Stefan; Taylor, Robert A.
2017-08-01
We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs), achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1-100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols.
A proof system for asynchronously communicating deterministic processes
de Boer, F.S.|info:eu-repo/dai/nl/072666641; van Hulst, M.
1994-01-01
We introduce in this paper new communication and synchronization constructs which allow deterministic processes, communicating asynchronously via unbounded FIFO buffers, to cope with an indeterminate environment. We develop for the resulting parallel programming language, which subsumes deterministi
A proof system for asynchronously communicating deterministic processes
de Boer, F.S.; van Hulst, M.
1994-01-01
We introduce in this paper new communication and synchronization constructs which allow deterministic processes, communicating asynchronously via unbounded FIFO buffers, to cope with an indeterminate environment. We develop for the resulting parallel programming language, which subsumes deterministi
Bartley, David L
2016-01-01
The Bohm/de Broglie theory of deterministic non-relativistic quantum mechanics is broadened to accommodate the free-particle Dirac equation. As with the spin-0 theory, an effective particle rest-mass scalar field in the presence of the spin-1/2 pilot wave is allowed, together with the assumption that the convective current component describes ensemble dynamics. Non-positive excursions of the ensemble density for extreme cases of positive-energy solutions of the Dirac equation are interpreted in terms of virtual-like pair creation and annihilation beneath the Compton wavelength. A specific second-rank tensor is defined in terms of the Dirac spinors for generalizing from simply a quantum potential to a stress tensor required to account for the force of pilot wave on particle. A simple dependence of the stress tensor on a two-component spin pseudovector field is determined. Consistency is found with an earlier non-relativistic theory of objects with spin.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
Hybrid quantum systems of atoms and ions
Zipkes, Christoph; Palzer, Stefan; Sias, Carlo; Köhl, Michael
2010-01-01
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ...
Hybrid quantum systems of atoms and ions
Energy Technology Data Exchange (ETDEWEB)
Zipkes, Christoph; Ratschbacher, Lothar; Palzer, Stefan; Sias, Carlo; Koehl, Michael [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2011-01-10
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.
Saligrama, Venkatesh
2008-01-01
In this paper we present a new family of discrete sequences having ``random like'' uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the worst-case auto-correlation coefficients for every finite length sequence decays at a polynomial rate. These sequences display doppler immunity as well. We also show that Toeplitz matrices formed from such sequences satisfy restricted-isometry-property (RIP), a concept that has played a central role recently in Compressed Sensing applications. Compressed sensing has conventionally dealt with sensing matrices with arbitrary components. Nevertheless, such arbitrary sensing matrices are not appropriate for linear system identification and one must employ Toeplitz structured sensing matrices. Linear system identification p...
DEFF Research Database (Denmark)
Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto
1974-01-01
The use of nonterminals versus the use of homomorphisms of different kinds in the basic types of deterministic OL-systems is studied. A rather surprising result is that in some cases the use of nonterminals produces a comparatively low generative capacity, whereas in some other cases the use of n...
DEFF Research Database (Denmark)
Gregersen, Niels
2016-01-01
The implementation and engineering of bright and coherent solid state quantum light sources is key for the realization of both on chip and remote quantum networks. Despite tremendous efforts for more than 15 years, the combination of these two key prerequisites in a single, potentially scalable...... device is a major challenge. Here, we report on the observation of bright single photon emission generated via pulsed, resonance fluorescence conditions from a single quantum dot (QD) deterministically centered in a micropillar cavity device via cryogenic optical lithography. The brightness of the QD...... fluorescence is greatly enhanced on resonance with the fundamental mode of the pillar, leading to an overall device efficiency of η = (74 ± 4) % for a single photon emission as pure as g (2) (0) = 0.0092 ± 0.0004. The combination of large Purcell enhancement and resonant pumping conditions allows us to observe...
Fischbach, Sarah; Kaganskiy, Arsenty; Tauscher, Esra Burcu Yarar; Gericke, Fabian; Thoma, Alexander; Schmidt, Ronny; Strittmatter, André; Heindel, Tobias; Rodt, Sven; Reitzenstein, Stephan
2017-07-01
We present an efficient broadband single-photon source which is fabricated by a flip-chip gold-bonding technique and in-situ electron beam lithography. The device comprises a single InGaAs quantum dot that is centered at the bottom of a monolithic mesa structure and located above a gold mirror for enhanced photon-extraction efficiency. We show a photon-extraction efficiency of ηex t=(18 ±2 ) % into a numerical aperture of 0.4 and a high suppression of multi-photon events from this source with g(2 )(0 )=0.015 ±0.009 . Our deterministic device with a backside gold mirror can be combined with electrical contacts and piezo-tuning capabilities in future refinements, which represents an important step towards a spectrally tunable plug-and-play quantum-light source with broadband enhancement for photonic quantum networks.
De Raedt, H.; De Raedt, K.; Michielsen, K.
2005-01-01
We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-b
Burgarth, Daniel; Yuasa, Kazuya
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification...
Randomized control of open quantum systems
Viola, L
2006-01-01
The problem of open-loop dynamical control of generic open quantum systems is addressed. In particular, I focus on the task of effectively switching off environmental couplings responsible for unwanted decoherence and dissipation effects. After revisiting the standard framework for dynamical decoupling via deterministic controls, I describe a different approach whereby the controller intentionally acquires a random component. An explicit error bound on worst-case performance of stochastic decoupling is presented.
Advanced quantum communication systems
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Wang, Ming-Ming; Qu, Zhi-Guo
2016-08-01
Quantum secure communication brings a new direction for information security. As an important component of quantum secure communication, deterministic joint remote state preparation (DJRSP) could securely transmit a quantum state with 100 % success probability. In this paper, we study how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise or decoherence. Taking a GHZ-based DJRSP scheme as an example, we study all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise. Our study shows that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the noise parameter in the other three types of noise. And the receiver will get different output states depending on the first preparer's measurement result in the amplitude-damping noise. Our results will be helpful for improving quantum secure communication in real implementation.
Wang, Ming-Ming; Qu, Zhi-Guo
2016-11-01
Quantum secure communication brings a new direction for information security. As an important component of quantum secure communication, deterministic joint remote state preparation (DJRSP) could securely transmit a quantum state with 100 % success probability. In this paper, we study how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise or decoherence. Taking a GHZ-based DJRSP scheme as an example, we study all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise. Our study shows that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the noise parameter in the other three types of noise. And the receiver will get different output states depending on the first preparer's measurement result in the amplitude-damping noise. Our results will be helpful for improving quantum secure communication in real implementation.
Open quantum system identification
Schirmer, Sophie G; Zhou, Weiwei; Gong, Erling; Zhang, Ming
2012-01-01
Engineering quantum systems offers great opportunities both technologically and scientifically for communication, computation, and simulation. The construction and operation of large scale quantum information devices presents a grand challenge and a major issue is the effective control of coherent dynamics. This is often in the presence of decoherence which further complicates the task of determining the behaviour of the system. Here, we show how to determine open system Markovian dynamics of a quantum system with restricted initialisation and partial output state information.
Classical Equations for Quantum Systems
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e. such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of t...
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Classical equations for quantum systems
Energy Technology Data Exchange (ETDEWEB)
Gell-Mann, M. (Theoretical Astrophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545) (United States) (Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501); Hartle, J.B. (Department of Physics, University of California enSanta Barbara, Santa Barbara, (California) 93106)
1993-04-15
The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. A formulation of quantum mechanics is used that predicts probabilities for the individual members of a set of alternative coarse-grained histories that [ital decohere], which means that there is negligible quantum interference between the individual histories in the set. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e., such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of the noise consisting of the fluctuations that typical mechanisms of decoherence produce. We describe the derivation of phenomenological equations of motion explicitly for a particular class of models.
VISCO-ELASTIC SYSTEMS UNDER BOTH DETERMINISTIC AND BOUND RANDOM PARAMETRIC EXCITATION
Institute of Scientific and Technical Information of China (English)
徐伟; 戎海武; 方同
2003-01-01
The principal resonance of a visco-elastic systems under both deterministic and random parametric excitation was investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied by means of qualitative analysis. The contributions from the visco-elastic force to both damping and stiffness can be taken into account. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations were analyzed. The theoretical analysis is verified by numerical results.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
On a two-server finite queuing system with ordered entry and deterministic arrivals
Nawijn, W.M.
1984-01-01
Consider a two-server, ordered entry, queuing system with heterogeneous servers and finite waiting rooms in front of the servers. Service times are negative exponentially distributed. The arrival process is deterministic. A matrix solution for the steady state probabilities of the number of
Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System
Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.
2016-01-01
Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…
Controllability of Quantum Systems
Schirmer, S G; Solomon, A I
2003-01-01
An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Energy Technology Data Exchange (ETDEWEB)
Mackey, Michael C. [Departments of Physiology, Physics and Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6 (Canada)]. E-mail: mackey@cnd.mcgill.ca; Tyran-Kaminska, Marta [Institute of Mathematics, Silesian University, ul. Bankowa 14, 40-007 Katowice (Poland)]. E-mail: mtyran@us.edu.pl
2006-01-15
Here we review and extend central limit theorems for chaotic deterministic semi-dynamical discrete time systems. We then apply these results to show how Brownian motion-like behavior can be recovered and how an Ornstein-Uhlenbeck process can be constructed within a totally deterministic framework. These results illustrate that under certain circumstances the contamination of experimental data by 'noise' may be alternately interpreted as the signature of an underlying chaotic process.
Invariance entropy for deterministic control systems an introduction
Kawan, Christoph
2013-01-01
This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585–1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems give...
Dusek, Miloslav; Haderka, Ondrej; Hendrych, Martin; Myska, Robert
1998-01-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of ...
Controlling quantum systems by embedded dynamical decoupling schemes
Kern, O; Kern, Oliver; Alber, Gernot
2005-01-01
A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions.
Fluctuation theorem for a deterministic one-particle system
Schmick, Malte; Markus, Mario
2004-12-01
A Duffing oscillator is driven by a sum of N chaotic time series. These time series are solutions of the undriven Duffing equation. It is shown that N=1 is sufficient to render the fluctuation theorem [Gallavotti and Cohen, Phys. Rev. Lett. 74, 2694 (1995); Gallavotti, J. Math. Phys. 41, 4061 (2000); Evans and Searles, Adv. Phys. 51, 1529 (2002)] for the power Jτ averaged within intervals of length τ . In particular, the probabilities p(Jτ) follow a nearly Gaussian distribution. Also, ln[p(Jτ)/p(-Jτ)] versus Jτ can be fitted by strikingly linear functions, the slopes being proportional to τ for large τ . These results indicate that validity of the fluctuation theorem requires neither a many-particle system nor a stochastic process, which are requirements used in previous works.
Are deterministic expert systems for computer-assisted structure elucidation obsolete?
Elyashberg, Mikhail E; Blinov, Kirill A; Williams, Antony J; Molodtsov, Sergey G; Martin, Gary E
2006-01-01
Expert systems for spectroscopic molecular structure elucidation have been developed since the mid-1960s. Algorithms associated with the structure generation process within these systems are deterministic; that is, they are based on graph theory and combinatorial analysis. A series of expert systems utilizing 2D NMR spectra have been described in the literature and are capable of determining the molecular structures of large organic molecules including complex natural products. Recently, an opinion was expressed in the literature that these systems would fail when elucidating structures containing more than 30 heavy atoms. A suggestion was put forward that stochastic algorithms for structure generation would be necessary to overcome this shortcoming. In this article, we describe a comprehensive investigation of the capabilities of the deterministic expert system Structure Elucidator. The results of performing the structure elucidation of 250 complex natural products with this program were studied and generalized. The conclusion is that 2D NMR deterministic expert systems are certainly capable of elucidating large structures (up to about 100 heavy atoms) and can deal with the complexities associated with both poor and contradictory spectral data.
Raginsky, M
2003-01-01
We formulate and study, in general terms, the problem of quantum system identification, i.e., the determination (or estimation) of unknown quantum channels through their action on suitably chosen input density operators. We also present a quantitative analysis of the worst-case performance of these schemes.
Burgarth, Daniel
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
A Deterministic Equivalent Approach to the Performance Analysis of Isometric Random Precoded Systems
Couillet, Romain; Debbah, Merouane
2010-01-01
In this work, a general wireless channel model for different types of code-division multiple access (CDMA) and space-division multiple-access (SDMA) systems with isometric random signature or precoding matrices over frequency-selective and flat fading channels is considered. For such models, deterministic approximations of the mutual information and the signal-to-interference-plus-noise ratio (SINR) at the output of the minimum-mean-square-error (MMSE) receiver are derived. Also, a simple fixed-point algorithm for their computation is provided, which is proved to converge. The deterministic approximations are asymptotically exact, almost surely, but shown by simulations to be very accurate even for small system dimensions. Our analysis is based on the Stieltjes transform method which enables the derivation of spectral limits of the large dimensional random matrices under study but requires neither arguments from free probability theory nor the asymptotic freeness or the convergence of the spectral distributio...
Robust state estimation for uncertain linear systems with deterministic input signals
Institute of Scientific and Technical Information of China (English)
Huabo LIU; Tong ZHOU
2014-01-01
In this paper, we investigate state estimations of a dynamical system in which not only process and measurement noise, but also parameter uncertainties and deterministic input signals are involved. The sensitivity penalization based robust state estimation is extended to uncertain linear systems with deterministic input signals and parametric uncertainties which may nonlinearly affect a state-space plant model. The form of the derived robust estimator is similar to that of the well-known Kalman filter with a comparable computational complexity. Under a few weak assumptions, it is proved that though the derived state estimator is biased, the bound of estimation errors is finite and the covariance matrix of estimation errors is bounded. Numerical simulations show that the obtained robust filter has relatively nice estimation performances.
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Weiss, Ulrich
1993-01-01
This book deals with the statistical mechanics and dynamics of open quantum systems moving irreversibly under the influence of a dissipative environment. The basic concepts and methods are described on the basis of a microscopic description with emphasis on the functional integral approach. The general theory for the time evolution of the density matrix of the damped system is developed. Many of the sophisticated ideas in the field are explained with simple models. The discussion includes, among others, the interplay between thermal and quantum fluctuations, quantum statistical decay, macrosco
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
Energy Technology Data Exchange (ETDEWEB)
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Energy Technology Data Exchange (ETDEWEB)
Giffard, F.X
2000-05-19
In the field of reactor and fuel cycle physics, particle transport plays and important role. Neutronic design, operation and evaluation calculations of nuclear system make use of large and powerful computer codes. However, current limitations in terms of computer resources make it necessary to introduce simplifications and approximations in order to keep calculation time and cost within reasonable limits. Two different types of methods are available in these codes. The first one is the deterministic method, which is applicable in most practical cases but requires approximations. The other method is the Monte Carlo method, which does not make these approximations but which generally requires exceedingly long running times. The main motivation of this work is to investigate the possibility of a combined use of the two methods in such a way as to retain their advantages while avoiding their drawbacks. Our work has mainly focused on the speed-up of 3-D continuous energy Monte Carlo calculations (TRIPOLI-4 code) by means of an optimized biasing scheme derived from importance maps obtained from the deterministic code ERANOS. The application of this method to two different practical shielding-type problems has demonstrated its efficiency: speed-up factors of 100 have been reached. In addition, the method offers the advantage of being easily implemented as it is not very to the choice of the importance mesh grid. It has also been demonstrated that significant speed-ups can be achieved by this method in the case of coupled neutron-gamma transport problems, provided that the interdependence of the neutron and photon importance maps is taken into account. Complementary studies are necessary to tackle a problem brought out by this work, namely undesirable jumps in the Monte Carlo variance estimates. (author)
Hybrid-system approach to fault-tolerant quantum communication
Stephens, Ashley M.; Huang, Jingjing; Nemoto, Kae; Munro, William J.
2013-05-01
We present a layered hybrid-system approach to quantum communication that involves the distribution of a topological cluster state throughout a quantum network. Photon loss and other errors are suppressed by optical multiplexing and entanglement purification. The scheme is scalable to large distances, achieving an end-to-end rate of 1 kHz with around 50 qubits per node. We suggest a potentially suitable implementation of an individual node composed of erbium spins (single atom or ensemble) coupled via flux qubits to a microwave resonator, allowing for deterministic local gates, stable quantum memories, and emission of photons in the telecom regime.
Rare event computation in deterministic chaotic systems using genealogical particle analysis
Wouters, J.; Bouchet, F.
2016-09-01
In this paper we address the use of rare event computation techniques to estimate small over-threshold probabilities of observables in deterministic dynamical systems. We demonstrate that genealogical particle analysis algorithms can be successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein-Uhlenbeck system to illustrate a number of implementation issues. We also show how a time-dependent objective function based on the fluctuation path to a high threshold can greatly improve the performance of the estimator compared to a fixed-in-time objective function.
Deterministic Walks with Choice
Energy Technology Data Exchange (ETDEWEB)
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study
Directory of Open Access Journals (Sweden)
King John R
2010-03-01
Full Text Available Abstract Background Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. Results In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Conclusions Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Scheme of thinking quantum systems
Yukalov, V I
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Scheme of thinking quantum systems
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems
DEFF Research Database (Denmark)
Grunnet, Jacob Deleuran
a computational tree logic formula and refining the resulting solution to a catalogue of piecewise-affine controllers. The method has been implemented as aMatlab toolbox, PAHSCTRL , using linear matrix inequality feasibility computations for finding the discrete abstraction, UppAal Tiga for solving the discrete...... formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research...... in fault tolerant satellite formation control, but can be used to synthesise controllers for a wide range of systems where external events can alter the system dynamics. The synthesis method relies on abstracting the hybrid system into a discrete game, finding a winning strategy for the game meeting...
Contextuality without nonlocality in a superconducting quantum system
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-10-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
Experimental Demonstration of Deterministic Entanglement Transformation
Institute of Scientific and Technical Information of China (English)
CHEN Geng; XU Jin-Shi; LI Chuan-Feng; GONG Ming; CHEN Lei; GUO Guang-Can
2009-01-01
According to Nielsen's theorem [Phys.Rev.Lett.83 (1999) 436]and as a proof of principle,we demonstrate the deterministic transformation from a maximum entangled state to an arbitrary nonmaximum entangled pure state with local operation and classical communication in an optical system.The output states are verified with a quantum tomography process.We further test the violation of Bell-like inequality to demonstrate the quantum nonlocality of the state we generated.Our results may be useful in quantum information processing.
Quantum iterated function systems.
Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech
2003-10-01
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems
DEFF Research Database (Denmark)
Grunnet, Jacob Deleuran
formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research......To further advance space based science the need for ever more precise measurement techniques increases. One of the most promising new ideas are satellite formations where accurate spatial control of multiple spacecraft can be used to create very large virtual apertures or very sensitive...... interferometric measurements. Control of satellite formations presents a whole new set of challenges for spacecraft control systems requiring advances in actuation, sensing, communication, and control algorithms. Specifically having the control system duplicated onto multiple satellites increases the possibility...
Directory of Open Access Journals (Sweden)
David Di Ruscio
1996-07-01
Full Text Available A numerically stable and general algorithm for identification and realization of a complete dynamic linear state space model, including the system order, for combined deterministic and stochastic systems from time series is presented. A special property of this algorithm is that the innovations covariance matrix and the Markov parameters for the stochastic sub-system are determined directly from a projection of known data matrices, without e.g. recursions of non-linear matrix Riccatti equations. A realization of the Kalman filter gain matrix is determined from the estimated extended observability matrix and the Markov parameters. Monte Carlo simulations are used to analyze the statistical properties of the algorithm as well as comparing with existing algorithms.
Quantum critical points in quantum impurity systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)]. E-mail: bulla@cpfs.mpg.de
2005-04-30
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Quantum critical points in quantum impurity systems
Lee, Hyun Jung; Bulla, Ralf
2005-04-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Emergent quantum mechanics and emergent symmetries
Hooft, G. 't
2007-01-01
Quantum mechanics is ‘emergent’ if a statistical treatment of large scale phenomena in a locally deterministic theory requires the use of quantum operators. These quantum operators may allow for symmetry transformations that are not present in the underlying deterministic system. Such
Control of rare events in reaction and population systems by deterministically imposed transitions.
Khasin, M; Dykman, M I
2011-03-01
We consider control of reaction and population systems by imposing transitions between states with different numbers of particles or individuals. The transitions take place at predetermined instants of time. Even where they are significantly less frequent than spontaneous transitions, they can exponentially strongly modify the rates of rare events, including switching between metastable states or population extinction. We also study optimal control of rare events. Specifically, we are interested in the optimal control of disease extinction for a limited vaccine supply. A comparison is made with control of rare events by modulating the rates of elementary transitions rather than imposing transitions deterministically. It is found that, unexpectedly, for the same mean control parameters, controlling the transitions rates can be more efficient.
Quantum Iterated Function Systems
Lozinski, A; Slomczynski, W; Lozinski, Artur; Zyczkowski, Karol; Slomczynski, Wojciech
2003-01-01
Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on the initial point. In an analogous way, we define quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant state.
Iqbal, A
2002-01-01
We find quantum mechanics playing a role in evolutionary dynamics described by the notion of an Evolutionary Stable Strategy (ESS). An ESS being a refinement of Nash equilibrium concept is a stable strategy in an evolutionary game with replicator dynamic as the underlying process. We investigate ESSs in two and three player symmetric quantum games played by the proposed scheme of applying $^{\\prime}$identity$^{\\prime}$ and $^{\\prime}$Pauli spin-flip$^{\\prime}$ operators on an initial state with classical probabilities. The mixed Nash equilibrium (NE) we search for is not affected by a switchover between two forms of the game, one quantized and other classical, however it is an ESS when the game is played classically.We show no such mixed NE exists for two player games but there is a class of three player games where they do exist.Our results imply that an evolutionary approach originating with Darwin's idea of natural selection can be used even for quantum systems. It also indicates the possibility of genetic...
Introduction of Deterministic OS for SPLC in Advanced Nuclear I and C System
Energy Technology Data Exchange (ETDEWEB)
Son, C. W.; Kim, D. H.; Son, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
Existing PLC's either had no output logic with regard to devices' redundant structure or it was set in a fixed way, and as a result it was extremely inefficient to use them for redundant systems such as that of a nuclear power plant and their use was limited. This project has developed a real-time operating system with Redundancy handling logic in order to improve the problems mentioned. That is the scheduling method, redundancy handling function of supervisory. A controller used in Nuclear Power Plants safety system has been developed differently from industrial PLC by its design, production and test. Therefore, the operation system that controls the NPPs safety PLC should be developed properly so that it can work well on the handling logic of the safety system. Scoops has secured the deterministic for the safety PLC control by possessing the sequential scheduling, time management, redundancy handling logic and system diagnosis function considering the connectivity of all the software module by Supervisory.
Duality quantum algorithm efficiently simulates open quantum systems
Shi-Jie Wei; Dong Ruan; Gui-Lu Long
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the op...
Multi-scale dynamical behavior of spatially distributed systems: a deterministic point of view
Mangiarotti, S.; Le Jean, F.; Drapeau, L.; Huc, M.
2015-12-01
Physical and biophysical systems are spatially distributed systems. Their behavior can be observed or modelled spatially at various resolutions. In this work, a deterministic point of view is adopted to analyze multi-scale behavior taking a set of ordinary differential equation (ODE) as elementary part of the system.To perform analyses, scenes of study are thus generated based on ensembles of identical elementary ODE systems. Without any loss of generality, their dynamics is chosen chaotic in order to ensure sensitivity to initial conditions, that is, one fundamental property of atmosphere under instable conditions [1]. The Rössler system [2] is used for this purpose for both its topological and algebraic simplicity [3,4].Two cases are thus considered: the chaotic oscillators composing the scene of study are taken either independent, or in phase synchronization. Scale behaviors are analyzed considering the scene of study as aggregations (basically obtained by spatially averaging the signal) or as associations (obtained by concatenating the time series). The global modeling technique is used to perform the numerical analyses [5].One important result of this work is that, under phase synchronization, a scene of aggregated dynamics can be approximated by the elementary system composing the scene, but modifying its parameterization [6]. This is shown based on numerical analyses. It is then demonstrated analytically and generalized to a larger class of ODE systems. Preliminary applications to cereal crops observed from satellite are also presented.[1] Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141 (1963).[2] Rössler, An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976).[3] Gouesbet & Letellier, Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets, Phys. Rev. E 49, 4955-4972 (1994).[4] Letellier, Roulin & Rössler, Inequivalent topologies of chaos in simple equations, Chaos, Solitons
Quantum fluctuations in mesoscopic systems
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2017-10-01
Recent experimental results point to the existence of coherent quantum phenomena in systems made of a large number of particles, despite the fact that for many-body systems the presence of decoherence is hardly negligible and emerging classicality is expected. This behaviour hinges on collective observables, named quantum fluctuations, that retain a quantum character even in the thermodynamic limit: they provide useful tools for studying properties of many-body systems at the mesoscopic level, in-between the quantum microscopic scale and the classical macroscopic one. We herein present the general theory of quantum fluctuations in mesoscopic systems, and study their dynamics in a quantum open system setting, taking into account the unavoidable effects of dissipation and noise induced by the external environment. As in the case of microscopic systems, decoherence is not always the only dominating effect at the mesoscopic scale: certain types of environment can provide means for entangling collective fluctuations through a purely noisy mechanism.
Morriss, Gary P; Truant, Daniel P
2013-06-01
We explore the consequences of a deterministic microscopic thermostat-reservoir contact mechanism. With different temperature reservoirs at each end of a two-dimensional system, a heat current is produced and the system has an anomalous thermal conductivity. The microscopic form for the local heat flux vector is derived and both the kinetic and potential contributions are calculated. The total heat flux vector is shown to satisfy the continuity equation. The properties of this nonequilibrium steady state are studied as functions of system size and temperature gradient, identifying key scaling relations for the local fluid properties and separating bulk and boundary effects. The local entropy density calculated from the local equilibrium distribution is shown to be a very good approximation to the entropy density calculated directly from the velocity distribution even for systems that are far from equilibrium. The dissipation and kinetic entropy production and flux are compared quantitatively and the differing mechanisms discussed within the Bhatnagar-Gross-Krook approximation. For equal-temperature reservoirs the entropy production near the reservoir walls is shown to be proportional to the local phase space contraction calculated from the tangent space dynamics. However, for unequal temperatures, the connection between local entropy production and local phase space contraction is more complicated.
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Quantum walks public key cryptographic system
Vlachou, C; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2016-01-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public key is given by a quantum state generated by performing a quantum walk. We show that th...
Deterministic entanglement of superconducting qubits by parity measurement and feedback.
Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L
2013-10-17
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Feedback control of quantum system
Institute of Scientific and Technical Information of China (English)
DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin
2006-01-01
Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.
Quantum point contacts in quantum wire systems
Energy Technology Data Exchange (ETDEWEB)
Sternemann, E.; Buchholz, S.S.; Fischer, S.F.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universitaet Bochum (Germany); Reuter, D.; Wieck, A.D. [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)
2010-07-01
Quantum point contacts (QPCs) attract high interest for applications as magnetic focussing, beam splitting (quantum Hall edge states), spin filtering and electron thermometry. Here, we investigate QPCs in complex quantum wire (QWR) systems such as quantum rings. The QPCs were realized by lithographical definition of a short (150 nm) constriction (170 nm width) in (a) a 540 nm wide QWR and (b) 520 nm wide QWR leads of a QWR ring as in. Nanogates on top of the constrictions allow for the control of occupied modes in the QPCs. The devices are based on a GaAs/AlGaAs heterostructure with a 2DEG 55 nm below the surface, patterned by electron beam lithography and wet-chemical etching. Two- and four-terminal conductance measurements at temperatures between 23 mK and 4.2 K were performed using lock-in technique. Our measurements reveal that QPCs in 1D nanostructures can be prepared to show subband separations of 6 meV, clear conductance quantization as well as the 0.7 anomaly. We further show that electron injection across a QPC into a QWR ring allows for electron interference (Aharonov-Bohm effect).
Quantum Effects in Biological Systems
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Decoherence in quantum spin systems
De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB
2003-01-01
Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the sh
Bahder, T B
2004-01-01
A quantum positioning system (QPS) is proposed that can provide a user with all four of his space-time coordinates. The user must carry a corner cube reflector, a good clock, and have a two-way classical channel of communication with the origin of the reference frame. Four pairs of entangled photons (biphotons) are sent through four interferometers: three interferometers are used to determine the user's spatial position, and an additional interferometer is used to synchronize the user's clock to coordinate time in the reference frame. The spatial positioning part of the QPS is similar to a classical time-of-arrival (TOA) system, however, a classical TOA system (such as GPS) must have synchronized clocks that keep coordinate time and therefore the clocks must have long-term stability, whereas in the QPS only a photon coincidence counter is needed and the clocks need only have short-term stability. Several scenarios are considered for a QPS: one is a terrestrial system and another is a space-based-system compos...
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Decoherence in infinite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Blanchard, Philippe; Hellmich, Mario [Faculty of Physics, University of Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany); Bundesamt fuer Strahlenschutz (Federal Office for Radiation Protection), Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany)
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System
Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan
2004-12-01
Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.
Screening in quantum charged systems
Martin, Ph. A.; Gruber, Ch.
1984-07-01
For stationary states of quantum charged systems in ν dimensions, ν>=2, it is proven that the reduced-density matrices satisfy a set of sum rules whenever the clustering is faster than |x|-(ν+l). These sum rules, describing the screening properties, are analogous to those previously derived for classical systems. For neutral quantum fluids, it is shown that the clustering cannot be faster than the decay of the force.
Quantum contextuality in complex systems
Cabello, Adan
2010-01-01
We show that, for a system of several qubits, there is an inequality for the correlations between three compatible dichotomic measurements which must be satisfied by any noncontextual theory, but is violated by any quantum state. Remarkably, the violation grows exponentially with the number of qubits, and the tolerated error per correlation also increases with the number of qubits, showing that state-independent quantum contextuality is experimentally observable in complex systems.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Deterministic Tripartite Controlled Remote State Preparation
Sang, Ming-huang; Nie, Yi-you
2017-07-01
We demonstrate that a seven-qubit entangled state can be used to realize the deterministic tripartite controlled remote state preparation by performing only Pauli operations and single-qubit measurements. In our scheme, three distant senders can simultaneously and deterministically exchange their quantum state with the other senders under the control of the supervisor.
Quantum Dot Systems: a versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulati
Quantum Dot Systems: a versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum
Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Juan-Mariano de Goyeneche
2009-05-01
Full Text Available Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios.
Introduction to quantum spin systems
Directory of Open Access Journals (Sweden)
A. Langari
2008-06-01
Full Text Available This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact diagonalization (Lanczos alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on finite cluster of lattice models. Two extensions of Lanczos method to get the excited states and also finite temperature properties of quantum models are also explained. The basic notions of quantum phase transition is discussed in term of Ising model in transverse field. Its phase diagram and critical properties are explained using the quantum renormalization group approach. Most of the topics are in tutorial level with hints to recent research activities.
Quantum walk public-key cryptographic system
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-28
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Quantum energy teleportation in a quantum Hall system
Energy Technology Data Exchange (ETDEWEB)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Deterministic joint remote state preparation
Energy Technology Data Exchange (ETDEWEB)
An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Bich, Cao Thi [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Physics Department, University of Education No. 1, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Don, Nung Van [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Physics Department, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam)
2011-09-26
We put forward a new nontrivial three-step strategy to execute joint remote state preparation via Einstein-Podolsky-Rosen pairs deterministically. At variance with all existing protocols, in ours the receiver contributes actively in both preparation and reconstruction steps, although he knows nothing about the quantum state to be prepared. -- Highlights: → Deterministic joint remote state preparation via EPR pairs is proposed. → Both general single- and two-qubit states are studied. → Differently from all existing protocols, in ours the receiver participates actively. → This is for the first time such a strategy is adopted.
2013-02-15
Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and
2008-03-15
Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 Publications: 1) W. Wasilewski and...K. Banaszek, Protecting an optical qubit against photon loss, Phys. Rev. A 75, 042316 (2007) 2) K. Banaszek and W. Wasilewski , Linear-optics...manipulations of photon-loss codes, Proceedings of NATO Advanced Research Workshop "Quantum Communication and Security" 3) W. Wasilewski , P. Kolenderski
Contextuality without nonlocality in a superconducting quantum system
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-01-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell–Kochen–Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing. PMID:27698351
Effective Constraints for Quantum Systems
Bojowald, Martin; Skirzewski, Aureliano; Tsobanjan, Artur
2008-01-01
An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.
Hypothesis testing with open quantum systems.
Mølmer, Klaus
2015-01-30
Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum information retrievable from continuous quantum measurement records, available when a quantum system is perturbatively coupled to a broadband quantized environment.
Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M [ORNL; Kisner, Roger A [ORNL; Muhlheim, Michael David [ORNL; Fugate, David L [ORNL
2015-07-01
Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The
System-Enforced Deterministic Streaming for Eﬃcient Pipeline Parallelism
Institute of Scientific and Technical Information of China (English)
张昱; 李兆鹏; 曹慧芳
2015-01-01
Pipeline parallelism is a popular parallel programming pattern for emerging applications. However, program-ming pipelines directly on conventional multithreaded shared memory is diﬃcult and error-prone. We present DStream, a C library that provides high-level abstractions of deterministic threads and streams for simply representing pipeline stage work-ers and their communications. The deterministic stream is established atop our proposed single-producer/multi-consumer (SPMC) virtual memory, which integrates synchronization with the virtual memory model to enforce determinism on shared memory accesses. We investigate various strategies on how to eﬃciently implement DStream atop the SPMC memory, so that an infinite sequence of data items can be asynchronously published (fixed) and asynchronously consumed in order among adjacent stage workers. We have successfully transformed two representative pipeline applications – ferret and dedup using DStream, and conclude conversion rules. An empirical evaluation shows that the converted ferret performed on par with its Pthreads and TBB counterparts in term of running time, while the converted dedup is close to 2.56X, 7.05X faster than the Pthreads counterpart and 1.06X, 3.9X faster than the TBB counterpart on 16 and 32 CPUs, respectively.
Open Quantum Systems An Introduction
Rivas, ´Angel
2012-01-01
In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics. The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.
Quantum cloning attacks against PUF-based quantum authentication systems
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Frommer, Joshua B.
This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design
Directory of Open Access Journals (Sweden)
J. C. Bartholmes
2009-02-01
Full Text Available Since 2005 the European Flood Alert System (EFAS has been producing probabilistic hydrological forecasts in pre-operational mode at the Joint Research Centre (JRC of the European Commission. EFAS aims at increasing preparedness for floods in trans-national European river basins by providing medium-range deterministic and probabilistic flood forecasting information, from 3 to 10 days in advance, to national hydro-meteorological services.
This paper is Part 2 of a study presenting the development and skill assessment of EFAS. In Part 1, the scientific approach adopted in the development of the system has been presented, as well as its basic principles and forecast products. In the present article, two years of existing operational EFAS forecasts are statistically assessed and the skill of EFAS forecasts is analysed with several skill scores. The analysis is based on the comparison of threshold exceedances between proxy-observed and forecasted discharges. Skill is assessed both with and without taking into account the persistence of the forecasted signal during consecutive forecasts.
Skill assessment approaches are mostly adopted from meteorology and the analysis also compares probabilistic and deterministic aspects of EFAS. Furthermore, the utility of different skill scores is discussed and their strengths and shortcomings illustrated. The analysis shows the benefit of incorporating past forecasts in the probability analysis, for medium-range forecasts, which effectively increases the skill of the forecasts.
Quantum Indeterminacy of Cosmic Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Quantum Indeterminacy of Cosmic Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Bogdanoff, J. L.; Kayser, K.; Krieger, W.
1977-01-01
The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.
Acharya, Ayan; Konar, Amit; Janarthanan, Ramadoss
2008-01-01
Ant Colony Optimization (ACO) is a metaheuristic for solving difficult discrete optimization problems. This paper presents a deterministic model based on differential equation to analyze the dynamics of basic Ant System algorithm. Traditionally, the deposition of pheromone on different parts of the tour of a particular ant is always kept unvarying. Thus the pheromone concentration remains uniform throughout the entire path of an ant. This article introduces an exponentially increasing pheromone deposition approach by artificial ants to improve the performance of basic Ant System algorithm. The idea here is to introduce an additional attracting force to guide the ants towards destination more easily by constructing an artificial potential field identified by increasing pheromone concentration towards the goal. Apart from carrying out analysis of Ant System dynamics with both traditional and the newly proposed deposition rules, the paper presents an exhaustive set of experiments performed to find out suitable p...
Polygamy of entanglement in multipartite quantum systems
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Quantum phase transitions in constrained Bose systems
Bonnes, Lars
2011-01-01
This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...
Overview of progress in quantum systems control
Institute of Scientific and Technical Information of China (English)
CONG Shuang; ZHENG Yisong; JI Beichen; DAI Yi
2007-01-01
The development of the theory on quantum systems control in the last 20 years is reviewed in detail.The research on the controllability of quantum systems is first introduced,then the study on the quantum open-loop control methods often used for controlling simple quantum systems is analyzed briefly.The learning control method and the feedback control method are mainly discussed for they are two important methods in quantum systems control and their advantages and disadvantages are presented.According to the trends in quantum systems control development,the paper predicts the future trends of its development and applications.A complete design procedure necessary for the quantum control system is presented.Finally,several vital problems hindering the advancement of quantum control are pointed out.
Understanding quantum work in a quantum many-body system.
Wang, Qian; Quan, H T
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Directory of Open Access Journals (Sweden)
Jun Wu
2016-01-01
Full Text Available Pallet pooling is a basis for the operation of a city joint distribution system. Pallet allocation is a key problem for the success of a pallet pool. This article considers a multi-station, multi-period, and multi-type pallet allocation problem over a pallet pool in a city joint distribution system. First of all, we develop a deterministic model to optimally allocate pallets when managers have perfect knowledge of the information that will be available. By case studies, we show that this model can help managers to make scientific decisions. The influence of transportation capacity on decisions is shown by numerical simulation. And we propose managers should use both demand forecasting and leasing and renting tactics to minimization allocation cost. Then, we propose a multi-scenario model to optimally allocate pallets when some uncertain parameters cannot be estimated through historical data. The application of this multi-scenario model is also illustrated.
Quantum Information Processing in Disordered and Complex Quantum Systems
De, A S; Ahufinger, V; Briegel, H J; Sanpera, A; Lewenstein, M; De, Aditi Sen; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2005-01-01
We investigate quantum information processing and manipulations in disordered systems of ultracold atoms and trapped ions. First, we demonstrate generation of entanglement and local realization of quantum gates in a quantum spin glass system. Entanglement in such systems attains significantly high values, after quenched averaging, and has a stable positive value for arbitrary times. Complex systems with long range interactions, such as ion chains or dipolar atomic gases, can be modeled by neural network Hamiltonians. In such systems, we find the characteristic time of persistence of quenched averaged entanglement, and also find the time of its revival.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
A Diffusion Equation for Quantum Adiabatic Systems
Jain, S R
1998-01-01
For ergodic adiabatic quantum systems, we study the evolution of energy distribution as the system evolves in time. Starting from the von Neumann equation for the density operator, we obtain the quantum analogue of the Smoluchowski equation on coarse-graining over the energy spectrum. This result brings out the precise notion of quantum diffusion.
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Resonances in open quantum systems
Eleuch, Hichem; Rotter, Ingrid
2017-02-01
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are generally complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wave functions into which the system is embedded. This causes an external mixing (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points. The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wave functions. At and near an exceptional point (EP), the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator that are embedded in one common continuum and are influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
Energy Technology Data Exchange (ETDEWEB)
Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr [Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS (France)
2016-10-15
We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product, the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.
Quantum chaotic attractor in a dissipative system
Liu, W V; Schieve, William C.
1997-01-01
A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.
Dissipative properties of quantum systems.
Grecos, A P; Prigogine, I
1972-06-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large "volume," becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration.
2012-04-30
Army Workshop on exploring enterprise, system of systems, and system and software architectures ( Bergey , Blanchette, Clements, & Klein, 2009). However...studies would be of value to the SoS management community. References Bergey , J., Blanchette, S., Clements, M., & Klein, J. (2009). U.S. Army workshop
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Could nanostructure be unspeakable quantum system?
Aristov, V V
2010-01-01
Heisenberg, Bohr and others were forced to renounce on the description of the objective reality as the aim of physics because of the paradoxical quantum phenomena observed on the atomic level. The contemporary quantum mechanics created on the base of their positivism point of view must divide the world into speakable apparatus which amplifies microscopic events to macroscopic consequences and unspeakable quantum system. Examination of the quantum phenomena corroborates the confidence expressed by creators of quantum theory that the renunciation of realism should not apply on our everyday macroscopic world. Nanostructures may be considered for the present as a boundary of realistic description for all phenomena including the quantum one.
Optimal Control of Finite Dimensional Quantum Systems
Mendonca, Paulo E M F
2009-01-01
This thesis addresses the problem of developing a quantum counter-part of the well established classical theory of control. We dwell on the fundamental fact that quantum states are generally not perfectly distinguishable, and quantum measurements typically introduce noise in the system being measured. Because of these, it is generally not clear whether the central concept of the classical control theory -- that of observing the system and then applying feedback -- is always useful in the quantum setting. We center our investigations around the problem of transforming the state of a quantum system into a given target state, when the system can be prepared in different ways, and the target state depends on the choice of preparation. We call this the "quantum tracking problem" and show how it can be formulated as an optimization problem that can be approached both numerically and analytically. This problem provides a simple route to the characterization of the quantum trade-off between information gain and distu...
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tstate Ξ(t) is composed of two objects, ρ......(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-05-11
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.
Modeling and control of switching max-plus-linear systems with random and deterministic switching
Van den Boom, T.J.J.; De Schutter, B.
2012-01-01
Switching max-plus-linear (SMPL) systems are discrete-event systems that can switch between different modes of operation. In each mode the system is described by a max-plus-linear state equation and a max-plus-linear output equation, with different system matrices for each mode. The switching may
Modeling and control of switching max-plus-linear systems with random and deterministic switching
Van den Boom, T.J.J.; De Schutter, B.
2012-01-01
Switching max-plus-linear (SMPL) systems are discrete-event systems that can switch between different modes of operation. In each mode the system is described by a max-plus-linear state equation and a max-plus-linear output equation, with different system matrices for each mode. The switching may de
Energy Technology Data Exchange (ETDEWEB)
Shouri, P.V.; Sreejith, P.S. [Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Cochin 682 022, Kerala (India)
2008-06-15
In the present scenario of energy demand overtaking energy supply, top priority is given for energy conservation programs and policies. As a result, most existing systems are redesigned or modified with a view for improving energy efficiency. Often these modifications can have an impact on process system configuration, thereby affecting process system reliability. The paper presents a model for valuation of process systems incorporating reliability that can be used to determine the change in process system value resulting from system modification. The model also determines the break even system availability and presents an algorithm for allocation of component reliabilities of the modified system based on the break even system availability. The developed equations are applied to a steam power plant to study the effect of various operating parameters on system value. (author)
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Joint system quantum descriptions arising from local quantumness
Cooney, Tom; Navascues, Miguel; Perez-Garcia, David; Villanueva, Ignacio
2012-01-01
Bipartite correlations generated by non-signalling physical systems that admit a finite-dimensional local quantum description cannot exceed the quantum limits, i.e., they can always be interpreted as distant measurements of a bipartite quantum state. Here we consider the effect of dropping the assumption of finite dimensionality. Remarkably, we find that the same result holds provided that we relax the tensor structure of space-like separated measurements to mere commutativity. We argue why an extension of this result to tensor representations seems unlikely.
A study of Quantum Correlations in Open Quantum Systems
Chakrabarty, Indranil; Siddharth, Nana
2010-01-01
In this work, we study quantum correlations in mixed states. The states studied are modelled by a two-qubit system interacting with its environment via a quantum nondemolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed and the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation are reported. In addition, a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, is made on these states, generated by the above evolutions. Interestingly, examples are found, of states, where entanglement is vanishing, but discord is non-vanishing, bringing out the fact that entanglement is a subset of quantum correlations.
Directory of Open Access Journals (Sweden)
Ernest Benedito
2010-06-01
Full Text Available Using reverse logistics in production systems can help to reduce costs. However, it can also mean introducing a source of uncertainty in the system behavior. In this study we present a method for calculating the optimal manufacturing and remanufacturing capacities of a system with reverse logistics and steady demand taking into account the random behavior of the quantity, quality and timing of units that are collected thru the reverse logistics system. The collected units are remanufactured or disposed of. We also provide an example to illustrate the method.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Li, S.
2002-05-01
Taking advantage of the recent developments in groundwater modeling research and computer, image and graphics processing, and objected oriented programming technologies, Dr. Li and his research group have recently developed a comprehensive software system for unified deterministic and stochastic groundwater modeling. Characterized by a new real-time modeling paradigm and improved computational algorithms, the software simulates 3D unsteady flow and reactive transport in general groundwater formations subject to both systematic and "randomly" varying stresses and geological and chemical heterogeneity. The software system has following distinct features and capabilities: Interactive simulation and real time visualization and animation of flow in response to deterministic as well as stochastic stresses. Interactive, visual, and real time particle tracking, random walk, and reactive plume modeling in both systematically and randomly fluctuating flow. Interactive statistical inference, scattered data interpolation, regression, and ordinary and universal Kriging, conditional and unconditional simulation. Real-time, visual and parallel conditional flow and transport simulations. Interactive water and contaminant mass balance analysis and visual and real-time flux update. Interactive, visual, and real time monitoring of head and flux hydrographs and concentration breakthroughs. Real-time modeling and visualization of aquifer transition from confined to unconfined to partially de-saturated or completely dry and rewetting Simultaneous and embedded subscale models, automatic and real-time regional to local data extraction; Multiple subscale flow and transport models Real-time modeling of steady and transient vertical flow patterns on multiple arbitrarily-shaped cross-sections and simultaneous visualization of aquifer stratigraphy, properties, hydrological features (rivers, lakes, wetlands, wells, drains, surface seeps), and dynamically adjusted surface flooding area
Quantum ratchets in dissipative chaotic systems.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio; Shepelyansky, Dima L
2005-04-29
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for the implementation of the quantum ratchet effect with cold atoms in optical lattices.
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2008-01-01
We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem....
Gadomski, Adam; Ausloos, Marcel; Casey, Tahlia
2017-04-01
This article addresses a set of observations framed in both deterministic as well as statistical formal guidelines. It operates within the framework of nonlinear dynamical systems theory (NDS). It is argued that statistical approaches can manifest themselves ambiguously, creating practical discrepancies in psychological and cognitive data analyses both quantitatively and qualitatively. This is sometimes termed in literature as 'questionable research practices.' This communication points to the demand for a deeper awareness of the data 'initial conditions, allowing to focus on pertinent evolution constraints in such systems.' It also considers whether the exponential (Malthus-type) or the algebraic (Pareto-type) statistical distribution ought to be effectively considered in practical interpretations. The role of repetitive specific behaviors by patients seeking treatment is examined within the NDS frame. The significance of these behaviors, involving a certain memory effect seems crucial in determining a patient's progression or regression. With this perspective, it is discussed how a sensitively applied hazardous or triggering factor can be helpful for well-controlled psychological strategic treatments; those attributable to obsessive-compulsive disorders or self-injurious behaviors are recalled in particular. There are both inherent criticality- and complexity-exploiting (reduced-variance based) relations between a therapist and a patient that can be intrinsically included in NDS theory.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2016-11-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum chaos in open systems a quantum state diffusion analysis
Brun, T A; Schack, R; Brun, Todd A; Percival, Ian C; Schack, Rudiger
1995-01-01
Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in the macroscopic limit, even for nonlinear and chaotic systems. We apply the theory to the forced, damped Duffing oscillator, comparing the numerical results of the full and linearized equations, and argue that this can be used to make explicit calculations in the decoherent histories formalism of quantum mechanics.
Energy-Efficient Deterministic Fault-Tolerant Scheduling for Embedded Real-Time Systems
Institute of Scientific and Technical Information of China (English)
LI Guo-hui; HU Fang-xiao; DU Xiao-kun; TANG Xiang-hong
2009-01-01
By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The schedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT+EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.
Control of deterministic and stochastic systems with several small parameters - A survey
Directory of Open Access Journals (Sweden)
Vasile Dragan
2009-07-01
Full Text Available The past three decades of research on multiparametric singularly perturbed systems are reviewed, including recent results. Particular attention is paid to stability analysis, control, filtering problems and dynamic games. First, a parameter-independent design methodology is summarized, which employs a two-time-scale and descriptor system approach without information on the small parameters. Further, variational computational algorithms are included to avoid ill-conditioned systems : the exact slow-fast decomposition method, the recursive algorithm and Newton's method are considered in particular. Convergence results are presented and the existence and uniqueness of the solutions are discussed. Second, the new results obtained via the stochastic approach are presented. Finally, the results of a simulation of a practical power system are presented to validate the efficiency of the considered design methods.
Mavris, Dimitri N.; Schutte, Jeff S.
2016-01-01
This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model
Quasi-Periodically Driven Quantum Systems
Verdeny, Albert; Puig, Joaquim; Mintert, Florian
2016-10-01
Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasi-periodically driven quantum systems can be treated with generalisations of Floquet theory in suitable parameter regimes. Moreover, we provide a generalisation of the Floquet-Magnus expansion and argue that quasi-periodic driving offers a promising route for quantum simulations.
Attention, Intention and Will in Quantum Physics
Stapp, Henry P
1999-01-01
The need for a self-observing quantum system to pose questions leads to a tripartite quantum process involving a Schroedinger process that is local deterministic, a Heisenberg process that poses the question, and a Dirac process that picks the answer. In the classical limit where Planck's constant is set to zero these three processes reduce to one single deterministic classical process: the fine structure wherein lies the effect of mind upon matter is obliterated.
Directory of Open Access Journals (Sweden)
OBINABO, EDWIN CHUKWUDI
2010-12-01
Full Text Available This study proposes an optimal control law for a linear constant energy renewal multivariable system supplying power to protection and signaling circuits for switchgears and substation operations. The energy storage mechanism creates a control source that dictates the frequency of the pow er supply voltage. The entire analysis was based essentially on the use of a vector of inputs and outputs, and a matrix of operations characterizing the storage mechanism, assuming the system is both controllable and observable under arbitrary state feedback. The property of the output regulator which was desirable from the view point of feedback control design was clarified.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Adiabatic Quantum Search in Open Systems
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Deterministic phase slips in mesoscopic superconducting rings
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-11-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
Mechanics From Newton's Laws to Deterministic Chaos
Scheck, Florian
2010-01-01
This book covers all topics in mechanics from elementary Newtonian mechanics, the principles of canonical mechanics and rigid body mechanics to relativistic mechanics and nonlinear dynamics. It was among the first textbooks to include dynamical systems and deterministic chaos in due detail. As compared to the previous editions the present fifth edition is updated and revised with more explanations, additional examples and sections on Noether's theorem. Symmetries and invariance principles, the basic geometric aspects of mechanics as well as elements of continuum mechanics also play an important role. The book will enable the reader to develop general principles from which equations of motion follow, to understand the importance of canonical mechanics and of symmetries as a basis for quantum mechanics, and to get practice in using general theoretical concepts and tools that are essential for all branches of physics. The book contains more than 120 problems with complete solutions, as well as some practical exa...
Shirnin, Denis
2014-01-01
In the present work, we investigate the domain of Proactive computing, which may be characterised as a comparatively new computer science research paradigm. In our study, we understand and use the notion of Proactive Computing as it was defined by Dr. David L. Tennenhouse. Conceptually, the architecture and main framework of our software system is entirely based on underlying concept characteristics of the given approach. Being a new research paradigm, proactive computing doesn’t possess y...
JAUS to EtherCAT Bridge: Toward Real-Time and Deterministic Joint Architecture for Unmanned Systems
Directory of Open Access Journals (Sweden)
Jie Sheng
2014-01-01
Full Text Available The Joint Architecture for Unmanned Systems (JAUS is a communication standard that allows for interoperability between Unmanned Vehicles (UVs. Current research indicates that JAUS-compliant systems do not meet real-time performance guidelines necessary for internal systems in UVs. However, there is a lack of quantitative data illustrating the performance shortcomings of JAUS or clear explanations on what causes these performance issues or comparisons with existing internal communication systems. In this research, we first develop a basic C++ implementation of JAUS and evaluate its performance with quantitative data and compare the results with published performance data of Controller Area Network (CAN to determine the feasibility of the JAUS standard. Our results indicate that the main reason of JAUS’s poor performance lies in the latency inherent in the hierarchical structure of JAUS and the overhead of User Datagram Protocol (UDP messages, which has been used with JAUS and is slower than the high-speed CAN. Additionally, UDP has no scheduling mechanism, which makes it virtually impossible to guarantee messages meeting their deadlines. Considering the slow and nondeterministic JAUS communication from subsystems to components, which is JAUS Level 3 compliance, we then propose a solution by bringing Ethernet for Control Automation Technology (EtherCAT to add speed, deterministic feature, and security. The JAUS-EtherCAT mapping, which we called a JEBridge, is implemented into nodes and components. Both quantitative and qualitative results are provided to show that JEBridge and JAUS Level 3 compliance can bring not only interoperability but also reasonable performance to UVs.
Piecewise deterministic Markov processes : an analytic approach
Alkurdi, Taleb Salameh Odeh
2013-01-01
The subject of this thesis, piecewise deterministic Markov processes, an analytic approach, is on the border between analysis and probability theory. Such processes can either be viewed as random perturbations of deterministic dynamical systems in an impulsive fashion, or as a particular kind of
Geometric quenches in quantum integrable systems
Mossel, J.; Palacios, G.; Caux, J.S.
2010-01-01
We consider the generic problem of suddenly changing the geometry of an integrable, one-dimensional many-body quantum system. We show how the physics of an initial quantum state released into a bigger system can be completely described within the framework of the algebraic Bethe ansatz, by providing
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
BANDWIDTH OF QUANTUM OPTICAL COMMUNICATION SYSTEM
Directory of Open Access Journals (Sweden)
I. R. Gulakov
2012-01-01
Full Text Available Impact of registered optical radiation intensity, overvoltage, dimensions of photosensitive surface, structure of p-n junction and avalanche photodetectors dead time operating in the photon counting mode on quantum optical system capacity has been carried out in this investigation. As a result, the quantum optical system maximum capacity of 81 kbit/s has been obtained.
DEFF Research Database (Denmark)
Hansen, Lisbeth S.; Borup, Morten; Møller, A.;
2011-01-01
the performance of the updating procedure for flow forecasting. Measured water levels in combination with rain gauge input are used as basis for the evaluation. When compared to simulations without updating, the results show that it is possible to obtain an improvement in the 20 minute forecast of the water level...... to eliminate some of the unavoidable discrepancies between model and reality. The latter can partly be achieved by using the commercial tool MOUSE UPDATE, which is capable of inserting measured water levels from the system into the distributed, physically based MOUSE model. This study evaluates and documents...
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Uniform deterministic dictionaries
DEFF Research Database (Denmark)
Ruzic, Milan
2008-01-01
We present a new analysis of the well-known family of multiplicative hash functions, and improved deterministic algorithms for selecting “good” hash functions. The main motivation is realization of deterministic dictionaries with fast lookups and reasonably fast updates. The model of computation...
Rezaee, Hamed; Abdollahi, Farzaneh
2016-12-06
The leaderless consensus problem over a class of high-order nonlinear multiagent systems (MASs) is studied. A robust protocol is proposed which guarantees achieving consensus in the network in the presences of uncertainties in agents models. Achieving consensus in the case of stochastic links failure is studied as well. Based on the concept super-martingales, it is shown that if the probability of the network connectivity is not zero, under some conditions, achieving almost sure consensus in the network can be guaranteed. Despite existing consensus protocols for high-order stochastic networks, the proposed consensus protocol in this paper is robust to uncertain nonlinearities in the agents models, and it can be designed independent of knowledge on the set of feasible topologies (topologies with nonzero probabilities). Numerical examples for a team of single-link flexible joint manipulators with fourth-order models verify the accuracy of the proposed strategy for consensus control of high-order MASs with uncertain nonlinearities.
Coherent Dynamics of Complex Quantum Systems
Akulin, Vladimir M
2006-01-01
A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...
Energy Technology Data Exchange (ETDEWEB)
Bidaud, A.; Mastrangelo, V. [Conservatoire National des Arts et Metiers, Laboratoire de Physique (CNAM), 75 - Paris (France); Institut de Physique Nucleaire (IN2P3/CNRS) 91 - Orsay (France); Kodeli, I.; Sartori, E. [OECD NEA Data Bank, 92 - Issy les Moulineaux (France)
2003-07-01
The quality of nuclear core modelling is linked to the quality of basic nuclear data such as probability of reaction (i.e. cross sections) between neutrons and the nucleus of the core materials. Perturbation Theory, whose applications in nuclear science has been largely developed in the sixties provides tools for estimating the sensitivity of integral parameters such as k-eff, reaction rates, or breeding ratio to the cross sections. The computation with these tools requires approximations in the simulation of space, angles and energy dependent neutron transport. To minimise the impact of the geometry modelling approximations in the calculation, use of 3 dimensional multigroup transport codes is recommended. Sensitivity and uncertainty analyses are the tools needed to estimate the accuracy that a code system with data libraries can achieve. They can guide users as to the specific need for improved data to carry out reliable simulations. However, as full-scale models in 3 dimensions with refined descriptions of the phase-space are used, high performance computers and codes designed to run on parallel architectures are needed to obtain results within acceptable time limits.
Quantum Dynamics of Nonlinear Cavity Systems
Nation, Paul D.
2010-01-01
We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...
Energy Technology Data Exchange (ETDEWEB)
Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)
2008-05-16
Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Simulation of n-qubit quantum systems. V. Quantum measurements
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Deterministic Squeezed States with Joint Measurements and Feedback
Cox, Kevin C; Weiner, Joshua M; Thompson, James K
2015-01-01
We demonstrate the creation of entangled or spin-squeezed states using a joint measurement and real-time feedback. The pseudo-spin state of an ensemble of $N= 5\\times 10^4$ laser-cooled $^{87}$Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) (7.4(6) dB) in variance below the standard quantum limit for unentangled atoms -- comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint pre-measurement, we directly observe up to 59(8) times (17.7(6) dB) improvement in quantum phase variance relative to the standard quantum limit for $N=4\\times 10^5$ atoms. This is the largest reported entanglement enhancement to date in any system.
DEFF Research Database (Denmark)
De Carvalho, Elisabeth; Omar, Samir; Slock, Dirk
2013-01-01
We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at lo...
Limit cycles in quantum systems
Energy Technology Data Exchange (ETDEWEB)
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Quantum dots for quantum information technologies
2017-01-01
This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.
Quantum Simulation for Open-System Dynamics
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
SECURITY CLASSIFICATION OF: This is a report on the “Workshop on quantum stochastic differential equations for the quantum simulation of physical ...mathematical tools to the quantum simulation of physical systems of interest to the Army. There were participants from US Government agencies, industry, and... quantum stochastic differential equations for the quantum simulation of physical systems Report Title This is a report on the “Workshop on quantum
Quantum entanglement in condensed matter systems
Energy Technology Data Exchange (ETDEWEB)
Laflorencie, Nicolas, E-mail: laflo@irsamc.ups-tlse.fr
2016-08-03
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Quantum entanglement in condensed matter systems
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
An Application of Quantum Finite Automata to Interactive Proof Systems
Nishimura, H; Nishimura, Harumichi; Yamakami, Tomoyuki
2004-01-01
Quantum finite automata have been studied intensively since their introduction in late 1990s as a natural model of a quantum computer with finite-dimensional quantum memory space. This paper seeks their direct application to interactive proof systems in which a mighty quantum prover communicates with a quantum-automaton verifier through a common communication cell. Our quantum interactive proof systems are juxtaposed to Dwork-Stockmeyer's classical interactive proof systems whose verifiers are two-way probabilistic automata. We demonstrate strengths and weaknesses of our systems and further study how various restrictions on the behaviors of quantum-automaton verifiers affect the power of quantum interactive proof systems.
Emergent "Quantum" Theory in Complex Adaptive Systems.
Minic, Djordje; Pajevic, Sinisa
2016-04-30
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Quantum liquids in correlated systems
Kusminskiy, Silvia Viola
Particular aspects of two different relevant systems in contemporary Condensed Matter Physics are studied: heavy fermion materials and the newly discovered graphene (an atom thick layer of graphite), specifically its bilayer. On one hand, the physics of heavy fermion materials under strong external magnetic fields is analyzed from a mean field point of view. The evolution of the heavy fermion ground state under the application of a magnetic field is investigated. A richer version of the usual hybridization mean field theory is presented, which allows for hybridization in both the singlet and triplet channels and incorporates a self-consistent Weiss field. It is shown that for a magnetic field strength B⋆, at a filling-dependent fraction of the zero-field hybridization gap, the spin up quasiparticle band becomes fully polarized---an event marked by a sudden jump in the magnetic susceptibility. The system exhibits a kind of quantum rigidity in which the susceptibility (and several other physical observables) are insensitive to further increases in field strength. This behavior ends abruptly with the collapse of the hybridization order parameter in a first-order transition to the normal metallic state. It is argued that the feature at B⋆ corresponds to the "metamagnetic transition" in YbRh2Si2. These results are in good agreement with recent experimental measurements. For the case of the graphene bilayer, the effect of electron-electron interactions on the properties of a graphene bilayer is studied within the Hartree-Fock-Thomas-Fermi theory. It is found that the electronic compressibility is rather different from those of either the two-dimensional electron gas or ordinary semiconductors. An inherent competition between the contributions coming from intra-band exchange interactions and inter-band interactions leads to a non-monotonic behavior of the compressibility as a function of carrier density. Also analyzed is the effect of the interactions on the
Quantum Mechanics and determinism
Hooft, G. 't
2001-01-01
It is shown how to map the quantum states of a system of free scalar particles one-to-one onto the states of a completely deterministic model. It is a classical field theory with a large (global) gauge group. The mapping is now also applied to free Maxwell fields. Lorentz invariance is demonstrated.
Excess entropy production in quantum system: Quantum master equation approach
Nakajima, Satoshi; Tokura, Yasuhiro
2016-01-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess...
Noise management to achieve superiority in quantum information systems
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-01
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan
2017-07-24
Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.
Universal quantum gates for photon-atom hybrid systems assisted by bad cavities.
Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo
2016-01-01
We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology.
Note on quantum groups and integrable systems
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Toward simulating complex systems with quantum effects
Kenion-Hanrath, Rachel Lynn
Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation
Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators
Energy Technology Data Exchange (ETDEWEB)
Liu, Tong; Zhang, Yang; Yu, Chang-Shui, E-mail: quaninformation@sina.com; Zhang, Wei-Ning
2017-05-25
Highlights: • We propose a scheme to achieve an unknown quantum state transfer between two flux qutrits coupled to two superconducting coplanar waveguide resonators. • The quantum state transfer can be deterministically achieved without measurements. • Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. - Abstract: Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.
Classical Boolean logic gates with quantum systems
Energy Technology Data Exchange (ETDEWEB)
Renaud, N; Joachim, C, E-mail: n-renaud@northwestern.edu [Nanoscience Group and MANA Satellite CEMES/CNRS, 29 rue J Marvig, BP 94347, 31055 Toulouse Cedex (France)
2011-04-15
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, {alpha} = {l_brace}{alpha}{sub 1}, ..., {alpha}{sub N}{r_brace}, is used to control well-identified parameters of the Hamiltonian of the system noted H{sub 0}({alpha}). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Open quantum systems far from equilibrium
Schaller, Gernot
2014-01-01
This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems, and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.
Quantum hacking: attacking practical quantum key distribution systems
Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong
2007-09-01
Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
Superconducting Quantum Arrays for Broadband RF Systems
Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.
2014-05-01
Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.
Stochastic description for open quantum systems
Calzetta, E A; Verdaguer, E; Calzetta, Esteban; Roura, Albert; Verdaguer, Enric
2000-01-01
A linear open quantum system consisting of a harmonic oscillator coupled linearly to an infinite set of independent harmonic oscillators is considered; these oscillators have a general spectral density function and are initially in thermal equilibrium. Using the influence functional formalism a formal Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. It is shown that the reduced Wigner function for the system is exactly the formal distribution function resulting from averaging both over the initial conditions and the stochastic source of the formal Langevin equation. The master equation for the reduced density matrix is then obtained in the same way a Fokker-Planck equation can always be derived from a Langevin equation characterizing a stochastic process. We also show that the quantum correlation functions for the system can be deduced within the stochastic description provided by the Langevin equation. It is emphasized that when the s...
Quantum scaling in many-body systems
Continentino, Mucio A
2001-01-01
This book on quantum phase transitions has been written by one of the pioneers in the application of scaling ideas to many-body systems - a new and exciting subject that has relevance to many areas of condensed matter and theoretical physics. One of the few books on the subject, it emphasizes strongly correlated electronic systems. Although dealing with complex problems in statistical mechanics, it does not lose sight of the experiments and the actual physical systems which motivate the theoretical work. The book starts by presenting the scaling theory of quantum critical phenomena. Critical e
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Deterministic Discrepancy Minimization
Bansal, N.; Spencer, J.
2013-01-01
We derandomize a recent algorithmic approach due to Bansal (Foundations of Computer Science, FOCS, pp. 3–10, 2010) to efficiently compute low discrepancy colorings for several problems, for which only existential results were previously known. In particular, we give an efficient deterministic algori
Spurious deterministic seasonality
Ph.H.B.F. Franses (Philip Hans); S. Hylleberg; H.S. Lee (Hahn)
1995-01-01
textabstractIt is sometimes assumed that the R2 of a regression of a first-order differenced time series on seasonal dummy variables reflects the amount of seasonal fluctuations that can be explained by deterministic variation in the series. In this paper we show that neglecting the presence of seas
Statistical thermodynamics of polymer quantum systems
Chacón-Acosta, Guillermo; Dagdug, Leonardo; Morales-Técotl, Hugo A
2011-01-01
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the...
Heisenberg Picture Approach to the Stability of Quantum Markov Systems
Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-01-01
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this...
On the velocity of moving relativistic unstable quantum systems
Urbanowski, K
2015-01-01
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not definite.
The quantum human central neural system.
Alexiou, Athanasios; Rekkas, John
2015-01-01
In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere.
Quantum Aharonov-Bohm Billiard System
Chuu, D S; Chuu, Der-San; Lin, De-Hone
1999-01-01
The Green's functions of the two and three-dimensional relativistic Aharonov-Bohm (A-B) systems are given by the path integral approach. In addition the exact radial Green's functions of the spherical A-B quantum billiard system in two and three-dimensional are obtained via the perturbation techanique of $\\delta $-function.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...
Recent advances in quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Quantum Algorithm for the Toeplitz Systems
Wan, Lin-Chun; Pan, Shi-Jie; Gao, Fei; Wen, Qiao-Yan
2016-01-01
Solving the Toeplitz systems, which is to find the vector $x$ such that $T_nx = b$ given a $n\\times n$ Toeplitz matrix $T_n$ and a vector $b$, has a variety of applications in mathematics and engineering. In this paper, we present a quantum algorithm for solving the Toeplitz systems, in which a quantum state encoding the solution with error $\\epsilon$ is generated. It is shown that our algorithm's complexity is nearly linear in the condition number, and polylog in the dimensions $n$ and in the inverse error $\\epsilon^{-1}$. This implies our algorithm is exponentially faster than the best classical algorithm for the same problem if the condition number of $T_n$ is $O(\\textrm{poly}(\\textrm{log}\\,n))$. Since no assumption on the sparseness of $T_n$ is demanded in our algorithm, the algorithm can serve as an example of quantum algorithms for solving non-sparse linear systems.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Heisenberg picture approach to the stability of quantum Markov systems
Energy Technology Data Exchange (ETDEWEB)
Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-01
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Relativistic quantum metrology in open system dynamics.
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-22
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.
Time dilation in quantum systems and decoherence
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-02-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered.
Network realization of triplet-type quantum stochastic systems
Zhou, Shaosheng; Fu, Shizhou; Chen, Yuping
2017-01-01
This paper focuses on a problem of network synthesis for a class of quantum stochastic systems. The systems under consideration are of triplet-type form and stem from linear quantum optics and linear quantum circuits. A new quantum network realization approach is proposed by generalizing the scattering operator from the scalar form to a unitary matrix in network components. It shows that the triplet-type quantum stochastic system can be approximated by a quantum network which consists of some one-degree-of-freedom generalized open-quantum harmonic oscillators (1DGQHOs) via series, concatenation and feedback connections.
Constraint algebra for interacting quantum systems
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Storage of energy in confined quantum systems
Malbouisson, A. P. C.
2002-01-01
Using the non-perturbative method of {\\it dressed} states introduced in previous publications [N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.{\\bf A34}, 3735, (2001); G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, Phys. Rev. A, {\\bf 65}, 063314 (2002)], we study the evolution of a confined quantum mechanical system embedded in a {\\it ohmic} environment. Our approach furnishes a theoretical mechanism to control inhibition of the decay of excited quantum systems in cavities, in b...
Quons in a Quantum Dissipative System
Lee, Taejin
2015-01-01
String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier-Azbel-Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy q-deformed statistics.
Reversible part of a quantum dynamical system
2016-01-01
In this work a quantum dynamical system $(\\mathfrak M,\\Phi, \\varphi)$ is constituted by a von Neumann algebra $\\mathfrak M$, by a unital Schwartz map $\\Phi:\\mathfrak{M\\rightarrow M}$ and by a $\\Phi$-invariant normal faithful state $\\varphi$ on $\\mathfrak M$. The ergodic properties of a quantum dynamical system, depends on its reversible part $(\\mathfrak{D}_\\infty,\\Phi_\\infty, \\varphi_\\infty)$. It is constituted by a von Neumann sub-algebra $\\mathfrak{D}_\\infty$ of $\\mathfrak M$ by an automorp...
Teleportation in an indivisible quantum system
Directory of Open Access Journals (Sweden)
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
Nonequilibrium quantum dynamics in optomechanical systems
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Energy Technology Data Exchange (ETDEWEB)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)
2014-02-12
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.
Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @
2014-02-01
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.
Feshbach Projection Formalism for Open Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2013-08-01
We provide a new approach to open quantum systems which is based on the Feshbach projection method. Instead of looking for a master equation for the dynamical map acting in the space of density operators we provide the corresponding equation for the evolution in the Hilbert space of the amplitude operators. Its solution enables one to construct a legitimate quantum evolution (completely positive and trace preserving). Our approach, contrary to the standard Nakajima-Zwanzig method, allows for a series of consistent approximations resulting in a legitimate quantum evolution. The new scheme is illustrated by the well-known spin-boson model beyond the rotating wave approximation. It is shown that the presence of counterrotating terms dramatically changes the asymptotic evolution of the system.
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Quantum emulation of quasiperiodic systems
Senaratne, Ruwan; Geiger, Zachary; Fujiwara, Kurt; Singh, Kevin; Rajagopal, Shankari; Weld, David
2016-05-01
Tunable quasiperiodic optical traps can enable quantum emulation of electronic phenomena in quasicrystals. A 1D bichromatic lattice or a Gaussian beam intersecting a 2D square lattice in a direct analogy of the ``cut-and-project'' construction can be used to create tunable 1D quasiperiodic potentials for cold neutral atoms. We report on progress towards the observation of singular continuous diffraction patterns, fractal energy spectra, and Bloch oscillations in these synthetic quasicrystals. We will also discuss the existence of edge states which can be topologically pumped across the lattice by varying a phasonic parameter. We acknowledge support from the ONR, the ARO and the PECASE and DURIP programs, the AFOSR, the Alfred P. Sloan foundation and the President's Research Catalyst Award from the University of California Office of the President.
Lyapunov control of quantum systems with impulsive control fields.
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Topics on the stochastical treatement of an open quantum system
Sturzu, I
2002-01-01
The paper shortly presents the role of Stochastic Processes Theory in the present day Quantum Theory, and the relation to Operational Quantum Physics. The dynamics of an open quantum system is studied on a usual example from Quantum Optics, suggesting the definition of a Neumark-type dilation for the non-thermal states.
Classical system boundaries cannot be determined within quantum Darwinism
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
Quantum dynamics of biological systems and dust plasma nanoparticles
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.
2012-12-01
A quantum solution of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with convection and linear diffusion is obtained which can provide the basis for the quantum biology and quantum microphysics equation. On this basis, quantum emission of biological systems, separate microorganisms (cells or bacteria), and dust plasma particles is investigated.
Quantum Entanglement in Optical Lattice Systems
2015-02-18
SECURITY CLASSIFICATION OF: Optical lattice systems provide an ideal platform for investigating entanglement because of their unprecedented level of...ABSTRACT Final report for ARO grant entitled "Quantum Entanglement in Optical Lattice Systems" Report Title Optical lattice systems provide an ideal ...2010): 0. doi: 10.1103/PhysRevA.82.063612 D. Blume, K. Daily. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum Phase Transitions in a Finite System
Leviatan, A
2006-01-01
A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.
Eigenstate tracking in open quantum systems
Jing, Jun; Sarandy, Marcelo S.; Lidar, Daniel A.; Luo, Da-Wei; Wu, Lian-Ao
2016-10-01
Keeping a quantum system in a given instantaneous eigenstate is a control problem with numerous applications, e.g., in quantum information processing. The problem is even more challenging in the setting of open quantum systems, where environment-mediated transitions introduce additional decoherence channels. Adiabatic passage is a well-established solution but requires a sufficiently slow evolution time that is dictated by the adiabatic theorem. Here we develop a systematic projection theory formulation for the transitionless evolution of general open quantum systems described by time-local master equations. We derive a time-convolutionless dynamical equation for the target instantaneous eigenstate of a given time-dependent Hamiltonian. A transitionless dynamics then arises in terms of a competition between the average Hamiltonian gap and the decoherence rate, which implies optimal adiabaticity timescales. We show how eigenstate tracking can be accomplished via control pulses, without explicitly incorporating counter-diabatic driving, thus offering an alternative route to accelerate adiabaticity. We examine rectangular pulses, chaotic signals, and white noise, and find that, remarkably, the effectiveness of eigenstate tracking hardly depends on the details of the control functions. In all cases the control protocol keeps the system in the desired instantaneous eigenstate throughout the entire evolution, along an accelerated adiabatic path.
Lithography system using quantum entangled photons
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Duality in the quantum Hall system
Lütken, C. A.; Ross, G. G.
1992-05-01
We suggest that a unified description of the integer and fractional phases of the quantum Hall system may be possible if the scaling diagram of transport coefficients is invariant under linear fractional (modular) transformations. In this model the hierarchy of states, as well as the observed universality of critical exponents, are consequences of a discrete SL(2,openZ) symmetry acting on the parameter space of an effective quantum-field theory. Available scaling data on the position of delocalization fixed points in the integer case and the position of mobility fixed points in the fractional case agree with the model within experimental accuracy.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Energy Technology Data Exchange (ETDEWEB)
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Chau, HF; Fung, CHF; X.; Ma; Cai, QY
2012-01-01
Privacy amplification (PA) is an essential postprocessing step in quantum key distribution (QKD) for removing any information an eavesdropper may have on the final secret key. In this paper, we consider delaying PA of the final key after its use in one-time pad encryption and prove its security. We prove that the security and the key generation rate are not affected by delaying PA. Delaying PA has two applications: it serves as a tool for significantly simplifying the security proof of QKD wi...
Global canonical symmetry in a quantum system
Institute of Scientific and Technical Information of China (English)
李子平
1996-01-01
Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respectively, thus the relations among Green functions can be found. The connection between canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta in phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear sigma model with Hopf and Chern-Simons terms is reexamined. The property of fractional spin at quantum level has been clarified.
Dynamics of quantum trajectories in chaotic systems
Wisniacki, D A; Benito, R M
2003-01-01
Quantum trajectories defined in the de Broglie--Bohm theory provide a causal way to interpret physical phenomena. In this Letter, we use this formalism to analyze the short time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complicated than that of the scarring and associated periodic orbits, since the former have quantum interference built in. Thus scar wave functions are necessary to analyze the corresponding dynamics. Moreover, these topologies imply different return routes to the vicinity of the initial positions, and this reflects in the existence of different contributions in each peak of the survival probability function.
Simple quantum systems in the momentum representation
Núñez-Yépez, H N; Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
The momentum representation is seldom used in quantum mechanics courses. Some students are thence surprised by the change in viewpoint when, in doing advanced work, they have to use the momentum rather than the coordinate representation. In this work, we give an introduction to quantum mechanics in momentum space, where the Schrödinger equation becomes an integral equation. To this end we discuss standard problems, namely, the free particle, the quantum motion under a constant potential, a particle interacting with a potential step, and the motion of a particle under a harmonic potential. What is not so standard is that they are all conceived from momentum space and hence they, with the exception of the free particle, are not equivalent to the coordinate space ones with the same names. All the problems are solved within the momentum representation making no reference to the systems they correspond to in the coordinate representation.
Edge reconstructions in fractional quantum Hall systems.
Joglekar, Yogesh; Nguyen, Hoang; Murthy, Ganpathy
2003-03-01
Two dimensional electron systems exhibiting fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are possible [1]. We present a microscopic calculation of these egde-states at filling factors ν=1/3 and ν=2/5 using the Hamiltonian theory of the fractional quantum Hall effect [2]. We find that the quantum Hall egde undergoes a reconstruction as the confining potential, produced by the background charge density, softens [3,4]. Our results have implications to the tunneling experiments into the edge of a fractional quantum Hall system [5]. 1: X. G.Wen, Phys. Rev. Lett. 64, 2206 (1990). 2: R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 3: C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227 (1994). 4: X. Wan, K. Yang, and E. H. Razayi, Phys. Rev. Lett. 88, 056802 (2002). 5: A.M.Chang et al., Phys. Rev. Lett. 86, 143 (2000).
Periodic thermodynamics of open quantum systems
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
An Eﬃcient and Flexible Deterministic Framework for Multithreaded Programs
Institute of Scientific and Technical Information of China (English)
卢凯; 周旭; 王小平; 陈沉
2015-01-01
Determinism is very useful to multithreaded programs in debugging, testing, etc. Many deterministic ap-proaches have been proposed, such as deterministic multithreading (DMT) and deterministic replay. However, these sys-tems either are ineﬃcient or target a single purpose, which is not flexible. In this paper, we propose an eﬃcient and flexible deterministic framework for multithreaded programs. Our framework implements determinism in two steps: relaxed determinism and strong determinism. Relaxed determinism solves data races eﬃciently by using a proper weak memory consistency model. After that, we implement strong determinism by solving lock contentions deterministically. Since we can apply different approaches for these two steps independently, our framework provides a spectrum of deterministic choices, including nondeterministic system (fast), weak deterministic system (fast and conditionally deterministic), DMT system, and deterministic replay system. Our evaluation shows that the DMT configuration of this framework could even outperform a state-of-the-art DMT system.
Statistical entropy of open quantum systems
Durão, L. M. M.; Caldeira, A. O.
2016-12-01
Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.
Security of practical quantum key distribution systems
Energy Technology Data Exchange (ETDEWEB)
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Notions of controllability for quantum mechanical systems
Albertini, F
2001-01-01
In this paper, we define four different notions of controllability of physical interest for multilevel quantum mechanical systems. These notions involve the possibility of driving the evolution operator as well as the state of the system. We establish the connections among these different notions as well as methods to verify controllability. The paper also contains results on the relation between the controllability in arbitrary small time of a system varying on a compact transformation Lie group and the corresponding system on the associated homogeneous space. As an application, we prove that, for the system of two interacting spin 1/2 particles, not every state transfer can be obtained in arbitrary small time.
Geometric measure of quantum discord for an arbitrary state of a bipartite quantum system
Hassan, Ali Saif M; Joag, Pramod S
2010-01-01
Quantum discord, as introduced by Olliver and Zurek [Phys. Rev. Lett. \\textbf{88}, 017901 (2001)], is a measure of the discrepancy between quantum versions of two classically equivalent expressions for mutual information. Dakic, Vedral, and Brukner [arXiv:1004.0190 (2010)] introduced a geometric measure of quantum discord and derived an explicit formula for any two-qubit state. Luo and Fu [Phys. Rev. A \\textbf{82}, 034302 (2010)] introduced another form for geometric measure of quantum discord. We find an exact formula for the geometric measure of quantum discord for an arbitrary state of a $m\\times n$ bipartite quantum system.
Quantum computation in a quantum-dot-Majorana-fermion hybrid system
Xue, Zheng-Yuan
2012-01-01
We propose a scheme to implement universal quantum computation in a quantum-dot-Majorana-fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. Universal single-qubit gates on topological qubit can be achieved. A measurement-based two-qubit Controlled-Not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov- Casher effect.
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-01
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Deterministic reshaping of single-photon spectra using cross-phase modulation
Matsuda, Nobuyuki
2016-01-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicabl...
Mesoscopic systems: classical irreversibility and quantum coherence.
Barbara, Bernard
2012-09-28
Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like
Deterministic Global Optimization
Scholz, Daniel
2012-01-01
This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It also introduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization
Generalized Deterministic Traffic Rules
Fuks, H; Fuks, Henryk; Boccara, Nino
1997-01-01
We study a family of deterministic models for highway traffic flow which generalize cellular automaton rule 184. This family is parametrized by the speed limit $m$ and another parameter $k$ that represents a ``degree of aggressiveness'' in driving, strictly related to the distance between two consecutive cars. We compare two driving strategies with identical maximum throughput: ``conservative'' driving with high speed limit and ``aggressive'' driving with low speed limit. Those two strategies are evaluated in terms of accident probability. We also discuss fundamental diagrams of generalized traffic rules and examine limitations of maximum achievable throughput. Possible modifications of the model are considered.
Controllability of multi-partite quantum systems and selective excitation of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Pullen, I C H [Department of Applied Mathematics and Computing, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Solomon, A I [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2005-10-01
We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots.
Classical synchronization indicates persistent entanglement in isolated quantum systems
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Multimode optomechanical system in the quantum regime
Nielsen, William H P; Møller, Christoffer B; Polzik, Eugene S; Schliesser, Albert
2016-01-01
We realise a simple and robust optomechanical system with a multitude of long-lived ($Q>10^7$) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate ($96~\\mathrm{kHz}$) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures ($10\\,\\mathrm{K}$). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths $\\lesssim 90\\,\\mathrm{ kHz}$. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.
Path integrals for dimerized quantum spin systems
Energy Technology Data Exchange (ETDEWEB)
Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)
2011-01-11
Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.
Institute of Scientific and Technical Information of China (English)
Ji Ying-Hua; Hu Ju-Ju; Hu Yan
2012-01-01
We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation.We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state,and also their relationship with quantum discord.The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord,but the attenuation of quantum discord is obviously slower than the concurrence's,correspondingly the survival time of quantum discord is longer.Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state.The higher the degree of entanglement,the more robust the quantum discord is than concurrence.And the reverse is equally true.Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition,so does the concurrence.
Quantum Correlations Relativity for Continuous-Variables Bipartite Systems
Dugic, M; Jeknic-Dugic, J
2011-01-01
Based on the so-called Entanglement Relativity, we point out relativity of the more general non-classical (quantum) correlations for the continuous-variables bipartite systems. Our observation points out that quantum processing resources based on the non-classical correlations (non-zero quantum discord) are ubiquitous in such systems.
Isochronous classical systems and quantum systems with equally spaced spectra
Energy Technology Data Exchange (ETDEWEB)
Carinena, J F; Perelomov, A M; Ranada, M F [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain)
2007-11-15
We study isoperiodic classical systems, what allows us to find the classical isochronous systems, i.e. having a period independent of the energy. The corresponding quantum analog, systems with an equally spaced spectrum are analysed by looking for possible creation-like differential operators. The harmonic oscillator and the isotonic oscillator are the two main essentially unique examples of such situation.
Artificial quantum thermal bath: Engineering temperature for a many-body quantum system
Shabani, Alireza; Neven, Hartmut
2016-11-01
Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
The Quantum as an Emergent System
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2012-05-01
Double slit interference is explained with the aid of what we call "21st century classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
The Quantum as an Emergent System
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert; 10.1088/1742-6596/361/1/012008
2012-01-01
Double slit interference is explained with the aid of what we call "21stcentury classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
Measuring entanglement entropy in a quantum many-body system
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
The human ECG nonlinear deterministic versus stochastic aspects
Kantz, H; Kantz, Holger; Schreiber, Thomas
1998-01-01
We discuss aspects of randomness and of determinism in electrocardiographic signals. In particular, we take a critical look at attempts to apply methods of nonlinear time series analysis derived from the theory of deterministic dynamical systems. We will argue that deterministic chaos is not a likely explanation for the short time variablity of the inter-beat interval times, except for certain pathologies. Conversely, densely sampled full ECG recordings possess properties typical of deterministic signals. In the latter case, methods of deterministic nonlinear time series analysis can yield new insights.
Quantum phase transition and entanglement in Li atom system
Institute of Scientific and Technical Information of China (English)
2008-01-01
By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-01
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ3(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ3(L) statistic exhibit the signatures of missed levels.
Open quantum systems and random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Mulhall, Declan [Department of Physics/Engineering, University of Scranton, Scranton, Pennsylvania 18510-4642 (United States)
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Open quantum systems and Random Matrix Theory
Mulhall, Declan
2014-01-01
A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signatures of missed levels.
Open quantum systems and random matrix theory
Mulhall, Declan
2015-01-01
A simple model for open quantum systems is analyzed with random matrix theory. The system is coupled to the continuum in a minimal way. In this paper the effect on the level statistics of opening the system is seen. In particular the Δ3(L ) statistic, the width distribution and the level spacing are examined as a function of the strength of this coupling. The emergence of a super-radiant transition is observed. The level spacing and Δ3(L ) statistics exhibit the signatures of missed levels or intruder levels as the super-radiant state is formed.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories
Wiese, U -J
2013-01-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Schemes for Deterministic Polynomial Factoring
Ivanyos, Gábor; Saxena, Nitin
2008-01-01
In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for finite fields to get an underlying m-scheme. We demonstrate how the properties of m-schemes relate to improvements in the deterministic complexity of factoring polynomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a smooth number.
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Coherent manipulation of single quantum systems in the solid state
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Preparing ground States of quantum many-body systems on a quantum computer.
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Decoherence, delocalization and irreversibility in quantum chaotic systems
Shiokawa, K; Shiokawa, K; Hu, B L
1995-01-01
Decoherence in quantum systems which are classically chaotic is studied. The Arnold cat map and the quantum kicked rotor are chosen as examples of linear and nonlinear chaotic systems. The Feynman-Vernon influence functional formalism is used to study the effect of the environment on the system. It is well-known that quantum coherence can obliterate many chaotic behavior in the corresponding classical system. But interaction with an environment can under general circumstances quickly diminish quantum coherence and reenact many classical chaotic behavior. How effective decoherence works to sustain chaos, and how the resultant behavior qualitatively differs from the quantum picture depend on the coupling of the system with the environment and the spectral density and temperature of the environment. We show how recurrence in the quantum cat map is lost and classical ergodicity is recovered due to the effect of the environment. Quantum coherence and diffusion suppression are instrumental to dynamical localization...
General System theory, Like-Quantum Semantics and Fuzzy Sets
Licata, Ignazio
2006-01-01
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
Quantum information storage and state transfer based on spin systems
Song, Z
2004-01-01
The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2012-01-01
Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them......, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...... for finding optimal strategies in such games. The existence of a linear time comparison-based algorithm remains an open problem....
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2012-01-01
Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them......, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...... for finding optimal strategies in such games. The existence of a linear time comparison-based algorithm remains an open problem....
Inferring deterministic causal relations
Daniusis, Povilas; Mooij, Joris; Zscheischler, Jakob; Steudel, Bastian; Zhang, Kun; Schoelkopf, Bernhard
2012-01-01
We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noise-free) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the distribution of the effect will, in a certain sense, depend on the function. We provide a theoretical analysis of this method, showing that it also works in the low noise regime, and link it to information geometry. We report strong empirical results on various real-world data sets from different domains.
Non-Markovian Dynamics of Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2011-01-01
We analyze a local approach to the non-Markovian evolution of open quantum systems. It turns out that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. The price one pays for the local approach is that the corresponding generator might be highly singular and it keeps the memory about the starting point 't0'. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.
Parallel decoherence in composite quantum systems
Indian Academy of Sciences (India)
M Dugići; J Jeknić-Dugić
2012-08-01
For the standard quantum Brownian motion (QBM) model, we point out the occurrence of simultaneous (parallel), mutually irreducible and autonomous decoherence processes. Besides the standard Brownian particle, we show that there is at least another system undergoing the dynamics described by the QBM model. We do this by selecting the two mutually irreducible, global structures (decompositions into subsystems) of the composite system of the QBM model. The generalization of this observation is a new, challenging task in the foundations of the decoherence theory. We do not place our findings in any interpretational context.
Twisted CFT and bilayer Quantum Hall systems
Cristofano, G; Naddeo, A
2003-01-01
We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Explicit Protocol for Deterministic Entanglement Concentration
Institute of Scientific and Technical Information of China (English)
GU Yong-Jian; GAO Peng; GUO Guang-Can
2005-01-01
@@ We present an explicit protocol for extraction of an EPR pair from two partially entangled pairs in a deterministic fashion via local operations and classical communication. This protocol is constituted by a local measurement described by a positive operator-valued measure (POVM), one-way classical communication, and a corresponding local unitary operation or a choice between the two pairs. We explicitly construct the required POVM by the analysis of the doubly stochastic matrix connecting the initial and the final states. Our scheme might be useful in future quantum communication.
Optimal state estimation for d-dimensional quantum systems
Bruss, D
1999-01-01
We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.
Undoing a quantum measurement.
Schindler, Philipp; Monz, Thomas; Nigg, Daniel; Barreiro, Julio T; Martinez, Esteban A; Brandl, Matthias F; Chwalla, Michael; Hennrich, Markus; Blatt, Rainer
2013-02-15
In general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements. Therefore, it seems that it is impossible to correct errors in a quantum information processor, but protocols exist that are capable of eliminating them if they affect only part of the system. In this work we present the deterministic reversal of a fully projective measurement on a single particle, enabled by a quantum error-correction protocol in a trapped ion quantum information processor. We further introduce an in-sequence, single-species recooling procedure to counteract the motional heating of the ion string due to the measurement.
Recognition of deterministic ETOL languages in logarithmic space
DEFF Research Database (Denmark)
Jones, Neil D.; Skyum, Sven
1977-01-01
It is shown that if G is a deterministic ETOL system, there is a nondeterministic log space algorithm to determine membership in L(G). Consequently, every deterministic ETOL language is recognizable in polynomial time. As a corollary, all context-free languages of finite index, and all Indian par...
Safety Verification of Piecewise-Deterministic Markov Processes
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer; Bujorianu, Manuela
2016-01-01
We consider the safety problem of piecewise-deterministic Markov processes (PDMP). These are systems that have deterministic dynamics and stochastic jumps, where both the time and the destination of the jumps are stochastic. Specifically, we solve a p-safety problem, where we identify the set...
Propagation of Disturbances in Degenerate Quantum Systems
Chancellor, Nicholas
2011-01-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system, and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit, and study how couplings away from the Majumdar-Ghosh point aff...
Implications of the Landauer limit for quantum logic
Mihelic, F. Matthew
2014-05-01
The design of any system of quantum logic must take into account the implications of the Landauer limit for logical bits. Useful computation implies a deterministic outcome, and so any system of quantum computation must produce a final deterministic outcome, which in a quantum computer requires a quantum decision that produces a deterministic qubit. All information is physical, and any bit of information can be considered to exist in a physicality represented as a decision between the two wells of a double well potential in which the energy barrier between the two wells must be greater than kT·ln2. Any proposed system of quantum computation that does not result in such a deterministic outcome can only be considered stochastically as a probability distribution (i.e. a wave function). An example of such determinism in a quantum logic system is theorized to exist in the DNA molecule, where the decoherence of quantum decision results in an enantiomeric shift in the deoxyribose moiety that is appropriate to the Landauer limit.
Quantum Sensing of Noisy and Complex Systems under Dynamical Control
Directory of Open Access Journals (Sweden)
Gershon Kurizki
2016-12-01
Full Text Available We review our unified optimized approach to the dynamical control of quantum-probe interactions with noisy and complex systems viewed as thermal baths. We show that this control, in conjunction with tools of quantum estimation theory, may be used for inferring the spectral and spatial characteristics of such baths with high precision. This approach constitutes a new avenue in quantum sensing, dubbed quantum noise spectroscopy.
The Deterministic Dendritic Cell Algorithm
Greensmith, Julie
2010-01-01
The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.
Quantum Entanglement for Systems of Identical Bosons. I General Theory
Dalton, Bryan; Goold, John; Garraway, Barry; Reid, Margaret
2015-01-01
These two accompanying papers treat two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems where the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. We focus on the meaning of entanglement, the quantum paradoxes associated with entangled states, and ...
Thermalization and Pseudolocality in Extended Quantum Systems
Doyon, Benjamin
2017-04-01
Recently, it was understood that modified concepts of locality played an important role in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by thermodynamic susceptibilities. Using this, we define the family of pseudolocal states, which are determined by pseudolocal charges. This family includes thermal Gibbs states at high enough temperatures, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to the evolution dynamics. If the evolution dynamics does not admit any conserved pseudolocal charges other than the evolution Hamiltonian, we show that any stationary pseudolocal state with respect to these dynamics is a thermal Gibbs state, and that Gibbs thermalization occurs. The framework is that of translation-invariant states on hypercubic quantum lattices of any dimensionality (including quantum chains) and finite-range Hamiltonians, and does not involve integrability.
Advanced Topic: Quasi-Hermitian Quantum Systems
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-11-01
So far, the discussion has limited itself to hermitian operators and systems. However, superficially non-hermitian Hamiltonian quantum systems are also of considerable current interest, especially in the context of PT symmetric models [Ben07, Mos05], although many of the main ideas appeared earlier [SGH92, XA96]. For such systems, the Hilbert space structure is at first sight very different from that for hermitian Hamiltonian systems, inasmuch as the dual wavefunctions are not just the complex conjugates of the wavefunctions, or, equivalently, the Hilbert space metric is not the usual one. While it is possible to keep most of the compact Dirac notation in analyzing such systems, here we work with explicit functions and avoid abstract notation, in the hope to fully expose all the structure, rather than to hide it...
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
Deterministic behavioural models for concurrency
DEFF Research Database (Denmark)
Sassone, Vladimiro; Nielsen, Mogens; Winskel, Glynn
1993-01-01
This paper offers three candidates for a deterministic, noninterleaving, behaviour model which generalizes Hoare traces to the noninterleaving situation. The three models are all proved equivalent in the rather strong sense of being equivalent as categories. The models are: deterministic labelled...
On the notion of a macroscopic quantum system
Khrenikov, A Yu
2004-01-01
We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.
Environment-assisted quantum transport in ordered systems
Kassal, Ivan
2012-01-01
Noise-assisted transport in quantum systems occurs when quantum time-evolution and decoherence conspire to produce a transport efficiency that is higher than what would be seen in either the purely quantum or purely classical cases. It has been understood as the suppression of coherent quantum localization through noise, which brings detuned quantum levels into resonance and thus facilitates transport. We report several new mechanisms of environment-assisted transport in ordered systems, in which there is no localization to be overcome.
Quantum MIMO n-Systems and Conditions for Stability
Mansourbeigi, Seyed M H
2009-01-01
In this paper we present some conditions for the (strong) stabilizability of an n-D Quantum MIMO system P(X). It contains two parts. The first part is to introduce the n-D Quantum MIMO systems where the coefficients vary in the algebra of Q-meromorphic functions. Then we introduce some conditions for the stabilizability of these systems. The second part is to show that this Quantum system has the n-D system as its quantum limit and the results for the SISO,SIMO,MISO,MIMO are obtained again as special cases.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Deterministic Entanglement via Molecular Dissociation in Integrated Atom Optics
Zhao, Bo; Chen, Zeng-Bing; Pan, Jian-Wei; Schmiedmayer, J.; Recati, Alessio; Astrakharchik, Grigory E.; Calarco, Tommaso
2005-01-01
Deterministic entanglement of neutral cold atoms can be achieved by combining several already available techniques like the creation/dissociation of neutral diatomic molecules, manipulating atoms with micro fabricated structures (atom chips) and detecting single atoms with almost 100% efficiency. Manipulating this entanglement with integrated/linear atom optics will open a new perspective for quantum information processing with neutral atoms.
Deterministic teleportation using single-photon entanglement as a resource
DEFF Research Database (Denmark)
Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.
2012-01-01
We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...
Compact quantum gates for hybrid photon-atom systems assisted by Faraday rotation
Song, Guo-Zhu; Yang, Guo-Jian; Zhang, Mei
2017-02-01
We present some compact circuits for a deterministic quantum computing on the hybrid photon-atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.
The Dalton quantum chemistry program system
DEFF Research Database (Denmark)
Aidas, Kestutis; Angeli, C.; Bak, K.L.
2014-01-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide vari......-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms....
Blockspin Cluster Algorithms for Quantum Spin Systems
Wiese, U J
1992-01-01
Cluster algorithms are developed for simulating quantum spin systems like the one- and two-dimensional Heisenberg ferro- and anti-ferromagnets. The corresponding two- and three-dimensional classical spin models with four-spin couplings are maped to blockspin models with two-blockspin interactions. Clusters of blockspins are updated collectively. The efficiency of the method is investigated in detail for one-dimensional spin chains. Then in most cases the new algorithms solve the problems of slowing down from which standard algorithms are suffering.
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-07-13
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Limit theorems for dilute quantum systems leading to quantum poisson processes
Alicki, Robert; Rudnicki, Sławomir; Sadowski, Sławomir
1993-12-01
The limit theorems for sums of independent or correlated operators representing observables of dilute quantum systems and leading to quantum Poisson processes are proved. Examples of systems of unstable particles and a Fermi lattice gas are discussed. For the latter, relations between low density limit and central limit are given.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
Dynamics and Quantum Transport in Small Systems.” The PI is Ying-Cheng Lai from Arizona State University. The duration of the project was 12/1/2008...military systems may contain some graphene components. To understand various fundamental aspects of quantum transport dynamics is key to developing...conductance fluctuations, not seen previously in any quantum transport systems. This phenomenon has profound implications to the development of graphene
Castellanza, Riccardo; Fernandez Merodo, Josè Antonio; di Prisco, Claudio; Frigerio, Gabriele; Crosta, Giovanni B.; Orlandi, Gianmarco
2013-04-01
Aim of the study is the assessment of stability conditions for an abandoned gypsum mine (Bologna , Italy). Mining was carried out til the end of the 70s by the room and pillar method. During mining a karst cave was crossed karstic waters flowed into the mine. As a consequence, the lower level of the mining is completely flooded and portions of the mining levels show critical conditions and are structurally prone to instability. Buildings and infrastructures are located above the first and second level and a large portion of the area below the mine area, and just above of the Savena river, is urbanised. Gypsum geomechanical properties change over time; water, or even air humidity, dissolves or weaken gypsum pillars, leading progressively to collapse. The mine is located in macro-crystalline gypsum beds belonging to the Messinian Gessoso Solfifera Formation. Selenitic gypsum beds are interlayered with by centimetre to meter thick shales layers. In order to evaluate the risk related to the collapse of the flooded level (level 3) a deterministic approach based on 3D numerical analyses has been considered. The entire abandoned mine system up to the ground surface has been generated in 3D. The considered critical scenario implies the collapse of the pillars and roof of the flooded level 3. In a first step, a sequential collapse starting from the most critical pillar has been simulated by means of a 3D Finite Element code. This allowed the definition of the subsidence basin at the ground surface and the interaction with the buildings in terms of ground displacements. 3D numerical analyses have been performed with an elasto-perfectly plastic constitutive model. In a second step, the effect of a simultaneous collapse of the entire level 3 has been considered in order to evaluate the risk of a flooding due to the water outflow from the mine system. Using a 3D CFD (Continuum Fluid Dynamics) finite element code the collapse of the level 3 has been simulated and the volume of
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Statistical mechanics of quantum-classical systems with holonomic constraints.
Sergi, Alessandro
2006-01-14
The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.
Probability representation of kinetic equation for open quantum system
Man'ko, V I; Shchukin, E V
2003-01-01
The tomographic probability distribution is used to decribe the kinetic equations for open quantum systems. Damped oscillator is studied. Purity parameter evolution for different damping regime is considered.
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Energy Technology Data Exchange (ETDEWEB)
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum simulation of disordered systems with cold atoms
Garreau, Jean-Claude
2017-01-01
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"
Deformed oscillator algebras for two dimensional quantum superintegrable systems
Bonatsos, Dennis; Kokkotas, K D; Bonatsos, Dennis
1994-01-01
Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.
Coulomb crystallization in classical and quantum systems
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Device-independent certification of high-dimensional quantum systems.
D'Ambrosio, Vincenzo; Bisesto, Fabrizio; Sciarrino, Fabio; Barra, Johanna F; Lima, Gustavo; Cabello, Adán
2014-04-11
An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question is whether such certification is experimentally feasible for high-dimensional quantum systems. Here we experimentally witness in a device-independent manner the generation of six-dimensional quantum systems encoded in the orbital angular momentum of single photons and show that the same method can be scaled, at least, up to dimension 13.
Quantum dynamics of bio-molecular systems in noisy environments
Huelga S.F.; Plenio M.B.
2012-01-01
We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical descripti...
Capacities of linear quantum optical systems
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-06-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Capacities of linear quantum optical systems
Lupo, Cosmo; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-01-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Phase transitions in open quantum systems
Jung, C; Rotter, I
1999-01-01
We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
Quantum statistical gravity: time dilation due to local information in many-body quantum systems
Sels, Dries; Wouters, Michiel
2017-08-01
We propose a generic mechanism for the emergence of a gravitational potential that acts on all classical objects in a quantum system. Our conjecture is based on the analysis of mutual information in many-body quantum systems. Since measurements in quantum systems affect the surroundings through entanglement, a measurement at one position reduces the entropy in its neighbourhood. This reduction in entropy can be described by a local temperature, that is directly related to the gravitational potential. A crucial ingredient in our argument is that ideal classical mechanical motion occurs at constant probability. This definition is motivated by the analysis of entropic forces in classical systems.
Efficient numerical solution of excitation number conserving quantum systems
Zhang, Zheyong; Ding, Jianping; Wang, Hui-Tian
2017-08-01
A system composed of a harmonic oscillator coupled to a two-level atom is one of the quantum systems, which can be completely solved. Although this system is simple, it is never a easy work for the quantum calculations, especially when the system consists of many such simple constituent parts. In this paper, we present a programming method, by which the calculation tasks for the matrix representation of the Hamiltonian of system can be automatically fulfilled. Coupled-cavity array systems are used to demonstrate our programming method. Some quantum properties of these systems are also discussed.
Introducing Synchronisation in Deterministic Network Models
DEFF Research Database (Denmark)
Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.;
2006-01-01
The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading....... The suggested models are intended for incorporation into an existing analysis tool a.k.a. CyNC based on the MATLAB/SimuLink framework for graphical system analysis and design....
Quantum algorithm for linear systems of equations.
Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth
2009-10-09
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.
Quantum Computing in Fock Space Systems
Berezin, Alexander A.
1997-04-01
Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).
Emulation of complex open quantum systems using superconducting qubits
Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán
2017-02-01
With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.
Hybrid quantum systems with ultracold spins and optomechanics
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Software Systems for High-performance Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Britt, Keith A [ORNL
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Randomized Dynamical Decoupling Techniques for Coherent Quantum Control
Viola, L; Viola, Lorenza; Santos, Lea F.
2006-01-01
The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Renner, R.; Cirac, J. I.
2009-03-01
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
Dynamical algebra of observables in dissipative quantum systems
Alipour, Sahar; Chruściński, Dariusz; Facchi, Paolo; Marmo, Giuseppe; Pascazio, Saverio; Rezakhani, Ali T.
2017-02-01
Dynamics and features of quantum systems can be drastically different from classical systems. Dissipation is understood as a general mechanism through which quantum systems may lose part or all of their quantum aspects. Here we discuss a method to analyze behaviors of dissipative quantum systems in an algebraic sense. This method employs a time-dependent product between system’s observables which is induced by the underlying dissipative dynamics. We argue that the long-time limit of the algebra of observables defined with this product yields a contractive algebra which reflects the loss of some quantum features of the dissipative system, and it bears relevant information about irreversibility. We illustrate this result through several examples of dissipation in various Markovian and non-Markovian systems.
An Operator-Based Exact Treatment of Open Quantum Systems
Nicolosi, S
2005-01-01
"Quantum mechanics must be regarded as open systems. On one hand, this is due to the fact that, like in classical physics, any realistic system is subjected to a coupling to an uncontrollable environment which influences it in a non-negligible way. The theory of open quantum systems thus plays a major role in many applications of quantum physics since perfect isolation of quantum system is not possible and since a complete microscopic description or control of the environment degrees of freedom is not feasible or only partially so" [1]. Practical considerations therefore force one to seek for a simpler, effectively probabilistic description in terms of an open system. There is a close physical and mathematical connection between the evolution of an open system, the state changes induced by quantum measurements, and the classical notion of a stochastic process. The paper provides a bibliographic review of this interrelations, it shows the mathematical equivalence between markovian master equation and generaliz...
Quantum Phase Transitions in Conventional Matrix Product Systems
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Brambila, Danilo
2012-05-01
Quantum chaos has emerged in the half of the last century with the notorious problem of scattering of heavy nuclei. Since then, theoreticians have developed powerful techniques to approach disordered quantum systems. In the late 70\\'s, Casati and Chirikov initiated a new field of research by studying the quantum counterpart of classical problems that are known to exhibit chaos. Among the several quantum-classical chaotic systems studied, the kicked rotor stimulated a lot of enthusiasm in the scientific community due to its equivalence to the Anderson tight binding model. This equivalence allows one to map the random Anderson model into a set of fully deterministic equations, making the theoretical analysis of Anderson localization considerably simpler. In the one-dimensional linear regime, it is known that Anderson localization always prevents the diffusion of the momentum. On the other hand, for higher dimensions it was demonstrated that for certain conditions of the disorder parameter, Anderson localized modes can be inhibited, allowing then a phase transition from localized (insulating) to delocalized (metallic) states. In this thesis we will numerically and theoretically investigate the properties of a multidimensional quantum kicked rotor in a nonlinear medium. The presence of nonlinearity is particularly interesting as it raises the possibility of having soliton waves as eigenfunctions of the systems. We keep the generality of our approach by using an adjustable diffusive nonlinearity, which can describe several physical phenomena. By means of Variational Calculus we develop a chaotic map which fully describes the soliton dynamics. The analysis of such a map shows a rich physical scenario that evidences the wave-particle behavior of a soliton. Through the nonlinearity, we trace a correspondence between quantum and classical mechanics, which has no equivalent in linearized systems. Matter waves experiments provide an ideal environment for studying Anderson
Ultracold atoms for simulation of many body quantum systems
Hutchinson, David A. W.
2017-01-01
Feynman famously proposed simulating quantum physics using other, better controlled, quantum systems. This vision is now a reality within the realm of ultracold atomic physics. We discuss how these systems can be used to simulate many body physics, concentrating the Berezinskii-Kosterlitz-Thouless transition in 2D physics and the role of disorder.
Quantum Discrete Fourier Transform in an Ion Trap System
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao
2007-01-01
We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.
Quantum-classical correspondence in steady states of nonadiabatic systems
Energy Technology Data Exchange (ETDEWEB)
Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Experimental quantum simulation of entanglement in many-body systems.
Zhang, Jingfu; Wei, Tzu-Chieh; Laflamme, Raymond
2011-07-01
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement. The observed pseudoentanglement for a small-size system already displays a singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.
Experimental Quantum Simulation of Entanglement in Many-body Systems
Zhang, Jingfu; Laflamme, Raymond
2011-01-01
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudo-entanglement. The observed pseudo-entanglement for a small system size already displays singularity, a signature which is qualitatively similar to that in thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.
Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly I
2010-09-01
A new model of the hematopoietic system for humans chronically exposed to ionizing radiation allows for quantitative description of the initial hematopoiesis inhibition and subsequent increase in the risks of late stochastic effects such as leukemia. This model describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the three blood cell types (leukocytes, erythrocytes, and platelets). The model parameters are estimated from the results of other experiments. They include the steady-state numbers of hematopoietic stem cells and peripheral blood cell lines for an unexposed organism, amplification parameters for each blood cell line, parameters describing the proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity in respect to cell death and non-lethal cell damages. The dynamic model of hematopoiesis is applied to the data on a subcohort of the Techa River residents with hematological measurements (e.g., blood counts) performed in 1950-1956 (which totals to about 3,500 exposed individuals). Among well-described effects observed in these data are the slope values of the dose-effect curves describing the hematopoietic inhibition and the dose rate patterns of the fractions of cytopenic states (e.g., leukopenia, thrombocytopenia). The model has been further generalized by inclusion of the component describing the risk of late stochastic effects. The risks of the development of late effects (such as leukemia) in population groups with specific patterns of early reactions in hematopoiesis (such as leukopenia induced by ionizing radiation) are investigated using simulation studies and compared to data.
Automated drawing system of quantum energy levels
Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.
2014-03-01
The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.
Eigenstate Gibbs ensemble in integrable quantum systems
Nandy, Sourav; Sen, Arnab; Das, Arnab; Dhar, Abhishek
2016-12-01
The eigenstate thermalization hypothesis conjectures that for a thermodynamically large system in one of its energy eigenstates, the reduced density matrix describing any finite subsystem is determined solely by a set of relevant conserved quantities. In a chaotic quantum system, only the energy is expected to play that role and hence eigenstates appear locally thermal. Integrable systems, on the other hand, possess an extensive number of such conserved quantities and therefore the reduced density matrix requires specification of all the corresponding parameters (generalized Gibbs ensemble). However, here we show by unbiased statistical sampling of the individual eigenstates with a given finite energy density that the local description of an overwhelming majority of these states of even such an integrable system is actually Gibbs-like, i.e., requires only the energy density of the eigenstate. Rare eigenstates that cannot be represented by the Gibbs ensemble can also be sampled efficiently by our method and their local properties are then shown to be described by appropriately truncated generalized Gibbs ensembles. We further show that the presence of these rare eigenstates differentiates the model from the chaotic case and leads to the system being described by a generalized Gibbs ensemble at long time under a unitary dynamics following a sudden quench, even when the initial state is a typical (Gibbs-like) eigenstate of the prequench Hamiltonian.
Quantum integrable systems. Quantitative methods in biology
Feverati, Giovanni
2011-01-01
Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. ...
Slow scrambling in disordered quantum systems
Swingle, Brian
2016-01-01
Recent work has studied the growth of commutators as a probe of chaos and information scrambling in quantum many-body systems. In this work we study the effect of static disorder on the growth of commutators in a variety of contexts. We find generically that disorder slows the onset of scrambling, and, in the case of a many-body localized state, partially halts it. We access the many-body localized state using a standard fixed point Hamiltonian, and we show that operators exhibit slow logarithmic growth under time evolution. We compare the result with the expected growth of commutators in both localized and delocalized non-interacting disordered models. Finally, based on a scaling argument, we state a conjecture about the effect of weak interactions on the growth of commutators in an interacting diffusive metal.
Thermalization and pseudolocality in extended quantum systems
Doyon, Benjamin
2015-01-01
Recently, it was understood that extended concepts of locality played important roles in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by response functions. Using this, we define the family of pseudolocal states: clustering states connected to the infinite-temperature state by paths whose tangents are actions of pseudolocal charges. This family includes thermal Gibbs states, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to ...
Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State
Institute of Scientific and Technical Information of China (English)
WANG Ming-Ming; CHEN Xiu-Bo; YANG Yi-Xian
2013-01-01
Recently,deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100％ success probability.In this paper,we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource.Compared with previous schemes,our scheme has high efficiency since less quantum resource is required,some additional unitary operations and measurements are unnecessary.We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.
Quantum correlations in non-inertial cavity systems
Harsij, Zeynab; Mirza, Behrouz
2016-10-01
Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discord disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory.
Fate of classical solitons in one-dimensional quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Deterministic Single-Phonon Source Triggered by a Single Photon
Söllner, Immo; Lodahl, Peter
2016-01-01
We propose a scheme that enables the deterministic generation of single phonons at GHz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on-chip in an opto-mechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new opto-mechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nano-fabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.
Nussinov, Zohar; Johnson, Patrick; Graf, Matthias J.; Balatsky, Alexander V.
2013-05-01
Many electronic systems (e.g., the cuprate superconductors and heavy fermions) exhibit striking features in their dynamical response over a prominent range of experimental parameters. While there are some empirical suggestions of particular increasing length scales that accompany such transitions in some cases, this identification is not universal and in numerous instances no large correlation length is evident. To better understand, as a matter of principle, such behavior in quantum systems, we extend a known mapping (earlier studied in stochastic or supersymmetric quantum mechanics) between finite temperature classical Fokker-Planck systems and related quantum systems at zero temperature to include general nonequilibrium dynamics. Unlike Feynman mappings or stochastic quantization methods in field theories (as well as more recent holographic type dualities), the classical systems that we consider and their quantum duals reside in the same number of space-time dimensions. The upshot of our very broad and rigorous result is that a Wick rotation exactly relates (i) the dynamics in general finite temperature classical dissipative systems to (ii) zero temperature dynamics in the corresponding dual many-body quantum systems. Using this correspondence, we illustrate that, even in the absence of imposed disorder, many continuum quantum fluid systems (and possible lattice counterparts) may exhibit a zero-point “quantum dynamical heterogeneity” wherein the dynamics, at a given instant, is spatially nonuniform. While the static length scales accompanying this phenomenon do not seem to exhibit a clear divergence in standard correlation functions, the length scale of the dynamical heterogeneities can increase dramatically. We further study “quantum jamming” and illustrate how a hard-core bosonic system can undergo a zero temperature quantum critical metal-to-insulator-type transition with an extremely large effective dynamical exponent z>4 that is consistent with
Strong polygamy of quantum correlations in multi-party quantum systems
San Kim, Jeong
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
Quantum-biological control of energy transfer in hybrid quantum dot-metallic nanoparticle systems
Sadeghi, Seyed M.; Hood, Brady; Patty, Kira
2016-09-01
We show theoretically that when a semiconductor quantum dot and metallic nanoparticle system interacts with a laser field, quantum coherence can introduce a new landscape for the dynamics of Forster resonance energy transfer (FRET). We predict adsorption of biological molecules to such a hybrid system can trigger dramatic changes in the way energy is transferred, blocking FRET while the distance between the quantum dot and metallic nanoparticle (R) and other structural specifications remain unchanged. We study the impact of variation of R on the FRET rate in the presence of quantum coherence and its ultrafast decay, offering a characteristically different dependency than the standard 1/R6. Application of the results for quantum nanosensors is discussed.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems
Islam, Md Saiful; Begum, Zerina
2011-01-01
Reversible logic allows low power dissipating circuit design and founds its application in cryptography, digital signal processing, quantum and optical information processing. This paper presents a novel quantum cost efficient reversible BCD adder for nanotechnology based systems using PFAG gate. It has been demonstrated that the proposed design offers less hardware complexity and requires minimum number of garbage outputs than the existing counterparts. The remarkable property of the proposed designs is that its quantum realization is given in NMR technology.
Approach to Equilibrium for Quantum Systems with Continuous Spectrum
Laura, Roberto
Considering quantum states as functionals acting on observables to give their mean values, it is possible to deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic expression for time evolution is obtained. The "final" state (t → ∞) is presented as a weak limit. Finite and infinite number of exited modes of the field are considered.
Quantum Chaos in Physical Systems: from Super Conductors to Quarks
Bittner, Elmar; Markum, Harald; Pullirsch, Rainer
2001-01-01
This article is the written version of a talk delivered at the Bexbach Colloquium of Science 2000 and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. Several examples of physical systems exhibiting quantum chaos ranging from nuclear to solid state physics are presented. The presentation concludes with recent research work on quantum chromodynamics and the qua...
Advanced-Retarded Differential Equations in Quantum Photonic Systems
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-01-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090
Detective quantum efficiency of the LODOX system
de Villiers, Mattieu; de Jager, Gerhard
2003-06-01
The Detective Quantum Efficiency (DQE) of a digital x-ray imaging system describes how much of the signal to noise ratio of the incident radiation is sustained in the resultant digital image. This measure of dose efficiency is suitable for the comparison of detectors produced by different manufacturers. The International Electrotechnical Commission (IEC) stipulates standard methods and conditions for the measurement of the DQE for single exposure imaging systems such as flat panel detectors. This paper shows how the calculation is adapted for DQE measurements of scanning systems. In this paper it is described how to measure the presampled Modulation Transfer Function (MTF) using an edge test method and how to extract the horizontal and vertical components of the Noise Power Spectrum (NPS) in a way that is insensitive to structured noise patterns often found in scanned images. The calculation of the total number of incident photons from the radiation dose measurement is explained and results are provided for the Lodox low dose full body digital x-ray scanning system which is developed in South Africa.
Gain and loss in open quantum systems
Eleuch, Hichem; Rotter, Ingrid
2017-06-01
Photosynthesis is the basic process used by plants to convert light energy in reaction centers into chemical energy. The high efficiency of this process is not yet understood today. Using the formalism for the description of open quantum systems by means of a non-Hermitian Hamilton operator, we consider initially the interplay of gain (acceptor) and loss (donor). Near singular points it causes fluctuations of the cross section which appear without any excitation of internal degrees of freedom of the system. This process occurs therefore very quickly and with high efficiency. We then consider the excitation of resonance states of the system by means of these fluctuations. This second step of the whole process takes place much slower than the first one, because it involves the excitation of internal degrees of freedom of the system. The two-step process as a whole is highly efficient, and the decay is biexponential. We provide, if possible, the results of analytical studies, otherwise characteristic numerical results. The similarities of the obtained results to light harvesting in photosynthetic organisms are discussed.
Deterministic Leader Election Among Disoriented Anonymous Sensors
dieudonné, Yoann; Petit, Franck; Villain, Vincent
2012-01-01
We address the Leader Election (LE) problem in networks of anonymous sensors sharing no kind of common coordinate system. Leader Election is a fundamental symmetry breaking problem in distributed computing. Its goal is to assign value 1 (leader) to one of the entities and value 0 (non-leader) to all others. In this paper, assuming n > 1 disoriented anonymous sensors, we provide a complete charac- terization on the sensors positions to deterministically elect a leader, provided that all the sensors' positions are known by every sensor. More precisely, our contribution is twofold: First, assuming n anonymous sensors agreeing on a common handedness (chirality) of their own coordinate system, we provide a complete characterization on the sensors positions to deterministically elect a leader. Second, we also provide such a complete chararacterization for sensors devoided of a common handedness. Both characterizations rely on a particular object from combinatorics on words, namely the Lyndon Words.
Effects of symmetry breaking in finite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Birman, J.L. [Department of Physics, City College, City University of New York, New York, NY 10031 (United States); Nazmitdinov, R.G. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca 07122 (Spain); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2013-05-15
The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.
Entangled Systems New Directions in Quantum Physics
Audretsch, Jürgen
2007-01-01
An introductory textbook for advanced students of physics, chemistry and computer science, covering an area of physics that has lately witnessed rapid expansion. The topics treated here include quantum information, quantum communication, quantum computing, teleportation and hidden parameters, thus imparting not only a well-founded understanding of quantum theory as such, but also a solid basis of knowledge from which readers can follow the rapid development of the topic or delve deeper into a more specialized branch of research. Commented recommendations for further reading as well as end-of-chapter problems help the reader to quickly access the theoretical basics of future key technologies
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Deterministic Pattern Classifier Based on Genetic Programming
Institute of Scientific and Technical Information of China (English)
LI Jian-wu; LI Min-qiang; KOU Ji-song
2001-01-01
This paper proposes a supervised training-test method with Genetic Programming (GP) for pattern classification. Compared and contrasted with traditional methods with regard to deterministic pattern classifiers, this method is true for both linear separable problems and linear non-separable problems. For specific training samples, it can formulate the expression of discriminate function well without any prior knowledge. At last, an experiment is conducted, and the result reveals that this system is effective and practical.
Wavefunction controllability for finite-dimensional bilinear quantum systems
Energy Technology Data Exchange (ETDEWEB)
Turinici, Gabriel [INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France); Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544-1009 (United States)
2003-03-14
We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.
Deterministic Consistency: A Programming Model for Shared Memory Parallelism
Aviram, Amittai; Ford, Bryan
2009-01-01
The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "...
Deterministic patterns in cell motility
Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.
2016-12-01
Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.
Accomplishing Deterministic XML Query Optimization
Institute of Scientific and Technical Information of China (English)
Dun-Ren Che
2005-01-01
As the popularity of XML (eXtensible Markup Language) keeps growing rapidly, the management of XML compliant structured-document databases has become a very interesting and compelling research area. Query optimization for XML structured-documents stands out as one of the most challenging research issues in this area because of the much enlarged optimization (search) space, which is a consequence of the intrinsic complexity of the underlying data model of XML data. We therefore propose to apply deterministic transformations on query expressions to most aggressively prune the search space and fast achieve a sufficiently improved alternative (if not the optimal) for each incoming query expression. This idea is not just exciting but practically attainable. This paper first provides an overview of our optimization strategy, and then focuses on the key implementation issues of our rule-based transformation system for XML query optimization in a database environment. The performance results we obtained from experimentation show that our approach is a valid and effective one.
The Rabi Oscillation in Subdynamic System for Quantum Computing
Directory of Open Access Journals (Sweden)
Bi Qiao
2015-01-01
Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.
Dynamics of genuine multipartite correlations in open quantum systems
Grimsmo, Arne L; Skagerstam, Bo-Sture K
2012-01-01
We propose a measure for genuine multipartite correlations suited for the study of dynamics in open quantum systems. This measure is contextual in the sense that it depends on how information is read from the environment. It is used to study an interacting collective system of atoms undergoing phase transitions as external parameters are varied. We show that the steady state of the system can have a significant degree of genuine multipartite quantum and classical correlations, and that the proposed measure can serve as a witness of critical behavior in quantum systems.
Using a quantum dot system to realize perfect state transfer
Institute of Scientific and Technical Information of China (English)
Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang
2011-01-01
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M,Petrosyan D and Lambropoulos P 2004 Europhys.Lett.65 297] where a quantum dot system is used to realize quantum communication.To overcome these disadvantages,we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST).First,we calculate the interaction relation for PQST in the spin chain.Second,we review the interaction between the quantum dots in the Heitler-London approach.Third,we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.
Quantum Arnol'd Diffusion in a Simple Nonlinear System
Demikhovskii, V Y; Malyshev, A I
2002-01-01
We study the fingerprint of the Arnol'd diffusion in a quantum system of two coupled nonlinear oscillators with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the classical data. However, the quantum diffusion happens to be slower that the classical one. Another result is the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show that this effect has the same nature as for the studied earlier dynamical localization in the presence of global chaos. The quantum Arnol'd diffusion represents a new type of quantum dynamics and can be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
Bayesian parameter inference from continuously monitored quantum systems
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2013-01-01
We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject...
Security Proof for Quantum Key Distribution Using Qudit Systems
Sheridan, Lana
2010-01-01
We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use $d$-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with $d$. The finite-key corrections are found to be almost insensitive to $d\\lesssim 20$.
Speed limits for quantum gates in multiqubit systems
Ashhab, S.; De Groot, P.C.; Nori, F.
2012-01-01
We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Phase-modulation transmission system for quantum cryptography.
Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T
1999-01-15
We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.
Deterministic Real-time Thread Scheduling
Yun, Heechul; Sha, Lui
2011-01-01
Race condition is a timing sensitive problem. A significant source of timing variation comes from nondeterministic hardware interactions such as cache misses. While data race detectors and model checkers can check races, the enormous state space of complex software makes it difficult to identify all of the races and those residual implementation errors still remain a big challenge. In this paper, we propose deterministic real-time scheduling methods to address scheduling nondeterminism in uniprocessor systems. The main idea is to use timing insensitive deterministic events, e.g, an instruction counter, in conjunction with a real-time clock to schedule threads. By introducing the concept of Worst Case Executable Instructions (WCEI), we guarantee both determinism and real-time performance.
Advances in stochastic and deterministic global optimization
Zhigljavsky, Anatoly; Žilinskas, Julius
2016-01-01
Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...
Bayesian Uncertainty Analyses Via Deterministic Model
Krzysztofowicz, R.
2001-05-01
Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.
Spectroscopic studies in open quantum systems
Rotter, I; Pichugin, K N; Seba, P
2000-01-01
The spectroscopic properties of an open quantum system are determined by theeigenvalues and eigenfunctions of an effective Hamiltonian H consisting of theHamiltonian H_0 of the corresponding closed system and a non-Hermitiancorrection term W arising from the interaction via the continuum of decaychannels. The eigenvalues E_R of H are complex. They are the poles of theS-matrix and provide both the energies and widths of the states. We illustratethe interplay between Re(H) and Im(H) by means of the different interferencephenomena between two neighboured resonance states. Level repulsion along thereal axis appears if the interaction is caused mainly by Re(H) while abifurcation of the widths appears if the interaction occurs mainly due toIm(H). We then calculate the poles of the S-matrix and the correspondingwavefunctions for a rectangular microwave resonator with a scatter as afunction of the area of the resonator as well as of the degree of opening to aguide. The calculations are performed by using the method o...
Precise semiconductor nanotubes and nanocorrugated quantum systems
Prinz, V. Ya.
2004-08-01
A concept in precise nanostructuring permitting the formation of solid-state nanoshells of various shapes from monocrystalline InGaAs/GaAs or Si/GeSi strained heterofilms, or from metal-semiconductor, metal-metal and hybrid films is outlined. Ultra-thin strained films released from the massive substrate tend to acquire a new equilibrium shape for which their elastic energy is minimal. Bending off from the substrate or rolling into cylindrical objects, the films form nanotubes, rings, helices, open and closed 3D nanoshells and their ordered arrays. The present work focuses on the set of newly proposed methods and realized processes constituting a fabrication technology for these free-standing precise nanoobjects and systems. New results on the formation of spatially periodic structures, nanocorrugated systems, shells with the minimum radius of curvature of ∼1 nm, and assembling these shells in even more complex architectures, for example, quantum-dots molecules, are described. The fabricated nanoshells offer much promise as building blocks for nanoelectronic and nanomechanic devices, their fabrication technology being quite compatible with the well-established integrated-circuit technology.
Implementing quantum electrodynamics with ultracold atomic systems
Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.
2017-02-01
We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
Spectroscopic studies in open quantum systems
Rotter; Persson; Pichugin; Seba
2000-07-01
The Hamiltonian H of an open quantum system is non-Hermitian. Its complex eigenvalues E(R) are the poles of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance states. Level repulsion may occur along the real or imaginary axis (the latter is called resonance trapping). In any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory (random matrix theory).
Strict Holism in a Quantum Superposition of Macroscopic States
De Barros, J A; Suppes, Patrick
2000-01-01
We show that some N-particle quantum systems are holistic, such that the system is deterministic, whereas its parts are random. The total correlation is not sufficient to determine the probability distribution, showing a need for extra measurements. We propose a formal definition of holism not based on separability.
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Model-Checking Linear-Time Properties of Quantum Systems
Ying, Mingsheng; Yu, Nengkun; Feng, Yuan
2011-01-01
We define a formal framework for reasoning about linear-time properties of quantum systems in which quantum automata are employed in the modeling of systems and certain closed subspaces of state (Hilbert) spaces are used as the atomic propositions about the behavior of systems. We provide an algorithm for verifying invariants of quantum automata. Then automata-based model-checking technique is generalized for the verification of safety properties recognizable by reversible automata and omega-properties recognizable by reversible Buechi automata.
Evaluation of the Quantum II yeast identification system.
Kiehn, T E; Edwards, F F; Tom, D; LIEBERMAN, G; Bernard, E M; Armstrong, D.
1985-01-01
We compared three methods for identifying clinical yeast isolates: Abbott Quantum II, API 20C, and a modified BBL Minitek system. The API 20C and modified Minitek systems agreed on the identification of 243 of 245 yeasts (99.2%). The Quantum II system correctly identified 197 (80.4%), incorrectly identified 19 (7.8%), and did not identify 29 (11.8%) of the yeasts. Most of the misidentifications with the Quantum II occurred because assimilation or biochemical results were false-positive. Sixte...