Safety margins in deterministic safety analysis
International Nuclear Information System (INIS)
Viktorov, A.
2011-01-01
The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)
Integrated Deterministic-Probabilistic Safety Assessment Methodologies
Energy Technology Data Exchange (ETDEWEB)
Kudinov, P.; Vorobyev, Y.; Sanchez-Perea, M.; Queral, C.; Jimenez Varas, G.; Rebollo, M. J.; Mena, L.; Gomez-Magin, J.
2014-02-01
IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses. (Author)
Shock-induced explosive chemistry in a deterministic sample configuration.
Energy Technology Data Exchange (ETDEWEB)
Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III (,; ); Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith
2005-10-01
Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.
Deterministic and probabilistic approach to safety analysis
International Nuclear Information System (INIS)
Heuser, F.W.
1980-01-01
The examples discussed in this paper show that reliability analysis methods fairly well can be applied in order to interpret deterministic safety criteria in quantitative terms. For further improved extension of applied reliability analysis it has turned out that the influence of operational and control systems and of component protection devices should be considered with the aid of reliability analysis methods in detail. Of course, an extension of probabilistic analysis must be accompanied by further development of the methods and a broadening of the data base. (orig.)
Safety engineering experiments of explosives
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, Noboru
1987-07-24
The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)
Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)
International Nuclear Information System (INIS)
2014-01-01
The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References
The dialectical thinking about deterministic and probabilistic safety analysis
International Nuclear Information System (INIS)
Qian Yongbai; Tong Jiejuan; Zhang Zuoyi; He Xuhong
2005-01-01
There are two methods in designing and analysing the safety performance of a nuclear power plant, the traditional deterministic method and the probabilistic method. To date, the design of nuclear power plant is based on the deterministic method. It has been proved in practice that the deterministic method is effective on current nuclear power plant. However, the probabilistic method (Probabilistic Safety Assessment - PSA) considers a much wider range of faults, takes an integrated look at the plant as a whole, and uses realistic criteria for the performance of the systems and constructions of the plant. PSA can be seen, in principle, to provide a broader and realistic perspective on safety issues than the deterministic approaches. In this paper, the historical origins and development trend of above two methods are reviewed and summarized in brief. Based on the discussion of two application cases - one is the changes to specific design provisions of the general design criteria (GDC) and the other is the risk-informed categorization of structure, system and component, it can be concluded that the deterministic method and probabilistic method are dialectical and unified, and that they are being merged into each other gradually, and being used in coordination. (authors)
Deterministic Safety Technology for RBMK Reactors
Directory of Open Access Journals (Sweden)
F. D'Auria
2008-01-01
The paper summarizes the activities performed at NIKIET in Moscow and at University of Pisa (UNIPI in Pisa. A top-down approach is pursued in structuring the executive summary that includes the following sections: (i the safety needed for the RBMK NPP, (ii the roadmap, (iii\tthe adopted computational tools, (iv\tkey findings, (v\tEmphasis is given to the multiple pressure tube rupture (MPTR issue and the individual channel monitoring (ICM proposal.
Safety problems with abandoned explosive facilities
International Nuclear Information System (INIS)
Courtright, W.C.
1969-01-01
Procedures were developed for the safe removal of explosive and radioactive contaminated materials structures and drains from abandoned sites, including explosives processing and service buildings with a goal to return the entire area to its natural state and to permit public access. The safety problems encountered in the cleanup and their solutions are applicable to modification and maintenance work in operating explosive facilities. (U.S.)
International Nuclear Information System (INIS)
Zio, Enrico
2014-01-01
Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives
Energy Technology Data Exchange (ETDEWEB)
Zio, Enrico, E-mail: enrico.zio@ecp.fr [Ecole Centrale Paris and Supelec, Chair on System Science and the Energetic Challenge, European Foundation for New Energy – Electricite de France (EDF), Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)
2014-12-15
Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives.
Explosion safety in industrial electrostatics
Szabó, S. V.; Kiss, I.; Berta, I.
2011-01-01
Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.
International Nuclear Information System (INIS)
Gobert, T.; Lannoy, A.
1982-01-01
The safety analyses for nuclear power plants devotes special attention to the evaluation of hazards which may be induced by industrial activity in the environment of nuclear sites. For instance, explosion of a drifting gas cloud resulting from an accidental release of liquefied gas may jeopardize the plant safety. The paper presents the methodology, both probabilistic and deterministic, followed by Electricite de France to evaluate these risks. It particularly shows that the probabilistic approach is strongly linked with the definition of ''design basis accidents'' and the evaluation of their effects
Criticality safety in high explosives dissolution
International Nuclear Information System (INIS)
Troyer, S.D.
1997-01-01
In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig
DOE explosives safety manual. Revision 7
Energy Technology Data Exchange (ETDEWEB)
1994-08-01
This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.
Safety vessels for explosive fusion reactor
International Nuclear Information System (INIS)
Mineev, V.
1994-01-01
The failure of several types of geometrically similar cylindrical and spherical steel and glass fibers vessels filled with water or air was investigated when an explosive charge of TNT was detonated in the center. Vessels had radius 50-1000 mm, thickness of walls 2-20%. The detonation on TNT imitated energy release. The parameter: K = M/mf is a measure of the strength of the vessel where M is the mass of the vessel, and mf is the mass of TNT for which the vessel fails. This demanded 2-4 destroyed and nondestroyed shots. It may be showed that: K=A/σ f where σ f is the fracture stress of the material vessel, and A = const = F(energy TNT, characteristic of elasticity of vessel material). The chief results are the following: (1) A similar increase in the geometrical dimensions of steel vessels by a factor of 10 leads to the increase of parameter K in about 5 times and to decrease of failure deformation in 7 times (scale effect). (2) For glass fibers, scale effect is absent. (3) This problem is solved in terms of theory energetic scale effect. (4) The concept of TNT equivalent explosive makes it possible to use these investigations to evaluate the response of safety vessels for explosive fusion reactor
HSE assessment of explosion risk analysis in offshore safety cases
Energy Technology Data Exchange (ETDEWEB)
Brighton, P.W.M.; Fearnley, P.J.; Brearley, I.G. [Health and Safety Executive, Bootle (United Kingdom). Offshore Safety Div.
1995-12-31
In the past two years HSE has assessed around 250 Safety Cases for offshore oil and gas installations, building up a unique overview of the current state of the art on fire and explosion risk assessment. This paper reviews the explosion risk methods employed, focusing on the aspects causing most difficulty for assessment and acceptance of Safety Cases. Prediction of overpressures in offshore explosions has been intensively researched in recent years but the justification of the means of prevention, control and mitigation of explosions often depends on much additional analysis of the frequency and damage potential of explosions. This involves a number of factors, the five usually considered being: leak sizes; gas dispersion; ignition probabilities; the frequency distribution of explosion strength; and the prediction of explosion damage. Sources of major uncertainty in these factors and their implications for practical risk management decisions are discussed. (author)
Human Resources Readiness as TSO for Deterministic Safety Analysis on the First NPP in Indonesia
International Nuclear Information System (INIS)
Sony Tjahyani, D. T.
2010-01-01
In government regulation no. 43 year 2006 it is mentioned that preliminary safety analysis report and final safety analysis report are one of requirements which should be applied in construction and operation licensing for commercial power reactor (NPPs). The purpose of safety analysis report is to confirm the adequacy and efficiency of provisions within the defence in depth of nuclear reactor. Deterministic analysis is used on the safety analysis report. One of the TSO task is to evaluate this report based on request of operator or regulatory body. This paper discusses about human resources readiness as TSO for deterministic safety analysis on the first NPP in Indonesia. The assessment is done by comparing the analysis step on SS-23 and SS-30 with human resources status of BATAN currently. The assessment results showed that human resources for deterministic safety analysis are ready as TSO especially to review preliminary safety analysis report and to revise final safety analysis report in licensing on the first NPP in Indonesia. Otherwise, to prepare the safety analysis report is still needed many competency human resources. (author)
Problem of evaluating the safety of an explosive
International Nuclear Information System (INIS)
Smith, L.C.
1977-01-01
Some general considerations on the problem of evaluating the safety of an explosive lead to the reasons why the much-criticized drop-weight impact machine remains an important tool in most explosive research and development laboratories. Problems related to the design, calibration, and use of such machines, and certain misconceptions concerning the interpretation of the test data, are discussed. The results of an unsuccessful attempt to construct a more comprehensive hazards scale also are described
Energy Technology Data Exchange (ETDEWEB)
Dillstroem, Peter; Bergman, Mats; Brickstad, Bjoern; Weilin Zang; Sattari-Far, Iradj; Andersson, Peder; Sund, Goeran; Dahlberg, Lars; Nilsson, Fred (Inspecta Technology AB, Stockholm (Sweden))
2008-07-01
SSM has supported research work for the further development of a previously developed procedure/handbook (SKI Report 99:49) for assessment of detected cracks and tolerance for defect analysis. During the operative use of the handbook it was identified needs to update the deterministic part of the procedure and to introduce a new probabilistic flaw evaluation procedure. Another identified need was a better description of the theoretical basis to the computer program. The principal aim of the project has been to update the deterministic part of the recently developed procedure and to introduce a new probabilistic flaw evaluation procedure. Other objectives of the project have been to validate the conservatism of the procedure, make the procedure well defined and easy to use and make the handbook that documents the procedure as complete as possible. The procedure/handbook and computer program ProSACC, Probabilistic Safety Assessment of Components with Cracks, has been extensively revised within this project. The major differences compared to the last revision are within the following areas: It is now possible to deal with a combination of deterministic and probabilistic data. It is possible to include J-controlled stable crack growth. The appendices on material data to be used for nuclear applications and on residual stresses are revised. A new deterministic safety evaluation system is included. The conservatism in the method for evaluation of the secondary stresses for ductile materials is reduced. A new geometry, a circular bar with a circumferential surface crack has been introduced. The results of this project will be of use to SSM in safety assessments of components with cracks and in assessments of the interval between the inspections of components in nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Kang, Dong Gu; Ahn, Seung-Hoon; Cho, Dae-Hyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2015-05-15
This is termed station blackout (SBO). However, it does not generally include the loss of available AC power to safety buses fed by station batteries through inverters or by alternate AC sources. Historically, risk analysis results have indicated that SBO was a significant contributor to overall core damage frequency. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident, which is a typical beyond design basis accident and important contributor to overall plant risk, is performed by applying the combined deterministic and probabilistic procedure (CDPP). In addition, discussions are made for reevaluation of SBO risk at OPR-1000 by eliminating excessive conservatism in existing PSA. The safety assessment of OPR-1000 for SBO accident, which is a typical BDBA and significant contributor to overall plant risk, was performed by applying the combined deterministic and probabilistic procedure. However, the reference analysis showed that the CDF and CCDP did not meet the acceptable risk, and it was confirmed that the SBO risk should be reevaluated. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it was demonstrated that the proposed CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.
A Deterministic Safety Assessment of a Pyro-processed Waste Repository
International Nuclear Information System (INIS)
Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won
2012-01-01
A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.
CSIR Research Space (South Africa)
Burger, CR
2011-11-01
Full Text Available Current certification criteria for safety-critical systems exclude non-deterministic control systems. This paper investigates the feasibility of using human-like monitoring strategies to achieve safe non-deterministic control using multiple...
A risk-informed perspective on deterministic safety analysis of nuclear power plants
International Nuclear Information System (INIS)
Wan, P.T.
2009-01-01
In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)
Safety and deterministic failure analyses in high-beta D-D tokamak reactors
International Nuclear Information System (INIS)
Selcow, E.C.
1984-01-01
Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure
International Nuclear Information System (INIS)
Barthelet, B.; Ardillon, E.
1997-01-01
The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)
Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)
International Nuclear Information System (INIS)
2012-01-01
The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education
Use of the deterministic safety analyses in support to the NPP Krsko modification
International Nuclear Information System (INIS)
Feretic, D.; Cavlina, N.; Debrecin, N.; Grgic, D.; Bajs, T.; Spalj, S.
2004-01-01
The ultimate goal of the safety analysis is to verify that Nuclear Power Plant (NPP) meets safety and operational requirements. To this aim it is necessary to demonstrate that plant safety has not been deteriorated in the case of the modifications to the plant Systems, Structures and Components (SSC) or changes to the plant procedures. In addition, safety analyses are needed in the case of reassessment of an existing plant. The reasons for reassessment may be different, e.g. due to the changes in the methodology and assumptions used in the original design, if the original design basis or acceptance criteria may no longer be adequate, if the safety analysis tools used may have been superseded by more sophisticated methods or if the original design basis may no longer be met. The operation of the NPP Krsko has experienced numerous changes from the original design for the majority of the reasons that have been mentioned before. On the other side, the application of the large best-estimate thermalhydraulic codes has evolved to the wide spread support in the operation of the NPP: compliance with the regulatory goals, support to the PSA studies, analysis of the operational transients, plant modifications studies, equipment qualification, training of the operators, preparation of the operating procedures, etc. This trend has been followed at the Faculty of Electrical Engineering Zagreb (FER) and applied to the on-going needs due to the modifications and changes at NPP Krsko. In this paper, an overview of the deterministic safety analyses performed at FER in the support to the NPP Krsko modifications and changes is presented.(author)
Energy Technology Data Exchange (ETDEWEB)
Kang, Dong Gu, E-mail: littlewing@kins.re.kr [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
2014-08-15
Highlights: • The combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. • The safety assessment of OPR-1000 nuclear power plant for SBO accident is performed by applying the CDPP. • By estimating the offsite power restoration time appropriately, the SBO risk is reevaluated. • It is concluded that the CDPP is applicable to safety assessment of BDBAs without significant erosion of the safety margin. - Abstract: Station blackout (SBO) is a typical beyond design basis accident (BDBA) and significant contributor to overall plant risk. The risk analysis of SBO could be important basis of rulemaking, accident mitigation strategy, etc. Recently, studies on the integrated approach of deterministic and probabilistic method for nuclear safety in nuclear power plants have been done, and among them, the combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. In the CDPP, the conditional exceedance probability obtained by the best estimate plus uncertainty method acts as go-between deterministic and probabilistic safety assessments, resulting in more reliable values of core damage frequency and conditional core damage probability. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident was performed by applying the CDPP. It was confirmed that the SBO risk should be reevaluated by eliminating excessive conservatism in existing probabilistic safety assessment to meet the targeted core damage frequency and conditional core damage probability. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it is concluded that the CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.
International Nuclear Information System (INIS)
Di Maio, Francesco; Rai, Ajit; Zio, Enrico
2016-01-01
The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental Accelerator Driven System (LBE-XADS). - Highlights: • We integrate dynamic aspects into the definition of a safety margins. • We consider stochastic and epistemic uncertainties affecting the system dynamics. • Uncertainties are handled by Order Statistics (OS). • We estimate the system grace time during accidental scenarios. • We apply the approach to an LBE-XADS accidental scenario.
International Nuclear Information System (INIS)
Lopes, Valdir Maciel
2010-01-01
This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)
An approach to model reactor core nodalization for deterministic safety analysis
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)
2016-01-22
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
UPC Scaling-up methodology for Deterministic Safety Assessment and Support to Plant Operation
Energy Technology Data Exchange (ETDEWEB)
Martínez-Quiroga, V.; Reventós, F.; Batet, Il.
2015-07-01
Best Estimate codes along with necessary nodalizations are widely used tools in nuclear engineering for both Deterministic Safety Assessment (DSA) and Support to Plant Operation and Control. In this framework, the application of quality assurance procedures in both codes and nodalizations becomes an essential step prior any significant study. Along these lines the present paper introduces the UPC SCUP, a systematic methodology based on the extrapolation of the Integral Test Facilities (ITF) post-test simulations by means of scaling analyses. In that sense, SCUP fulfills a gap in current nodalization qualification procedures, the related with the validation of NPP nodalizations for Design Basis Accidents conditions. Three are the pillars that support SCUP: judicial selection of the experimental transients, full confidence in the quality of the ITF simulations, and simplicity in justifying discrepancies that appear between ITF and NPP counterpart transients. The techniques that are presented include the socalled Kv scaled calculations as well as the use of two new approaches, ”Hybrid nodalizations” and ”Scaled-up nodalizations”. These last two methods have revealed themselves to be very helpful in producing the required qualification and in promoting further improvements in nodalization. The study of both LSTF and PKL counterpart tests have allowed to qualify the methodology by the comparison with experimental data. Post-test simulations at different sizes allowed to define which phenomena could be well reproduced by system codes and which not, in this way also establishing the basis for the extrapolation to an NPP scaled calculation. Furthermore, the application of the UPC SCUP methodology demonstrated that selected phenomena can be scaled-up and explained between counterpart simulations by carefully considering the differences in scale and design. (Author)
An approach to model reactor core nodalization for deterministic safety analysis
International Nuclear Information System (INIS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M
Energy Technology Data Exchange (ETDEWEB)
Hollaender, Robert [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement
2013-03-15
The Committee for Long-Distance Pipelines (Berlin, Federal Republic of Germany) reported on the relation between deterministic and probabilistic approaches in order to contribute to a better understanding of the safety management of long-distance pipelines. The respective strengths and weaknesses as well as the deterministic and probabilistic fundamentals of the safety management are described. The comparison includes fundamental aspects, but is essentially determined by the special character of the technical plant 'long-distance pipeline' as an infrastructure project in the area. This special feature results to special operation conditions and related responsibilities. However, our legal system 'long-distance pipeline' does not grant the same legal position in comparison to other infrastructural facilities such as streets and railways. Thus, the question whether and in what manner the impacts from the land-use in the environment of long-distance pipelines have to be considered is again and again the initial point for the discussion on probabilistic and deterministic approaches.
Explosion approach for external safety assessment: a case study
Energy Technology Data Exchange (ETDEWEB)
Johnson, D. Michael; Halford, Ann [Germanischer Lloyd, Loughborough (United Kingdom); Mendes, Renato F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)
2009-07-01
Several questions related to the potential for explosions are explored as this became an important subject during an enterprise risk analysis. The understanding of explosions underwent a substantial evolution in the final 20 years of the 20{sup th} century following international research projects in Europe involving several research institutes, as well gas and oil companies. This led to the development of techniques that could be used to assess the potential consequences of explosions on oil, gas and petrochemical facilities. This paper presents an overview of the potential for explosions in communities close to industrial sites or pipelines right of way (RoW), where the standard explosion assessment methods cannot be applied. With reference to experimental studies, the potential for confined explosions in buildings and Vapor Cloud Explosions is explored. Vapor Cloud Explosion incidents in rural or urban areas are also discussed. The method used for incorporating possible explosion and fire events in risk studies is also described using a case study. Standard explosion assessment methodologies and a revised approach are compared as part of an on going evaluation of risk (author)
Safety assessment of in-vessel vapor explosion loads in next generation reactor
Energy Technology Data Exchange (ETDEWEB)
Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)
1998-12-01
A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.
Safety explosives in coal mining. Explosivos de seguridad en la mineria de carbon
Energy Technology Data Exchange (ETDEWEB)
(Union Espanola de Explosivos y Rio Blast, S.A., Madrid (Spain))
1990-06-01
The use of explosives in underground coal mining is essential for two reasons. The first is the highly resistant nature of the rock surrounding coal which requires explosives to remove it during development work. The second is that certain types of coal need to be blasted in order to achieve a higher output in coal winning operations. This article examines the characteristics, the types and the conditions under which safety or ion exchange explosives are used in underground coal mines where explosive atmospheres are sometimes encountered. 3 tabs. 2 pts.
Steam explosion - physical foundations and relation to nuclear reactor safety
International Nuclear Information System (INIS)
Schumann, U.
1982-08-01
'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de
Applications of the 3-D Deterministic Transport Attila(regsign) for Core Safety Analysis
International Nuclear Information System (INIS)
Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.
2004-01-01
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila(reg s ign)) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future
International Nuclear Information System (INIS)
Nishihara, T.; Hada, K.; Shibata, T.; Shiozawa, S.
1996-01-01
Establishment of safety design concept and countermeasures against fire and explosion accidents is among key safety-related issues in an HTGR-hydrogen production system. We propose the different safety design concepts depending upon the origin of fire and explosion which may happen in the HTGR-hydrogen production plant. Against fire and explosion originated outside the reactor building (R/B), namely in the area of hydrogen production plant, the safety design concept is primarily to take a safe distance for preventing the damage on safety-related items or a proof wall if necessary. Because the hydrogen production plant is designed in the same safety level as a conventional chemical plant. The safe distance is proposed to limit an incident overpressure to 10 kPa so as not to suffer any damage on the items and to limit a wall-averaged temperature of concrete structures of the R/B to 175degC according to the current regulation. On the other hand, against a potential possibility of explosion originated inside the R/B, the safety design concept is to minimize the possibility of explosion low enough to assume no occurrence inside the R/B. That is, the measure is to exclude a simultaneous failure of a secondary helium piping and an endothermic chemical reactor. Furthermore, in severe accident condition in which the explosion may be postulated a priori, an incidental overpressure of explosion inside the reactor containment vessel (C/V) should be limited so as not to fail the C/V through restricting the amount of combustible gas ingress into the C/V by means of a combination of C/V isolation valve installed in the helium piping and emergency shut off valve in the process feed gas line. (author)
Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model
Energy Technology Data Exchange (ETDEWEB)
Pandey, Alok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yu, Hyungjoon; Kim, Hong Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2014-10-15
These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS
Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model
International Nuclear Information System (INIS)
Pandey, Alok; Yu, Hyungjoon; Kim, Hong Suk
2014-01-01
These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS
Verification of Overall Safety Factors In Deterministic Design Of Model Tested Breakwaters
DEFF Research Database (Denmark)
Burcharth, H. F.
2001-01-01
The paper deals with concepts of safety implementation in design. An overall safety factor concept is evaluated on the basis of a reliability analysis of a model tested rubble mound breakwater with monolithic super structure. Also discussed are design load identification and failure mode limit...
International Nuclear Information System (INIS)
Mohd Faiz Salim; Ridha Roslan; Mohd Rizal Mamat
2013-01-01
Full-text: Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBIMOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges. (author)
International Nuclear Information System (INIS)
Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat
2014-01-01
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges
Energy Technology Data Exchange (ETDEWEB)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)
2014-02-12
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.
Fire and explosion safety in the petroleum sector
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
The conference has 13 presentations in topics on LNG projects nationally and internationally, simulations of gas dispersion due to LNG discharges, transports of pressurized natural gas, technological aspects of fire protection and combat equipment, safety aspects of offshore installations and transportation systems, offshore platform and transportation systems design and various examples of safety design and management. Some experiences within safety engineering in the petroleum exploitation are included.
The explosion-proof container, satisfying the IAEA norms on safety
International Nuclear Information System (INIS)
Syrunin, M.A.; Fedorenko, A.G.; Ivanov, A.G.; Abakumov, A.I.; Nizovtsev, P.N.; Loginov, P.G.; Smolyakov, A.A.; Solov'ev, V.P.
1998-01-01
Safety of radioactive materials (RM) transportation is under strict control of the international norms of IAEA, aimed to ensure non-proliferation of hazardous materials in the environments. At the same time the nuclear countries use much more dangerous transportations of two types of hazardous materials. Probability of emergency explosion of high explosives (HE) during transportation and storage of such constructions is not equal to zero. HE explosion can be caused by: 1)excess of mechanical effects, allowable by the norms, on an explosive 2)lightening or fire 3)terrorist attack 4)radio controlled or time controlled mechanism in case of the terrorist device. It is obvious that an accident with explosion HE element of the nuclear weapon in an usual container, which meets the IAEA norms, but is not explosion-proof, will result in its destruction, RM dispersal, and inadmissible pollution of the environments. Therefore, it is urgent need for development of the container, which is able to withstand explosion of HE, placed in it, and to confine released RM inside of it. The experimental prototype of the load-bearing shell of the explosion-proof container (EC) can be the successfully tested spherical steel - glass plastic shell, having high-strength throats and lids. Having weight of 45-50 kg it is able to withstand internal explosion with energy more than 1.4 kg of the TNT equivalent. To preserve the explosion-proofness property in the abnormal environments during transportation, the explosion-proof container should be placed in the protective supporting transport device or the transport container (TC), consisting of the external thin-walled steel shell and the damping heat-proof layer from heat-resistant foam plastic. To justify the design parameters of such container, the tests for development and revision of the numerical model parameters were carried out. With use of this model the calculations were performed to calculate loads and the container response to 1
Newest Developments in the German Explosive Safety Quantitative Risk Analysis Software (ESQRA-GE)
2010-07-01
Software (ESQRA-GE) F.K.F. Radtke , I. Stacke, C. Rizzuti, B. Brombacher, M. Voss, I. Häring Fraunhofer-Institute for High-Speed Dynamics – Ernst-Mach...Institute, Am Klingelberg 1, 79588 Efringen-Kirchen, Germany radtke @emi.fhg.de, haering@emi.fhg.de Keywords: explosive ordnance disposal, EOD...Prescribed by ANSI Std Z39-18 34th DoD Explosives Safety Seminar 2010, Portland, Oregon 2 Brief presenter biography Frank Radtke started his
Safety assurance of non-deterministic flight controllers in aircraft applications
Noriega, Alfonso
Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results
A safety evaluation of fire and explosion in nuclear fuel reprocessing plants
International Nuclear Information System (INIS)
Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou
1996-01-01
The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)
International Nuclear Information System (INIS)
Karanki, D.R.; Rahman, S.; Dang, V.N.; Zerkak, O.
2017-01-01
The coupling of plant simulation models and stochastic models representing failure events in Dynamic Event Trees (DET) is a framework used to model the dynamic interactions among physical processes, equipment failures, and operator responses. The integration of physical and stochastic models may additionally enhance the treatment of uncertainties. Probabilistic Safety Assessments as currently implemented propagate the (epistemic) uncertainties in failure probabilities, rates, and frequencies; while the uncertainties in the physical model (parameters) are not propagated. The coupling of deterministic (physical) and probabilistic models in integrated simulations such as DET allows both types of uncertainties to be considered. However, integrated accident simulations with epistemic uncertainties will challenge even today's high performance computing infrastructure, especially for simulations of inherently complex nuclear or chemical plants. Conversely, intentionally limiting computations for practical reasons would compromise accuracy of results. This work investigates how to tradeoff accuracy and computations to quantify risk in light of both uncertainties and accident dynamics. A simple depleting tank problem that can be solved analytically is considered to examine the adequacy of a discrete DET approach. The results show that optimal allocation of computational resources between epistemic and aleatory calculations by means of convergence studies ensures accuracy within a limited budget. - Highlights: • Accident simulations considering uncertainties require intensive computations. • Tradeoff between accuracy and accident simulations is a challenge. • Optimal allocation between epistemic & aleatory computations ensures the tradeoff. • Online convergence gives an early indication of computational requirements. • Uncertainty propagation in DDET is examined on a tank problem solved analytically.
Hsieh, Ming-Hong; Wu, Jia-Wun; Li, Ya-Cing; Tang, Jia-Suei; Hsieh, Chun-Chien
2016-02-01
This paper will explore the fire and explosion characteristics of cornstarch powder as well as strategies for protecting the safety of people who are involved a dust fire or dust explosion. We discuss the 5 elements of dust explosions and conduct tests to analyze the fire and explosion characteristics of differently colored powders (yellow, golden yellow, pink, purple, orange and green). The results show that, while all of the tested powders were difficult to ignite, low moisture content was associated with significantly greater risks of ignition and flame spread. We found the auto-ignition temperature (AIT) of air-borne cornstarch powder to be between 385°C and 405°C, with yellow-colored cornstarch powder showing the highest AIT and pink-colored cornstarch powder showing the lowest AIT. The volume resistivity of all powder samples was approximately 108 Ω.m, indicating that they were nonconductive. Lighters and cigarettes are effective ignition sources, as their lit temperatures are higher than the AIT of cornstarch powder. In order to better protect the safety of individuals at venues where cornstarch powder is released, explosion control measures such as explosion containment facilities, vents, and explosion suppression and isolation devices should be installed. Furthermore, employees that work at these venues should be better trained in explosion prevention and control measures. We hope this article is a reminder to the public to recognize the fire and explosion characteristics of flammable powders as well as the preventive and control measures for dust explosions.
JRR-3 cold neutron source facility H2-O2 explosion safety proof testing
International Nuclear Information System (INIS)
Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.
1990-01-01
A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction
Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity
International Nuclear Information System (INIS)
Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko
2008-01-01
The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)
International Nuclear Information System (INIS)
Reynolds, J G; Hsu, P C; Sandstrom, M M; Brown, G W; Warner, K F; Phillips, J J; Shelley, T J; Reyes, J A
2014-01-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.
International Nuclear Information System (INIS)
Doumenc, A.; Faure, J.; Mohammadioun, B.; Jacquet, P.
1987-03-01
Although laboratories and plants differ from nuclear reactors both in their characteristics and sitings, safety measures developed for the hazards of earthquakes, aircraft crashes, explosions and fires are very similar. These measures provide a satisfactory level of safety for these installations [fr
International Nuclear Information System (INIS)
Takada, Junichi; Suzuki, Motoe; Tukamoto, Michio; Koike, Tadao; Nishio, Gunji
1995-03-01
Safety demonstration tests of an explosive burning in a cell in the reprocessing plant has been carried out in JAERI under the auspices of the Science and Technology Agency, to evaluate the safety of an air-ventilation system during the hypothetical explosion. The postulated explosive burning of organic solvent mixed with nitric acid was simulated by solid explosives. The demonstration test was performed using an industrial scale experimental facility simulating to the ventilation system of the large scale reprocessing plant in JAPAN. Propagations of pressure, temperature, and gas velocity through cells and ducts in the ventilation system were measured during the explosive burning under deflagration. Experimental data in this report can be used to evaluate the transport phenomena of radioactive materials in the ventilation system during the explosion, and also to verify computer code CELVA for the safety analysis of ventilation system in the event of explosion accidents. (author)
Safety of Transport and Disposal for Explosive Ordnance in Ports, Roadsteads and at Open Sea
Directory of Open Access Journals (Sweden)
Adam Cichocki
2017-06-01
Full Text Available In the article principles, pertaining to the safety of transport for explosives and unexploded ordnance of military origin and procedures that guarantee maximal effectiveness of the process of their neutralization, are presented. Since the end of the 2nd World War operations of neutralizing unexploded ordnance (UXO of that era that still lie in ports, roadsteads and coastal areas are continuously conducted. During that war the Polish coast was one of the major battlegrounds and till now unexploded ordnance are found either on the sea bed or along the coast. Various analyses state that searching the sea and the coastline for unexploded ordnance is a task still to be carried out in the foreseeable future.
International Nuclear Information System (INIS)
Mohanta, Dusmanta Kumar; Sadhu, Pradip Kumar; Chakrabarti, R.
2007-01-01
This paper presents a comparison of results for optimization of captive power plant maintenance scheduling using genetic algorithm (GA) as well as hybrid GA/simulated annealing (SA) techniques. As utilities catered by captive power plants are very sensitive to power failure, therefore both deterministic and stochastic reliability objective functions have been considered to incorporate statutory safety regulations for maintenance of boilers, turbines and generators. The significant contribution of this paper is to incorporate stochastic feature of generating units and that of load using levelized risk method. Another significant contribution of this paper is to evaluate confidence interval for loss of load probability (LOLP) because some variations from optimum schedule are anticipated while executing maintenance schedules due to different real-life unforeseen exigencies. Such exigencies are incorporated in terms of near-optimum schedules obtained from hybrid GA/SA technique during the final stages of convergence. Case studies corroborate that same optimum schedules are obtained using GA and hybrid GA/SA for respective deterministic and stochastic formulations. The comparison of results in terms of interval of confidence for LOLP indicates that levelized risk method adequately incorporates the stochastic nature of power system as compared with levelized reserve method. Also the interval of confidence for LOLP denotes the possible risk in a quantified manner and it is of immense use from perspective of captive power plants intended for quality power
International Nuclear Information System (INIS)
Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Syusaku
1996-03-01
Among key issues of the safety design for an HTGR-hydrogen production system is to ensure the safety of the nuclear reactor against fire and explosion accidents in the hydrogen production plant. The fire and explosion accidents in the hydrogen production plant are categorized into the following two cases; Accidents inside the reactor building (R/B) and accidents outside the R/B. Against accidents inside the R/B, the proposed safety design concept is to prevent the occurrence of the accidents based on the defence in depth concept. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the R/B due to the failure are designed at the highest aseismic level to prevent the failure against severe earthquake. Even if the failure occurs, the piping trench and related compartments are fulfilled with nitrogen so as to prevent the occurrence of accidents. The proposed safety design concept for the accidents outside the R/B is the mitigation of effects of accidents. Proposed countermeasures is to take the safe distance between the hydrogen production plant and the items important to safety in the nuclear plant. We showed that the anticipated accidents to estimate the safe distance are large scale pool burning, fireball, pressure vessel burst and vapor cloud explosion. Especially, new estimating concept to establish the safe distance is proposed for the vapor cloud explosion. To reduce the safe distance, we proposed the underground non-pressurized storage tank and ventilation system for the storage of large amount of combustible liquid. (author). 61 refs
International Nuclear Information System (INIS)
Cull, T.A.; George, T.G.; Pavone, D.
1986-09-01
The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four 238 PuO 2 -fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO 2 as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-12-15
The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education
1982-08-01
hue an mvwe old* I noe.*iy and identify by Stoc* nowm -P) Ammunition Explosives Safety 20. AGSTRACT (Conth. an rever. sid. it noeeeary wtd identify by...explosive. All tests have been monitoreo by remote television; most also used cinematography at 500 to 1000 frames per second. Figure 2 shows an
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2008-01-01
We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem....
Windows and glazing systems exposed to explosion loads: Part 2 – Safety improvement strategies
Teich, M.; Gebbeken, N.; Lööf, A.; Doormaal, J.C.A.M. van
2010-01-01
International terrorism has increased the interest in the dynamic behavior of windows under explosion loads. Windows are usually the first elements exposed to blast loading causing serious secondary threats as they can break up in sharp shards which are accelerated inwards. The University of the
International Nuclear Information System (INIS)
Heatwole, Eric; Parker, Gary; Holmes, Matt; Dickson, Peter
2015-01-01
Frictional heating of high-melting-point grit particles during oblique impacts of consolidated explosives is considered to be the major source of ignition in accidents involving dropped explosives. It has been shown in other work that the lower temperature melting point of two frictionally interacting surfaces will cap the maximum temperature reached, which provides a simple way to mitigate the danger in facilities by implementing surfaces with melting points below the ignition temperature of the explosive. However, a recent series of skid testing experiments has shown that ignition can occur on low-melting-point surfaces with a high concentration of grit particles, most likely due to a grit–grit collision mechanism. For risk-based safety engineering purposes, the authors present a method to estimate the probability of grit contact and/or grit–grit collision during an oblique impact. These expressions are applied to potentially high-consequence oblique impact scenarios in order to give the probability of striking one or more grit particles (for high-melting-point surfaces), or the probability of one or more grit–grit collisions occurring (for low-melting-point surfaces). The probability is dependent on a variety of factors, many of which can be controlled for mitigation to achieve acceptable risk levels for safe explosives handling operations. - Highlights: • Unexpectedly, grit-mediated ignition of a PBX occurred on low-melting point surfaces. • On high-melting surfaces frictional heating is due to a grit–surface interaction. • For low-melting point surfaces the heating mechanism is grit–grit collisions. • A method for estimating the probability of ignition is presented for both surfaces
International Nuclear Information System (INIS)
Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori
2010-01-01
A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)
International Nuclear Information System (INIS)
Suzuki, Motoe; Nishio, Gunji; Takada, Junichi; Tsukamoto, Michio; Koike, Tadao
1993-01-01
To demonstrate the safety of an air ventilation system of cells in a fuel reprocessing plant under a postulated explosive burning caused by solvent fire or by thermal decomposition of nitrated solvent, four types of demonstration tests have been conducted using a large-scale facility simulating a cell ventilation system of an actual reprocessing plant, thus revealing effective mitigation by cell and duct structures on the pressure and temperature pulses generated by explosive burning. In boilover burning tests, solvent fire in a model cell was observed with various sizes of burning surface area as a main parameter, and analysis was performed on the factors dominating the magnitude of boilover burning, revealing that the magnitude strongly depends on accumulated amounts and their ratio of oxygen and solvent vapor present in the cell. In deflagration tests, solid rocket fuel was burned in the cell to simulate the explosive source. The generated pressure and temperature pulses were effectively declined by the cell and duct structures and the integrity of the ventilation system was kept. In blower tests, a centrifugal turbo blower was imposed by a lump of air with a larger flow rate than the rated one by about six times to observe the transient response of the blower fan and motor. It was found that integrity of the blower was kept. In pressure transient tests, compressed air was blown into the cell to induce a mild transient state of fluid dynamics inside the facility, and a variety of data were successfully obtained to be used for the verification and improvement of a computer code. In all the tests, transient overloading of gas caused no damage on HEPA filters, and overloading on the blower motor was avoided either by the slipping of transmission belt or by the acceleration of blower fan rotation during peak flow. (author)
Pseudo-deterministic Algorithms
Goldwasser , Shafi
2012-01-01
International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...
Protection against internal fires and explosions in the design of nuclear power plants. Safety guide
International Nuclear Information System (INIS)
2004-01-01
Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice
Energy Technology Data Exchange (ETDEWEB)
NONE
2014-02-15
The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References.
Risk-based and deterministic regulation
International Nuclear Information System (INIS)
Fischer, L.E.; Brown, N.W.
1995-07-01
Both risk-based and deterministic methods are used for regulating the nuclear industry to protect the public safety and health from undue risk. The deterministic method is one where performance standards are specified for each kind of nuclear system or facility. The deterministic performance standards address normal operations and design basis events which include transient and accident conditions. The risk-based method uses probabilistic risk assessment methods to supplement the deterministic one by (1) addressing all possible events (including those beyond the design basis events), (2) using a systematic, logical process for identifying and evaluating accidents, and (3) considering alternative means to reduce accident frequency and/or consequences. Although both deterministic and risk-based methods have been successfully applied, there is need for a better understanding of their applications and supportive roles. This paper describes the relationship between the two methods and how they are used to develop and assess regulations in the nuclear industry. Preliminary guidance is suggested for determining the need for using risk based methods to supplement deterministic ones. However, it is recommended that more detailed guidance and criteria be developed for this purpose
Development of safety evaluation technology for fire and explosion in reprocessing plant
International Nuclear Information System (INIS)
Miura, Akihiko
2005-01-01
Based on some lessons learned from the accidents in the reprocessing plant all over the world, Japan Nuclear Cycle Development Institute (JNC) has researched and developed the safety technologies for the reprocessing plants and its related facilities. This paper describes some accidental information around the reprocessing plants and its related research activities in JNC. (author)
Energy Technology Data Exchange (ETDEWEB)
Duijm, N.J.; Markert, F. [Risoe (Denmark); Larsen, S.G. [DEMEX A/S (Denmark)
1998-09-01
As described in the project proposal `Research and Development of Technologies for Safe and Environmentally optimal recovery and Disposal of Explosive Wastes`, dated 31. May 1996, the objective of Task 2, Preliminary Impact Assessment for Environment, Health and Safety, is to: Analyse the environmental impact of noise and emissions to air, water and soil; Assess the risk of hazards to workers` health and safety and to the public. Task 2, Preliminary Impact Assessment for Environment, Health and Safety (EIA), has been performed from August 1997 to September 1998. First, a methodology has been established, based on Multi-Criteria Decision Analysis (MCDA), to select the `best` technology on the basis of clearly defined objectives, including minimal impacts on environment, health and safety. This included a review of different types of explosive waste with a focus on the environment implications, identifying the issues relevant to defining the criteria or objectives with respect to environment and safety in the framework of explosive waste, as well as the preliminary definition of objectives for the final impact assessment. Second, the previously identified recovery and disposal technologies (Task 1) have been qualitatively assessed on the basis of the relevant objectives. This qualitative assessment includes also economic considerations and an attempt to rank the technologies in an MCDA framework. (au)
Deterministic Compressed Sensing
2011-11-01
39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54
Deterministic uncertainty analysis
International Nuclear Information System (INIS)
Worley, B.A.
1987-01-01
Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig
International Nuclear Information System (INIS)
1990-01-01
In the present report, data on RBE values for effects in tissues of experimental animals and man are analysed to assess whether for specific tissues the present dose limits or annual limits of intake based on Q values, are adequate to prevent deterministic effects. (author)
Energy Technology Data Exchange (ETDEWEB)
Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)
1984-12-01
The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.
International Nuclear Information System (INIS)
Tso Chin Ping
1984-01-01
The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)
The probabilistic approach and the deterministic licensing procedure
International Nuclear Information System (INIS)
Fabian, H.; Feigel, A.; Gremm, O.
1984-01-01
If safety goals are given, the creativity of the engineers is necessary to transform the goals into actual safety measures. That is, safety goals are not sufficient for the derivation of a safety concept; the licensing process asks ''What does a safe plant look like.'' The answer connot be given by a probabilistic procedure, but need definite deterministic statements; the conclusion is, that the licensing process needs a deterministic approach. The probabilistic approach should be used in a complementary role in cases where deterministic criteria are not complete, not detailed enough or not consistent and additional arguments for decision making in connection with the adequacy of a specific measure are necessary. But also in these cases the probabilistic answer has to be transformed into a clear deterministic statement. (orig.)
Deterministic behavioural models for concurrency
DEFF Research Database (Denmark)
Sassone, Vladimiro; Nielsen, Mogens; Winskel, Glynn
1993-01-01
This paper offers three candidates for a deterministic, noninterleaving, behaviour model which generalizes Hoare traces to the noninterleaving situation. The three models are all proved equivalent in the rather strong sense of being equivalent as categories. The models are: deterministic labelled...... event structures, generalized trace languages in which the independence relation is context-dependent, and deterministic languages of pomsets....
Measures for ensuring hydrogen fire and explosion safety for VVER-440/230
International Nuclear Information System (INIS)
Bezlepkin, V.; Semashko, S.; Svetlov, S.; Sidorov, V.; Ivkov, I.; Krylov, Yu.; Kukhtevich, V.
2004-01-01
This paper deals with the findings of calculation analysis as regards the release of mass, energy and hydrogen during beyond-design-basis accident (BDBA) at Kola NPP equipped with VVER-440 reactor (B-230 design) and in respect of distribution of hydrogen throughout NPP tight compartments. The analysis figures out the number and locations of passive catalytic hydrogen recombiners and of the sensors of the hydrogen concentration monitoring system. In order to prove the hydrogen safety of the design, it has been necessary to review accidents accompanied by maximum emissions (both peak and integral ones) of hydrogen into the tight area. During design-basis accident (DBA), no steam/zirconium reactions occur in the reactor core. Out of BDBA, the severe accidents with damage to the core accompanied oxidative reactions between zirconium and steel with emission of hydrogen are regarded as the most dangerous ones. Assessment of additional hydrogen sources shows that the contribution of such sources to the total amount of hydrogen that may emit during a severe accident is insignificant. Calculations have been made for the following scenarios of severe accidents, which seem to be the most important in terms of hydrogen safety analysis: - 20 mm leak from the primary circuit in combination with a failure of the emergency makeup system; - 500 mm PCP rupture in the vicinity of reactor inlet branch with bi-lateral leakage of coolant. Releases of mass and energy during the aforesaid scenarios, changes of medium parameters within the tight compartments and analysis of possible fire conditions have been analyzed by means of Russian computer codes RATEG/SVECHA/HEFEST, KUPOL-M and LIMITS. The said analysis shows that the large break accident (500 mm), i.e. PCP rupture in the vicinity of the reactor branch with bi-lateral leakage of coolant is of the keen interest in terms of hydrogen safety. This accident typifies powerful short-term release of hydrogen at a significantly lesser
Directory of Open Access Journals (Sweden)
I. K. Romanovich
2010-01-01
Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2012-01-01
Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them......, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...
Energy Technology Data Exchange (ETDEWEB)
Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology
2013-06-01
The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.
Explosives 92. Conference proceedings
Energy Technology Data Exchange (ETDEWEB)
Farnfield, R.A. (ed.)
1992-01-01
17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.
Energy Technology Data Exchange (ETDEWEB)
Lopes, Valdir Maciel
2010-07-01
This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)
Dubaniewicz, Thomas H; DuCarme, Joseph P
2016-09-01
Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.
Deterministic uncertainty analysis
International Nuclear Information System (INIS)
Worley, B.A.
1987-12-01
This paper presents a deterministic uncertainty analysis (DUA) method for calculating uncertainties that has the potential to significantly reduce the number of computer runs compared to conventional statistical analysis. The method is based upon the availability of derivative and sensitivity data such as that calculated using the well known direct or adjoint sensitivity analysis techniques. Formation of response surfaces using derivative data and the propagation of input probability distributions are discussed relative to their role in the DUA method. A sample problem that models the flow of water through a borehole is used as a basis to compare the cumulative distribution function of the flow rate as calculated by the standard statistical methods and the DUA method. Propogation of uncertainties by the DUA method is compared for ten cases in which the number of reference model runs was varied from one to ten. The DUA method gives a more accurate representation of the true cumulative distribution of the flow rate based upon as few as two model executions compared to fifty model executions using a statistical approach. 16 refs., 4 figs., 5 tabs
Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.
2015-12-01
In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to
Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.
2017-02-01
The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.
Height-Deterministic Pushdown Automata
DEFF Research Database (Denmark)
Nowotka, Dirk; Srba, Jiri
2007-01-01
We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...
Deterministic methods in radiation transport
International Nuclear Information System (INIS)
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Deterministic quantitative risk assessment development
Energy Technology Data Exchange (ETDEWEB)
Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)
2009-07-01
Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)
Liu, Jiping
2015-01-01
The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.
1984-08-01
PHASE CRDCAE BGIN AE 01*LTESPD,3-1 AND DD ESTABLISHES FEASIBILITY FEASIBILITY 1391 SUBMITTED, NEE STUDY TO HHO CRDC CRDC SAFETY SITE SAFETY SAFETY PLAN... emission spectrum of the fuel. (Figure 6) -- i This slide indicates the emission spectrum of a typical hydrocarbon ------. ignition. The specific...radiate over the entire IR band. Typical are hot manifolds, boilers , processing vessels, engines and the sun itself. The background radiation from a heat
High Explosives Research and Development (HERD) Facility
Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...
International Nuclear Information System (INIS)
Suraud, E.
1987-01-01
What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr
Deterministic indexing for packed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...
Nonlinear Markov processes: Deterministic case
International Nuclear Information System (INIS)
Frank, T.D.
2008-01-01
Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution
International Nuclear Information System (INIS)
Just, R.A.
1997-10-01
Transportation System Risk Assessments (TSRAs) document the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations and the risk associated with the proposed shipments. TSRAs must often evaluate the consequences of possible transportation accidents involving uranium. If a relatively simple bounding analysis can show that the consequences resulting from a worst case scenario are acceptably low, a more time intensive and costly risk analysis can be avoided. A bounding consequence analysis has been prepared for a worst case noncriticality transportation accident involving the shipment of uranium. In the absence of a criticality incident, a fire or explosion are the only plausible mechanisms identified for dispersing significant amounts of solid hazardous material. Therefore, three very conservative bounding accidents are considered: (1) analysis of the postulated direct radiation exposure, (2) the airborne release of uranium due to a fire, and (3) the release of uranium into a waterway and uptake into drinking water. This report provides the equations, assumptions, and reference information used to predict the consequences of possible transportation accidents involving natural, depleted, and highly enriched uranium
Design of deterministic OS for SPLC
International Nuclear Information System (INIS)
Son, Choul Woong; Kim, Dong Hoon; Son, Gwang Seop
2012-01-01
Existing safety PLCs for using in nuclear power plants operates based on priority based scheduling, in which the highest priority task runs first. This type of scheduling scheme determines processing priorities when multiple requests for processing or when there is a lack of resources available for processing, guaranteeing execution of higher priority tasks. This type of scheduling is prone to exhaustion of resources and continuous preemptions by devices with high priorities, and therefore there is uncertainty every period in terms of smooth running of the overall system. Hence, it is difficult to apply this type of scheme to where deterministic operation is required, such as in nuclear power plant. Also, existing PLCs either have no output logic with regard to devices' redundant selection or it was set in a fixed way, and as a result it was extremely inefficient to use them for redundant systems such as that of a nuclear power plant and their use was limited. Therefore, functional modules that can manage and control all devices need to be developed by improving on the way priorities are assigned among the devices, making it more flexible. A management module should be able to schedule all devices of the system, manage resources, analyze states of the devices, and give warnings in case of abnormal situations, such as device fail or resource scarcity and decide on how to handle it. Also, the management module should have output logic for device redundancy, as well as deterministic processing capabilities, such as with regard to device interrupt events
Directory of Open Access Journals (Sweden)
Yu. V. Veryuzhsky
2003-06-01
Full Text Available The paper include mostly the results of works of the Research Institute for Mechanics of Quickproceeding Processes united in a general research direction - creation of the methodology for risk assessment and risk management for ecologically hazardous systems, consisting of the set of different technological analyzed objects. The elements of system can be characterized by high level of radiation, toxic, explosion, fire and other hazards. The probalistic and deterministic approach for risk assessment, based on mathematical methods of system analysis, non-liner dynamics and computer simulation, has been developed. Branching in problem definition, as well as diversity of factor and criteria for determination of system status, is also taken into account. The risks caused by both objective and subjective factors (including human factor are examined. In many performed studies, the leading structural element, dominating in determination of the system safety, is the structural part of an object. The methodology is implemented for the safety analysis (risk assessment for Chernobyl NPP Shelton Object and other industrial buildings
1986-08-01
LT15 L683 L734 T iL 182 3.54 W L 93 L 13 LE 1.34 46 L277 L53 L544 1544 1569 1571 1571 L653 11M L591 L1594 6594 L7 1M 745 .11 L77 41 L461 143 LA 1 1531...34Corrected"b positive 435.1. 382.4 332.0 impulse, i (psi-msec)S "Corrected wc positive 39.4 38.2 38.2 duration, td (msec) "Correctedlc arrival 18.5...us Department of Defense (1984). *military standard. Fuze, Design safety, criteria For,’ KIUL" TD -1316C. 2. UK ordnance Board (1976). ’Denign Safety
Deterministic extraction from weak random sources
Gabizon, Ariel
2011-01-01
In this research monograph, the author constructs deterministic extractors for several types of sources, using a methodology of recycling randomness which enables increasing the output length of deterministic extractors to near optimal length.
Deterministic hydrodynamics: Taking blood apart
Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.
2006-10-01
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. cells | plasma | separation | microfabrication
ICRP (1991) and deterministic effects
International Nuclear Information System (INIS)
Mole, R.H.
1992-01-01
A critical review of ICRP Publication 60 (1991) shows that considerable revisions are needed in both language and thinking about deterministic effects (DE). ICRP (1991) makes a welcome and clear distinction between change, caused by irradiation; damage, some degree of deleterious change, for example to cells, but not necessarily deleterious to the exposed individual; harm, clinically observable deleterious effects expressed in individuals or their descendants; and detriment, a complex concept combining the probability, severity and time of expression of harm (para42). (All added emphases come from the author.) Unfortunately these distinctions are not carried through into the discussion of deterministic effects (DE) and two important terms are left undefined. Presumably effect may refer to change, damage, harm or detriment, according to context. Clinically observable is also undefined although its meaning is crucial to any consideration of DE since DE are defined as causing observable harm (para 20). (Author)
Aspects regarding explosion risk assessment
Directory of Open Access Journals (Sweden)
Părăian Mihaela
2017-01-01
Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.
International Nuclear Information System (INIS)
Just, R.A.; Love, A.F.
1997-10-01
The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied
Deterministic chaos in entangled eigenstates
Schlegel, K. G.; Förster, S.
2008-05-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
Energy Technology Data Exchange (ETDEWEB)
Schlegel, K.G. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)], E-mail: guenter.schlegel@arcor.de; Foerster, S. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)
2008-05-12
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
International Nuclear Information System (INIS)
Schlegel, K.G.; Foerster, S.
2008-01-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator
A deterministic width function model
Directory of Open Access Journals (Sweden)
C. E. Puente
2003-01-01
Full Text Available Use of a deterministic fractal-multifractal (FM geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States, that the FM approach may also be used to closely approximate existing width functions.
Energy Technology Data Exchange (ETDEWEB)
Gillard, Ph. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)
1998-04-01
Self-ignition of energetic material was investigated in order to optimize safety in the field of pyrotechnic applications. Two approaches were used; the first one is relative to Frank-Kamenetskii stationary thermal explosion theory. The second approach consists of a choice of some numerical solutions of heat conduction equations in a non-stationary state. Comparison between these results was carried out in order to find the numerical scheme which is the most compatible with Frank-Kamenetskii stationary thermal explosion theory. Numerical data were used for three explosive substances. One of them was studied by the author. In all cases, the numerical stationary state is in agreement with the Frank-Kamenetskii stationary thermal explosion theory, more or less accurately. From this comparison, it may be concluded that it is preferable, for this kind of problem, to use an implicit scheme with linearization of the heat source term. Explicit numerical methods, with or without the addition of the heat term with the Zinn and Mader scheme are revealed to be less accurate and to need a greater optimization of spatial and temporal meshing. (author) 7 refs.
Sensitivity to friction for primary explosives.
Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš
2012-04-30
The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Phenomenological modelling of steam explosions
International Nuclear Information System (INIS)
Corradini, M.L.; Drumheller, D.S.
1980-01-01
During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential
Explosive simulants for testing explosive detection systems
Kury, John W.; Anderson, Brian L.
1999-09-28
Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.
On the progress towards probabilistic basis for deterministic codes
International Nuclear Information System (INIS)
Ellyin, F.
1975-01-01
Fundamentals arguments for a probabilistic basis of codes are presented. A class of code formats is outlined in which explicit statistical measures of uncertainty of design variables are incorporated. The format looks very much like present codes (deterministic) except for having probabilistic background. An example is provided whereby the design factors are plotted against the safety index, the probability of failure, and the risk of mortality. The safety level of the present codes is also indicated. A decision regarding the new probabilistically based code parameters thus could be made with full knowledge of implied consequences
Directory of Open Access Journals (Sweden)
Satish Kumar
2012-01-01
Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.
Deterministic and Probabilistic Analysis of NPP Communication Bridge Resistance Due to Extreme Loads
Directory of Open Access Journals (Sweden)
Králik Juraj
2014-12-01
Full Text Available This paper presents the experiences from the deterministic and probability analysis of the reliability of communication bridge structure resistance due to extreme loads - wind and earthquake. On the example of the steel bridge between two NPP buildings is considered the efficiency of the bracing systems. The advantages and disadvantages of the deterministic and probabilistic analysis of the structure resistance are discussed. The advantages of the utilization the LHS method to analyze the safety and reliability of the structures is presented
Risk of dust explosions of combustible nanomaterials
International Nuclear Information System (INIS)
Dobashi, Ritsu
2009-01-01
Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.
Energy Technology Data Exchange (ETDEWEB)
1971-04-01
An explosive composition containing ammonium nitrate consists of (1) from 40 to 75 Pt. by wt of particulate ammonium nitrate, (2) from 20 to 35 Pt. by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate and aqueous ammoniacal ammonium nitrate; and (3) at least 2 Pt. by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, anhydrous calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium tetrapyrophosphate and anhydrous sodium thiosulfate. The setting agent is further characterized in setting the composition to a solid material which contains solvent used in the liquid phase. (Abstract only - original article not available from T.U.)
Energy Technology Data Exchange (ETDEWEB)
Slykhouse, T E
1968-05-09
An ammonium nitrate explosive composition is characterized in that it contains from 40 to 75 parts by wt of particulate ammonium nitrate, from 20 to 35 parts by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate, and aqueous ammoniacal ammonium nitrate. It also contains at least 2 parts by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, substantially anhydrous calcium sulfate, substantially anhydrous magnesium sulfate, substantially anhydrous sodium tetrapyrophosphate and substantially anhydrous sodium thiosulfate. The setting agent is further characterized in that it sets the composition to a solid material which contains solvent used in the liquid phase. (12 claims)
Energy Technology Data Exchange (ETDEWEB)
1973-08-23
A slurry explosive is comprised of (1) a composition consisting of ammonium nitrate or a mixture of ammonium nitrate and an alkali metal nitrate; or an alkaline earth metal nitrate; or an alkali metal nitrate and an alkaline earth metal nitrate; at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels; and water; (2) 0.1 to 2.0% of guar gum; (3) between 0% and 0.3% of a sodium, potassium, calcium or magnesium borate; and greater than 0% but not more than 20% of hexamethylene tetramine; and (4) 0.02 to 2.0% of antimony potassium tartarate, antimony trioxide, antimony trisulfide or a mixture of these antimony compounds, % by wt.
International Nuclear Information System (INIS)
Nishio, Gunji; Watanabe, Kouji; Kouno, Kouji; Yamazaki, Noboru; Mukaide, Shigeo; Yoshioka, Itsuo
1998-03-01
The CELVA-1D computer code was developed to evaluate the confinement of radioactive materials during postulated fire and explosion in a cell of nuclear fuel reprocessing plants. The CELVA-1D code calculates a response of temperature, pressure, flow velocity of fluid in an air-ventilation system of the plants by one-dimensional thermofluid analysis and calculates an ability to confine radioactive aerosol particles by transport, deposition, and HEPA filtration. The mathematical models in CELVA-1D were verified by comparison of the calculation with the result of JAERI's demonstration tests simulating hypothetical fire and explosion accidents in the cell. (author)
Energy Technology Data Exchange (ETDEWEB)
Nishio, Gunji; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kouno, Kouji; Yamazaki, Noboru; Mukaide, Shigeo; Yoshioka, Itsuo
1998-03-01
The CELVA-1D computer code was developed to evaluate the confinement of radioactive materials during postulated fire and explosion in a cell of nuclear fuel reprocessing plants. The CELVA-1D code calculates a response of temperature, pressure, flow velocity of fluid in an air-ventilation system of the plants by one-dimensional thermofluid analysis and calculates an ability to confine radioactive aerosol particles by transport, deposition, and HEPA filtration. The mathematical models in CELVA-1D were verified by comparison of the calculation with the result of JAERI`s demonstration tests simulating hypothetical fire and explosion accidents in the cell. (author)
ICPP custom dissolver explosion recovery
International Nuclear Information System (INIS)
Demmer, R.; Hawk, R.
1992-01-01
This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)
78 FR 64246 - Commerce in Explosives; List of Explosives Materials
2013-10-28
..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247
Deterministic and unambiguous dense coding
International Nuclear Information System (INIS)
Wu Shengjun; Cohen, Scott M.; Sun Yuqing; Griffiths, Robert B.
2006-01-01
Optimal dense coding using a partially-entangled pure state of Schmidt rank D and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most L d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τ x ) Bob knows for sure that Alice sent message x, and when it fails (probability 1-τ x ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For D≤D a bound is obtained for L d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. [Phys. Rev. A71, 012311 (2005)]. For D>D it is shown that L d is strictly less than D 2 unless D is an integer multiple of D, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for D≤D, assuming τ x >0 for a set of DD messages, and a bound is obtained for the average . A bound on the average requires an additional assumption of encoding by isometries (unitaries when D=D) that are orthogonal for different messages. Both bounds are saturated when τ x is a constant independent of x, by a protocol based on one-shot entanglement concentration. For D>D it is shown that (at least) D 2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states
Deterministic computation of functional integrals
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.
1995-09-01
A new method of numerical integration in functional spaces is described. This method is based on the rigorous definition of a functional integral in complete separable metric space and on the use of approximation formulas which we constructed for this kind of integral. The method is applicable to solution of some partial differential equations and to calculation of various characteristics in quantum physics. No preliminary discretization of space and time is required in this method, as well as no simplifying assumptions like semi-classical, mean field approximations, collective excitations, introduction of ''short-time'' propagators, etc are necessary in our approach. The constructed approximation formulas satisfy the condition of being exact on a given class of functionals, namely polynomial functionals of a given degree. The employment of these formulas replaces the evaluation of a functional integral by computation of the ''ordinary'' (Riemannian) integral of a low dimension, thus allowing to use the more preferable deterministic algorithms (normally - Gaussian quadratures) in computations rather than traditional stochastic (Monte Carlo) methods which are commonly used for solution of the problem under consideration. The results of application of the method to computation of the Green function of the Schroedinger equation in imaginary time as well as the study of some models of Euclidean quantum mechanics are presented. The comparison with results of other authors shows that our method gives significant (by an order of magnitude) economy of computer time and memory versus other known methods while providing the results with the same or better accuracy. The funcitonal measure of the Gaussian type is considered and some of its particular cases, namely conditional Wiener measure in quantum statistical mechanics and functional measure in a Schwartz distribution space in two-dimensional quantum field theory are studied in detail. Numerical examples demonstrating the
Branch, David
2017-01-01
Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...
Deterministic secure communication protocol without using entanglement
Cai, Qing-yu
2003-01-01
We show a deterministic secure direct communication protocol using single qubit in mixed state. The security of this protocol is based on the security proof of BB84 protocol. It can be realized with current technologies.
Deterministic chaos in the processor load
International Nuclear Information System (INIS)
Halbiniak, Zbigniew; Jozwiak, Ireneusz J.
2007-01-01
In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case
Energy Technology Data Exchange (ETDEWEB)
Faber, Wolfgang [Thyssengas GmbH, Duisburg (Germany). Anlagentechnik Nord; Seemann, Albert [BG ETEM Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse, Koeln (Germany)
2012-04-15
In order to protect employees, technical and organizational measures for explosion protection have to be provided to gas plants with potentially explosive areas. These measures have to be documented in the explosion protection document in accordance with paragraph 6 section 1 of the regulation of industrial safety. The contribution under consideration presents an overview on the measures for explosion protection for gas systems.
30 CFR 75.1310 - Explosives and blasting equipment.
2010-07-01
... for use so long as the present approval is maintained. (e) Electric detonators shall be compatible... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310...
Energy Technology Data Exchange (ETDEWEB)
NONE
1975-07-01
Republic of Germany, India, Mexico, Sweden, Thailand, United Kingdom, USA and USSR. An additional 21 Member States sent observers. A summary of the technical papers follows: n general, statements on national programmes revealed continued interest in assessing the technical and economic feasibility of peaceful nuclear explosions and in evaluating the health and safety problems. In some cases the interest was qualified by the realization that factors such as high population densities and social attitudes make it improbable that the States concerned will be able to make any use of peaceful nuclear explosions domestically even if such explosions are shown to be technically and economically viable. Health and safety, phenomenology, applications, and projects all received attention in the technical papers presented by participants. The scope of the health and safety papers and the discussion which they generated reflected the considerable attention now being given to these aspects both within and outside of national programmes. (author)
1978-09-14
1975), "The Characterization and Evaluation of Accidental Explosions," NASA CR-134779, Grant NSG 3008, June 1975. 3. Strehlow, P. A. and Baker, W. E...of Blast Waves from Bursting Pressurized Frangible Spheres," NASA CR-2843, Grant NSG 3008, May 1977. 9. Boyer, W. D., Brode, H. L., Glass, I. I...applications during the past years. Less than two decades ago, the first futuristic FRP house was unveiled at Disneyland , CA. Today the FRP industry
Explosives remain preferred methods for platform abandonment
International Nuclear Information System (INIS)
Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III
1996-01-01
Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp's Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains
Gas induced fire and explosion frequencies
International Nuclear Information System (INIS)
Coutts, D.A.
1997-01-01
The use and handling of flammable gases poses a fire and explosion hazard to many DOE nuclear facilities. This hazard is not unique to DOE facilities. Each year over 2,900 non-residential structural fires occur in the U.S. where a gas is the first item ignited. Details from these events are collected by the National Fire Incident Reporting System (NFIRS) through an extensive reporting network. This extensive data set (800,000 fires in non-residential structures over a 5-year period) is an underutilized resource within the DOE community. Explosions in nuclear facilities can have very severe consequences. The explosion can both damage the facility containment and provide a mechanism for significant radiological dispersion. In addition, an explosion can have significant worker safety implications. Because of this a quantitative frequency estimate for explosions in an SRS laboratory facility has been prepared using the NFIRS data. 6 refs., 1 tab
International Nuclear Information System (INIS)
Tarride, Bruno
2015-10-01
The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions
Evaluation of ferrocyanide/nitrate explosive hazard
International Nuclear Information System (INIS)
Cady, H.H.
1992-06-01
Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed
Understanding vented gas explosions
Energy Technology Data Exchange (ETDEWEB)
Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems
1997-12-31
The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.
Understanding vented gas explosions
Energy Technology Data Exchange (ETDEWEB)
Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems
1998-12-31
The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.
International Nuclear Information System (INIS)
Boustani, Ehsan; Amirkabir University of Technology, Tehran; Khakshournia, Samad
2016-01-01
In this paper two different computational approaches, a deterministic and a stochastic one, were used for calculation of the control rods worth of the Tehran research reactor. For the deterministic approach the MTRPC package composed of the WIMS code and diffusion code CITVAP was used, while for the stochastic one the Monte Carlo code MCNPX was applied. On comparing our results obtained by the Monte Carlo approach and those previously reported in the Safety Analysis Report (SAR) of Tehran research reactor produced by the deterministic approach large discrepancies were seen. To uncover the root cause of these discrepancies, some efforts were made and finally was discerned that the number of spatial mesh points in the deterministic approach was the critical cause of these discrepancies. Therefore, the mesh optimization was performed for different regions of the core such that the results of deterministic approach based on the optimized mesh points have a good agreement with those obtained by the Monte Carlo approach.
Energy Technology Data Exchange (ETDEWEB)
Boustani, Ehsan [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.; Khakshournia, Samad [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.
2016-12-15
In this paper two different computational approaches, a deterministic and a stochastic one, were used for calculation of the control rods worth of the Tehran research reactor. For the deterministic approach the MTRPC package composed of the WIMS code and diffusion code CITVAP was used, while for the stochastic one the Monte Carlo code MCNPX was applied. On comparing our results obtained by the Monte Carlo approach and those previously reported in the Safety Analysis Report (SAR) of Tehran research reactor produced by the deterministic approach large discrepancies were seen. To uncover the root cause of these discrepancies, some efforts were made and finally was discerned that the number of spatial mesh points in the deterministic approach was the critical cause of these discrepancies. Therefore, the mesh optimization was performed for different regions of the core such that the results of deterministic approach based on the optimized mesh points have a good agreement with those obtained by the Monte Carlo approach.
Design of deterministic interleaver for turbo codes
International Nuclear Information System (INIS)
Arif, M.A.; Sheikh, N.M.; Sheikh, A.U.H.
2008-01-01
The choice of suitable interleaver for turbo codes can improve the performance considerably. For long block lengths, random interleavers perform well, but for some applications it is desirable to keep the block length shorter to avoid latency. For such applications deterministic interleavers perform better. The performance and design of a deterministic interleaver for short frame turbo codes is considered in this paper. The main characteristic of this class of deterministic interleaver is that their algebraic design selects the best permutation generator such that the points in smaller subsets of the interleaved output are uniformly spread over the entire range of the information data frame. It is observed that the interleaver designed in this manner improves the minimum distance or reduces the multiplicity of first few spectral lines of minimum distance spectrum. Finally we introduce a circular shift in the permutation function to reduce the correlation between the parity bits corresponding to the original and interleaved data frames to improve the decoding capability of MAP (Maximum A Posteriori) probability decoder. Our solution to design a deterministic interleaver outperforms the semi-random interleavers and the deterministic interleavers reported in the literature. (author)
Decreasing Friction Sensitivity for Primary Explosives
Matyáš, Robert; Šelešovský, Jakub
2014-04-01
Primary explosives are a group of explosives that are widely used in various initiating devices. One of their properties is sufficient sensitivity to initiating stimuli. However, their sensitivity often introduces a safety risk during their production and subsequent handling. It is generally known that water can be used to desensitize these compounds. The most commonly used industrial primary explosives (lead azide, lead styphnate, tetrazene, and diazodinitrophenol) were mixed with water in various ratios and the sensitivity to friction was determined for all mixtures. It was found that even a small addition of water (5-10%) considerably lowered the friction sensitivity.
Deterministic sensitivity analysis for the numerical simulation of contaminants transport
International Nuclear Information System (INIS)
Marchand, E.
2007-12-01
The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)
International Nuclear Information System (INIS)
1998-01-01
A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection
Sensitivity to friction for primary explosives
International Nuclear Information System (INIS)
Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš
2012-01-01
Highlights: ► The friction sensitivity of 14 samples of primary explosives was determined. ► The same apparatus (small scale BAM) and the same method (probit analysis) was used. ► The crystal shapes and sizes were documented with microscopy. ► Almost all samples are less sensitive than lead azide, which is commercially used. ► The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.
Sensitivity to friction for primary explosives
Energy Technology Data Exchange (ETDEWEB)
Matyas, Robert, E-mail: robert.matyas@upce.cz [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic); Selesovsky, Jakub; Musil, Tomas [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic)
2012-04-30
Highlights: Black-Right-Pointing-Pointer The friction sensitivity of 14 samples of primary explosives was determined. Black-Right-Pointing-Pointer The same apparatus (small scale BAM) and the same method (probit analysis) was used. Black-Right-Pointing-Pointer The crystal shapes and sizes were documented with microscopy. Black-Right-Pointing-Pointer Almost all samples are less sensitive than lead azide, which is commercially used. Black-Right-Pointing-Pointer The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.
Proving Non-Deterministic Computations in Agda
Directory of Open Access Journals (Sweden)
Sergio Antoy
2017-01-01
Full Text Available We investigate proving properties of Curry programs using Agda. First, we address the functional correctness of Curry functions that, apart from some syntactic and semantic differences, are in the intersection of the two languages. Second, we use Agda to model non-deterministic functions with two distinct and competitive approaches incorporating the non-determinism. The first approach eliminates non-determinism by considering the set of all non-deterministic values produced by an application. The second approach encodes every non-deterministic choice that the application could perform. We consider our initial experiment a success. Although proving properties of programs is a notoriously difficult task, the functional logic paradigm does not seem to add any significant layer of difficulty or complexity to the task.
Deterministic dense coding with partially entangled states
Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni
2005-01-01
The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
DETERMINISTIC METHODS USED IN FINANCIAL ANALYSIS
Directory of Open Access Journals (Sweden)
MICULEAC Melania Elena
2014-06-01
Full Text Available The deterministic methods are those quantitative methods that have as a goal to appreciate through numerical quantification the creation and expression mechanisms of factorial and causal, influence and propagation relations of effects, where the phenomenon can be expressed through a direct functional relation of cause-effect. The functional and deterministic relations are the causal relations where at a certain value of the characteristics corresponds a well defined value of the resulting phenomenon. They can express directly the correlation between the phenomenon and the influence factors, under the form of a function-type mathematical formula.
Introducing Synchronisation in Deterministic Network Models
DEFF Research Database (Denmark)
Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.
2006-01-01
The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...
Optimal Deterministic Investment Strategies for Insurers
Directory of Open Access Journals (Sweden)
Ulrich Rieder
2013-11-01
Full Text Available We consider an insurance company whose risk reserve is given by a Brownian motion with drift and which is able to invest the money into a Black–Scholes financial market. As optimization criteria, we treat mean-variance problems, problems with other risk measures, exponential utility and the probability of ruin. Following recent research, we assume that investment strategies have to be deterministic. This leads to deterministic control problems, which are quite easy to solve. Moreover, it turns out that there are some interesting links between the optimal investment strategies of these problems. Finally, we also show that this approach works in the Lévy process framework.
Ignitability and explosibility of gases and vapors
Ma, Tingguang
2015-01-01
The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but al...
International Nuclear Information System (INIS)
Maheri, Alireza
2014-01-01
Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a
Excavation research with chemical explosives
International Nuclear Information System (INIS)
Vandenberg, William E.; Day, Walter C.
1970-01-01
The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment
Excavation research with chemical explosives
Energy Technology Data Exchange (ETDEWEB)
Vandenberg, William E; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)
1970-05-01
The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment.
A Theory of Deterministic Event Structures
Lee, I.; Rensink, Arend; Smolka, S.A.
1995-01-01
We present an w-complete algebra of a class of deterministic event structures which are labelled prime event structures where the labelling function satises a certain distinctness condition. The operators of the algebra are summation sequential composition and join. Each of these gives rise to a
A Numerical Simulation for a Deterministic Compartmental ...
African Journals Online (AJOL)
In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...
Deterministic Earthquake Hazard Assessment by Public Agencies in California
Mualchin, L.
2005-12-01
Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.
Laser-based optical detection of explosives
Pellegrino, Paul M; Farrell, Mikella E
2015-01-01
Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...
Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System
Directory of Open Access Journals (Sweden)
N Matsuo
2016-09-01
Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.
New Mix Explosives for Explosive Welding
Andreevskikh, Leonid
2011-06-01
Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.
Niels Dupont
2013-01-01
CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...
Piecewise deterministic processes in biological models
Rudnicki, Ryszard
2017-01-01
This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...
Deterministic nonlinear systems a short course
Anishchenko, Vadim S; Strelkova, Galina I
2014-01-01
This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.
Deterministic nanoparticle assemblies: from substrate to solution
International Nuclear Information System (INIS)
Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J
2014-01-01
The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)
Deterministic dynamics of plasma focus discharges
International Nuclear Information System (INIS)
Gratton, J.; Alabraba, M.A.; Warmate, A.G.; Giudice, G.
1992-04-01
The performance (neutron yield, X-ray production, etc.) of plasma focus discharges fluctuates strongly in series performed with fixed experimental conditions. Previous work suggests that these fluctuations are due to a deterministic ''internal'' dynamics involving degrees of freedom not controlled by the operator, possibly related to adsorption and desorption of impurities from the electrodes. According to these dynamics the yield of a discharge depends on the outcome of the previous ones. We study 8 series of discharges in three different facilities, with various electrode materials and operating conditions. More evidence of a deterministic internal dynamics is found. The fluctuation pattern depends on the electrode materials and other characteristics of the experiment. A heuristic mathematical model that describes adsorption and desorption of impurities from the electrodes and their consequences on the yield is presented. The model predicts steady yield or periodic and chaotic fluctuations, depending on parameters related to the experimental conditions. (author). 27 refs, 7 figs, 4 tabs
Advances in stochastic and deterministic global optimization
Zhigljavsky, Anatoly; Žilinskas, Julius
2016-01-01
Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...
Understanding deterministic diffusion by correlated random walks
International Nuclear Information System (INIS)
Klages, R.; Korabel, N.
2002-01-01
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations. (author)
Dynamic optimization deterministic and stochastic models
Hinderer, Karl; Stieglitz, Michael
2016-01-01
This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Deterministic geologic processes and stochastic modeling
International Nuclear Information System (INIS)
Rautman, C.A.; Flint, A.L.
1992-01-01
This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling
Deterministic analyses of severe accident issues
International Nuclear Information System (INIS)
Dua, S.S.; Moody, F.J.; Muralidharan, R.; Claassen, L.B.
2004-01-01
Severe accidents in light water reactors involve complex physical phenomena. In the past there has been a heavy reliance on simple assumptions regarding physical phenomena alongside of probability methods to evaluate risks associated with severe accidents. Recently GE has developed realistic methodologies that permit deterministic evaluations of severe accident progression and of some of the associated phenomena in the case of Boiling Water Reactors (BWRs). These deterministic analyses indicate that with appropriate system modifications, and operator actions, core damage can be prevented in most cases. Furthermore, in cases where core-melt is postulated, containment failure can either be prevented or significantly delayed to allow sufficient time for recovery actions to mitigate severe accidents
Deterministic automata for extended regular expressions
Directory of Open Access Journals (Sweden)
Syzdykov Mirzakhmet
2017-12-01
Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.
Free radical explosive composition
Walker, Franklin E.; Wasley, Richard J.
1979-01-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.
Nuclear explosives and hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Cohen, P
1971-10-01
A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)
International Nuclear Information System (INIS)
Martin, S.; Arnott, D.
1988-01-01
It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody; Tembine, Hamidou; Tempone, Raul
2016-01-01
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...
International Nuclear Information System (INIS)
2001-01-01
This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)
Safety Verification of Piecewise-Deterministic Markov Processes
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer; Bujorianu, Manuela
2016-01-01
the moment method, we can translate the infinite-dimensional optimisation problem searching for the largest set of p-safe states to a finite dimensional polynomial optimisation problem. We have implemented this technique on top of GloptiPoly and show how to apply it to a numerical example....
Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)
Kędra, Mariola
2014-02-01
Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.
Deterministic and Probabilistic Analysis against Anticipated Transient Without Scram
International Nuclear Information System (INIS)
Choi, Sun Mi; Kim, Ji Hwan; Seok, Ho
2016-01-01
An Anticipated Transient Without Scram (ATWS) is an Anticipated Operational Occurrences (AOOs) accompanied by a failure of the reactor trip when required. By a suitable combination of inherent characteristics and diverse systems, the reactor design needs to reduce the probability of the ATWS and to limit any Core Damage and prevent loss of integrity of the reactor coolant pressure boundary if it happens. This study focuses on the deterministic analysis for the ATWS events with respect to Reactor Coolant System (RCS) over-pressure and fuel integrity for the EU-APR. Additionally, this report presents the Probabilistic Safety Assessment (PSA) reflecting those diverse systems. The analysis performed for the ATWS event indicates that the NSSS could be reached to controlled and safe state due to the addition of boron into the core via the EBS pump flow upon the EBAS by DPS. Decay heat is removed through MSADVs and the auxiliary feedwater. During the ATWS event, RCS pressure boundary is maintained by the operation of primary and secondary safety valves. Consequently, the acceptance criteria were satisfied by installing DPS and EBS in addition to the inherent safety characteristics
Deterministic and Probabilistic Analysis against Anticipated Transient Without Scram
Energy Technology Data Exchange (ETDEWEB)
Choi, Sun Mi; Kim, Ji Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of); Seok, Ho [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)
2016-10-15
An Anticipated Transient Without Scram (ATWS) is an Anticipated Operational Occurrences (AOOs) accompanied by a failure of the reactor trip when required. By a suitable combination of inherent characteristics and diverse systems, the reactor design needs to reduce the probability of the ATWS and to limit any Core Damage and prevent loss of integrity of the reactor coolant pressure boundary if it happens. This study focuses on the deterministic analysis for the ATWS events with respect to Reactor Coolant System (RCS) over-pressure and fuel integrity for the EU-APR. Additionally, this report presents the Probabilistic Safety Assessment (PSA) reflecting those diverse systems. The analysis performed for the ATWS event indicates that the NSSS could be reached to controlled and safe state due to the addition of boron into the core via the EBS pump flow upon the EBAS by DPS. Decay heat is removed through MSADVs and the auxiliary feedwater. During the ATWS event, RCS pressure boundary is maintained by the operation of primary and secondary safety valves. Consequently, the acceptance criteria were satisfied by installing DPS and EBS in addition to the inherent safety characteristics.
Screening sealed bottles for liquid explosives
Kumar, Sankaran; McMichael, W. Casey; Kim, Y.-W.; Sheldon, Alan G.; Magnuson, Erik E.; Ficke, L.; Chhoa, T. K.; Moeller, C. R.; Barrall, Geoffrey A.; Burnett, Lowell J.; Czipott, Peter V.; Pence, J. S.; Skvoretz, David C.
1997-01-01
A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.
Vapor generation methods for explosives detection research
Energy Technology Data Exchange (ETDEWEB)
Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.
2012-12-01
The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
2010-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 75.1312 - Explosives and detonators in underground magazines.
2010-07-01
... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5 feet...
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
2010-07-01
... characteristics. 18.62 Section 18.62 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inspections and Tests § 18.62 Tests to determine explosion-proof characteristics. (a) In testing for explosion-proof characteristics of an enclosure, it shall be filled and surrounded with various explosive mixtures...
International Nuclear Information System (INIS)
Popoff, A.A.
1976-01-01
Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community
Explosions and static electricity
DEFF Research Database (Denmark)
Jonassen, Niels M
1995-01-01
The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...
Steam explosion studies review
International Nuclear Information System (INIS)
Hwang, Moon Kyu; Kim, Hee Dong
1999-03-01
When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)
Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj
2016-03-01
Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.
Underground nuclear explosions
Energy Technology Data Exchange (ETDEWEB)
Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-01
In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)
Underground nuclear explosions
International Nuclear Information System (INIS)
Higgins, Gary H.
1970-01-01
In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)
The role of PSA in safety management
International Nuclear Information System (INIS)
Szikszai, T.
1997-01-01
The presentation discusses the following issues: defence in depth principle (the role of the barriers, how does PSA represents the barriers?); the safety management and nuclear power plants; the probabilistic and deterministic approaches; the PSA applications and safety management
Research topics in explosives - a look at explosives behaviors
International Nuclear Information System (INIS)
Maienschein, J L
2014-01-01
The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.
Diffusion in Deterministic Interacting Lattice Systems
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
International Nuclear Information System (INIS)
Schultheiss, G.F.
1980-01-01
The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)
International Nuclear Information System (INIS)
1990-01-01
The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills
Cavity structural integrity evaluation of steam explosion using LS-DYNA
Energy Technology Data Exchange (ETDEWEB)
Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2015-10-15
For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.
Streamflow disaggregation: a nonlinear deterministic approach
Directory of Open Access Journals (Sweden)
B. Sivakumar
2004-01-01
Full Text Available This study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1 reconstruction of the scalar (streamflow series in a multi-dimensional phase-space for representing the transformation dynamics; and (2 use of a local approximation (nearest neighbor method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day. Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3 and small number of neighbors (less than 50, suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow.
A mathematical theory for deterministic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)
2007-05-15
Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.
Deterministic prediction of surface wind speed variations
Directory of Open Access Journals (Sweden)
G. V. Drisya
2014-11-01
Full Text Available Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.
International Nuclear Information System (INIS)
Queniart, D.
1989-12-01
This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained
The control and prevention of dust explosions
Energy Technology Data Exchange (ETDEWEB)
1982-01-01
Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.
Energy Technology Data Exchange (ETDEWEB)
Duijm, N.J.; Markert, F. [Forskningscenter Risoe (Denmark)
2000-03-01
Modern technologies like high-pressure water washout and Fluidised Bed Combustion provide safe and environmentally acceptable solutions for demilitarisation. The environmental impact from the traditional techniques Open Burning and Open Detonation can be drastically reduced. High-pressure water washout in combination with Fluidised Bed Combustion and NO{sub x}-reduction using urea-injection is the best well-demonstrated technology considered in this study. This technology can be used for large/medium sized calibre munitions, but additional removal of NO{sub x} from the flue gases is required in order to comply with European emission standards. It has been made credible at existing Rotary Kilns used for hazardous waste in general can be used also for incineration of de-sensitised, down sized munitions (slurries), with a similar performance with respect to environmental and safety aspects as Fluidised Bed Combustion. Using a Closed Detonation chamber with flue-gas cleaning has important environmental advantages compared to Open Burning and Open Detonation, especially for small munitions (e.g. fuzes, antipersonnel mines, pyrotechnics). However, because Closed Detonation is labour-intensive and requires operation of complex, pressurised systems, it poses more risk on the personnel. For that reason, it is recommended to develop other systems to demilitarise small munitions. It appears that the air pollution emissions from transport of munitions to disposal facilities is significant compared to the process emissions of the 'cleanest' technologies. Similarly, risks related to transport (due to ordinary accidents involving trucks) are not dominating, but cannot be ignored compared to process risks. These considerations need to be included when comparing less sophisticated local or mobile facilities with central facilities having advanced flue gas cleaning. (au)
International Nuclear Information System (INIS)
Arien, B.
2000-01-01
The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported
Parametric Explosion Spectral Model
Energy Technology Data Exchange (ETDEWEB)
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Ammonium nitrate explosion hazards
Directory of Open Access Journals (Sweden)
Negovanović Milanka
2015-01-01
Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.
Nuclear explosive driven experiments
International Nuclear Information System (INIS)
Ragan, C.E.
1981-01-01
Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment
Sachdev, PL
2004-01-01
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...
Intermittent Explosive Disorder
... explosive disorder involves repeated, sudden episodes of impulsive, aggressive, violent behavior or angry verbal outbursts in which you react grossly out of proportion to the situation. Road rage, domestic abuse, throwing or breaking objects, or other temper tantrums ...
Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...
Idaho Explosives Detection System
International Nuclear Information System (INIS)
Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.
2005-01-01
The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004
Idaho Explosives Detection System
Energy Technology Data Exchange (ETDEWEB)
Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)
2005-12-15
The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.
Intermittent Explosive Disorder
Directory of Open Access Journals (Sweden)
Lut Tamam
2011-09-01
Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.
Radioactive and Other Effects of Nuclear Explosion
International Nuclear Information System (INIS)
Ilijas, B.; Cizmek, A.; Prah, M.; Medakovic, S.
2008-01-01
As a result of long lasting efforts of international community to definitely ban all test nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in New York on 24 September 1996, when it was signed by 71 states, including Croatia. The State Office for Nuclear Safety (SONS) which, as an independent state regulatory authority has a responsibility for activities relating to nuclear safety, including the national authority over this Treaty, is actively engaged in CTBTO activities. The nuclear explosion causes a lot of effects (blast, thermal, radioactive, electromagnetic) which differs a lot in its nature, reach, lasting and other. The longest lasting aftermath is from the radioactive effects that cause a radioactive fallout and a lot of radioactive elements in the environment, created by the influence of a primary beam of radiation. Fission and fusion are the main source of radionuclide created by the nuclear explosion, and the longest lasting aftermaths are by the fission products, namely their offspring in natural disintegration chains. This can make contaminated areas inappropriate for life for very long periods. Even in the case of underground nuclear explosion (when underground cavity is formed with no effects on the surface), a leakage of radioactive gases through cracks is possible. A number of radionuclide is created by the neutron activation of elements naturally present in an environment, because a very strong neutron radiation appears in the moment of nuclear explosion. The abundance of particular radionuclide is a very much dependent of a place of performing nuclear explosion and a composition of soil or water in the vicinity.(author)
Sensitivities of ionic explosives
Politzer, Peter; Lane, Pat; Murray, Jane S.
2017-03-01
We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.
Workshop on explosions, BLEVEs, fires, etc.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
The purpose of this workshop will be to provide a bridge between engineering practices, modeling, and measurement of fires and explosions, and use this information in a practical manner to improve the fire safety of the process facility. New techniques and information are available on the means to prevent, predict and mitigate fires and explosions. A review of BLEVEs and methods for preventing and protecting against the effects of BLEVES in large petrochemical facilities. Observations and the use of models that have been successful in predicting the effects of vapor explosions for the prevention of collapse of structures and mitigation of the effects of vapor explosions in process facilities are presented. Recent work involving the measurement of radiation from large jet fires at the Kuwaiti oil fields and fire tests of crude oil spills on the sea is discussed. Fire radiation measurement can be used to predict effects on structures, facilities, and the complexity of fire fighting operations required for control of spill and pool fires. Practical applications of techniques for prevention and control of explosions within building, resulting from failures of autoclaves or release of flammable gas to the atmosphere of the building are discussed.
Inferring hierarchical clustering structures by deterministic annealing
International Nuclear Information System (INIS)
Hofmann, T.; Buhmann, J.M.
1996-01-01
The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees
Mechanics from Newton's laws to deterministic chaos
Scheck, Florian
2018-01-01
This book covers all topics in mechanics from elementary Newtonian mechanics, the principles of canonical mechanics and rigid body mechanics to relativistic mechanics and nonlinear dynamics. It was among the first textbooks to include dynamical systems and deterministic chaos in due detail. As compared to the previous editions the present 6th edition is updated and revised with more explanations, additional examples and problems with solutions, together with new sections on applications in science. Symmetries and invariance principles, the basic geometric aspects of mechanics as well as elements of continuum mechanics also play an important role. The book will enable the reader to develop general principles from which equations of motion follow, to understand the importance of canonical mechanics and of symmetries as a basis for quantum mechanics, and to get practice in using general theoretical concepts and tools that are essential for all branches of physics. The book contains more than 150 problems ...
Deterministic Diffusion in Delayed Coupled Maps
International Nuclear Information System (INIS)
Sozanski, M.
2005-01-01
Coupled Map Lattices (CML) are discrete time and discrete space dynamical systems used for modeling phenomena arising in nonlinear systems with many degrees of freedom. In this work, the dynamical and statistical properties of a modified version of the CML with global coupling are considered. The main modification of the model is the extension of the coupling over a set of local map states corresponding to different time iterations. The model with both stochastic and chaotic one-dimensional local maps is studied. Deterministic diffusion in the CML under variation of a control parameter is analyzed for unimodal maps. As a main result, simple relations between statistical and dynamical measures are found for the model and the cases where substituting nonlinear lattices with simpler processes is possible are presented. (author)
Deterministic effects of interventional radiology procedures
International Nuclear Information System (INIS)
Shope, Thomas B.
1997-01-01
The purpose of this paper is to describe deterministic radiation injuries reported to the Food and Drug Administration (FDA) that resulted from therapeutic, interventional procedures performed under fluoroscopic guidance, and to investigate the procedure or equipment-related factors that may have contributed to the injury. Reports submitted to the FDA under both mandatory and voluntary reporting requirements which described radiation-induced skin injuries from fluoroscopy were investigated. Serious skin injuries, including moist desquamation and tissues necrosis, have occurred since 1992. These injuries have resulted from a variety of interventional procedures which have required extended periods of fluoroscopy compared to typical diagnostic procedures. Facilities conducting therapeutic interventional procedures need to be aware of the potential for patient radiation injury and take appropriate steps to limit the potential for injury. (author)
Deterministic Chaos in Radon Time Variation
International Nuclear Information System (INIS)
Planinic, J.; Vukovic, B.; Radolic, V.; Faj, Z.; Stanic, D.
2003-01-01
Radon concentrations were continuously measured outdoors, in living room and basement in 10-minute intervals for a month. The radon time series were analyzed by comparing algorithms to extract phase-space dynamical information. The application of fractal methods enabled to explore the chaotic nature of radon in the atmosphere. The computed fractal dimensions, such as Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent (λ ) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0< H<0.5) indicated anti-persistent behavior (non random changes) of the time series, but the positive values of the λ pointed out the grate sensitivity on initial conditions and appearing deterministic chaos by radon time variations. The calculated fractal dimensions of attractors indicated more influencing (meteorological) parameters on radon in the atmosphere. (author)
Radon time variations and deterministic chaos
Energy Technology Data Exchange (ETDEWEB)
Planinic, J. E-mail: planinic@pedos.hr; Vukovic, B.; Radolic, V
2004-07-01
Radon concentrations were continuously measured outdoors, in the living room and in the basement at 10 min intervals for a month. Radon time series were analyzed by comparing algorithms to extract phase space dynamical information. The application of fractal methods enabled exploration of the chaotic nature of radon in atmosphere. The computed fractal dimensions, such as the Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent ({lambda}) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0
Radon time variations and deterministic chaos
International Nuclear Information System (INIS)
Planinic, J.; Vukovic, B.; Radolic, V.
2004-01-01
Radon concentrations were continuously measured outdoors, in the living room and in the basement at 10 min intervals for a month. Radon time series were analyzed by comparing algorithms to extract phase space dynamical information. The application of fractal methods enabled exploration of the chaotic nature of radon in atmosphere. The computed fractal dimensions, such as the Hurst exponent (H) from the rescaled range analysis, Lyapunov exponent (λ) and attractor dimension, provided estimates of the degree of chaotic behavior. The obtained low values of the Hurst exponent (0< H<0.5) indicated anti-persistent behavior (non-random changes) of the time series, but the positive values of λ pointed out the grate sensitivity on initial conditions and the deterministic chaos that appeared due to radon time variations. The calculated fractal dimensions of attractors indicated more influencing (meteorological) parameters on radon in the atmosphere
Deterministic SLIR model for tuberculosis disease mapping
Aziz, Nazrina; Diah, Ijlal Mohd; Ahmad, Nazihah; Kasim, Maznah Mat
2017-11-01
Tuberculosis (TB) occurs worldwide. It can be transmitted to others directly through air when active TB persons sneeze, cough or spit. In Malaysia, it was reported that TB cases had been recognized as one of the most infectious disease that lead to death. Disease mapping is one of the methods that can be used as the prevention strategies since it can displays clear picture for the high-low risk areas. Important thing that need to be considered when studying the disease occurrence is relative risk estimation. The transmission of TB disease is studied through mathematical model. Therefore, in this study, deterministic SLIR models are used to estimate relative risk for TB disease transmission.
Primality deterministic and primality probabilistic tests
Directory of Open Access Journals (Sweden)
Alfredo Rizzi
2007-10-01
Full Text Available In this paper the A. comments the importance of prime numbers in mathematics and in cryptography. He remembers the very important researches of Eulero, Fermat, Legen-re, Rieman and others scholarships. There are many expressions that give prime numbers. Between them Mersenne’s primes have interesting properties. There are also many conjectures that still have to be demonstrated or rejected. The primality deterministic tests are the algorithms that permit to establish if a number is prime or not. There are not applicable in many practical situations, for instance in public key cryptography, because the computer time would be very long. The primality probabilistic tests consent to verify the null hypothesis: the number is prime. In the paper there are comments about the most important statistical tests.
International Nuclear Information System (INIS)
Takagi, N.; Shoji, M.
1979-01-01
An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, K. (Fir Research Inst., Tokyo (Japan))
1990-09-01
Occurence probability and the size of the industrial accident (frequency and intensity) in Japan surpassed USA since 1970, having improved its safety record year by year. The decrease in the occurence of accidents in Japan is a result of various successful measures taken in various sectors of industries. Development of disasters prevention technology is always demanded in accordance with the progress of the science and technology. A methodology of disaster prevention measures comprises accident analysis (statistical or individual)(inductive or passive) and a safety principle (assessment of danger characteristics of the chemical substances, equipment examination technique, risk analysis, analysis of a near-mistake)(deduction or positive), block should support each other for establishing the safety technology. Types of the explosion accident involves a vapor mass explosion, BLEVE (Boiling Liquid Expanding Vapor Explosion), boil-over and vapor explosion, explosion due to run-away reaction, explosion of explosive substance and dust explosion. 13 refs., 6 figs., 2 tabs.
International Nuclear Information System (INIS)
Patrik, M.; Babic, P.
2001-06-01
The report responds to the trend where probabilistic safety analyses are attached, on a voluntary basis (as yet), to the mandatory deterministic assessment of modifications of NPP systems or operating procedures, resulting in risk-informed type documents. It contains a nearly complete Czech translation of US NRC Regulatory Guide 1.177 and presents some suggestions for improving a) PSA study applications; b) the development of NPP documents for the regulatory body; and c) the interconnection between PSA and traditional deterministic analyses as contained in the risk-informed approach. (P.A.)
CSL model checking of deterministic and stochastic Petri nets
Martinez Verdugo, J.M.; Haverkort, Boudewijn R.H.M.; German, R.; Heindl, A.
2006-01-01
Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under
Recognition of deterministic ETOL languages in logarithmic space
DEFF Research Database (Denmark)
Jones, Neil D.; Skyum, Sven
1977-01-01
It is shown that if G is a deterministic ETOL system, there is a nondeterministic log space algorithm to determine membership in L(G). Consequently, every deterministic ETOL language is recognizable in polynomial time. As a corollary, all context-free languages of finite index, and all Indian...
International Nuclear Information System (INIS)
Anderson, R.P.; Armstrong, D.R.
1977-01-01
Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids
Fire and explosion security in the petroleum sector
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
The conference has 12 presentations on topics regarding fire fighting, explosions and development scenarios, safety and security aspects, management of safety issues and measures and preparedness. Some accidents and fires are discussed. Some important problems with LNG with respects to plants, transport, fires and risk assessment are presented.
Nuclear explosives testing readiness evaluation
Energy Technology Data Exchange (ETDEWEB)
Valk, T.C.
1993-09-01
This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.
Experimental aspects of deterministic secure quantum key distribution
Energy Technology Data Exchange (ETDEWEB)
Walenta, Nino; Korn, Dietmar; Puhlmann, Dirk; Felbinger, Timo; Hoffmann, Holger; Ostermeyer, Martin [Universitaet Potsdam (Germany). Institut fuer Physik; Bostroem, Kim [Universitaet Muenster (Germany)
2008-07-01
Most common protocols for quantum key distribution (QKD) use non-deterministic algorithms to establish a shared key. But deterministic implementations can allow for higher net key transfer rates and eavesdropping detection rates. The Ping-Pong coding scheme by Bostroem and Felbinger[1] employs deterministic information encoding in entangled states with its characteristic quantum channel from Bob to Alice and back to Bob. Based on a table-top implementation of this protocol with polarization-entangled photons fundamental advantages as well as practical issues like transmission losses, photon storage and requirements for progress towards longer transmission distances are discussed and compared to non-deterministic protocols. Modifications of common protocols towards a deterministic quantum key distribution are addressed.
M. Plagge, C. Schaefer and N. Dupont
2013-01-01
Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...
C. Schaefer and N. Dupont
2013-01-01
“Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...
Prospects in deterministic three dimensional whole-core transport calculations
International Nuclear Information System (INIS)
Sanchez, Richard
2012-01-01
The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.
Novel high explosive compositions
Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.
1968-04-16
This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)
Energy Technology Data Exchange (ETDEWEB)
Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)
2002-01-01
The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz
Multi-scale fracture damage associated with underground chemical explosions
Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.
2018-05-01
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.
International Nuclear Information System (INIS)
Jones, P.M.S.
1987-01-01
Aspects of fission reactors are considered - control, heat removal and containment. Brief descriptions of the reactor accidents at the SL-1 reactor (1961), Windscale (1957), Browns Ferry (1975), Three Mile Island (1979) and Chernobyl (1986) are given. The idea of inherently safe reactor designs is discussed. Safety assessment is considered under the headings of preliminary hazard analysis, failure mode analysis, event trees, fault trees, common mode failure and probabalistic risk assessments. These latter can result in a series of risk distributions linked to specific groups of fault sequences and specific consequences. A frequency-consequence diagram is shown. Fatal accident incidence rates in different countries including the United Kingdom for various industries are quoted. The incidence of fatal cancers from occupational exposure to chemicals is tabulated. Human factors and the acceptability of risk are considered. (U.K.)
SC Unit
2009-01-01
Habilitation électrique A course entitled "Habilitation électrique pour personnel de laboratoire" (electrical safety qualification for laboratory personnel) will be held on 22 and 23 June. Registration by e-mail to isabelle.cusato@cern.ch. Explosion Hazards in the handling of flammable solvents and gases A course entitled "Explosion Hazards in the handling of flammable solvents and gases" given in French will be held on 18-19 June 2009. This course is obligatory for all FGSOs at CERN, and it is recommended for anyone handling flammable gas or solvents. To sign up please visit this page. For more information please contact Isabelle Cusato, tel. 73811.
Deterministic models for energy-loss straggling
International Nuclear Information System (INIS)
Prinja, A.K.; Gleicher, F.; Dunham, G.; Morel, J.E.
1999-01-01
Inelastic ion interactions with target electrons are dominated by extremely small energy transfers that are difficult to resolve numerically. The continuous-slowing-down (CSD) approximation is then commonly employed, which, however, only preserves the mean energy loss per collision through the stopping power, S(E) = ∫ 0 ∞ dEprime (E minus Eprime) σ s (E → Eprime). To accommodate energy loss straggling, a Gaussian distribution with the correct mean-squared energy loss (akin to a Fokker-Planck approximation in energy) is commonly used in continuous-energy Monte Carlo codes. Although this model has the unphysical feature that ions can be upscattered, it nevertheless yields accurate results. A multigroup model for energy loss straggling was recently presented for use in multigroup Monte Carlo codes or in deterministic codes that use multigroup data. The method has the advantage that the mean and mean-squared energy loss are preserved without unphysical upscatter and hence is computationally efficient. Results for energy spectra compared extremely well with Gaussian distributions under the idealized conditions for which the Gaussian may be considered to be exact. Here, the authors present more consistent comparisons by extending the method to accommodate upscatter and, further, compare both methods with exact solutions obtained from an analog Monte Carlo simulation, for a straight-ahead transport problem
A Deterministic Approach to Earthquake Prediction
Directory of Open Access Journals (Sweden)
Vittorio Sgrigna
2012-01-01
Full Text Available The paper aims at giving suggestions for a deterministic approach to investigate possible earthquake prediction and warning. A fundamental contribution can come by observations and physical modeling of earthquake precursors aiming at seeing in perspective the phenomenon earthquake within the framework of a unified theory able to explain the causes of its genesis, and the dynamics, rheology, and microphysics of its preparation, occurrence, postseismic relaxation, and interseismic phases. Studies based on combined ground and space observations of earthquake precursors are essential to address the issue. Unfortunately, up to now, what is lacking is the demonstration of a causal relationship (with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. In doing this, modern and/or new methods and technologies have to be adopted to try to solve the problem. Coordinated space- and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of Low-Earth-Orbit (LEO satellites. Moreover, a new strong theoretical scientific effort is necessary to try to understand the physics of the earthquake.
Deterministic Approach to Detect Heart Sound Irregularities
Directory of Open Access Journals (Sweden)
Richard Mengko
2017-07-01
Full Text Available A new method to detect heart sound that does not require machine learning is proposed. The heart sound is a time series event which is generated by the heart mechanical system. From the analysis of heart sound S-transform and the understanding of how heart works, it can be deducted that each heart sound component has unique properties in terms of timing, frequency, and amplitude. Based on these facts, a deterministic method can be designed to identify each heart sound components. The recorded heart sound then can be printed with each component correctly labeled. This greatly help the physician to diagnose the heart problem. The result shows that most known heart sounds were successfully detected. There are some murmur cases where the detection failed. This can be improved by adding more heuristics including setting some initial parameters such as noise threshold accurately, taking into account the recording equipment and also the environmental condition. It is expected that this method can be integrated into an electronic stethoscope biomedical system.
Deterministic dense coding and entanglement entropy
International Nuclear Information System (INIS)
Bourdon, P. S.; Gerjuoy, E.; McDonald, J. P.; Williams, H. T.
2008-01-01
We present an analytical study of the standard two-party deterministic dense-coding protocol, under which communication of perfectly distinguishable messages takes place via a qudit from a pair of nonmaximally entangled qudits in a pure state |ψ>. Our results include the following: (i) We prove that it is possible for a state |ψ> with lower entanglement entropy to support the sending of a greater number of perfectly distinguishable messages than one with higher entanglement entropy, confirming a result suggested via numerical analysis in Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. (ii) By explicit construction of families of local unitary operators, we verify, for dimensions d=3 and d=4, a conjecture of Mozes et al. about the minimum entanglement entropy that supports the sending of d+j messages, 2≤j≤d-1; moreover, we show that the j=2 and j=d-1 cases of the conjecture are valid in all dimensions. (iii) Given that |ψ> allows the sending of K messages and has √(λ 0 ) as its largest Schmidt coefficient, we show that the inequality λ 0 ≤d/K, established by Wu et al. [Phys. Rev. A 73, 042311 (2006)], must actually take the form λ 0 < d/K if K=d+1, while our constructions of local unitaries show that equality can be realized if K=d+2 or K=2d-1
Analysis of pinching in deterministic particle separation
Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German
2011-11-01
We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.
Integrated control system for nuclear explosives
Energy Technology Data Exchange (ETDEWEB)
Ragsdale, William F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-15
The Integrated Control System (ICS) has been developed to facilitate Plowshare nuclear detonations by following a unified system approach. This system consolidates the techniques for firing, safety program, scientific program, and communications. Maximum emphasis is placed upon control and data transmission by radio rather than hardwire or coaxial cable. The ICS consists of a Command Point (CP) Trailer, a radio repeater station, a field station (the ICE Box), and several chassis located in the explosive canister. Commands originate in the CP and are transmitted via microwave radio to the ICE Box; monitors are returned to the CP from the canister, the ICE Box, and sensors near ground zero. The system allows complete checkout and operation before shipment to the field. The explosive canister may be dry-run at the assembly area (at NTS) before shipment to the field. The basic detonation functions for every event are: 1. Arming and firing commands in the explosive canister and at surface ground zero. 2. Environmental monitors and suitable arming monitors in the explosive canister. 3. Safety monitors at the zero site for weather, RAMS (Remote Area Monitoring System), and cavity collapse. Secondary functions that may be required for a specific project are: 4. Scientific program of phenomenology measurements. 5. Explosive performance measurements. 6. Ground zero television. 7. Auxiliary communications such as local telephones, VHF radio. By combining functions that have previously been performed by separate organizations and systems, the ICS attempts a minimum cost detonation service. Economy of operation results because: 1. Operating personnel work on more than one sub-system. 2. Interfaces and interface complexity are minimized. 3. A reduced dependence upon signal cables results from a microwave-based system. 4. Pre-fabrication allows test operation before shipment to the field and minimizes setup time in the field. The ICS is in use on the Sturtevant event and is
Explosive material treatment in particular the explosive compaction of powders
International Nuclear Information System (INIS)
Pruemmer, R.
1985-01-01
The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de
Risk-Based Explosive Safety Analysis
2016-11-30
NUMBER 5f. WORK UNIT NUMBER P0D9 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air...U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work . PA...weaknesses of this methodology are that its criteria are inflexible to site-specific operations and require obtaining waivers or exemptions for
75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)
2010-01-08
... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...
75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)
2010-11-17
..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Safety. 257.3-8 Section 257.3-8... and Practices § 257.3-8 Safety. (a) Explosive gases. The concentration of explosive gases generated by... shall not pose a hazard to the safety of persons or property from fires. This may be accomplished...
Energy Technology Data Exchange (ETDEWEB)
Graham, Emily B. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Crump, Alex R. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Resch, Charles T. [Geochemistry Department, Pacific Northwest National Laboratory, Richland WA USA; Fansler, Sarah [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Environmental Compliance and Emergency Preparation, Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Fredrickson, Jim K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA
2017-03-28
Subsurface zones of groundwater and surface water mixing (hyporheic zones) are regions of enhanced rates of biogeochemical cycling, yet ecological processes governing hyporheic microbiome composition and function through space and time remain unknown. We sampled attached and planktonic microbiomes in the Columbia River hyporheic zone across seasonal hydrologic change, and employed statistical null models to infer mechanisms generating temporal changes in microbiomes within three hydrologically-connected, physicochemically-distinct geographic zones (inland, nearshore, river). We reveal that microbiomes remain dissimilar through time across all zones and habitat types (attached vs. planktonic) and that deterministic assembly processes regulate microbiome composition in all data subsets. The consistent presence of heterotrophic taxa and members of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum nonetheless suggests common selective pressures for physiologies represented in these groups. Further, co-occurrence networks were used to provide insight into taxa most affected by deterministic assembly processes. We identified network clusters to represent groups of organisms that correlated with seasonal and physicochemical change. Extended network analyses identified keystone taxa within each cluster that we propose are central in microbiome composition and function. Finally, the abundance of one network cluster of nearshore organisms exhibited a seasonal shift from heterotrophic to autotrophic metabolisms and correlated with microbial metabolism, possibly indicating an ecological role for these organisms as foundational species in driving biogeochemical reactions within the hyporheic zone. Taken together, our research demonstrates a predominant role for deterministic assembly across highly-connected environments and provides insight into niche dynamics associated with seasonal changes in hyporheic microbiome composition and metabolism.
Energy Technology Data Exchange (ETDEWEB)
Fleck, K
1983-01-01
Knowledge on the physical and chemical processes of an explosion, on sources of ignition and measures to prevent explosive atmospheres and to deactivate sources of ignition may help to detect and prevent hazards. Safety measures for production and use of explosive materials are specified in DIN EN 50015-20/VDE 0170/0171 parts 2-7/5.78. Electric systems in explosive areas are specified in the Ordinance on Electric Systems in Explosive treas (Elex V), with pertinent administrative regulations. Ordinances, regulations and rules governing the operation of electric systems in explosive areas are listed.
Explosive composition containing water
Energy Technology Data Exchange (ETDEWEB)
Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.
1971-11-26
This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.
2010-02-03
... the Storage of Ammonium Nitrate. OSHA subsequently made several minor revisions to the standard (37 FR... explosives; storing ammonium nitrate; and storing small arms ammunition, small arms primers, and small arms..., which is extremely widespread, causes lung disease, silicosis and lung cancer. Terminating the...
Energy Technology Data Exchange (ETDEWEB)
Kale, D.C.
1982-12-01
Mining engineers will soon have an additional 2 or 3 types of explosives which increase rock yield without increasing cost. A new variety of Ammonium Nitrate and Fuel Oil (ANFO), which is much heavier and more powerful, is being introduced in the US. New types of NCN (nitrocarbonitrate) blasting agents have also been developed.
Energy Technology Data Exchange (ETDEWEB)
Marchand, E
2007-12-15
The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)
Advances in impact resistance testing for explosion-proof electrical equipment
Directory of Open Access Journals (Sweden)
Pasculescu Vlad Mihai
2017-01-01
Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.
Equivalence relations between deterministic and quantum mechanical systems
International Nuclear Information System (INIS)
Hooft, G.
1988-01-01
Several quantum mechanical models are shown to be equivalent to certain deterministic systems because a basis can be found in terms of which the wave function does not spread. This suggests that apparently indeterministic behavior typical for a quantum mechanical world can be the result of locally deterministic laws of physics. We show how certain deterministic systems allow the construction of a Hilbert space and a Hamiltonian so that at long distance scales they may appear to behave as quantum field theories, including interactions but as yet no mass term. These observations are suggested to be useful for building theories at the Planck scale
Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes
DEFF Research Database (Denmark)
Starke, Jens; Reichert, Christian; Eiswirth, Markus
2007-01-01
Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...
Operational State Complexity of Deterministic Unranked Tree Automata
Directory of Open Access Journals (Sweden)
Xiaoxue Piao
2010-08-01
Full Text Available We consider the state complexity of basic operations on tree languages recognized by deterministic unranked tree automata. For the operations of union and intersection the upper and lower bounds of both weakly and strongly deterministic tree automata are obtained. For tree concatenation we establish a tight upper bound that is of a different order than the known state complexity of concatenation of regular string languages. We show that (n+1 ( (m+12^n-2^(n-1 -1 vertical states are sufficient, and necessary in the worst case, to recognize the concatenation of tree languages recognized by (strongly or weakly deterministic automata with, respectively, m and n vertical states.
Local and remote infrasound from explosive volcanism
Matoza, R. S.; Fee, D.; LE Pichon, A.
2014-12-01
Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.
ZERODUR: deterministic approach for strength design
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two
A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations
Energy Technology Data Exchange (ETDEWEB)
Haeck, Wim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saller, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-12
Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in the details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.
The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes
Bogdanova, E. V.; Kuznetsov, A. N.
2017-01-01
The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.
Probabilistic approach in treatment of deterministic analyses results of severe accidents
International Nuclear Information System (INIS)
Krajnc, B.; Mavko, B.
1996-01-01
Severe accidents sequences resulting in loss of the core geometric integrity have been found to have small probability of the occurrence. Because of their potential consequences to public health and safety, an evaluation of the core degradation progression and the resulting effects on the containment is necessary to determine the probability of a significant release of radioactive materials. This requires assessment of many interrelated phenomena including: steel and zircaloy oxidation, steam spikes, in-vessel debris cooling, potential vessel failure mechanisms, release of core material to the containment, containment pressurization from steam generation, or generation of non-condensable gases or hydrogen burn, and ultimately coolability of degraded core material. To asses the answer from the containment event trees in the sense of weather certain phenomenological event would happen or not the plant specific deterministic analyses should be performed. Due to the fact that there is a large uncertainty in the prediction of severe accidents phenomena in Level 2 analyses (containment event trees) the combination of probabilistic and deterministic approach should be used. In fact the result of the deterministic analyses of severe accidents are treated in probabilistic manner due to large uncertainty of results as a consequence of a lack of detailed knowledge. This paper discusses approach used in many IPEs, and which assures that the assigned probability for certain question in the event tree represent the probability that the event will or will not happen and that this probability also includes its uncertainty, which is mainly result of lack of knowledge. (author)
International Nuclear Information System (INIS)
Liang, Thomas K.S.; Chou, Ling-Yao; Zhang, Zhongwei; Hsueh, Hsiang-Yu; Lee, Min
2011-01-01
Highlights: → A new LOCA licensing methodology (DRHM, deterministic-realistic hybrid methodology) was developed. → DRHM involves conservative Appendix K physical models and statistical treatment of plant status uncertainties. → DRHM can generate 50-100 K PCT margin as compared to a traditional Appendix K methodology. - Abstract: It is well recognized that a realistic LOCA analysis with uncertainty quantification can generate greater safety margin as compared with classical conservative LOCA analysis using Appendix K evaluation models. The associated margin can be more than 200 K. To quantify uncertainty in BELOCA analysis, generally there are two kinds of uncertainties required to be identified and quantified, which involve model uncertainties and plant status uncertainties. Particularly, it will take huge effort to systematically quantify individual model uncertainty of a best estimate LOCA code, such as RELAP5 and TRAC. Instead of applying a full ranged BELOCA methodology to cover both model and plant status uncertainties, a deterministic-realistic hybrid methodology (DRHM) was developed to support LOCA licensing analysis. Regarding the DRHM methodology, Appendix K deterministic evaluation models are adopted to ensure model conservatism, while CSAU methodology is applied to quantify the effect of plant status uncertainty on PCT calculation. Generally, DRHM methodology can generate about 80-100 K margin on PCT as compared to Appendix K bounding state LOCA analysis.
Siting criteria based on the prevention of deterministic effects from plutonium inhalation exposures
International Nuclear Information System (INIS)
Sorensen, S.A.; Low, J.O.
1998-01-01
Siting criteria are established by regulatory authorities to evaluate potential accident scenarios associated with proposed nuclear facilities. The 0.25 Sv (25 rem) siting criteria adopted in the United States has been historically based on the prevention of deterministic effects from acute, whole-body exposures. The Department of Energy has extended the applicability of this criterion to radionuclides that deliver chronic, organ-specific irradiation through the specification of a 0.25 Sv (25 rem) committed effective dose equivalent siting criterion. A methodology is developed to determine siting criteria based on the prevention of deterministic effects from inhalation intakes of radionuclides which deliver chronic, organ-specific irradiation. Revised siting criteria, expressed in terms of committed effective dose equivalent, are proposed for nuclear facilities that handle primarily plutonium compounds. The analysis determined that a siting criterion of 1.2 Sv (120 rem) committed effective dose equivalent for inhalation exposures to weapons-grade plutonium meets the historical goal of preventing deterministic effects during a facility accident scenario. The criterion also meets the Nuclear Regulatory Commission and Department of Energy Nuclear Safety Goals provided that the frequency of the accident is sufficiently low
Deterministic Echo State Networks Based Stock Price Forecasting
Directory of Open Access Journals (Sweden)
Jingpei Dan
2014-01-01
Full Text Available Echo state networks (ESNs, as efficient and powerful computational models for approximating nonlinear dynamical systems, have been successfully applied in financial time series forecasting. Reservoir constructions in standard ESNs rely on trials and errors in real applications due to a series of randomized model building stages. A novel form of ESN with deterministically constructed reservoir is competitive with standard ESN by minimal complexity and possibility of optimizations for ESN specifications. In this paper, forecasting performances of deterministic ESNs are investigated in stock price prediction applications. The experiment results on two benchmark datasets (Shanghai Composite Index and S&P500 demonstrate that deterministic ESNs outperform standard ESN in both accuracy and efficiency, which indicate the prospect of deterministic ESNs for financial prediction.
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
2017-01-01
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)=Z(t) Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are X 2 -distributed....
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)= Z(t) + Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are khi squared distributed....
Method to deterministically study photonic nanostructures in different experimental instruments
Husken, B.H.; Woldering, L.A.; Blum, Christian; Tjerkstra, R.W.; Vos, Willem L.
2009-01-01
We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Non deterministic finite automata for power systems fault diagnostics
Directory of Open Access Journals (Sweden)
LINDEN, R.
2009-06-01
Full Text Available This paper introduces an application based on finite non-deterministic automata for power systems diagnosis. Automata for the simpler faults are presented and the proposed system is compared with an established expert system.
Transmission power control in WSNs : from deterministic to cognitive methods
Chincoli, M.; Liotta, A.; Gravina, R.; Palau, C.E.; Manso, M.; Liotta, A.; Fortino, G.
2018-01-01
Communications in Wireless Sensor Networks (WSNs) are affected by dynamic environments, variable signal fluctuations and interference. Thus, prompt actions are necessary to achieve dependable communications and meet Quality of Service (QoS) requirements. To this end, the deterministic algorithms
Allowed outage time for test and maintenance - Optimization of safety
International Nuclear Information System (INIS)
Cepin, M.; Mavko, B.
1997-01-01
The main objective of the project is the development and application of methodologies for improvement and optimization of test and maintenance activities for safety related equipment in NPPs on basis of their enhanced safety. The probabilistic safety assessment serves as a base, which does not mean the replacement of the deterministic analyses but the consideration of probabilistic safety assessment results as complement to deterministic results. 15 refs, 2 figs
Local deterministic theory surviving the violation of Bell's inequalities
International Nuclear Information System (INIS)
Cormier-Delanoue, C.
1984-01-01
Bell's theorem which asserts that no deterministic theory with hidden variables can give the same predictions as quantum theory, is questioned. Such a deterministic theory is presented and carefully applied to real experiments performed on pairs of correlated photons, derived from the EPR thought experiment. The ensuing predictions violate Bell's inequalities just as quantum mechanics does, and it is further shown that this discrepancy originates in the very nature of radiations. Complete locality is therefore restored while separability remains more limited [fr
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
Deterministic chaos in the pitting phenomena of passivable alloys
International Nuclear Information System (INIS)
Hoerle, Stephane
1998-01-01
It was shown that electrochemical noise recorded in stable pitting conditions exhibits deterministic (even chaotic) features. The occurrence of deterministic behaviors depend on the material/solution severity. Thus, electrolyte composition ([Cl - ]/[NO 3 - ] ratio, pH), passive film thickness or alloy composition can change the deterministic features. Only one pit is sufficient to observe deterministic behaviors. The electrochemical noise signals are non-stationary, which is a hint of a change with time in the pit behavior (propagation speed or mean). Modifications of electrolyte composition reveals transitions between random and deterministic behaviors. Spontaneous transitions between deterministic behaviors of different features (bifurcation) are also evidenced. Such bifurcations enlighten various routes to chaos. The routes to chaos and the features of chaotic signals allow to suggest the modeling (continuous and discontinuous models are proposed) of the electrochemical mechanisms inside a pit, that describe quite well the experimental behaviors and the effect of the various parameters. The analysis of the chaotic behaviors of a pit leads to a better understanding of propagation mechanisms and give tools for pit monitoring. (author) [fr
International Nuclear Information System (INIS)
Vance, W.F.
1979-01-01
A multidiscipline training program established to create a new monitor, theHealth and Safety Technician, is described. The training program includes instruction in fire safety, explosives safety, industrial hygiene, industrial safety, health physics, and general safety practices
Services Textbook of Explosives
1972-03-01
the propagation in such systems of the detonation wave which had been observed in 1881 by Berthelot and Vieille and by Mallard and le Chatelier . In...detonation, Berthelot and Le Chatelier , Dautrich 4 - 63: Calorometric value 4 -- 66, Power of explosive, lead block, Trauzl 4 - 67- Ballistic pendulum 4...the principles of electric ignition were applied to this system also. 75. In 1890-91 Curtius first prepared lead, silver and mercury azides. The
EPR safety. Consideration of the internal and external hazards in the safety studies
International Nuclear Information System (INIS)
Gueguin, H.
2008-04-01
The author presents the main points of the Preliminary Safety Report of EDF on the EPR reactor safety. It concerns the considerations of the internal (fire, flood, explosions, pipes failures) and external (earthquakes, airplane falls, explosions, exceptional natural disasters, extreme meteorological conditions) damages. It presents how the safety report takes into account the aggression. (A.L.B.)
Explosive Leidenfrost droplets
Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane
2017-11-01
We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).
Trend analysis of explosion events at overseas nuclear power plants
International Nuclear Information System (INIS)
Shimada, Hiroki
2008-01-01
We surveyed failures caused by disasters (e.g., severe storms, heavy rainfall, earthquakes, explosions and fires) which occurred during the 13 years from 1995 to 2007 at overseas nuclear power plants (NPPs) from the nuclear information database of the Institute of Nuclear Safety System. Incorporated (INSS). The results revealed that explosions were the second most frequent type of failure after fires. We conducted a trend analysis on such explosion events. The analysis by equipment, cause, and effect on the plant showed that the explosions occurred mainly at electrical facilities, and thus it is essential to manage the maintenance of electrical facilities for preventing explosions. In addition, it was shown that explosions at transformers and batteries, which have never occurred at Japan's NPPs, accounted for as much as 55% of all explosions. The fact infers that this difference is attributable to the difference in maintenance methods of transformers (condition based maintenance adopted by NPPs) and workforce organization of batteries (inspections performed by utilities' own maintenance workers at NPPs). (author)
A Computational Investigation of Various Water-Induced Explosion Mitigation Mechanisms
2007-01-01
Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs , Center for Chemical Process Safety, AIChE, New York, NY...1994. [6]. Liebman and J. K. Richmond, Suppression of Coal Dust Explosions by Passive Water Barriers in a single Entry Mine , U.S. Bureau of Mines ...R.I. 8294, 1974. [7]. Liebman, J. Corry and J. K. Richmond, Water Barriers for Suppressing Coal Dust Explosions, U.S. Bureau of Mines R.I. 8170
Deterministic analysis of mid scale outdoor fire
International Nuclear Information System (INIS)
Vidmar, P.; Petelin, S.
2003-01-01
The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. Mathematical fire model called FDS (Fire Dynamic Simulator) is used in the presented work. A CFD (Computational Fluid Dynamic) model using LES (Large Eddie Simulation) is used to calculate fire development and spread of combustion products in the environment. The fire source is located in the vicinity of the hazardous plant, power, chemical etc. The article presents the brief background of the FDS computer program and the initial and boundary conditions used in the mathematical model. Results discuss output data and check the validity of results. The work also presents some corrections of the physical model used, which influence the quality of results. The obtained results were discussed and compared with the Fire Safety Analysis report included in the Probabilistic Safety Assessment of Krsko nuclear power plant. (author)
Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan
2018-01-01
To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...
Industry potential of large scale uses for peaceful nuclear explosives
International Nuclear Information System (INIS)
Russell, P.L.
1969-01-01
The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)
Industry potential of large scale uses for peaceful nuclear explosives
Energy Technology Data Exchange (ETDEWEB)
Russell, P L [Bureau of Mines, Denver, CO (United States)
1969-07-01
The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)
Deterministic effects of the ionizing radiation
International Nuclear Information System (INIS)
Raslawski, Elsa C.
2001-01-01
Full text: The deterministic effect is the somatic damage that appears when radiation dose is superior to the minimum value or 'threshold dose'. Over this threshold dose, the frequency and seriousness of the damage increases with the amount given. Sixteen percent of patients younger than 15 years of age with the diagnosis of cancer have the possibility of a cure. The consequences of cancer treatment in children are very serious, as they are physically and emotionally developing. The seriousness of the delayed effects of radiation therapy depends on three factors: a)- The treatment ( dose of radiation, schedule of treatment, time of treatment, beam energy, treatment volume, distribution of the dose, simultaneous chemotherapy, etc.); b)- The patient (state of development, patient predisposition, inherent sensitivity of tissue, the present of other alterations, etc.); c)- The tumor (degree of extension or infiltration, mechanical effects, etc.). The effect of radiation on normal tissue is related to cellular activity and the maturity of the tissue irradiated. Children have a mosaic of tissues in different stages of maturity at different moments in time. On the other hand, each tissue has a different pattern of development, so that sequelae are different in different irradiated tissues of the same patient. We should keep in mind that all the tissues are affected in some degree. Bone tissue evidences damage with growth delay and degree of calcification. Damage is small at 10 Gy; between 10 and 20 Gy growth arrest is partial, whereas at doses larger than 20 Gy growth arrest is complete. The central nervous system is the most affected because the radiation injuries produce demyelination with or without focal or diffuse areas of necrosis in the white matter causing character alterations, lower IQ and functional level, neuro cognitive impairment,etc. The skin is also affected, showing different degrees of erythema such as ulceration and necrosis, different degrees of
Simulation of steam explosion in stratified melt-coolant configuration
International Nuclear Information System (INIS)
Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja
2016-01-01
Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To
Proceedings of the seventeenth annual conference on explosives and blasting technique. Volume 2
International Nuclear Information System (INIS)
Anon.
1991-01-01
Papers from this conference dealt with the following topics: surface and underground mine blasting, ground vibrations and blast effects, design for explosive fracturing of rock, sequential timing for blasting control, design for production optimization, use of blasting for abandoned mine reclamation, chemical explosives, lightning warning systems, magazine security, fire safety, and drilling equipment. Papers have been indexed separately for inclusion on the data base
A critical evaluation of combustible/explosible dust testing methods-part 1
Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...
International Nuclear Information System (INIS)
Arien, B.
1998-01-01
The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported
Explosive processes in nucleosynthesis
International Nuclear Information System (INIS)
Boyd, R.N.
2002-01-01
There are many explosive processes in nucleosynthesis: big bang nucleosynthesis, the rp-process, the γ-process, the ν-process, and the r-process. However, I will discuss just the rp-process and the r-process in detail, primarily because both seem to have been very active research areas of late, and because they have great potential for studies with radioactive nuclear beams. I will also discuss briefly the γ-process because of its inevitability in conjunction with the rp-process. (orig.)
SLIFER measurement for explosive yield
International Nuclear Information System (INIS)
Bass, R.C.; Benjamin, B.C.; Miller, H.M.; Breding, D.R.
1976-04-01
This report describes the shorted location indicator by frequency of electrical resonance (SLIFER) system used at Sandia Laboratories for determination of explosive yield of under ground nuclear tests
Zirconium hydride containing explosive composition
Walker, Franklin E.; Wasley, Richard J.
1981-01-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.
76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)
2011-10-19
... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...
77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)
2012-09-20
... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...
Incineration process fire and explosion protection
International Nuclear Information System (INIS)
Ziegler, D.L.
1975-01-01
Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)
A statistical description of explosion produced debris dispersion
Voort, M.M. van der; Weerheijm, J.
2013-01-01
The handling of explosives and ammunition introduces a safety risk for personnel and third parties. Accidents related to storage, transport and transshipment may result in severe injury and material damage. Dispersion of structural debris is one of the main hazards resulting from detonations inside
30 CFR 75.1315 - Boreholes for explosives.
2010-07-01
.... (e) When blasting slab rounds off the solid, opener holes shall not be drilled beyond the rib line... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for...; and (2) Shots fired in anthracite mines for battery starting or for blasting coal overhangs. No person...
Learning to Act: Qualitative Learning of Deterministic Action Models
DEFF Research Database (Denmark)
Bolander, Thomas; Gierasimczuk, Nina
2017-01-01
In this article we study learnability of fully observable, universally applicable action models of dynamic epistemic logic. We introduce a framework for actions seen as sets of transitions between propositional states and we relate them to their dynamic epistemic logic representations as action...... in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while arbitrary (non-deterministic) actions require more learning power—they are identifiable in the limit. We then move on to a particular learning method, i.e. learning via update......, which proceeds via restriction of a space of events within a learning-specific action model. We show how this method can be adapted to learn conditional and unconditional deterministic action models. We propose update learning mechanisms for the afore mentioned classes of actions and analyse...
Deterministic and stochastic CTMC models from Zika disease transmission
Zevika, Mona; Soewono, Edy
2018-03-01
Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.
EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE
Directory of Open Access Journals (Sweden)
A. Levin Vladimir
2017-01-01
Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific
Towards deterministic optical quantum computation with coherently driven atomic ensembles
International Nuclear Information System (INIS)
Petrosyan, David
2005-01-01
Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons
Deterministic and efficient quantum cryptography based on Bell's theorem
International Nuclear Information System (INIS)
Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg
2006-01-01
We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology
The dual face of reactor safety
International Nuclear Information System (INIS)
Merz, L.
1981-01-01
Reactor safety is nowadays treated theoretically by a probabilistic approach. This means that events which may lead to accidents are considered as random events, and probability calculus is employed to predict potential damage. However, it has been found in practice that there are also failures in no way connected with chance, i.e., the so-called deterministic ones. This lends a dual face to reactor safety, a probabilistic and a deterministic one. In this contribution, the author resumes studies he had once initiated under the heading of Deterministic and Probabilistic Theses on Reactor Safety. He examines the present state of reactor safety under the aspect of deterministic and probabilistic failures and the significance of active and passive safety systems, estimating whether and to what extent earlier proposals have been incorporated in present technology. The two most prominent studies dealing with the risk of nuclear power plants, the American Rasmussen Study, WASH 1400, and the German Risk Study, were calculated by the most recent probabilistic methods. The causes of deterministic failures can be traced back to deterministic errors. There are errors in planning, in design, in fabrication, errors caused by maloperation, premature aging, sabotage and war. Since they are due to certain causes, it is possible in principle to discover and control them already by mental experiments. (orig./HP) [de
Numerical schemes for explosion hazards
International Nuclear Information System (INIS)
Therme, Nicolas
2015-01-01
In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called
Introduction to High Explosives Science
Energy Technology Data Exchange (ETDEWEB)
Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-17
These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.
Kaliski's explosive driven fusion experiments
International Nuclear Information System (INIS)
Marshall, J.
1979-01-01
An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed
Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry
Gu, Yan
2017-06-01
Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.
Background on the commercial explosive chosen for the non-proliferation experiment
Energy Technology Data Exchange (ETDEWEB)
Mammele, M.E.
1994-12-31
The requirements of the Chemical Kiloton Experiment as outlined in the original explosives bid package provided DYNO NOBEL/Alpha-Ireco, Inc. with a unique challenge. The size of the chamber, the total volume of explosives required, the chemical energy equivalent of one kiloton, the time-frame of loading the chamber, transportation, safety, were all necessary considerations in choosing this particular explosive. The rationale for choosing this particular emulsion/ANFO blend of blasting agent explosive will be presented. DYNO NOBEL INC in-house theoretical predictions as to the explosive performance potential of the blasting agent will be compared to some of the actual data acquired upon detonation. The results of this type of experiment may provide new insight as to the efficiency of the energy release of typical commercial explosives.
Nuclear explosions and their effects
Energy Technology Data Exchange (ETDEWEB)
1958-01-01
A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.
Nucleosynthesis in stellar explosions
Energy Technology Data Exchange (ETDEWEB)
Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.
1983-01-01
The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.
Nucleosynthesis in stellar explosions
International Nuclear Information System (INIS)
Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.
1983-01-01
The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints
Thermochemistry of mixed explosives
International Nuclear Information System (INIS)
Janney, J.L.; Rogers, R.N.
1982-01-01
In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1
Deterministic Predictions of Vessel Responses Based on Past Measurements
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Jensen, Jørgen Juncher
2017-01-01
The paper deals with a prediction procedure from which global wave-induced responses can be deterministically predicted a short time, 10-50 s, ahead of current time. The procedure relies on the autocorrelation function and takes into account prior measurements only; i.e. knowledge about wave...
About the Possibility of Creation of a Deterministic Unified Mechanics
International Nuclear Information System (INIS)
Khomyakov, G.K.
2005-01-01
The possibility of creation of a unified deterministic scheme of classical and quantum mechanics, allowing to preserve their achievements is discussed. It is shown that the canonical system of ordinary differential equation of Hamilton classical mechanics can be added with the vector system of ordinary differential equation for the variables of equations. The interpretational problems of quantum mechanics are considered
Deterministic Versus Stochastic Interpretation of Continuously Monitored Sewer Systems
DEFF Research Database (Denmark)
Harremoës, Poul; Carstensen, Niels Jacob
1994-01-01
An analysis has been made of the uncertainty of input parameters to deterministic models for sewer systems. The analysis reveals a very significant uncertainty, which can be decreased, but not eliminated and has to be considered for engineering application. Stochastic models have a potential for ...
The State of Deterministic Thinking among Mothers of Autistic Children
Directory of Open Access Journals (Sweden)
Mehrnoush Esbati
2011-10-01
Full Text Available Objectives: The purpose of the present study was to investigate the effectiveness of cognitive-behavior education on decreasing deterministic thinking in mothers of children with autism spectrum disorders. Methods: Participants were 24 mothers of autistic children who were referred to counseling centers of Tehran and their children’s disorder had been diagnosed at least by a psychiatrist and a counselor. They were randomly selected and assigned into control and experimental groups. Measurement tool was Deterministic Thinking Questionnaire and both groups answered it before and after education and the answers were analyzed by analysis of covariance. Results: The results indicated that cognitive-behavior education decreased deterministic thinking among mothers of autistic children, it decreased four sub scale of deterministic thinking: interaction with others, absolute thinking, prediction of future, and negative events (P<0.05 as well. Discussions: By learning cognitive and behavioral techniques, parents of children with autism can reach higher level of psychological well-being and it is likely that these cognitive-behavioral skills would have a positive impact on general life satisfaction of mothers of children with autism.
Deterministic multimode photonic device for quantum-information processing
DEFF Research Database (Denmark)
Nielsen, Anne E. B.; Mølmer, Klaus
2010-01-01
We propose the implementation of a light source that can deterministically generate a rich variety of multimode quantum states. The desired states are encoded in the collective population of different ground hyperfine states of an atomic ensemble and converted to multimode photonic states by exci...
Deterministic Chaos - Complex Chance out of Simple Necessity ...
Indian Academy of Sciences (India)
This is a very lucid and lively book on deterministic chaos. Chaos is very common in nature. However, the understanding and realisation of its potential applications is very recent. Thus this book is a timely addition to the subject. There are several books on chaos and several more are being added every day. In spite of this ...
Nonlinear deterministic structures and the randomness of protein sequences
Huang Yan Zhao
2003-01-01
To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.
Line and lattice networks under deterministic interference models
Goseling, Jasper; Gastpar, Michael; Weber, Jos H.
Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of
Comparison of deterministic and Monte Carlo methods in shielding design.
Oliveira, A D; Oliveira, C
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.
Comparison of deterministic and Monte Carlo methods in shielding design
International Nuclear Information System (INIS)
Oliveira, A. D.; Oliveira, C.
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions. (authors)
Deterministic teleportation using single-photon entanglement as a resource
DEFF Research Database (Denmark)
Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.
2012-01-01
We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...
Empirical and deterministic accuracies of across-population genomic prediction
Wientjes, Y.C.J.; Veerkamp, R.F.; Bijma, P.; Bovenhuis, H.; Schrooten, C.; Calus, M.P.L.
2015-01-01
Background: Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which
A Deterministic Approach to the Synchronization of Cellular Automata
Garcia, J.; Garcia, P.
2011-01-01
In this work we introduce a deterministic scheme of synchronization of linear and nonlinear cellular automata (CA) with complex behavior, connected through a master-slave coupling. By using a definition of Boolean derivative, we use the linear approximation of the automata to determine a function of coupling that promotes synchronization without perturbing all the sites of the slave system.
Deterministic and Stochastic Study of Wind Farm Harmonic Currents
DEFF Research Database (Denmark)
Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus
2010-01-01
Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic char...
Mixed motion in deterministic ratchets due to anisotropic permeability
Kulrattanarak, T.; Sman, van der R.G.M.; Lubbersen, Y.S.; Schroën, C.G.P.H.; Pham, H.T.M.; Sarro, P.M.; Boom, R.M.
2011-01-01
Nowadays microfluidic devices are becoming popular for cell/DNA sorting and fractionation. One class of these devices, namely deterministic ratchets, seems most promising for continuous fractionation applications of suspensions (Kulrattanarak et al., 2008 [1]). Next to the two main types of particle
Simulation of quantum computation : A deterministic event-based approach
Michielsen, K; De Raedt, K; De Raedt, H
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Simulation of Quantum Computation : A Deterministic Event-Based Approach
Michielsen, K.; Raedt, K. De; Raedt, H. De
2005-01-01
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Using a satisfiability solver to identify deterministic finite state automata
Heule, M.J.H.; Verwer, S.
2009-01-01
We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach seems to be competitive with alternative techniques. Our contributions are threefold: First, we
Deterministic mean-variance-optimal consumption and investment
DEFF Research Database (Denmark)
Christiansen, Marcus; Steffensen, Mogens
2013-01-01
In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature that the consum......In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature...... that the consumption rate and the investment proportion are constrained to be deterministic processes. As a result we get rid of a series of unwanted features of the stochastic solution including diffusive consumption, satisfaction points and consistency problems. Deterministic strategies typically appear in unit......-linked life insurance contracts, where the life-cycle investment strategy is age dependent but wealth independent. We explain how optimal deterministic strategies can be found numerically and present an example from life insurance where we compare the optimal solution with suboptimal deterministic strategies...
Simulation of photonic waveguides with deterministic aperiodic nanostructures for biosensing
DEFF Research Database (Denmark)
Neustock, Lars Thorben; Paulsen, Moritz; Jahns, Sabrina
2016-01-01
Photonic waveguides with deterministic aperiodic corrugations offer rich spectral characteristics under surface-normal illumination. The finite-element method (FEM), the finite-difference time-domain (FDTD) method and a rigorous coupled wave algorithm (RCWA) are compared for computing the near...
Langevin equation with the deterministic algebraically correlated noise
International Nuclear Information System (INIS)
Ploszajczak, M.; Srokowski, T.
1995-01-01
Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)
Deterministic dense coding and faithful teleportation with multipartite graph states
International Nuclear Information System (INIS)
Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.
2009-01-01
We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.
Deterministic algorithms for multi-criteria Max-TSP
Manthey, Bodo
2012-01-01
We present deterministic approximation algorithms for the multi-criteria maximum traveling salesman problem (Max-TSP). Our algorithms are faster and simpler than the existing randomized algorithms. We devise algorithms for the symmetric and asymmetric multi-criteria Max-TSP that achieve ratios of
A Deterministic Annealing Approach to Clustering AIRS Data
Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander
2012-01-01
We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique
Optical detection of explosives: spectral signatures for the explosive bouquet
Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott
2009-05-01
Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.
Colonic gas explosion during therapeutic colonoscopy with electrocautery
Ladas, Spiros D; Karamanolis, George; Ben-Soussan, Emmanuel
2007-01-01
Therapeutic colonoscopy with electrocautery is widely used around the world. Adequate colonic cleansing is considered a crucial factor for the safety of this procedure. Colonic gas explosion, although rare, is one of the most frightening iatrogenic complications during colonoscopy with electrocautery. This complication is the result of an accumulation of colonic gases to explosive concentrations, but may be prevented by meticulous bowel preparation. The purpose of this review is to discuss the indications and the types of bowel preparations for therapeutic colonoscopy, and to contribute recommendations for the adequate bowel preparation for colonoscopy with electrocautery. PMID:17879396
Evaluation of the risk associated with the storage of radioactive wastes. The deterministic approach
International Nuclear Information System (INIS)
Lewi, J.
1988-07-01
Radioactive waste storage facility safety depends on a certain number of barriers being placed between the waste and man. These barriers, certain of which are articial (the waste package and engineered barriers) and others are natural (geological formations), are of characteristics suited to the type of storage facility (surface storage or storage in deep geological formations). The combination of these different barriers provide protection for man, under all circumstances considered plausible. Justification, for the storage of given quantities of radionuclides, of the choice of the site, the artificial barriers and the overall storage architecture, is obtained by evaluation of the risk. It being this which provides a basis for determining the acceptability of the storage facility. One of the following two methods is normally used for evaluation of the risk: the deterministic method and the probabilistic method. This adress describes the deterministic method. This method is employed in France for the safety analysis of the projects and works of ANDRA, the national agency responsible for the management of radioactive waste. It should be remembered that in France, the La Manche surface storage centre for low and medium activity waste has been in existence since 1969, close to the reprocessing plant at La Hague and a second surface storage centre is to be commissioned around 1991 at Soulaines in centre of France (departement de l'Aube). Furthermore, geological surveying of four sites located in geological formations consisting of granite, schist, clay and salt were begun in 1987 for the selection in about three years time of a site for the creation of an underground laboratory. This could later be transformed, if safety is demonstrated, into a deep storage centre
ATEX explosive atmospheres : risk assessment, control and compliance
Jespen, Torben
2016-01-01
This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation – especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects – the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different – and often complicated – aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.
Fire and explosion hazards to flora and fauna from explosives.
Merrifield, R
2000-06-30
Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.
Peaceful applications of nuclear explosions
International Nuclear Information System (INIS)
Wallin, L.B.
1975-12-01
The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)
Donor free radical explosive composition
Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550
1980-04-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.
Explosive coalescence of Magnetic Islands
International Nuclear Information System (INIS)
Tajima, T.; Sakai, J.I.
1985-04-01
An explosive reconnection process associated with nonlinear evolution of the coalescence instability is found through studies of particle and magnetohydrodynamic simulations. The explosive coalescence is a self-similar process of magnetic collapse, in which the magnetic and electrostatic energies and temperatures explode toward the explosion time t 0 as (t 0 -t)/sup 8/3/,(t 0 -t) -4 , and (t 0 -t)/sup -8/3/, respectively. Ensuing amplitude oscillations in these quantities are identified by deriving an equation of motion for the scale factor in the Sagdeev potential
A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.
Energy Technology Data Exchange (ETDEWEB)
Groth, Katrina M.; Tchouvelev, Andrei V.
2014-03-01
There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.
International Nuclear Information System (INIS)
Conte, M.
1986-05-01
Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents
Investigations of gas explosions in a nuclear coal gasification plant
International Nuclear Information System (INIS)
Schulte, K.
1981-01-01
The safety research program on gas cloud explosions is performed in the context of the German project of the Prototype Plant Nuclear Process Heat. By the work within this project, it is tried to extend the use of nuclear energy to non-electric application. The programme comprises efforts in several scientific disciplines. The final goal is to provide a representative pressure-time-function or a set of such functions. These functions should be the basis for safe design and construction of the nuclear reactor system of a coal gasification plant. No result yet achieved contradicts the assumption that released process gas is only able to deflagrate. It should be possible to demonstrate that, if unfavourable configurations are avoided, a design pressure of 300 mbar is sufficient to withstand an explosion of process gas; this pressure should never be exceeded by process gas explosions irrespective of gas mass released and distance to release point, except possibly in relatively small areas
Introduction of Deterministic OS for SPLC in Advanced Nuclear I and C System
Energy Technology Data Exchange (ETDEWEB)
Son, C. W.; Kim, D. H.; Son, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
Existing PLC's either had no output logic with regard to devices' redundant structure or it was set in a fixed way, and as a result it was extremely inefficient to use them for redundant systems such as that of a nuclear power plant and their use was limited. This project has developed a real-time operating system with Redundancy handling logic in order to improve the problems mentioned. That is the scheduling method, redundancy handling function of supervisory. A controller used in Nuclear Power Plants safety system has been developed differently from industrial PLC by its design, production and test. Therefore, the operation system that controls the NPPs safety PLC should be developed properly so that it can work well on the handling logic of the safety system. Scoops has secured the deterministic for the safety PLC control by possessing the sequential scheduling, time management, redundancy handling logic and system diagnosis function considering the connectivity of all the software module by Supervisory.
International Nuclear Information System (INIS)
Byrne, K.G.
1983-01-01
1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means
Furball Explosive Breakout Test
Energy Technology Data Exchange (ETDEWEB)
Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-05
For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.
Suppression of stratified explosive interactions
Energy Technology Data Exchange (ETDEWEB)
Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics
1998-01-01
Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)
Water-bearing explosive compositions
Energy Technology Data Exchange (ETDEWEB)
Gay, G M
1970-12-21
An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)
30 CFR 77.1301 - Explosives; magazines.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with explosives...
Explosives mimic for testing, training, and monitoring
Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.
2018-02-13
Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.
8. Peaceful uses of nuclear explosions
International Nuclear Information System (INIS)
Musilek, L.
1992-01-01
The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs
Computer simulation of explosion crater in dams with different buried depths of explosive
Zhang, Zhichao; Ye, Longzhen
2018-04-01
Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.
Hydrocarbon production with nuclear explosives
International Nuclear Information System (INIS)
Wade Watkins, J.
1970-01-01
The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)
Hydrocarbon production with nuclear explosives
Energy Technology Data Exchange (ETDEWEB)
Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)
1970-05-01
The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)
Explosive Characteristics of Carbonaceous Nanoparticles
Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok
2013-03-01
Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)
Trace explosives sensor testbed (TESTbed)
Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.
2017-03-01
A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.
A deterministic-probabilistic model for contaminant transport. User manual
Energy Technology Data Exchange (ETDEWEB)
Schwartz, F W; Crowe, A
1980-08-01
This manual describes a deterministic-probabilistic contaminant transport (DPCT) computer model designed to simulate mass transfer by ground-water movement in a vertical section of the earth's crust. The model can account for convection, dispersion, radioactive decay, and cation exchange for a single component. A velocity is calculated from the convective transport of the ground water for each reference particle in the modeled region; dispersion is accounted for in the particle motion by adding a readorn component to the deterministic motion. The model is sufficiently general to enable the user to specify virtually any type of water table or geologic configuration, and a variety of boundary conditions. A major emphasis in the model development has been placed on making the model simple to use, and information provided in the User Manual will permit changes to the computer code to be made relatively easily for those that might be required for specific applications. (author)
Deterministic chaos at the ocean surface: applications and interpretations
Directory of Open Access Journals (Sweden)
A. J. Palmer
1998-01-01
Full Text Available Ocean surface, grazing-angle radar backscatter data from two separate experiments, one of which provided coincident time series of measured surface winds, were found to exhibit signatures of deterministic chaos. Evidence is presented that the lowest dimensional underlying dynamical system responsible for the radar backscatter chaos is that which governs the surface wind turbulence. Block-averaging time was found to be an important parameter for determining the degree of determinism in the data as measured by the correlation dimension, and by the performance of an artificial neural network in retrieving wind and stress from the radar returns, and in radar detection of an ocean internal wave. The correlation dimensions are lowered and the performance of the deterministic retrieval and detection algorithms are improved by averaging out the higher dimensional surface wave variability in the radar returns.
Deterministic Properties of Serially Connected Distributed Lag Models
Directory of Open Access Journals (Sweden)
Piotr Nowak
2013-01-01
Full Text Available Distributed lag models are an important tool in modeling dynamic systems in economics. In the analysis of composite forms of such models, the component models are ordered in parallel (with the same independent variable and/or in series (where the independent variable is also the dependent variable in the preceding model. This paper presents an analysis of certain deterministic properties of composite distributed lag models composed of component distributed lag models arranged in sequence, and their asymptotic properties in particular. The models considered are in discrete form. Even though the paper focuses on deterministic properties of distributed lag models, the derivations are based on analytical tools commonly used in probability theory such as probability distributions and the central limit theorem. (original abstract
Deterministic Brownian motion generated from differential delay equations.
Lei, Jinzhi; Mackey, Michael C
2011-10-01
This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.
Progress in nuclear well logging modeling using deterministic transport codes
International Nuclear Information System (INIS)
Kodeli, I.; Aldama, D.L.; Maucec, M.; Trkov, A.
2002-01-01
Further studies in continuation of the work presented in 2001 in Portoroz were performed in order to study and improve the performances, precission and domain of application of the deterministic transport codes with respect to the oil well logging analysis. These codes are in particular expected to complement the Monte Carlo solutions, since they can provide a detailed particle flux distribution in the whole geometry in a very reasonable CPU time. Real-time calculation can be envisaged. The performances of deterministic transport methods were compared to those of the Monte Carlo method. IRTMBA generic benchmark was analysed using the codes MCNP-4C and DORT/TORT. Centric as well as excentric casings were considered using 14 MeV point neutron source and NaI scintillation detectors. Neutron and gamma spectra were compared at two detector positions.(author)
Deterministic blade row interactions in a centrifugal compressor stage
Kirtley, K. R.; Beach, T. A.
1991-01-01
The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.
One-step deterministic multipartite entanglement purification with linear optics
Energy Technology Data Exchange (ETDEWEB)
Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)
2012-01-09
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.
International Nuclear Information System (INIS)
Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim
2001-05-01
Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)
Deterministic secure direct communication using GHZ states and swapping quantum entanglement
International Nuclear Information System (INIS)
Gao, T; Yan, F L; Wang, Z X
2005-01-01
We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series of local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three of Alice, Bob and Charlie's Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is no transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if a perfect quantum channel is used
Relationship of Deterministic Thinking With Loneliness and Depression in the Elderly
Directory of Open Access Journals (Sweden)
Mehdi Sharifi
2017-12-01
Conclusion According to the results, it can be said that deterministic thinking has a significant relationship with depression and sense of loneliness in older adults. So, deterministic thinking acts as a predictor of depression and sense of loneliness in older adults. Therefore, psychological interventions for challenging cognitive distortion of deterministic thinking and attention to mental health in older adult are very important.
Ordinal optimization and its application to complex deterministic problems
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Evaluation of Deterministic and Stochastic Components of Traffic Counts
Directory of Open Access Journals (Sweden)
Ivan Bošnjak
2012-10-01
Full Text Available Traffic counts or statistical evidence of the traffic processare often a characteristic of time-series data. In this paper fundamentalproblem of estimating deterministic and stochasticcomponents of a traffic process are considered, in the context of"generalised traffic modelling". Different methods for identificationand/or elimination of the trend and seasonal componentsare applied for concrete traffic counts. Further investigationsand applications of ARIMA models, Hilbert space formulationsand state-space representations are suggested.
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions
Langevin equation with the deterministic algebraically correlated noise
Energy Technology Data Exchange (ETDEWEB)
Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.
Beeping a Deterministic Time-Optimal Leader Election
Dufoulon , Fabien; Burman , Janna; Beauquier , Joffroy
2018-01-01
The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. In this model, we solve the leader election problem with an asymptotically optimal round complexity of O(D + log n), for a network of unknown size n and unknown diameter D (but with unique identifiers). Contrary to the best previously known algorithms in the same setting, the proposed one is deterministic. The techniques we introduce give a new insight as to how local constraints o...
Are deterministic methods suitable for short term reserve planning?
International Nuclear Information System (INIS)
Voorspools, Kris R.; D'haeseleer, William D.
2005-01-01
Although deterministic methods for establishing minutes reserve (such as the N-1 reserve or the percentage reserve) ignore the stochastic nature of reliability issues, they are commonly used in energy modelling as well as in practical applications. In order to check the validity of such methods, two test procedures are developed. The first checks if the N-1 reserve is a logical fixed value for minutes reserve. The second test procedure investigates whether deterministic methods can realise a stable reliability that is independent of demand. In both evaluations, the loss-of-load expectation is used as the objective stochastic criterion. The first test shows no particular reason to choose the largest unit as minutes reserve. The expected jump in reliability, resulting in low reliability for reserve margins lower than the largest unit and high reliability above, is not observed. The second test shows that both the N-1 reserve and the percentage reserve methods do not provide a stable reliability level that is independent of power demand. For the N-1 reserve, the reliability increases with decreasing maximum demand. For the percentage reserve, the reliability decreases with decreasing demand. The answer to the question raised in the title, therefore, has to be that the probability based methods are to be preferred over the deterministic methods
Deterministic hazard quotients (HQs): Heading down the wrong road
International Nuclear Information System (INIS)
Wilde, L.; Hunter, C.; Simpson, J.
1995-01-01
The use of deterministic hazard quotients (HQs) in ecological risk assessment is common as a screening method in remediation of brownfield sites dominated by total petroleum hydrocarbon (TPH) contamination. An HQ ≥ 1 indicates further risk evaluation is needed, but an HQ ≤ 1 generally excludes a site from further evaluation. Is the predicted hazard known with such certainty that differences of 10% (0.1) do not affect the ability to exclude or include a site from further evaluation? Current screening methods do not quantify uncertainty associated with HQs. To account for uncertainty in the HQ, exposure point concentrations (EPCs) or ecological benchmark values (EBVs) are conservatively biased. To increase understanding of the uncertainty associated with HQs, EPCs (measured and modeled) and toxicity EBVs were evaluated using a conservative deterministic HQ method. The evaluation was then repeated using a probabilistic (stochastic) method. The probabilistic method used data distributions for EPCs and EBVs to generate HQs with measurements of associated uncertainty. Sensitivity analyses were used to identify the most important factors significantly influencing risk determination. Understanding uncertainty associated with HQ methods gives risk managers a more powerful tool than deterministic approaches
Distinguishing deterministic and noise components in ELM time series
International Nuclear Information System (INIS)
Zvejnieks, G.; Kuzovkov, V.N
2004-01-01
Full text: One of the main problems in the preliminary data analysis is distinguishing the deterministic and noise components in the experimental signals. For example, in plasma physics the question arises analyzing edge localized modes (ELMs): is observed ELM behavior governed by a complicate deterministic chaos or just by random processes. We have developed methodology based on financial engineering principles, which allows us to distinguish deterministic and noise components. We extended the linear auto regression method (AR) by including the non-linearity (NAR method). As a starting point we have chosen the nonlinearity in the polynomial form, however, the NAR method can be extended to any other type of non-linear functions. The best polynomial model describing the experimental ELM time series was selected using Bayesian Information Criterion (BIC). With this method we have analyzed type I ELM behavior in a subset of ASDEX Upgrade shots. Obtained results indicate that a linear AR model can describe the ELM behavior. In turn, it means that type I ELM behavior is of a relaxation or random type
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
Convergence studies of deterministic methods for LWR explicit reflector methodology
International Nuclear Information System (INIS)
Canepa, S.; Hursin, M.; Ferroukhi, H.; Pautz, A.
2013-01-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on very different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)
Precision production: enabling deterministic throughput for precision aspheres with MRF
Maloney, Chris; Entezarian, Navid; Dumas, Paul
2017-10-01
Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.
Deterministic and stochastic models for middle east respiratory syndrome (MERS)
Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning
2018-03-01
World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.
Applicability of deterministic methods in seismic site effects modeling
International Nuclear Information System (INIS)
Cioflan, C.O.; Radulian, M.; Apostol, B.F.; Ciucu, C.
2005-01-01
The up-to-date information related to local geological structure in the Bucharest urban area has been integrated in complex analyses of the seismic ground motion simulation using deterministic procedures. The data recorded for the Vrancea intermediate-depth large earthquakes are supplemented with synthetic computations all over the city area. The hybrid method with a double-couple seismic source approximation and a relatively simple regional and local structure models allows a satisfactory reproduction of the strong motion records in the frequency domain (0.05-1)Hz. The new geological information and a deterministic analytical method which combine the modal summation technique, applied to model the seismic wave propagation between the seismic source and the studied sites, with the mode coupling approach used to model the seismic wave propagation through the local sedimentary structure of the target site, allows to extend the modelling to higher frequencies of earthquake engineering interest. The results of these studies (synthetic time histories of the ground motion parameters, absolute and relative response spectra etc) for the last 3 Vrancea strong events (August 31,1986 M w =7.1; May 30,1990 M w = 6.9 and October 27, 2004 M w = 6.0) can complete the strong motion database used for the microzonation purposes. Implications and integration of the deterministic results into the urban planning and disaster management strategies are also discussed. (authors)
International Nuclear Information System (INIS)
Conte, M. M.
1986-01-01
The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one
Determining the explosion risk level and the explosion hazard area for a group of natural gas wells
Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.
2016-11-01
Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.
Explosive coalescence of magnetic islands and explosive particle acceleration
International Nuclear Information System (INIS)
Tajima, T.; Sakai, J.I.
1985-07-01
An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations
Safety assessment for spent fuel storage facilities
International Nuclear Information System (INIS)
1994-01-01
This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs
Radiological safety and control
International Nuclear Information System (INIS)
Kim, Jang Hee; Kim, Ki Sub
1995-01-01
The practical objective of radiological safety control is intended for achievement and maintenance of appropreately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objectives, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. 34 tabs., 19 figs., 11 refs. (Author) .new
International Nuclear Information System (INIS)
Kim, Jang Hee; Kim, Gi Sub.
1996-12-01
The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs
Directory of Open Access Journals (Sweden)
Qingjie Jiao
2018-03-01
Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.
Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi
2018-03-01
To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.
Molecular Outflows: Explosive versus Protostellar
Energy Technology Data Exchange (ETDEWEB)
Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)
2017-02-10
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.
A scheme for the classification of explosions in the chemical process industry.
Abbasi, Tasneem; Pasman, H J; Abbasi, S A
2010-02-15
All process industry accidents fall under three broad categories-fire, explosion, and toxic release. Of these fire is the most common, followed by explosions. Within these broad categories occur a large number of sub-categories, each depicting a specific sub-type of a fire/explosion/toxic release. But whereas clear and self-consistent sub-classifications exist for fires and toxic releases, the situation is not as clear vis a vis explosions. In this paper the inconsistencies and/or shortcomings associated with the classification of different types of explosions, which are seen even in otherwise highly authentic and useful reference books on process safety, are reviewed. In its context a new classification is attempted which may, hopefully, provide a frame-of-reference for the future.
An Analysis of the Initiation Process of Electro-Explosive Devices
Directory of Open Access Journals (Sweden)
Paulo Cesar de Carvalho Faria
2012-03-01
Full Text Available Electro-explosive devices (an electric resistance encapsulated by a primary explosive fundamentally convert electrical energy into thermal energy, to start off an explosive chemical reaction. Obviously, the activation of those devices shall not happen by accident or, even worse, by intentional exogenous influence. From an ordinary differential equation, which describes the electro-explosive thermal behavior, a remarkable, but certainly not intuitive, dependence of the temperature response on the time constant of the heat transfer process is verified: the temperature profile dramatically changes as the time constant spans a wide range of values, from much lesser than the pulse width to much greater than the pulse period. Based on this dependence, important recommendations, concerning the efficient and safety operation of electro-explosive devices, are proposed.
IAEA safety standards and approach to safety of advanced reactors
International Nuclear Information System (INIS)
Gasparini, M.
2004-01-01
The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)
General phenomenology of underground nuclear explosions
International Nuclear Information System (INIS)
Derlich, S.; Supiot, F.
1969-01-01
An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
High energy materials. Propellants, explosives and pyrotechnics
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Jai Prakash
2010-07-01
Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)
Potential fire or explosion risks in reprocessing plants
International Nuclear Information System (INIS)
Lefort, G.
1983-05-01
Installation for reprocessing are large chemical plants handling large quantities of inflammable solvents and products allowing large risk of fire. Further, the chemical process involves the use of oxidizer and reducer agents which can have a very strong chemical activity and by certain circumstances create overpressures or large explosions. This paper shows the principal radioactive consequences we can retain in safety analyses. As an example the combustion phenomenon involved in a solid waste storage silo with irradiated uranium traces is described [fr
Inhomogeneous wire explosion in water
International Nuclear Information System (INIS)
Hwangbo, C.K.; Kong, H.J.; Lee, S.S.
1980-01-01
Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)
Seismic coupling of nuclear explosions
International Nuclear Information System (INIS)
Larson, D.B.
1989-01-01
The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1
Optimal dynamic detection of explosives
Energy Technology Data Exchange (ETDEWEB)
Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV
2009-01-01
The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.
Calculating overpressure from BLEVE explosions
Energy Technology Data Exchange (ETDEWEB)
Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering, Centre for Technological Risk Studies; Salla, J.M. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Heat Engines
2004-11-01
Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to erroneous thermodynamic assumptions - ideal gas behaviour and isentropic vapour expansion - on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the - more realistic - assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case. (author)
The vapor pressures of explosives
Energy Technology Data Exchange (ETDEWEB)
Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter
2013-01-05
The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.
Evidence for nearby supernova explosions
International Nuclear Information System (INIS)
Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde
2002-01-01
Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction
Design and validation of inert homemade explosive simulants for X-ray-based inspection systems
Faust, Anthony A.; Nacson, Sabatino; Koffler, Bruce; Bourbeau, Éric; Gagne, Louis; Laing, Robin; Anderson, C. J.
2014-05-01
Transport Canada (TC), the Canadian Armed Forces, and other public security agencies have an interest in the assessment of the potential utility of advanced explosives detection technologies to aid in the detection and interdiction of commercial grade, military grade, and homemade or improvised explosives (HME or IE). The availability of suitable, non-hazardous, non-toxic, explosive simulants is of concern when assessing the potential utility of such detection systems. Lack of simulants limits the training opportunities, and ultimately the detection probability, of security personnel using these systems. While simulants for commercial and military grade explosives are available for a wide variety of detection technologies, the design and production of materials to simulate improvised explosives has not kept pace with this emerging threat. Funded by TC and the Canadian Safety and Security Program, Defence Research and Development Canada (DRDC), Visiontec Systems, and Optosecurity engaged in an effort to develop inert, non-toxic Xray interrogation simulants for IE materials such as ammonium nitrate, potassium chlorate, and triacetone triperoxide. These simulants were designed to mimic key X-ray interrogation-relevant material properties of real improvised explosives, principally their bulk density and effective atomic number. Different forms of the simulants were produced and tested, simulating the different explosive threat formulations that could be encountered by front line security workers. These simulants comply with safety and stability requirements, and as best as possible match form and homogeneity. This paper outlines the research program, simulant design, and validation.
Chemistry laboratory safety manual available
Elsbrock, R. G.
1968-01-01
Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.
Detonation and fragmentation modeling for the description of large scale vapor explosions
International Nuclear Information System (INIS)
Buerger, M.; Carachalios, C.; Unger, H.
1985-01-01
The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de
Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501
International Nuclear Information System (INIS)
Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.
2001-01-01
A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios
Explosions in Landau Vlasov dynamics
International Nuclear Information System (INIS)
Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.
1988-01-01
A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed
System for detecting nuclear explosions
International Nuclear Information System (INIS)
Rawls, L.E.
1978-01-01
Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means
Biological consequences of atomic explosions
International Nuclear Information System (INIS)
Messerschmidt, O.
1984-01-01
After an introductory chapter of the development and properties of nuclear weapons and the events of Hiroshima and Nagasaki, this books shows the effects of atomic explosions for man: effects of the pressure wave, thermal radiation, initial nuclear radiation alone or in conjunction and possible medical help. In addition the less massive damage caused by induced radioactivity and fallout, their prevention resp. treatment and the malignant/nonmalignant late effects are discussed. A further chapter deals with the psychological and epidemiological effects of atomic explosions, the consequences for food and water supply, and the construction of shetters. The last chapter is concerned with the problem of organising medical help. (MG) [de
Deterministic quantum state transfer and remote entanglement using microwave photons.
Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A
2018-06-01
Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.
Statistical methods of parameter estimation for deterministically chaotic time series
Pisarenko, V. F.; Sornette, D.
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2017-09-01
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p cranial nerves. Probabilistic tracking with a gradual
Deterministic nonlinear phase gates induced by a single qubit
Park, Kimin; Marek, Petr; Filip, Radim
2018-05-01
We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.
Methods and models in mathematical biology deterministic and stochastic approaches
Müller, Johannes
2015-01-01
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
CALTRANS: A parallel, deterministic, 3D neutronics code
Energy Technology Data Exchange (ETDEWEB)
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
MIMO capacity for deterministic channel models: sublinear growth
DEFF Research Database (Denmark)
Bentosela, Francois; Cornean, Horia; Marchetti, Nicola
2013-01-01
. In the current paper, we apply those results in order to study the (Shannon-Foschini) capacity behavior of a MIMO system as a function of the deterministic spread function of the environment and the number of transmitting and receiving antennas. The antennas are assumed to fill in a given fixed volume. Under...... some generic assumptions, we prove that the capacity grows much more slowly than linearly with the number of antennas. These results reinforce previous heuristic results obtained from statistical models of the transfer matrix, which also predict a sublinear behavior....
Deterministic Single-Photon Source for Distributed Quantum Networking
International Nuclear Information System (INIS)
Kuhn, Axel; Hennrich, Markus; Rempe, Gerhard
2002-01-01
A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing
The deterministic optical alignment of the HERMES spectrograph
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
Enhanced deterministic phase retrieval using a partially developed speckle field
DEFF Research Database (Denmark)
Almoro, Percival F.; Waller, Laura; Agour, Mostafa
2012-01-01
A technique for enhanced deterministic phase retrieval using a partially developed speckle field (PDSF) and a spatial light modulator (SLM) is demonstrated experimentally. A smooth test wavefront impinges on a phase diffuser, forming a PDSF that is directed to a 4f setup. Two defocused speckle...... intensity measurements are recorded at the output plane corresponding to axially-propagated representations of the PDSF in the input plane. The speckle intensity measurements are then used in a conventional transport of intensity equation (TIE) to reconstruct directly the test wavefront. The PDSF in our...
Deterministic and efficient quantum cryptography based on Bell's theorem
International Nuclear Information System (INIS)
Chen, Z.-B.; Zhang, Q.; Bao, X.-H.; Schmiedmayer, J.; Pan, J.-W.
2005-01-01
Full text: We propose a novel double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish a key bit with the help of classical communications. Eavesdropping can be detected by checking the violation of local realism for the detected events. We also show that our protocol allows a robust implementation under current technology. (author)
Experimental approach to explosive nucleosynthesis
International Nuclear Information System (INIS)
Kubono, S.
1991-07-01
Recent development of experimental studies on explosive nucleosynthesis, especially the rapid proton process and the primordial nucleosynthesis were discussed with a stress on unstable nuclei. New development in the experimental methods for the nuclear astrophysics is also discussed which use unstable nuclear beams. (author)
Huynh, My Hang V.
2010-06-22
Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.
Explosive micro-bubble actuator
van den Broek, D.M.; Elwenspoek, Michael Curt
2007-01-01
Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and
The behavior limestone under explosive load
Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.
2016-11-01
Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.
Use of deterministic methods in survey calculations for criticality problems
International Nuclear Information System (INIS)
Hutton, J.L.; Phenix, J.; Course, A.F.
1991-01-01
A code package using deterministic methods for solving the Boltzmann Transport equation is the WIMS suite. This has been very successful for a range of situations. In particular it has been used with great success to analyse trends in reactivity with a range of changes in state. The WIMS suite of codes have a range of methods and are very flexible in the way they can be combined. A wide variety of situations can be modelled ranging through all the current Thermal Reactor variants to storage systems and items of chemical plant. These methods have recently been enhanced by the introduction of the CACTUS method. This is based on a characteristics technique for solving the Transport equation and has the advantage that complex geometrical situations can be treated. In this paper the basis of the method is outlined and examples of its use are illustrated. In parallel with these developments the validation for out of pile situations has been extended to include experiments with relevance to criticality situations. The paper will summarise this evidence and show how these results point to a partial re-adoption of deterministic methods for some areas of criticality. The paper also presents results to illustrate the use of WIMS in criticality situations and in particular show how it can complement codes such as MONK when used for surveying the reactivity effect due to changes in geometry or materials. (Author)
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
International Nuclear Information System (INIS)
S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS
1998-01-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems
Strongly Deterministic Population Dynamics in Closed Microbial Communities
Directory of Open Access Journals (Sweden)
Zak Frentz
2015-10-01
Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
Bayesian analysis of deterministic and stochastic prisoner's dilemma games
Directory of Open Access Journals (Sweden)
Howard Kunreuther
2009-08-01
Full Text Available This paper compares the behavior of individuals playing a classic two-person deterministic prisoner's dilemma (PD game with choice data obtained from repeated interdependent security prisoner's dilemma games with varying probabilities of loss and the ability to learn (or not learn about the actions of one's counterpart, an area of recent interest in experimental economics. This novel data set, from a series of controlled laboratory experiments, is analyzed using Bayesian hierarchical methods, the first application of such methods in this research domain. We find that individuals are much more likely to be cooperative when payoffs are deterministic than when the outcomes are probabilistic. A key factor explaining this difference is that subjects in a stochastic PD game respond not just to what their counterparts did but also to whether or not they suffered a loss. These findings are interpreted in the context of behavioral theories of commitment, altruism and reciprocity. The work provides a linkage between Bayesian statistics, experimental economics, and consumer psychology.
Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations
Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael
2012-02-01
We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations
Stochastic and deterministic causes of streamer branching in liquid dielectrics
International Nuclear Information System (INIS)
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-01-01
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
A study of deterministic models for quantum mechanics
International Nuclear Information System (INIS)
Sutherland, R.
1980-01-01
A theoretical investigation is made into the difficulties encountered in constructing a deterministic model for quantum mechanics and into the restrictions that can be placed on the form of such a model. The various implications of the known impossibility proofs are examined. A possible explanation for the non-locality required by Bell's proof is suggested in terms of backward-in-time causality. The efficacy of the Kochen and Specker proof is brought into doubt by showing that there is a possible way of avoiding its implications in the only known physically realizable situation to which it applies. A new thought experiment is put forward to show that a particle's predetermined momentum and energy values cannot satisfy the laws of momentum and energy conservation without conflicting with the predictions of quantum mechanics. Attention is paid to a class of deterministic models for which the individual outcomes of measurements are not dependent on hidden variables associated with the measuring apparatus and for which the hidden variables of a particle do not need to be randomized after each measurement
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-03
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Using MCBEND for neutron or gamma-ray deterministic calculations
Directory of Open Access Journals (Sweden)
Geoff Dobson
2017-01-01
Full Text Available MCBEND 11 is the latest version of the general radiation transport Monte Carlo code from AMEC Foster Wheeler’s ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. MCBEND supports a number of acceleration techniques, for example the use of an importance map in conjunction with Splitting/Russian Roulette. MCBEND has a well established automated tool to generate this importance map, commonly referred to as the MAGIC module using a diffusion adjoint solution. This method is fully integrated with the MCBEND geometry and material specification, and can easily be run as part of a normal MCBEND calculation. An often overlooked feature of MCBEND is the ability to use this method for forward scoping calculations, which can be run as a very quick deterministic method. Additionally, the development of the Visual Workshop environment for results display provides new capabilities for the use of the forward calculation as a productivity tool. In this paper, we illustrate the use of the combination of the old and new in order to provide an enhanced analysis capability. We also explore the use of more advanced deterministic methods for scoping calculations used in conjunction with MCBEND, with a view to providing a suite of methods to accompany the main Monte Carlo solver.
Using MCBEND for neutron or gamma-ray deterministic calculations
Geoff, Dobson; Adam, Bird; Brendan, Tollit; Paul, Smith
2017-09-01
MCBEND 11 is the latest version of the general radiation transport Monte Carlo code from AMEC Foster Wheeler's ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. MCBEND supports a number of acceleration techniques, for example the use of an importance map in conjunction with Splitting/Russian Roulette. MCBEND has a well established automated tool to generate this importance map, commonly referred to as the MAGIC module using a diffusion adjoint solution. This method is fully integrated with the MCBEND geometry and material specification, and can easily be run as part of a normal MCBEND calculation. An often overlooked feature of MCBEND is the ability to use this method for forward scoping calculations, which can be run as a very quick deterministic method. Additionally, the development of the Visual Workshop environment for results display provides new capabilities for the use of the forward calculation as a productivity tool. In this paper, we illustrate the use of the combination of the old and new in order to provide an enhanced analysis capability. We also explore the use of more advanced deterministic methods for scoping calculations used in conjunction with MCBEND, with a view to providing a suite of methods to accompany the main Monte Carlo solver.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Balancing safety and economics
International Nuclear Information System (INIS)
Kroeger, W.; Fischer, P.U.
2000-01-01
The safety requirements of NPPs have always aimed at limiting societal risks. This risk approach initially resulted in deterministic design criteria and concepts. In the 1980s the paradigm 'safety at all costs' arose and often led to questionable backfitting measures. Conflicts between new requirements, classical design concepts and operational demands were often ignored. The design requirements for advanced reactors ensure enhanced protection against severe accidents. Still, it is questionable whether the 'no-damage-outside-the-fence' criteria can be achieved deterministically and at competitive costs. Market deregulation and utility privatisation call for a balance between safety and costs, without jeopardising basic safety concepts. An ideal approach must be risk-based and imply modern PSAs and new methods for cost-benefit and ALARA analyses, embed nuclear risks in a wider risk spectrum, but also make benefits transparent within the context of a broader life experience. Governments should define basic requirements, minimum standards and consistent comparison criteria, and strengthen operator responsibility. Internationally sufficient and binding safety requirements must be established and nuclear technology transfer handled in a responsible way, while existing plants, with their continuous backfitting investments, should receive particular attention. (orig.)
Behavior of explosion debris clouds
International Nuclear Information System (INIS)
Anon.
1986-01-01
In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made
International Nuclear Information System (INIS)
Petruzzi, A.; D'Auria, F.; Cacuci, D.G.
2009-01-01
Nuclear Power Plant (NPP) technology has been developed based on the traditional defense in depth philosophy supported by deterministic and overly conservative methods for safety analysis. In the 1970s [1], conservative hypotheses were introduced for safety analyses to address existing uncertainties. Since then, intensive thermal-hydraulic experimental research has resulted in a considerable increase in knowledge and consequently in the development of best-estimate codes able to provide more realistic information about the physical behaviour and to identify the most relevant safety issues allowing the evaluation of the existing actual margins between the results of the calculations and the acceptance criteria. However, the best-estimate calculation results from complex thermal-hydraulic system codes (like Relap5, Cathare, Athlet, Trace, etc..) are affected by unavoidable approximations that are un-predictable without the use of computational tools that account for the various sources of uncertainty. Therefore the use of best-estimate codes (BE) within the reactor technology, either for design or safety purposes, implies understanding and accepting the limitations and the deficiencies of those codes. Taking into consideration the above framework, a comprehensive approach for utilizing quantified uncertainties arising from Integral Test Facilities (ITFs, [2]) and Separate Effect Test Facilities (SETFs, [3]) in the process of calibrating complex computer models for the application to NPP transient scenarios has been developed. The methodology proposed is capable of accommodating multiple SETFs and ITFs to learn as much as possible about uncertain parameters, allowing for the improvement of the computer model predictions based on the available experimental evidences. The proposed methodology constitutes a major step forward with respect to the generally used expert judgment and statistical methods as it permits a) to establish the uncertainties of any parameter
24 CFR 51.203 - Safety standards.
2010-04-01
... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... facilities or areas shall not exceed 0.5 psi. (c) If a hazardous substance constitutes both a thermal...
Ideas for peaceful nuclear explosions in USSR
International Nuclear Information System (INIS)
1970-01-01
Three papers prepared in USSR have been made available to the Agency for circulation among Member States. One examines radioactive contamination and methods for predicting it, of natural environments during underground explosions. Another deals with the mechanical effect of underground explosions. The third, which forms the basis of this article, reviews possible applications of peaceful nuclear explosions in the Soviet economy. (author)
International Nuclear Information System (INIS)
Solomon, S.I.; Harvey, K.D.
1982-12-01
The IAEA Safety Guide 50-SG-S10A recommends that design basis floods be estimated by deterministic techniques using probable maximum precipitation and a rainfall runoff model to evaluate the corresponding flood. The Guide indicates that stochastic techniques are also acceptable in which case floods of very low probability have to be estimated. The paper compares the results of applying the two techniques in two river basins at a number of locations and concludes that the uncertainty of the results of both techniques is of the same order of magnitude. However, the use of the unit hydrograph as the rainfall runoff model may lead in some cases to nonconservative estimates. A distributed non-linear rainfall runoff model leads to estimates of probable maximum flood flows which are very close to values of flows having a 10 6 - 10 7 years return interval estimated using a conservative and relatively simple stochastic technique. Recommendations on the practical application of Safety Guide 50-SG-10A are made and the extension of the stochastic technique to ungauged sites and other design parameters is discussed
International Nuclear Information System (INIS)
Solomon, S.I.; Harvey, K.D.; Asmis, G.J.K.
1983-01-01
The IAEA Safety Guide 50-SG-S10A recommends that design basis floods be estimated by deterministic techniques using probable maximum precipitation and a rainfall runoff model to evaluate the corresponding flood. The Guide indicates that stochastic techniques are also acceptable in which case floods of very low probability have to be estimated. The paper compares the results of applying the two techniques in two river basins at a number of locations and concludes that the uncertainty of the results of both techniques is of the same order of magnitude. However, the use of the unit hydrograph as the rain fall runoff model may lead in some cases to non-conservative estimates. A distributed non-linear rainfall runoff model leads to estimates of probable maximum flood flows which are very close to values of flows having a 10 6 to 10 7 years return interval estimated using a conservative and relatively simple stochastic technique. Recommendations on the practical application of Safety Guide 50-SG-10A are made and the extension of the stochastic technique to ungauged sites and other design parameters is discussed
Gas explosion in domestic buildings. The vented gas explosion[sub][/sub
Directory of Open Access Journals (Sweden)
Tadeusz Chyży
2014-08-01
Full Text Available In this paper, the basic information, related to the so-called vented gas explosion, has been presented. The vented explosion it is an explosion, during which the destruction of the weakest elements of the structure occurs. Through the resulting holes (decompressing surfaces can flow both combustion products and non-burned gas mixture. In consequence, reduction of the maximum explosion pressure[i] P[sub]red [/sub][/i] may be significant. Often, a gas explosion occurs inside residential buildings. In this case, natural vents are window and door openings.[b]Keywords[/b]: gas, explosion, combustion, explosion vents
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety. 159.95 Section 159.95... SANITATION DEVICES Design, Construction, and Testing § 159.95 Safety. (a) Each device must— (1) Be free of... explosion or over pressurization as a result of an accumulation of gases; and (3) Meet all other safety...
Safety targets for nuclear power plants
International Nuclear Information System (INIS)
Herttrich, P.M.
1985-01-01
By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de
Safety analysis - current and future regulatory challenges
Energy Technology Data Exchange (ETDEWEB)
Jamieson, T., E-mail: Terry.Jamieson@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)
2015-07-01
'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)
Safety analysis - current and future regulatory challenges
International Nuclear Information System (INIS)
Jamieson, T.
2015-01-01
'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)
Current safety issues of CANDU licensing
International Nuclear Information System (INIS)
Lee, Y.; Natalizio, A.
1994-01-01
As requested by Korea Institute of Nuclear Safety(KINS), the status of five generic licensing issues has been examined and their potential impact on a new plant that would be constructed in Canada has been evaluated. The results and conclusions of this evaluation are summarized as follows: steam explosion in calandria, hydrogen explosion in containment, use of PSA in reactor licensing, human factors, safety critical software
On the implementation of a deterministic secure coding protocol using polarization entangled photons
Ostermeyer, Martin; Walenta, Nino
2007-01-01
We demonstrate a prototype-implementation of deterministic information encoding for quantum key distribution (QKD) following the ping-pong coding protocol [K. Bostroem, T. Felbinger, Phys. Rev. Lett. 89 (2002) 187902-1]. Due to the deterministic nature of this protocol the need for post-processing the key is distinctly reduced compared to non-deterministic protocols. In the course of our implementation we analyze the practicability of the protocol and discuss some security aspects of informat...
Reduction of radioactivity produced by nuclear explosives
Energy Technology Data Exchange (ETDEWEB)
Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-15
Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.
Safety assessment and verification for nuclear power plants. Safety guide
International Nuclear Information System (INIS)
2001-01-01
verification' are used differently in different countries. The way that these terms have been used in this Safety Guide is explained in Section 2. The term 'design' as used here includes the specifications for the safe operation and management of the plant. This Safety Guide identifies the key recommendations for carrying out the safety assessment and the independent verification. It provides detailed guidance in support of IAEA, Safety of Nuclear Power Plants: Design, Safety Standards Series No. NS-R-1 (2000), particularly in the area of safety analysis. However, this does not include all the technical details which are available and reference is made to other IAEA publications on specific design issues and safety analysis methods. Specific deterministic or probabilistic safety targets or radiological limits can vary in different countries and are the responsibility of the regulatory body. This Safety Guide provides some references to targets and limits established by international organizations. Operators, and sometimes designers, may also set their own safety targets which may be more stringent than those set by the regulator or may address different aspects of safety. In some countries operators are expected to do this as part of their 'ownership' of the entire safety case. This Safety Guide does not include specific recommendations for the safety assessment of those plant systems for which dedicated Safety Guides exist. Section 2 defines the terms 'safety assessment', 'safety analysis' and 'independent verification' and outlines their relationship. Section 3 gives the key recommendations for the safety assessment of the principal and plant design requirements. Section 4 gives the key recommendations for safety analysis. It describes the identification of postulated initiating events (PIEs), which are used throughout the safety assessment including the safety analysis, the deterministic transient analysis and severe accident analysis, and the probabilistic safety analysis
Measurements and standards for bulk-explosives detection
Energy Technology Data Exchange (ETDEWEB)
Hudson, Larry, E-mail: larry.hudson@nist.gov [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8460, Gaithersburg, MD 20899 (United States); Bateman, Fred; Bergstrom, Paul; Cerra, Frank; Glover, Jack; Minniti, Ronaldo; Seltzer, Stephen; Tosh, Ronald [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8460, Gaithersburg, MD 20899 (United States)
2012-07-15
Recent years have seen a dramatic expansion in the application of radiation and isotopes to security screening. This has been driven primarily by increased incidents involving improvised explosive devices as well as their ease of assembly and leveraged disruption of transportation and commerce. With global expenditures for security-screening systems in the hundreds of billions of dollars, there is a pressing need to develop, apply, and harmonize standards for x-ray and gamma-ray screening systems used to detect explosives and other contraband. The National Institute of Standards and Technology has been facilitating the development of standard measurement tools that can be used to gauge the technical performance (imaging quality) and radiation safety of systems used to screen luggage, persons, vehicles, cargo, and left-behind objects. After a review of this new suite of national standard test methods, test objects, and radiation-measurement protocols, we highlight some of the technical trends that are enhancing the revision of baseline standards. Finally we advocate a more intentional use of technical-performance standards by security stakeholders and outline the advantages this would accrue. - Highlights: Black-Right-Pointing-Pointer This work responds to the need for standards for x-ray screening systems used to detect explosives. Black-Right-Pointing-Pointer Described are new measurement tools to gage the performance and radiation safety of such systems. Black-Right-Pointing-Pointer A more intentional use of technical-performance standards by security stakeholders is argued.
Measurements and standards for bulk-explosives detection
International Nuclear Information System (INIS)
Hudson, Larry; Bateman, Fred; Bergstrom, Paul; Cerra, Frank; Glover, Jack; Minniti, Ronaldo; Seltzer, Stephen; Tosh, Ronald
2012-01-01
Recent years have seen a dramatic expansion in the application of radiation and isotopes to security screening. This has been driven primarily by increased incidents involving improvised explosive devices as well as their ease of assembly and leveraged disruption of transportation and commerce. With global expenditures for security-screening systems in the hundreds of billions of dollars, there is a pressing need to develop, apply, and harmonize standards for x-ray and gamma-ray screening systems used to detect explosives and other contraband. The National Institute of Standards and Technology has been facilitating the development of standard measurement tools that can be used to gauge the technical performance (imaging quality) and radiation safety of systems used to screen luggage, persons, vehicles, cargo, and left-behind objects. After a review of this new suite of national standard test methods, test objects, and radiation-measurement protocols, we highlight some of the technical trends that are enhancing the revision of baseline standards. Finally we advocate a more intentional use of technical-performance standards by security stakeholders and outline the advantages this would accrue. - Highlights: ► This work responds to the need for standards for x-ray screening systems used to detect explosives. ► Described are new measurement tools to gage the performance and radiation safety of such systems. ► A more intentional use of technical-performance standards by security stakeholders is argued.
Deterministic or Probabilistic - Robustness or Resilience: How to Respond to Climate Change?
Plag, H.; Earnest, D.; Jules-Plag, S.
2013-12-01
Our response to climate change is dominated by a deterministic approach that emphasizes the interaction between only the natural and the built environment. But in the non-ergodic world of unprecedented climate change, social factors drive recovery from unforeseen Black Swans much more than natural or built ones. Particularly the sea level rise discussion focuses on deterministic predictions, accounting for uncertainties in major driving processes with a set of forcing scenarios and public deliberations on which of the plausible trajectories is most likely. Science focuses on the prediction of future climate change, and policies focus on mitigation of both climate change itself and its impacts. The deterministic approach is based on two basic assumptions: 1) Climate change is an ergodic process; 2) The urban coast is a robust system. Evidence suggests that these assumptions may not hold. Anthropogenic changes are pushing key parameters of the climate system outside of the natural range of variability from the last 1 Million years, creating the potential for environmental Black Swans. A probabilistic approach allows for non-ergodic processes and focuses more on resilience, hence does not depend on the two assumptions. Recent experience with hurricanes revealed threshold limitations of the built environment of the urban coast, which, once exceeded, brought to the forefront the importance of the social fabric and social networking in evaluating resilience. Resilience strongly depends on social capital, and building social capital that can create resilience must be a key element in our response to climate change. Although social capital cannot mitigate hazards, social scientists have found that communities rich in strong norms of cooperation recover more quickly than communities without social capital. There is growing evidence that the built environment can affect the social capital of a community, for example public health and perceptions of public safety. This
Spot test kit for explosives detection
Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L
2014-03-11
An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.
Problems in the theory of point explosions
Korobeinikov, V. P.
The book is concerned with the development of the theory of point explosions, which is relevant to the study of such phenomena as the initiation of detonation, high-power explosions, electric discharges, cosmic explosions, laser blasts, and hypersonic aerodynamics. The discussion covers the principal equations and the statement of problems; linearized non-self-similar one-dimensional problems; spherical, cylindrical, and plane explosions with allowance for counterpressure under conditions of constant initial density; explosions in a combustible mixture of gases; and point explosions in inhomogeneous media with nonsymmetric energy release. Attention is also given to point explosions in an electrically conducting gas with allowance for the effect of the magnetic field and to the propagation of perturbations from solar flares.
Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M [ORNL; Kisner, Roger A [ORNL; Muhlheim, Michael David [ORNL; Fugate, David L [ORNL
2015-07-01
Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The
Classification and unification of the microscopic deterministic traffic models.
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.
Mixed deterministic statistical modelling of regional ozone air pollution
Kalenderski, Stoitchko
2011-03-17
We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..
Minaret, a deterministic neutron transport solver for nuclear core calculations
International Nuclear Information System (INIS)
Moller, J-Y.; Lautard, J-J.
2011-01-01
We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)
Analysis of deterministic cyclic gene regulatory network models with delays
Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian
2015-01-01
This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.
Distributed Design of a Central Service to Ensure Deterministic Behavior
Directory of Open Access Journals (Sweden)
Imran Ali Jokhio
2012-10-01
Full Text Available A central authentication service to EPC (Electronic Product Code system architecture is proposed in our previous work. A challenge for a central service always arises that how it can ensure a certain level of delay while processing emergent data. The increasing data in the EPC system architecture is tags data. Therefore, authenticating increasing number of tag in the central authentication service with a deterministic time response is investigated and a distributed authentication service is designed in a layered approach. A distributed design of tag searching services in SOA (Service Oriented Architecture style is also presented. Using the SOA architectural style a self-adaptive authentication service over Cloud is also proposed for the central authentication service, that may also be extended for other applications.
Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal
DEFF Research Database (Denmark)
Turajlic, Samra; Xu, Hang; Litchfield, Kevin
2018-01-01
The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show...... that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors...... outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance....
Minaret, a deterministic neutron transport solver for nuclear core calculations
Energy Technology Data Exchange (ETDEWEB)
Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)
2011-07-01
We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)
Molecular dynamics with deterministic and stochastic numerical methods
Leimkuhler, Ben
2015-01-01
This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...
HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks
Directory of Open Access Journals (Sweden)
Luca Marchetti
2017-01-01
Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.
Deterministic global optimization an introduction to the diagonal approach
Sergeyev, Yaroslav D
2017-01-01
This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed...
Deterministic secure communications using two-mode squeezed states
International Nuclear Information System (INIS)
Marino, Alberto M.; Stroud, C. R. Jr.
2006-01-01
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state
Deterministically entangling multiple remote quantum memories inside an optical cavity
Yan, Zhihui; Liu, Yanhong; Yan, Jieli; Jia, Xiaojun
2018-01-01
Quantum memory for the nonclassical state of light and entanglement among multiple remote quantum nodes hold promise for a large-scale quantum network, however, continuous-variable (CV) memory efficiency and entangled degree are limited due to imperfect implementation. Here we propose a scheme to deterministically entangle multiple distant atomic ensembles based on CV cavity-enhanced quantum memory. The memory efficiency can be improved with the help of cavity-enhanced electromagnetically induced transparency dynamics. A high degree of entanglement among multiple atomic ensembles can be obtained by mapping the quantum state from multiple entangled optical modes into a collection of atomic spin waves inside optical cavities. Besides being of interest in terms of unconditional entanglement among multiple macroscopic objects, our scheme paves the way towards the practical application of quantum networks.
A deterministic model of nettle caterpillar life cycle
Syukriyah, Y.; Nuraini, N.; Handayani, D.
2018-03-01
Palm oil is an excellent product in the plantation sector in Indonesia. The level of palm oil productivity is very potential to increase every year. However, the level of palm oil productivity is lower than its potential. Pests and diseases are the main factors that can reduce production levels by up to 40%. The existence of pests in plants can be caused by various factors, so the anticipation in controlling pest attacks should be prepared as early as possible. Caterpillars are the main pests in oil palm. The nettle caterpillars are leaf eaters that can significantly decrease palm productivity. We construct a deterministic model that describes the life cycle of the caterpillar and its mitigation by using a caterpillar predator. The equilibrium points of the model are analyzed. The numerical simulations are constructed to give a representation how the predator as the natural enemies affects the nettle caterpillar life cycle.
Location deterministic biosensing from quantum-dot-nanowire assemblies
International Nuclear Information System (INIS)
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-01-01
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.
Seismic verification of underground explosions
International Nuclear Information System (INIS)
Glenn, L.A.
1985-06-01
The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper
Absorbing phase transitions in deterministic fixed-energy sandpile models
Park, Su-Chan
2018-03-01
We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.