WorldWideScience

Sample records for determining air crew

  1. Air crews - a new group of radiation workers

    International Nuclear Information System (INIS)

    Antic, D.

    1997-01-01

    Air crews on commercial flights are not generally regarded as occupationally exposed radiation workers. The studies show that they may receive radiation doses in excess of the ICRP recommended limits for members of the public. An international approach to this problem could be enforced through IATA and other organizations in commercial air traffic. The results of the analysis for air crews of Yugoslav Airlines are used as example. (author)

  2. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  3. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  4. Air crew monitoring in Germany

    International Nuclear Information System (INIS)

    Stegemann, R.; Frasch, G.; Kammerer, L.

    2006-01-01

    Cosmic radiation at high altitudes, especially high energetic neutrons, significantly increases exposure to man. Pilots and flight attendants may receive annual effective doses comparable to doses received in occupations, in which ionising radiation is used or radioactive sources are handled. For this reason, the European Council Directive 96/29 EURATOM requires that air-crew members also be monitored for radiation protection. Flight personnel, receiving an effective dose from cosmic radiation of more than 1 mSv per year are subject to monitoring i.e. radiation exposure has to be assessed, limited and minimized. As the physical conditions causing cosmic radiation doses are well established, it is possible to calculate the expected radiation dose with sufficient accuracy. Several codes for this purpose are available. Since August 2003, the operators of airlines in Germany are obliged to assess the doses of their air crew personnel from cosmic radiation exposure and to minimise radiation exposure by means of appropriate work schedules, flight routes and flight profiles. Approx. 31 000 persons of 45 airlines are monitored by the German Radiation Protection Register. Gender, age and 3 different occupational categories are used to characterise different groups and their doses. The presentation will give an overview about the legislation and organisation of air crew monitoring in Germany and will show detailed statistical results from the first year of monitoring. (authors)

  5. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  6. New radiation limits and air crew exposure

    International Nuclear Information System (INIS)

    Antic, D.

    1999-01-01

    Commercial aircraft have optimum cruising speed of 800 - 900 km/h and the cruising altitude near 13 km.The flight paths are assigned according to airway corridors and safety requirements.The relatively high dose-equivalent rates at cruising altitudes near 13 km (about 0.5-2 mSv/h, and the shielding effect of the atmosphere corresponds to about 2 M of water) can cause exposures greater than 5 mSv/y, for a crew with full-time flight (500-600 h/y).The radiation exposure of the crew in commercial air traffic has been studied for the associations of the crews and airline management and published, and regulatory authorities are slowly accepting the fact that there indeed is a problem which needs investigations and protective regulation

  7. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  8. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  9. Changes in ocular and nasal signs and symptoms among air crew in relation to air humidification on intercontinental flights.

    Science.gov (United States)

    Norbäck, Dan; Lindgren, Torsten; Wieslander, Gunilla

    2006-04-01

    This study evaluates the influence of air humidification in aircraft on symptoms, tear-film stability, nasal patency, and peak expiratory flow. Commercial air crew (N=71) were given a medical examination during eight flights from Stockholm to Chicago and eight flights in the opposite direction. Examinations were done onboard one Boeing 767 aircraft equipped with an evaporation humidifier in the forward part of the cabin. The investigators followed the air crew, staying one night in Chicago and returning with the same crew. Four of the flights had the air humidification device active in-flight to Chicago and deactivated when returning to Stockholm. The other four flights had the inverse humidification sequence. The humidification sequence was randomized and double blind. Hygienic measurements were performed. The humidification increased the relative air humidity by 10% in the 1st row in business class, by 3% in the last row (39th row) in tourist class, and by 3% in the cockpit. Air humidification increased tear-film stability and nasal patency and decreased ocular, nasal, and dermal symptoms and headache. The mean concentration of viable bacteria [77-108 colony-forming units (cfu)/m(3)], viable molds (74-84 cfu/m(3)), and particulate matter (1-8 microg/m(3)) was low, both during the humidified and non-humidified flights. Relative air humidity is low (10-12%) during intercontinental flights and can be increased by the use of a ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. Air humidification could increase passenger and crew comfort by increasing tear-film stability and nasal patency and reducing various symptoms.

  10. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  11. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  12. Air-crew radiation dosimetry - last development

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    Exposure to cosmic radiation increases rapidly with the altitude. At the flight levels of commercial aircraft it is of the order of several μSv per hour. The most of air-crew are exposed regularly to the effective dose exceeding 1 mSv per year, the limit of exposure of non-professionals defined in ICRP 60 recommendation. That is why this problem has been intensively studied from many aspects since the beginning of 90's. This contribution summarises new developments in the field during last two years. First, new international activities are presented, further, new achievement obtained mainly in the author's laboratory are presented and discussed. (authors)

  13. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    Science.gov (United States)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  14. Study of air flow and temperature distribution in ship's crew cabins

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Ali, A.A.; Nasr, A.N. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Marine Engineering Technology

    2007-07-01

    Because of low internal heights in ship's crew cabins, the supplied air is directed to the persons at low mixing ratios. However, this does not allow the mixing process between the supplied air and the indoor air to be completed before the air enters human lungs. This paper presented an experimental and numerical simulation study that used computational fluid dynamics (CFD) to investigate the effect of the air supply location on thermal air diffusion in the ship's crew cabins space. The paper presented the results in terms of air diffusion performance index. The paper presented the CFD model, including selected space configurations; CFD simulation; boundary conditions; and CFD results. The CFD airflow simulation programs CFD were utilized to calculate the spatial distribution of temperature and velocity. The study focused on the typical Middle East region working vessel under thermal and boundary conditions including the high cooling load used in this region. Experimental data were also introduced to verify the CFD results package. It was concluded that the supply should be located near the high sidewall of the cabin. This gives better air distribution inside the space rather than the center of the room. 5 refs., 1 tab., 6 figs.

  15. Air crew exposure on board of long-haul flights of the Belgian airlines

    International Nuclear Information System (INIS)

    Verhaegen, F.; Poffijn, A.

    2000-01-01

    New European radiation protection recommendations state that measures need to be taken for flight crew members whose annual radiation exposure exceeds 1 mSv. This will be the case for flight crew members who accumulate most of their flying hours on long-haul flights. The Recommendations for the Implementation of the Basic Safety Standards Directive states that for annual exposure levels between 1 and 6 mSv individual dose estimates should be obtained, whereas for annual exposures exceeding 6 mSv, which might rarely occur, record keeping with appropriate medical surveillance is recommended. To establish the exposure level of Belgian air crews, radiation measurements were performed on board of a total of 44 long-haul flights of the Belgian airlines. The contribution of low linear energy transfer (LET) radiation (photons, electrons, protons) was assessed by using TLD-700H detectors. The exposure to high-LET radiation (mostly neutrons) was measured with bubble detectors. Results were compared to calculations with an adapted version of the computer code CARI. For the low-LET radiation the calculations were found to be in good agreement with the measurements. The measurements of the neutron dose were consistently lower than the calculations. With the current flight schedules used by the Belgian airlines, air crew members are unlikely to receive annual doses exceeding 4 mSv. (author)

  16. Long-term monitoring of air crew exposure onboard of Czech Airlines aircraft

    International Nuclear Information System (INIS)

    Ploc, O.; Spurny, F.; Ploc, O.

    2007-01-01

    This contribution presents new results related to the aircraft crew exposure onboard aircraft of Czech air companies. First, the results of long term monitoring onboard of an aircraft of Czech Airlines are presented. In the period May-December 2005, 494 individual flights have been followed using MDU-Liulin Si-diode based spectrometer, together with thermoluminescent and track detectors. The results of measurements are analyzed and compared with those of calculation performed with CARI6 and EPCARD3.2 codes. Monitoring period represented about 4.6 times more than usual annual engagement of an aircrew (600 hours). Total effective dose during these 2 755 hours was between Il and 12 mSv, following the considered method of evaluation. Both the measuring and calculation methods correlate well. This fact leads to confirmation of the routine method evaluating the level of aircraft crew exposure using CARI6 code as correct for this purpose. Second, the results of individual monitoring of aircrew members obtained during few last years by this routine method are presented; general tendencies of aircraft crew onboard exposure of Czech air companies are outlined. The contribution of aircrew exposure to total occupational exposure in the Czech Republic represents about 20%. (authors)

  17. A TLD-based personal dosemeter system for air crew monitoring

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    Full text: Due to the complex spectrum of different particles and energies involved, in-flight radiation dosimetry is usually associated with extensive instrumentation. The exposure of air crew personnel to cosmic radiation is paid serious attention, being further enhanced by the release of the European Council Directive 96/29/Euratom which makes the surveillance of crew members an obligatory issue. The high temperature ratio (HTR) method for small and easy-to-handle LiF:Mg,Ti thermoluminescent dosimeters was developed at the Atomic Institute of the Austrian Universities and fulfils these demands by permitting the determination of dose equivalent in radiation fields of unknown composition. The method uses the relative intensity of glow peaks 6 and 7 compared with the dominant peak 5 in the LiF Tl emission as an indication for the average LET and, thus, the mean quality factor of the radiation field. Extensive experiments in various ion beams established a HTR vs. LET calibration curve for the commercially available Tl phosphors TLD-600 and TLD-700. Additionally, the different neutron sensitivity of both types may be exploited for the determination of the dose equivalent delivered from neutrons which dominate at aviation altitudes. However, it is essential that the calibration of the Tl detectors is performed in a neutron environment of similar spectral shape as that encountered in flight. In our case, this constraint was satisfied by the CERN-EU High-Energy Reference Field (CERF). Results of both neutron and total dose equivalent for several different north-bound and trans-equatorial routes are presented, ranging from 2.1 ± 0.1 μSv/h with a 30 % neutron contribution for Vienna-Sydney to 4.9 ± 0.2 μSv/h and a roughly 55 % neutron contribution for Vienna-Tokyo. The measured route doses are compared with CARI-6M calculations. (author)

  18. Air ambulance tasking: mechanism of injury, telephone interrogation or ambulance crew assessment?

    Science.gov (United States)

    Wilmer, Ian; Chalk, Graham; Davies, Gareth Edward; Weaver, Anne Elizabeth; Lockey, David John

    2015-10-01

    The identification of serious injury is critical to the tasking of air ambulances. London's Air Ambulance (LAA) is dispatched by a flight paramedic based on mechanism of injury (MOI), paramedical interrogation of caller (INT) or land ambulance crew request (REQ).This study aimed to demonstrate which of the dispatch methods was most effective (in accuracy and time) in identifying patients with serious injury. A retrospective review of 3 years of data (to December 2010) was undertaken. Appropriate dispatch was defined as the requirement for LAA to escort the patient to hospital or for resuscitation on-scene. Inaccurate dispatch was where LAA was cancelled or left the patient in the care of the land ambulance crew. The χ(2) test was used to calculate p values; with significance adjusted to account for multiple testing. There were 2203 helicopter activations analysed: MOI 18.9% (n=417), INT 62.4% (n=1375) and REQ 18.7% (n=411). Appropriate dispatch rates were MOI 58.7% (245/417), INT 69.7% (959/1375) and REQ 72.2% (297/411). INT and REQ were both significantly more accurate than MOI (pinterrogation of the caller by a flight paramedic is as accurate as ground ambulance crew requests, and both are significantly better than MOI in identifying serious injury. Overtriage remains an issue with all methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  20. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    Science.gov (United States)

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  1. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic manifest requirement for crew members... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  2. Crew Resource Management: An Introductory Handbook

    Science.gov (United States)

    1992-08-01

    AND MAINTENANCE SKILLS: a cluster of CRM skills focusing on interpersonal relationships and effective team practices. 56 TEAM MANAGEMENT : command and...Information Service, Springfield, VA 22161 13. ABSTRACT (Maximum 200 words) Recent research findings suggest that crew resource management ( CRM ) training can...of ways to achieve effective CRM . 14. SUBJECT TERMS 15. NUMBER OF PAGES 62 Crew Resource Management ( CRM ). Air Carrier Training, Flight Crew

  3. Assessing air medical crew real-time readiness to perform critical tasks.

    Science.gov (United States)

    Braude, Darren; Goldsmith, Timothy; Weiss, Steven J

    2011-01-01

    Air medical transport has had problems with its safety record, attributed in part to human error. Flight crew members (FCMs) must be able to focus on critical safety tasks in the context of a stressful environment. Flight crew members' cognitive readiness (CR) to perform their jobs may be affected by sleep deprivation, personal problems, high workload, and use of alcohol and drugs. The current study investigated the feasibility of using a computer-based cognitive task to assess FCMs' readiness to perform their job. The FCMs completed a short questionnaire to evaluate their physiologic and psychological state at the beginning and end of each shift. The FCMs then performed 3 minutes of a computer-based cognitive task called synthetic work environment (SYNWIN test battery). Task performance was compared with the questionnaire variables using correlation and regression analysis. Differences between the beginning and end of each shift were matched and compared using a paired Students t test. SYNWIN performance was significantly worse at the end of a shift compared with the beginning of the shift (p = 0.028) primarily because of decrement in the memory component. The SYNWIN composite scores were negatively correlated to degree of irritability felt by the participant, both before (r = -0.25) and after (r = -0.34) a shift and were significantly correlated with amount of sleep (0.22), rest (0.30), and life satisfaction (0.30). Performance by FCMs on a simple, rapid, computer-based psychological test correlates well with self-reported sleep, rest, life satisfaction, and irritability. Although further studies are warranted, these findings suggest that assessment of the performance of FCMs on a simple, rapid, computer-based, multitasking battery is feasible as an approach to determine their readiness to perform critical safety tasks through the SYNWIN task battery.

  4. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  5. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... sections, must electronically transmit to Customs and Border Protection (CBP), by means of an electronic...

  6. Determining the optimal mix of federal and contract fire crews: a case study from the Pacific Northwest.

    Science.gov (United States)

    Geoffrey H. Donovan

    2006-01-01

    Federal land management agencies in the United States are increasingly relying on contract crews as opposed to agency fire crews. Despite this increasing reliance on contractors, there have been no studies to determine what the optimal mix of contract and agency fire crews should be. A mathematical model is presented to address this question and is applied to a case...

  7. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions

    International Nuclear Information System (INIS)

    Alves, J. G.; Mairos, J. C.

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Inst. of Radiation Protection (Neuherberg (Germany)). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Inst., Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. (authors)

  8. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  9. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  10. Sumatera Air Asia Training Center (Arsitektur Metafora)

    OpenAIRE

    Susanto, William

    2015-01-01

    Sumatera Air Asia Training Center as Air Asia training facility’s construction have a propose to train the Air Asia air craft crew who will be the employee of the Air Asia Airlines.Beside the main function;training facility for the Air Asia Crew; the other airline’s crew can be train by a cooperation with Air Asia.The aircraft crew that can be train in this facility is pilot initial, pilot type-rating, pilot recurrent, ATPL, Flight attendant initial and recurrent..This facility ha...

  11. A Numerical Analysis of the Air Distribution System for the Ventilation of the Crew Quarters on board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Bode Florin

    2018-01-01

    Full Text Available Quality of life on the International Space Station (ISS has become more and more important, since the time spent by astronauts outside the terrestrial atmosphere has increased in the last years. The actual concept for the Crew Quarters (CQ have demonstrated the possibility of a personal space for sleep and free time activities in which the noise levels are lower, but not enough, compared to the noisy ISS isle way. However, there are several issues that needs to be improved to increase the performance of CQ. Our project QUEST is intended to propose a new concept of CQ in which we will correct these issues, like the noise levels will be lower, more space for astronaut, increased thermal comfort, reduce the CQ total weight, higher efficiency for the air distribution, personalized ventilation system in CQ for the crew members in order to remove CO2 from the breathing zone. This paper presents a CFD study in which we are comparing the actual and a proposed ventilation solution for introducing the air in CQ. A preliminary numerical model of the present configuration of the air distribution system of the Crew Quarters on board of the ISS, shows the need for an improved air distribution inside these enclosures. Lower velocity values at the inlet diffuser, distributed over a larger surface, as well as diffusers with improved induction would appear to be a better choice. This was confirmed through the development of a new model including linear diffusers with a larger discharge surface. In this new configuration, the regions of possible draught are dramatically reduced. The overall distributions of the velocity magnitudes displaying more uniform, lower values, in the same time with more uniform temperatures. All these observations allow us to consider a better mixing of the air inside the enclosure.

  12. A Numerical Analysis of the Air Distribution System for the Ventilation of the Crew Quarters on board of the International Space Station

    Science.gov (United States)

    Bode, Florin; Nastase, Ilinca; Croitoru, Cristiana Verona; Sandu, Mihnea; Dogeanu, Angel

    2018-02-01

    Quality of life on the International Space Station (ISS) has become more and more important, since the time spent by astronauts outside the terrestrial atmosphere has increased in the last years. The actual concept for the Crew Quarters (CQ) have demonstrated the possibility of a personal space for sleep and free time activities in which the noise levels are lower, but not enough, compared to the noisy ISS isle way. However, there are several issues that needs to be improved to increase the performance of CQ. Our project QUEST is intended to propose a new concept of CQ in which we will correct these issues, like the noise levels will be lower, more space for astronaut, increased thermal comfort, reduce the CQ total weight, higher efficiency for the air distribution, personalized ventilation system in CQ for the crew members in order to remove CO2 from the breathing zone. This paper presents a CFD study in which we are comparing the actual and a proposed ventilation solution for introducing the air in CQ. A preliminary numerical model of the present configuration of the air distribution system of the Crew Quarters on board of the ISS, shows the need for an improved air distribution inside these enclosures. Lower velocity values at the inlet diffuser, distributed over a larger surface, as well as diffusers with improved induction would appear to be a better choice. This was confirmed through the development of a new model including linear diffusers with a larger discharge surface. In this new configuration, the regions of possible draught are dramatically reduced. The overall distributions of the velocity magnitudes displaying more uniform, lower values, in the same time with more uniform temperatures. All these observations allow us to consider a better mixing of the air inside the enclosure.

  13. Cyber Safety and Security for Reduced Crew Operations (RCO)

    Science.gov (United States)

    Driscoll, Kevin

    2017-01-01

    NASA and the Aviation Industry is looking into reduced crew operations (RCO) that would cut today's required two-person flight crews down to a single pilot with support from ground-based crews. Shared responsibility across air and ground personnel will require highly reliable and secure data communication and supporting automation, which will be safety-critical for passenger and cargo aircraft. This paper looks at the different types and degrees of authority delegation given from the air to the ground and the ramifications of each, including the safety and security hazards introduced, the mitigation mechanisms for these hazards, and other demands on an RCO system architecture which would be highly invasive into (almost) all safety-critical avionics. The adjacent fields of unmanned aerial systems and autonomous ground vehicles are viewed to find problems that RCO may face and related aviation accident scenarios are described. The paper explores possible data communication architectures to meet stringent performance and information security (INFOSEC) requirements of RCO. Subsequently, potential challenges for RCO data communication authentication, encryption and non-repudiation are identified. The approach includes a comprehensive safety-hazard analysis of the RCO system to determine top level INFOSEC requirements for RCO and proposes an option for effective RCO implementation. This paper concludes with questioning the economic viability of RCO in light of the expense of overcoming the operational safety and security hazards it would introduce.

  14. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  15. Cancer incidence in professional flight crew and air traffic control officers: disentangling the effect of occupational versus lifestyle exposures.

    Science.gov (United States)

    dos Santos Silva, Isabel; De Stavola, Bianca; Pizzi, Costanza; Evans, Anthony D; Evans, Sally A

    2013-01-15

    Flight crew are occupationally exposed to several potentially carcinogenic hazards; however, previous investigations have been hampered by lack of information on lifestyle exposures. The authors identified, through the United Kingdom Civil Aviation Authority medical records, a cohort of 16,329 flight crew and 3,165 air traffic control officers (ATCOs) and assembled data on their occupational and lifestyle exposures. Standardised incidence ratios (SIRs) were estimated to compare cancer incidence in each occupation to that of the general population; internal analyses were conducted by fitting Cox regression models. All-cancer incidence was 20-29% lower in each occupation than in the general population, mainly due to a lower incidence of smoking-related cancers [SIR (95% CI) = 0.33 (0.27-0.38) and 0.42 (0.28-0.60) for flight crew and ATCOs, respectively], consistent with their much lower prevalence of smoking. Skin melanoma rates were increased in both flight crew (SIR = 1.87; 95% CI = 1.45-2.38) and ATCOs (2.66; 1.55-4.25), with rates among the former increasing with increasing number of flight hours (p-trend = 0.02). However, internal analyses revealed no differences in skin melanoma rates between flight crew and ATCOs (hazard ratio: 0.78, 95% CI = 0.37-1.66) and identified skin that burns easily when exposed to sunlight (p = 0.001) and sunbathing to get a tan (p = 0.07) as the strongest risk predictors of skin melanoma in both occupations. The similar site-specific cancer risks between the two occupational groups argue against risks among flight crew being driven by occupation-specific exposures. The skin melanoma excess reflects sun-related behaviour rather than cosmic radiation exposure. Copyright © 2012 UICC.

  16. Advanced flight deck/crew station simulator functional requirements

    Science.gov (United States)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  17. Monitoring Effective Doses Received By Air Crews With A Space Weather Application

    Science.gov (United States)

    Lantos, P.

    To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.

  18. Formal testing and utilization of streaming media to improve flight crew safety knowledge.

    Science.gov (United States)

    Bellazzini, Marc A; Rankin, Peter M; Quisling, Jason; Gangnon, Ronald; Kohrs, Mike

    2008-01-01

    Increased concerns over the safety of air medical transport have prompted development of novel ways to increase safety. The objective of our study was to determine if an Internet streaming media safety video increased crew safety knowledge. 23 out of 40 crew members took an online safety pre-test, watched a safety video specific to our program and completed immediate and long-term post-testing 6 months later. Mean pre-test, post-test and 6 month follow up test scores were 84.9%, 92.3% and 88.4% respectively. There was a statistically significant difference in all scores (p Streaming media proved to be an accessible and effective supplement to safety training in our study.

  19. Microbiology and Crew Medical Events on the International Space Station

    Science.gov (United States)

    Oubre, Cherie; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  20. Group-level issues in the design and training of cockpit crews

    Science.gov (United States)

    Hackman, J. Richard

    1987-01-01

    Cockpit crews always operate in an organizational context, and the transactions between the crew and representatives of that context (e.g., organizational managers, air traffic controllers) are consequential for any crew's performance. For a complete understanding of crew performance a look beyond the traditional focus on individual pilots is provided to see how team- and organization-level factors can enhance (or impede) the ability of even well-trained individuals to work together effectively. This way of thinking about cockpit crews (that is, viewing them as teams that operate in organizations) offers some potentially useful avenues for thinking about next steps in the development of CRM training programs. Those possibilities are explored, emphasizing how they can enrich (not replace) individually-focussed CRM training.

  1. A Combined Adaptive Tabu Search and Set Partitioning Approach for the Crew Scheduling Problem with an Air Tanker Crew Application

    Science.gov (United States)

    2002-08-15

    Agency Name(s) and Address(es) Maj Juan Vasquez AFOSR/NM 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977 Sponsor/Monitor’s Acronym(s) Sponsor... Gelman , E., Patty, B., and R. Tanga. 1991. Recent Advances in Crew-Pairing Optimization at American Airlines, Interfaces, 21(1):62-74. Baker, E.K...Operations Research, 25(11):887-894. Chu, H.D., Gelman , E., and E.L. Johnson. 1997. Solving Large Scale Crew Scheduling Problems, European

  2. Cause-specific mortality in professional flight crew and air traffic control officers: findings from two UK population-based cohorts of over 20,000 subjects.

    Science.gov (United States)

    De Stavola, Bianca L; Pizzi, Costanza; Clemens, Felicity; Evans, Sally Ann; Evans, Anthony D; dos Santos Silva, Isabel

    2012-04-01

    Flight crew are exposed to several potential occupational hazards. This study compares mortality rates in UK flight crew to those in air traffic control officers (ATCOs) and the general population. A total of 19,489 flight crew and ATCOs were identified from the UK Civil Aviation Authority medical records and followed to the end of 2006. Consented access to medical records and questionnaire data provided information on demographic, behavioral, clinical, and occupational variables. Standardized mortality ratios (SMR) were estimated for these two occupational groups using the UK general population. Adjusted mortality hazard ratios (HR) for flight crew versus ATCOs were estimated via Cox regression models. A total of 577 deaths occurred during follow-up. Relative to the general population, both flight crew (SMR 0.32; 95% CI 0.30, 0.35) and ATCOs (0.39; 0.32, 0.47) had lower all-cause mortality, mainly due to marked reductions in mortality from neoplasms and cardiovascular diseases, although flight crew had higher mortality from aircraft accidents (SMR 42.8; 27.9, 65.6). There were no differences in all-cause mortality (HR 0.99; 95% CI 0.79, 1.25), or in mortality from any major cause, between the two occupational groups after adjustment for health-related variables, again except for those from aircraft accidents. The latter ratios, however, declined with increasing number of hours. The low all-cause mortality observed in both occupational groups relative to the general population is consistent with a strong "healthy worker effect" and their low prevalence of smoking and other risk factors. Mortality among flight crew did not appear to be influenced by occupational exposures, except for a rise in mortality from aircraft accidents.

  3. Selecting pilots with crew resource management skills.

    Science.gov (United States)

    Hedge, J W; Bruskiewicz, K T; Borman, W C; Hanson, M A; Logan, K K; Siem, F M

    2000-10-01

    For years, pilot selection has focused primarily on the identification of individuals with superior flying skills and abilities. More recently, the aviation community has become increasingly aware that successful completion of a flight or mission requires not only flying skills but the ability to work well in a crew situation. This project involved development and validation of a crew resource management (CRM) skills test for Air Force transport pilots. A significant relation was found between the CRM skills test and behavior-based ratings of aircraft commander CRM performance, and the implications of these findings for CRM-based selection and training are discussed.

  4. Considerations on radiation protection of aircraft crew in Brazil

    International Nuclear Information System (INIS)

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  5. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    Antic, D.; Markovic, P.; Petrovic, Z.

    1993-01-01

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  6. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    Science.gov (United States)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  7. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    Science.gov (United States)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  8. Commercial Crew Program Crew Safety Strategy

    Science.gov (United States)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  9. Air traffic and cosmic radiation. An epidemiological study among aircraft crews in Germany

    International Nuclear Information System (INIS)

    Blettner, M.; Hammer, G.P.; Langner, I.; Zeeb, H.

    2003-01-01

    Airline pilots and cabin crew are exposed to cosmic ionizing radiation and other occupational factors that may influence their health status. The mortality of some 6,000 pilots and 20,000 cabin crew members was investigated in a cohort study. Overall a pronounced healthy worker effect was seen. The cancer mortality risk is slightly lower than in the general population. Currently there is no indication for an increase in cancer mortality due to cosmic radiation. A further follow-up is planned. (orig.) [de

  10. Habitability Designs for Crew Exploration Vehicle

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  11. Crew behavior and performance in space analog environments

    Science.gov (United States)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  12. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    Science.gov (United States)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  13. From Crew Communication to Coordination: A Fundamental Means to an End

    Science.gov (United States)

    Kanki, Barbara G.; Connors, Mary M. (Technical Monitor)

    1998-01-01

    This viewgraph presentation describes the purposes and contexts of communication, factors which affect the interpretation of communication, and the advantages of effective, systematic communication to and from crews. Communication accomplishes information transfer, team/task management, shared problem solving and decision making, and establishment of the interpersonal climate. These accomplishments support outcomes: Technical task performance; CRM (crew resource management); Procedures and ATC (air traffic control); and Work/team atmosphere. The presentation lists various types of management inefficiency which can result from a lack of each of the four accomplishments. Communication skills are used within the following contexts: physical; social and organizational; task and operational; and speech and linguistic. Crew communication can be evaluated through investigation (case study), research (experimentation), and training.

  14. Whither CRM? Future directions in Crew Resource Management training in the cockpit and elsewhere

    Science.gov (United States)

    Helmreich, Robert L.

    1993-01-01

    The past decade has shown worldwide adoption of human factors training in civil aviation, now known as Crew Resource Management (CRM). The shift in name from cockpit to crew reflects a growing trend to extend the training to other components of the aviation system including flight attendants, dispatchers, maintenance personnel, and Air Traffic Controllers. The paper reports findings and new directions in research into human factors.

  15. Ergonomic and anthropometric issues of the forward Apache crew station

    NARCIS (Netherlands)

    Oudenhuijzen, A.J.K.

    1999-01-01

    This paper describes the anthropometric accommodation in the Apache crew systems. These activities are part of a comprehensive project, in a cooperative effort from the Armstrong Laboratory at Wright Patterson Air Force Base (Dayton, Ohio, USA) and TNO Human Factors Research Institute (TNO HFRI) in

  16. Occupational Health Screenings of Aeromedical Evacuation and Critical Care Air Transport Team Crew Members

    Science.gov (United States)

    2015-08-01

    long work hours, constant vigilance, and the need for both physical and emotional stamina . AE crew members must possess characteristics beyond what is...tests were used in place of chi-square analyses when expected cell counts in contingency tables were less than five. Odds ratios (ORs) were reported to...members being female are 2.26 times greater than the odds of CCATT crew members being female. Odds ratios could not be computed with an observed cell

  17. Radiation exposure of the Yugoslav Airlines crews according to new radiation limits

    International Nuclear Information System (INIS)

    Antic, D.

    1998-01-01

    Radiation exposure of the Yugoslav Airlines (JAT) crews in commercial air traffic has been studied according to the new radiation limits (ICRP 60). Selected pilots make the groups, for different types in use by JAT, and two groups of the co-pilots ('flight engineers' for B-727 and DC-10 aircraft's). Cabin crew members make three groups of pursers and two groups of STW/STD (they include both male and female workers). Annual doses and added risks have been assessed. (author)

  18. 20 CFR 404.1010 - Farm crew leader as employer.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404... leader's or the farm operator's), the crew leader is deemed to be the employer of the workers and is self... determine the crew leader's status. Work Excluded From Employment ...

  19. STS-114: Discovery Crew Arrival

    Science.gov (United States)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  20. 14 CFR 272.5 - Determination of essential air service.

    Science.gov (United States)

    2010-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES § 272.5 Determination of essential air service. Procedures for the determination of essential air service under this... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Determination of essential air service. 272...

  1. Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS

    Science.gov (United States)

    Sandu, Mihnea; Nastase, Ilinca; Bode, Florin; Croitoru, CristianaVerona; Tacutu, Laurentiu

    2018-02-01

    The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.

  2. Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS

    Directory of Open Access Journals (Sweden)

    Sandu Mihnea

    2018-01-01

    Full Text Available The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.

  3. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    Science.gov (United States)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  4. Empiric determination of corrected visual acuity standards for train crews.

    Science.gov (United States)

    Schwartz, Steven H; Swanson, William H

    2005-08-01

    Probably the most common visual standard for employment in the transportation industry is best-corrected, high-contrast visual acuity. Because such standards were often established absent empiric linkage to job performance, it is possible that a job applicant or employee who has visual acuity less than the standard may be able to satisfactorily perform the required job activities. For the transportation system that we examined, the train crew is required to inspect visually the length of the train before and during the time it leaves the station. The purpose of the inspection is to determine if an individual is in a hazardous position with respect to the train. In this article, we determine the extent to which high-contrast visual acuity can predict performance on a simulated task. Performance at discriminating hazardous from safe conditions, as depicted in projected photographic slides, was determined as a function of visual acuity. For different levels of visual acuity, which was varied through the use of optical defocus, a subject was required to label scenes as hazardous or safe. Task performance was highly correlated with visual acuity as measured under conditions normally used for vision screenings (high-illumination and high-contrast): as the acuity decreases, performance at discriminating hazardous from safe scenes worsens. This empirically based methodology can be used to establish a corrected high-contrast visual acuity standard for safety-sensitive work in transportation that is linked to the performance of a job-critical task.

  5. Wireless Crew Communication Feasibility Assessment

    Science.gov (United States)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  6. Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility

    Science.gov (United States)

    Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.

    2013-01-01

    Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute

  7. [Comfort of crew and passengers and atmospheric pressure, noise, wind speed in high-speed train of Shijiazhuang-Taiyuan passenger dedicated line].

    Science.gov (United States)

    Zhai, Yi-biao; Huo, Wei; Liu, Qiao-ying; Chen, Bao-shan; Zhang, Jin-long; Shi, Lei

    2012-11-01

    To explore the crew and passengers' comfort on the Shijiazhuang-Taiyuan passenger dedicated line and physical factors, such as air pressure, noise, wind speed. Comfort investigation of all the crew (n = 244) and passengers (n = 377) on the Shijiazhuang-Taiyuan passenger dedicated line at speed of 250 km/h and 200 km/h and the detection of the air pressure, noise and wind speed were performed in 2011. Significantly higher ratio of comfortable feeling, lower ratio of seriously discomfortable feeling were observed in crew and passengers at 200 km/h compared with those at 250 km/h (P noise in passengers at 200 km/h. No significant difference was observed in ear discomfort induced by air pressure and noise among crew, and the duration of disappearance of discomfortable feeling among passengers between 200 km/h and 250 km/h. The noise in carriages exceeded the related standard when the high-speed train passing through the tunnels. The individuals feel more comfortable at 200 km/h than 250 km/h in this line., which may be related with rapid variation of wind speed and noise when the train passes through the tunnels with high speed.

  8. Coordination strategies of crew management

    Science.gov (United States)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  9. Crew Situation Awareness, Diagnoses, and Performance in Simulated Nuclear Power Plant Process Disturbances

    International Nuclear Information System (INIS)

    Sebok, Angelia; Kaarstad, Magnhild

    1998-01-01

    Research was conducted at the OECD Halden Reactor Project to identify issues in crew performance in complex simulated nuclear power plant scenarios. Eight crews of operators participated in five scenarios, administered over a two or three-day period. Scenarios required either rule-based or knowledge-based problem solving. Several performance parameters were collected, including Situation Awareness (SA), objective performance, rated crew performance, and crew diagnoses. The purpose of this study was to investigate differences in performance measures in knowledge-based and rule-based scenarios. Preliminary data analysis revealed a significant difference in crew SA between the two scenario types: crews in the rule-based scenarios had significantly higher SA then crews in the knowledge-based scenarios. Further investigations were initiated to determine if crews performed differently, in terms of objective performance, rated crew performance, and diagnoses, between the scenario types. Correlations between the various crew performance measurements were calculated to reveal insights into the nature of SA, performance, and diagnoses. The insights into crew performance can be used to design more effective interfaces and operator performance aids, thus contributing to enhanced crew performance and improved plant safety. (authors)

  10. Wireless Crew Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of...

  11. Determinants of European air traffic development

    Directory of Open Access Journals (Sweden)

    Tomislav MIHETEC

    2008-01-01

    Full Text Available The paper elaborates main determinants of the strategic development as well as the key factors, which influence European air traffic dynamics. The problem of European airspace fragmentation should be solved by the comprehensive dynamic harmonization programmes, which can contribute to effective increase of airspace capacity and increase of air transport efficiency. The main objective of development strategy refers to the implementation of reformation processes of the European air traffic management system through functional ATM regionalization and adoption of Single European Sky legislation.

  12. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  13. Crew Transportation Plan

    Science.gov (United States)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  14. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  15. STS-96 Crew Training

    Science.gov (United States)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  16. The Role of Communications, Socio-Psychological, and Personality Factors in the Maintenance of Crew Coordination

    Science.gov (United States)

    Foushee, H. Clayton

    1982-01-01

    There is increasing evidence that many air transport incidents and accidents are the result of the improper or inadequate utilization of the resources accessible to flight dock crew members. These resources obviously include the hardware and technical information necessary for the safe and efficient conduct of the flight, but they also Include the human resources which must be coordinated effectively. The focus of this paper is upon the human resources, and how communication styles, socio-psychological factors, and personality characteristics can affect crew coordination.

  17. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic information for air cargo required in... OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  18. Development of capacity for measuring ionizing radiation in aircraft crew

    International Nuclear Information System (INIS)

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper describes the activities performed in a research program of the Institute of Advanced Studies, Brazil, belonging to the Brazilian Air Force, joining to researches from Brazilian Nuclear Energy Commission, in order to bring to Brazil the capacity and acknowledge necessary to the evaluation of dose from ionizing radiation originated in the cosmic radiation and its by products which fall on aircraft crews

  19. Crew Scheduling Considering both Crew Duty Time Difference and Cost on Urban Rail System

    Directory of Open Access Journals (Sweden)

    Wenliang Zhou

    2016-11-01

    Full Text Available Urban rail crew scheduling problem is to allocate train services to crews based on a given train timetable while satisfying all the operational and contractual requirements. In this paper, we present a new mathematical programming model with the aim of minimizing both the related costs of crew duty and the variance of duty time spreads. In addition to iincorporating the commonly encountered crew scheduling constraints, it also takes into consideration the constraint of arranging crews having a meal in the specific meal period of one day rather than after a minimum continual service time. The proposed model is solved by an ant colony algorithm which is built based on the construction of ant travel network and the design of ant travel path choosing strategy. The performances of the model and the algorithm are evaluated by conducting case study on Changsha urban rail. The results indicate that the proposed method can obtain a satisfactory crew schedule for urban rails with a relatively small computational time.

  20. ON SOME TERMS DENOTING CREW MEMBERS ON DUBROVNIK SHIPS

    Directory of Open Access Journals (Sweden)

    Ariana Violić-Koprivec

    2015-01-01

    Full Text Available The paper discusses selected terms denoting crew members on Dubrovnik ships throughout the history. The titles of the most important crew members are analyzed based on the corpus of the 18th century documents, literary works, and technical literature. The goal is to determine which terms are typical of the Dubrovnik area, whether their meanings have become restricted or extended, and how they have disappeared or remained in use over the centuries. It is obvious that the importance of individual crew members and their positions changed with time. Their responsibilities occasionally overlapped, and certain terms for their positions coexisted as synonyms, either belonging to the standard or local, i.e. colloquial use. A comparative analysis has revealed some specific features of the Dubrovnik maritime terminology referring to the ship’s crew. The terms škrivan, nokjer, nostromo, pilot, gvardijan and dispensjer are lexemes specific for this area. This is confirmed by their use in literary works.

  1. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  2. Crew factors in flight operations II : psychophysiological responses to short-haul air transport operations

    Science.gov (United States)

    1994-11-01

    This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...

  3. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    Spurny, F.; Kovar, I.; Bottollier-Depois, J.F.; Plawinski, L.

    1998-01-01

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  4. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56 and...

  5. Air Quality Monitoring: Risk-Based Choices

    Science.gov (United States)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  6. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  7. Airline Crew Training

    Science.gov (United States)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  8. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    Science.gov (United States)

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  9. Crew appliance study

    Science.gov (United States)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  10. Commercial Crew Medical Ops

    Science.gov (United States)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  11. An IP Framework for the Crew Pairing Problem Using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David

    In this paper we consider an important problem for the airline industry. The widely studied crew pairing problem is typically formulated as a set partitioning problem and solved using the branch-and-price methodology. Here we develop a new integer programming framework, based on the concept...... of subsequence generation, for solving the set partitioning formulation. In subsequence generation one restricts the number of permitted subsequent flights, that a crew member can turn to after completing any particular flight. By restricting the number of subsequences, the number of pairings in the problem...... decreases. The aim is then to dynamically add attractive subsequences to the problem, thereby increasing the number of possible pairings and improving the solution quality. Encouraging results are obtained on 19 real-life instances supplied by Air New Zealand and show that the described methodology...

  12. John Glenn and rest of STS-95 crew exit Crew Transport Vehicle

    Science.gov (United States)

    1998-01-01

    Following touchdown at 12:04 p.m. EST at the Shuttle Landing Facility, the mission STS-95 crew leave the Crew Transport Vehicle. Payload Specialist John H. Glenn Jr. (center), a senator from Ohio, shakes hands with NASA Administrator Daniel S. Goldin. At left is Center Director Roy Bridges. Other crew members shown are Pilot Steven W. Lindsey (far left) and, behind Glenn, Mission Specialists Scott E. Parazynski and Stephen K. Robinson, and Payload Specialist Chiaki Mukai, Ph.D., M.D., with the National Space Development Agency of Japan. Not seen are Mission Commander Curtis L. Brown Jr. and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. ISS Crew Transportation and Services Requirements Document

    Science.gov (United States)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  14. Determination of plutonium in air and smear samples

    International Nuclear Information System (INIS)

    Hinton, E.R. Jr.; Tucker, W.O.

    1981-01-01

    A method has been developed for the determination of plutonium in air samples and smear samples that were collected on filter papers. The sample papers are digested in nitric acid, extracted into 2-thenoyltrifluoroacetone (TTA)-xylene, and evaporated onto stainless steel disks. Alpha spectrometry is employed to determine the activity of each plutonium isotope. Each sample is spiked with plutonium-236. All glassware used in the procedure is disposable. The detection limits are 3 and 5 dpm (disintegrations per minute) for air and smear samples, respectively, with an average recovery of 87%

  15. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  16. Optimizing the physical conditioning of the NASCAR sprint cup pit crew athlete.

    Science.gov (United States)

    Ferguson, David P; Davis, Adam M; Lightfoot, J Timothy

    2015-03-01

    Stock car racing is the largest spectator sport in the United States. As a result, National Association for Stock Car Automobile Racing (NASCAR) Sprint Cup teams have begun to invest in strength and conditioning programs for their pit crew athletes. However, there is limited knowledge regarding the physical characteristics of elite NASCAR pit crew athletes, how the NASCAR Sprint Cup season affects basic physiological parameters such as body composition, and what is the most appropriate physical training program that meets the needs of a pit crew athlete. We conducted 3 experiments involving Sprint Cup motorsport athletes to determine predictors of success at the elite level, seasonal physiological changes, and appropriate physical training programs. Our results showed that hamstring flexibility (p = 0.015) and the score on the 2-tire front run test (p = 0.012) were significant predictors of NASCAR Sprint Cup Pit Crew athlete performance. Additionally, during the off season, pit crew athletes lost lean body mass, which did not return until the middle of the season. Therefore, a strength and conditioning program was developed to optimize pit crew athlete performance throughout the season. Implementation of this strength and conditioning program in 1 NASCAR Sprint Cup team demonstrated that pit crew athletes were able to prevent lean body mass loss and have increased muscle power output from the start of the season to the end of the season.

  17. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  18. Aviation Crew Recovery Experiences on Outstations

    Directory of Open Access Journals (Sweden)

    Gislason Sigurdur Hrafn

    2016-12-01

    Full Text Available ACMI flight crews spend considerable time away from home on outstations. This study suggests that this long term stay carries its own considerations in regards to rest recovery with practical implications for Fatigue Risk Management as prescribed by ICAO. Four recovery experiences, Work Detachment, Control, Relaxation and Mastery, are identified and correlated with 28 crew behaviours on base. The results indicate improvement considerations for airline management organizing a long term contract with ACMI crews, in particular to increase schedule stability to improve the crew member’s sense of Control.

  19. 14 CFR 272.6 - Considerations in the determination of essential air service.

    Science.gov (United States)

    2010-01-01

    ... essential air service. 272.6 Section 272.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES § 272.6 Considerations in the determination of essential air service. (a) In the determination of...

  20. Effective doses received by air crew of airlines registered in the Czech and Slovak Republics

    International Nuclear Information System (INIS)

    Kubancak, Jan; Orcikova, H.; Kovar, I.

    2013-01-01

    The results of effective dose monitoring for airlines registered in the Czech Republic since 1999 and in Slovakia since 2011 are presented. The recommended effective dose limits were apparently exceeded in over 75% Czech crew members. The dependence of the effective doses on the heliocentric potential was also examined. (orig.)

  1. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  2. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  3. Considerations on radiation protection of aircraft crew in Brazil; Consideracoes a respeito de protecao radiologica de tripulacoes de aeronaves no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Federico, C.A.; Goncalez, O.L., E-mail: claudiofederico@ieav.cta.b, E-mail: odairl@ieav.cta.b [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Sordi, G.M.; Caldas, L.V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  4. Spectrophotometric Determination of Carbon Disulphide in the Workplace Air

    Directory of Open Access Journals (Sweden)

    V. Pitschmann

    2013-01-01

    Full Text Available This papre describes a simple method of carbon disulphide determination in the air of working environment in the chemical companies and plants after its absorption into aprotic N,N-dimethylformamide solvent. Carbon disulphide absorbed into aprotic solvent was transformed by using ammonium hydroxide on sulphides which were determined by spectrophotometry. 5,5′-Dithiobis(2-nitrobenzoic acid and blue tetrazolium chloride were used as chromogenic sensing reagents. Colour-reducing products were measured at the wavelength of 500, respectively 520 nm. Detection limits for determination of carbon disulphide in the air are 0.2, respectively 0.4 mg·m−3.

  5. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  6. STS-114 Crew Interviews: 1. Eileen Collins 2. Wendy Lawrence

    Science.gov (United States)

    2005-01-01

    1) STS-114 Commander Eileen Collins emphasized her love for teaching, respect for teachers, and her plan to go back to teaching again someday. Her solid background in Math and Science, focus on her interests, with great support from her family, and great training and support during her career with the Air Force gave her confidence in pursuing her dream to become an astronaut. Commander Collins shares her thoughts on the Columbia, details the various flight operations and crew tasks that will take place during the mission and the importance of Shuttle missions to the International Space Station and space exploration. 2) STS-114 Mission Specialist Wendy Lawrence first dreamed of becoming an astronaut when she watched Neil Armstrong walk on the moon from their black and white TV set. She majored in Engineering and became a Navy pilot. She shares her thoughts on the Columbia, details her major role as the crew in charge of all the transfer operations; getting the MPLM unpacked and repacked; and the importance of Shuttle missions to the International Space Station and space exploration.

  7. Crew Workload Prediction Study.

    Science.gov (United States)

    1981-12-01

    computes Estimated Times of Arrival (ETA), fuel required/ remaining at waypoints, optimum Engine Pressure Ratio ( EPR ) settings for crew selected...similar information (quantities, pressures, and rates) in a centralized position. Also, the vertical-scale instruments are used to indicate EPR values to...integrity of the crew station as a whole, simply has not been available. This paradoxical situation has become even more pronounced in recent years with the

  8. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber

    International Nuclear Information System (INIS)

    Oliveira, Hebert Pinto Silveira de

    2010-01-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k e ) and air attenuation (k a ). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  9. Crew Selection and Training

    Science.gov (United States)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  10. Intercultural crew issues in long-duration spaceflight

    Science.gov (United States)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  11. A method to determine methylmethacrylate in air

    DEFF Research Database (Denmark)

    Darre, E; Gottlieb, J; Nielsen, P M

    1988-01-01

    To determine the air concentrations of methylmethacrylate monomer and thus obtain information about the safety in the operating theater, a methylmethacrylate Dräger tube was used in connection with a bellows pump. This method gives an instantly readable value correlated with more complicated gas...

  12. Observations of Crew Dynamics during Mars Analog Simulations

    Science.gov (United States)

    Cusack, Stacy L.

    2010-01-01

    This presentation reviews the crew dynamics during two simulations of Mars Missions. Using an analog of a Mars habitat in two locations, Flashline Mars Arctic Research Station (FMARS) which is located on Devon Island at 75 deg North in the Canadian Arctic, and the Mars Desert Research Station (MDRS) which is located in the south of Utah, the presentation examines the crew dynamics in relation to the leadership style of the commander of the mission. The difference in the interaction of the two crews were shown to be related to the leadership style and the age group in the crew. As much as possible the habitats and environment was to resemble a Mars outpost. The difference between the International Space Station and a Mars missions is reviewed. The leadership styles are reviewed and the contrast between the FMARS and the MDRS leadership styles were related to crew productivity, and the personal interactions between the crew members. It became evident that leadership styles and interpersonal skill had more affect on mission success and crew dynamics than other characteristics.

  13. Routing helicopters for crew exchanges on off-shore locations

    NARCIS (Netherlands)

    Sierksma, G.; Tijssen, G.A.

    This paper deals with a vehicle routing problem with split demands, namely the problem of determining a flight schedule for helicopters to off-shore platform locations for exchanging crew people employed on these platforms. The problem is formulated as an LP model and solved by means of a

  14. Develop generic equations to determine radon daughters concentrations in air

    International Nuclear Information System (INIS)

    Shweikani, R.; Jerby, B.

    2011-06-01

    Measurements of radon daughter concentrations in air are very important to determine the human dose from background radiation. Therefore, many studies tried to find measurements methods depending on many specific parameters such as measurement time, air pumping period and sample volume. In this study a general equations to determine radon daughter's concentrations in air was found using direct samples. The Equations results were closed to the results obtained from other well known methods. Many measurements with different places and various conditions were performed; the results showed that the new equations are able to be used with an error less than 10%, The relative error can be reduced by increasing the pumping rate or measuring high concentration cases.(author)

  15. AF Week in Photos > U.S. Air Force > Article Display

    Science.gov (United States)

    /Master Sgt. Charles Delano) PHOTO DETAILS / DOWNLOAD HI-RES 5 of 13 Crew chiefs with the Wyoming Air maximum limits to perform certain types of repairs. (U.S. Air National Guard photo/Master Sgt. Charles Eloy Alfaro International Airport in Manta, Ecuador, April 26, 2016. The portable tower will help local

  16. Trace Contaminant Monitor for Air in Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  17. A model of a control-room crew

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Beveridge, R.L.

    1986-01-01

    This paper discusses the development of a model of a control-room crew based on observations of crews and concepts developed by cognitive psychologists. The model can help define, among other things, the requirements for SPDS or other operator aids. The paper discusses the relationship of the shift supervisor, the control board operators, the control and instrumentation systems and the written procedures in the control of the plant during normal and abnormal plant transients. These relationships cover the communications between crew members, use of the control equipment by the board operators, use of information, such as the SPDS, by the shift supervisor and integration of crew actions by the use of the procedures. Also discussed are the potential causes of erroneous actions by the crew in accident situations. The model is at this time purely qualitative, but it can be considered to be the basis for the development of a mathematical model

  18. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    Science.gov (United States)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  19. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  20. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-09-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetone+acrolein. Three different types of samples (rural, urban, petrol emission) were successfully analyzed

  1. Analytical approaches for arsenic determination in air: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodas, Daniel, E-mail: rodas@uhu.es [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Chemistry and Materials Science, University of Huelva, 21071 Huelva (Spain); Sánchez de la Campa, Ana M. [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Mining, Mechanic and Energetic Engineering, ETSI, University of Huelva, 21071 Huelva (Spain); Alsioufi, Louay [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain)

    2015-10-22

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed. - Highlights: • Review about arsenic in the air. • Sampling, sample treatment and analysis of arsenic in particulate matter and gaseous phase. • Total arsenic determination and arsenic speciation analysis.

  2. Determination of Sr-90 in the air

    International Nuclear Information System (INIS)

    Marovic, G.; Bajlo, M.; Bauman, A.

    1983-01-01

    Sr-90 concentrations were determined in high-volume air samples (up to 10000 m 3 ) during 12 months. In 1981 radioactivity varied around a value of 2.7 x 10 - 5 Bq m 3 . The results are in agreement with the activities recorded in the same year in New York, USA and in France. (author)

  3. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  4. The operational flight and multi-crew scheduling problem

    Directory of Open Access Journals (Sweden)

    Stojković Mirela

    2005-01-01

    Full Text Available This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem.

  5. Design Considerations for a Crewed Mars Ascent Vehicle

    Science.gov (United States)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  6. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  7. AsMA Medical Guidelines for Air Travel: In-Flight Medical Care.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D; Pettyjohn, Frank S; Alves, Paulo M

    2015-06-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. All airlines are required to provide first aid training for cabin crew, and the crew are responsible for managing any in-flight medical events. There are also regulatory requirements for the carriage of first aid and medical kits. AsMA has developed recommendations for first aid kits, emergency medical kits, and universal precaution kits.

  8. Commercial Crew Development Program Overview

    Science.gov (United States)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  9. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  10. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-01-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak Cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetoacetonitrile. Three different types of samples (rural, urban, petrol emission) were successfully analyzed. (Author) 12 refs

  11. The Integrated Medical Model: Statistical Forecasting of Risks to Crew Health and Mission Success

    Science.gov (United States)

    Fitts, M. A.; Kerstman, E.; Butler, D. J.; Walton, M. E.; Minard, C. G.; Saile, L. G.; Toy, S.; Myers, J.

    2008-01-01

    The Integrated Medical Model (IMM) helps capture and use organizational knowledge across the space medicine, training, operations, engineering, and research domains. The IMM uses this domain knowledge in the context of a mission and crew profile to forecast crew health and mission success risks. The IMM is most helpful in comparing the risk of two or more mission profiles, not as a tool for predicting absolute risk. The process of building the IMM adheres to Probability Risk Assessment (PRA) techniques described in NASA Procedural Requirement (NPR) 8705.5, and uses current evidence-based information to establish a defensible position for making decisions that help ensure crew health and mission success. The IMM quantitatively describes the following input parameters: 1) medical conditions and likelihood, 2) mission duration, 3) vehicle environment, 4) crew attributes (e.g. age, sex), 5) crew activities (e.g. EVA's, Lunar excursions), 6) diagnosis and treatment protocols (e.g. medical equipment, consumables pharmaceuticals), and 7) Crew Medical Officer (CMO) training effectiveness. It is worth reiterating that the IMM uses the data sets above as inputs. Many other risk management efforts stop at determining only likelihood. The IMM is unique in that it models not only likelihood, but risk mitigations, as well as subsequent clinical outcomes based on those mitigations. Once the mathematical relationships among the above parameters are established, the IMM uses a Monte Carlo simulation technique (a random sampling of the inputs as described by their statistical distribution) to determine the probable outcomes. Because the IMM is a stochastic model (i.e. the input parameters are represented by various statistical distributions depending on the data type), when the mission is simulated 10-50,000 times with a given set of medical capabilities (risk mitigations), a prediction of the most probable outcomes can be generated. For each mission, the IMM tracks which conditions

  12. Observations of Crew Dynamics During Mars Analog Simulations

    Science.gov (United States)

    Cusack, Stacy L.

    2009-01-01

    Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.

  13. Using Deficit Functions for Crew Planning in Aviation

    Directory of Open Access Journals (Sweden)

    Gertsbakh Ilya B.

    2017-12-01

    Full Text Available We use deficit functions (DFs to decompose an aviation schedule of aircraft flights into a minimal number of periodic and balanced chains (flight sequences. Each chain visits periodically a set S of airports and is served by several cockpit crews circulating along the airports of this set. We introduce the notion of ”chunks” which are a sequence of flights serviced by a crew in one day according to contract regulations. These chunks are then used to provide crew schedules and rosters. The method provides a simplicity for the construction of aircraft schedules and crew pairings which is absent in other approaches to the problem.

  14. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  15. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System

    Science.gov (United States)

    Douglas, Grace L.; Cooper, Maya; Bermudez-Aguirre, Daniela; Sirmons, Takiyah

    2016-01-01

    NASA is preparing for long duration manned missions beyond low-Earth orbit that will be challenged in several ways, including long-term exposure to the space environment, impacts to crew physiological and psychological health, limited resources, and no resupply. The food system is one of the most significant daily factors that can be altered to improve human health, and performance during space exploration. Therefore, the paramount importance of determining the methods, technologies, and requirements to provide a safe, nutritious, and acceptable food system that promotes crew health and performance cannot be underestimated. The processed and prepackaged food system is the main source of nutrition to the crew, therefore significant losses in nutrition, either through degradation of nutrients during processing and storage or inadequate food intake due to low acceptability, variety, or usability, may significantly compromise the crew's health and performance. Shelf life studies indicate that key nutrients and quality factors in many space foods degrade to concerning levels within three years, suggesting that food system will not meet the nutrition and acceptability requirements of a long duration mission beyond low-Earth orbit. Likewise, mass and volume evaluations indicate that the current food system is a significant resource burden. Alternative provisioning strategies, such as inclusion of bioregenerative foods, are challenged with resource requirements, and food safety and scarcity concerns. Ensuring provisioning of an adequate food system relies not only upon determining technologies, and requirements for nutrition, quality, and safety, but upon establishing a food system that will support nutritional adequacy, even with individual crew preference and self-selection. In short, the space food system is challenged to maintain safety, nutrition, and acceptability for all phases of an exploration mission within resource constraints. This document presents the

  16. Application of Human-Autonomy Teaming (HAT) Patterns to Reduced Crew Operations (RCO)

    Science.gov (United States)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    As part of the Air Force - NASA Bi-Annual Research Council Meeting, slides will be presented on recent Reduced Crew Operations (RCO) work. Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. A methodology for identifying HAT patterns to an advanced cockpit project is discussed.

  17. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David M.

    2010-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  18. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin

    2009-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  19. Decomposing Air Pollutant Emissions in Asia: Determinants and Projections

    OpenAIRE

    Rafaj, P.; Amann, M.

    2018-01-01

    High levels of air pollution pose an urgent social and public health challenge in many Asian regions. This study evaluates the role of key factors that determined the changes in emission levels in China, India and Japan over the past 25 years. While emissions of air pollutants have been declining in Japan since the 1990s, China and India have experienced a rapid growth in pollution levels in recent years. Around 2005, control measures for sulfur emissions started to deliver expected reduction...

  20. Optimized bioregenerative space diet selection with crew choice

    Science.gov (United States)

    Vicens, Carrie; Wang, Carolyn; Olabi, Ammar; Jackson, Peter; Hunter, Jean

    2003-01-01

    Previous studies on optimization of crew diets have not accounted for choice. A diet selection model with crew choice was developed. Scenario analyses were conducted to assess the feasibility and cost of certain crew preferences, such as preferences for numerous-desserts, high-salt, and high-acceptability foods. For comparison purposes, a no-choice and a random-choice scenario were considered. The model was found to be feasible in terms of food variety and overall costs. The numerous-desserts, high-acceptability, and random-choice scenarios all resulted in feasible solutions costing between 13.2 and 17.3 kg ESM/person-day. Only the high-sodium scenario yielded an infeasible solution. This occurred when the foods highest in salt content were selected for the crew-choice portion of the diet. This infeasibility can be avoided by limiting the total sodium content in the crew-choice portion of the diet. Cost savings were found by reducing food variety in scenarios where the preference bias strongly affected nutritional content.

  1. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    Science.gov (United States)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for

  2. Kerma determination in air on mamma by thermoluminescence

    International Nuclear Information System (INIS)

    Palacios P, L. L.; Rivera M, T.

    2009-10-01

    In this work the experimental results of the entrance exposition are shown and Kerma in air [mGy] in mamma obtained by irradiation of accreditation phantom of American College of Radiology (ACR). The irradiations were realized in a conventional mammography equipment of Hospital Juarez in Mexico; the technique used during the irradiations was of automatic exposition; the thickness for the phantom ACR obtained by the technique were of 4.2 and 4.5 cm; the kilo voltage pick was of 24 kV p , the time and the milli amperage per second variable. The measuring of Kerma in air was obtained with thermoluminescent dosemeters of solid state, of nano particles of zirconium dioxide prepared by the precipitation method. The dosemeters were homogenized previously in low energies of X-rays that are those used for mammography. The thermoluminescent dosemeters of ZrO 2 were calibrated by means of an ionization chamber for different expositions. The calibration curve is reported for the exposition and Kerma in air against thermoluminescent intensity obtained by reading of thermoluminescent dosemeters of ZrO 2 , as well as the technique employee for the Kerma determination in air and entrance exposition in mamma. (Author)

  3. Risk factors for skin cancer among Finnish airline cabin crew.

    Science.gov (United States)

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  4. COMMUNICATION PROBLEMS IN A MIXED CREW ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    CARMEN ASTRATINEI

    2016-06-01

    Full Text Available Shipping has become a highly international and multicultural industry due to a globalised labour market of seafarers. About two thirds of the world`s merchant fleets, are manned by a mixed crew, which may include two to three different nationalities. The common language used on board ship is English. So the crewmembers must have a good command of this language. 80% of all maritime accidents are, according to incident reports, caused by human error i.e. negligence, fatigue, incompetence or communication breakdown. Another factor that may affect the safety of crew and cargo is the cultural differences within the mixed nationality crews which, if not appeased in time, may lead to very serious conflicts. This paper proposes to analyse some characteristics of the Asian culture and traditions and suggest some ways of improving the professional relationship among multinational crew members by making them aware of their shipmates identities. A questionnaire, which we intend to use as a research tool, will be provided and explained.

  5. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  6. Expedition-8 Crew Members Portrait

    Science.gov (United States)

    2003-01-01

    This is a portrait of the Expedition-8 two man crew. Pictured left is Cosmonaut Alexander Y, Kaleri, Soyuz Commander and flight engineer; and Michael C. Foale (right), Expedition-8 Mission Commander and NASA ISS Science Officer. The crew posed for this portrait while training at the Gagarin Cosmonaut Training Center in Star City, Russia. The two were launched for the International Space Station (ISS) aboard a Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan, along with European Space Agency (ESA) Astronaut Pedro Duque of Spain, on October 18, 2003.

  7. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  8. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  9. Identification of the operating crew's information needs for accident management

    International Nuclear Information System (INIS)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence

  10. Determinants of injuries in passenger vessel accidents.

    Science.gov (United States)

    Yip, Tsz Leung; Jin, Di; Talley, Wayne K

    2015-09-01

    This paper investigates determinants of crew and passenger injuries in passenger vessel accidents. Crew and passenger injury equations are estimated for ferry, ocean cruise, and river cruise vessel accidents, utilizing detailed data of individual vessel accidents that were investigated by the U.S. Coast Guard during the time period 2001-2008. The estimation results provide empirical evidence (for the first time in the literature) that crew injuries are determinants of passenger injuries in passenger vessel accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Irregular working hours and fatigue of cabin crew.

    Science.gov (United States)

    Castro, Marta; Carvalhais, José; Teles, Júlia

    2015-01-01

    Beyond workload and specific environmental factors, flight attendants can be exposed to irregular working hours, conflicting with their circadian rhythms and having a negative impact in sleep, fatigue, health, social and family life, and performance which is critical to both safety and security in flight operations. This study focuses on the irregular schedules of cabin crew as a trigger of fatigue symptoms in a wet lease Portuguese airline. The aim was to analyze: what are the requirements of the cabin crew work; whether the schedules being observed and effective resting timeouts are triggering factors of fatigue; and the existence of fatigue symptoms in the cabin crew. A questionnaire has been adapted and applied to a sample of 73 cabin crew-members (representing 61.9% of the population), 39 females and 34 males, with an average age of 27.68 ± 4.27 years. Our data indicate the presence of fatigue and corresponding health symptoms among the airline cabin crew, despite of the sample favorable characteristics. Senior workers and women are more affected. Countermeasures are required. Recommendations can be made regarding the fatigue risk management, including work organization, education and awareness training programmes and specific countermeasures.

  12. Radiation Protection: The Specific Case of Cabin Crew

    International Nuclear Information System (INIS)

    Lecouturier, B.

    1999-01-01

    Exposure to cosmic radiation is one important element of the in-flight working environment. The new requirements of the Council Directive 96/29 Euratom set out basic safety standards in radiation protection which are particularly important to cabin crew. There are two major reasons why they relate specifically to this category of crew member. One is the great diversity of or in some cases the lack of, medical requirements and surveillance. The situation in this area notably differs from that relating to the cockpit crew, who have an aeronautical licence with detailed and rigid medical requirements. The other major reason is the very high percentage of women among the cabin crew (from 65% to 100% depending on the airline concerned), which emphasises the question of protection during pregnancy. The issue of radiation protection of aircrew therefore differs not only according to country and airline, but also according to the crew members concerned. The need is stressed for a harmonised application of the new requirements of the Council Directive 96/29 Euratom and, hopefully in the future, for equivalent protective provisions to be applied worldwide. (author)

  13. Crew Transportation Technical Standards and Design Evaluation Criteria

    Science.gov (United States)

    Lueders, Kathryn L.; Thomas, Rayelle E. (Compiler)

    2015-01-01

    Crew Transportation Technical Standards and Design Evaluation Criteria contains descriptions of technical, safety, and crew health medical processes and specifications, and the criteria which will be used to evaluate the acceptability of the Commercial Providers' proposed processes and specifications.

  14. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  15. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-01-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (1) the estimation of human error associated with advanced control room equipment and configurations, (2) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (3) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms

  16. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  17. Use of a Tourniquet by LIFE STAR Air Medical Crew: A Case Report.

    Science.gov (United States)

    Jacobs, Lenworth M; Burns, Karyl J; Priest, Heather Standish; Muskett, William

    2015-10-01

    For many years tourniquets were perceived as dangerous due to the belief that they led to loss of limb because of ischemia. Their use in civilian and military environments was discouraged. Emergency medical responders were not taught about tourniquets and commercial tourniquets were not available. However, research by the United States military during the wars in Iraq and Afghanistan has demonstrated that tourniquets are safe life-saving devices. As a consequence, they have been widely deployed in combat situations and there are now calls for the use of tourniquets in the civilian prehospital setting. This article presents a report of the successful application of a tourniquet by the LIFE STAR crew to control bleeding that local emergency medical services (EMS) personnel could not control with direct pressure. Tourniquets should be readily available in public places and carried by all EMS.

  18. How Did Crew Resource Management Take-Off Outside of the Cockpit? A Systematic Review of How Crew Resource Management Training Is Conceptualised and Evaluated for Non-Pilots

    Directory of Open Access Journals (Sweden)

    Jop Havinga

    2017-10-01

    Full Text Available Crew resource management (CRM training for flight crews is widespread and has been credited with improving aviation safety. As other industries have adopted CRM, they have interpreted CRM in different ways. We sought to understand how industries have adopted CRM, regarding its conceptualisation and evaluation. For this, we conducted a systematic review of CRM studies in the Maritime, Nuclear Power, Oil and Gas, and Air Traffic Control industries. We searched three electronic databases (Web of Science, Science Direct, Scopus and CRM reviews for papers. We analysed these papers on their goals, scope, levers of change, and evaluation. To synthesise, we compared the analysis results across industries. We found that most CRM programs have the broad goals of improving safety and efficiency. However, there are differences in the scope and levers of change between programs, both within and between industries. Most evaluative studies suffer from methodological weaknesses, and the evaluation does not align with how studies conceptualise CRM. These results challenge the assumption that there is a clear link between CRM training and enhanced safety in the analysed industries. Future CRM research needs to provide a clear conceptualisation—how CRM is expected to improve safety—and select evaluation measures consistent with this.

  19. Crew factors in the aerospace workplace

    Science.gov (United States)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  20. Crew Transportation Operations Standards

    Science.gov (United States)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  1. California; Bay Area Air Quality Management District; Determination To Defer Sanctions

    Science.gov (United States)

    EPA is making an interim final determination to defer imposition of sanctions based on a proposed determination that CARB submitted rules on behalf of BAAQMD that satisfy part D of the Clean Air Act for areas under the jurisdiction of the BAAQMD.

  2. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  3. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  4. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  5. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  6. STS-47 Astronaut Crew Training Clip

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.

  7. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  8. Crew Roles and Interactions in Scientific Space Exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  9. Women's Learning and Leadership Styles: Impact on Crew Resource Management.

    Science.gov (United States)

    Turney, Mary Ann

    With an increasing number of women becoming members of flight crews, the leadership styles of men and women are at issue. A study explored three basic questions: (1) How do male and female learning and leadership styles differ? (2) What barriers to gender integration and crew teamwork are perceived by pilot crew members? and (3) What…

  10. Determination of mercury in air by adsorption on Hopcalite and by neutron activation analysis

    International Nuclear Information System (INIS)

    Leyni-Barbaz, D.; Zikovsky, L.; Poissant, L.

    2002-01-01

    A new method for the determination of mercury in air has been developed. It combines the adsorption of mercury on Hopcalite (a material approved for this purpose by the National Institute of Health of the United States) and its quantification by neutron activation. The concentrations of mercury in office air in Montreal, Canada, were determined by instrumental semiabsolute neutron activation analysis. They varied from 39 to 48 ng/m 3 . The results were compared with the concentrations of mercury in office air determined simultaneously at the same place by cold vapour atomic fluorescence spectrophotometry. A close correlation between the results of the 2 methods was obtained. The detection limit of our method is about 14 ng/m 3 . (author)

  11. New physical model calculates airline crews' radiation exposure

    Science.gov (United States)

    Schultz, Colin

    2013-12-01

    Airline pilots and crews, who spend hundreds of hours each year flying at high altitude, are exposed to increased doses of radiation from galactic cosmic rays and solar energy particles, enough that airline crew members are actually considered radiation workers by the International Commission on Radiological Protection.

  12. Air Traffic Management Technology Demostration Phase 1 (ATD) Interval Management for Near-Term Operations Validation of Acceptability (IM-NOVA) Experiment

    Science.gov (United States)

    Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final

  13. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  14. 14 CFR 460.9 - Informing crew of risk.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Informing crew of risk. 460.9 Section 460.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... risk. An operator must inform in writing any individual serving as crew that the United States...

  15. A Quasi-Robust Optimization Approach for Crew Rescheduling

    NARCIS (Netherlands)

    Veelenturf, L.P.; Potthoff, D.; Huisman, D.; Kroon, L.G.; Maroti, G.; Wagelmans, A.P.M.

    2016-01-01

    This paper studies the real-time crew rescheduling problem in case of large-scale disruptions. One of the greatest challenges of real-time disruption management is the unknown duration of the disruption. In this paper we present a novel approach for crew rescheduling where we deal with this

  16. Solving Large Scale Crew Scheduling Problems in Practice

    NARCIS (Netherlands)

    E.J.W. Abbink (Erwin); L. Albino; T.A.B. Dollevoet (Twan); D. Huisman (Dennis); J. Roussado; R.L. Saldanha

    2010-01-01

    textabstractThis paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base

  17. DFRC F-16 aircraft fleet and support crew

    Science.gov (United States)

    1995-01-01

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  18. Determination of the air/water partition coefficient of groundwater radon using liquid scintillation counter

    International Nuclear Information System (INIS)

    Lee, K.Y.; Yoon, Y.Y.; Ko, K.S.

    2010-01-01

    A method was studied for measuring air/water partition coefficient (K air/water ) of groundwater radon by a simple procedure using liquid scintillation counter (LSC). In contrast conventional techniques such as equilibrium partitioning in a closed system or air striping methods, the described method allow for a simple and uncomplicated determination of the coefficient. The (K air/water ) of radon in pure water has been well known quantitatively over a wide range of temperatures. In this work, groundwater samples having high radon concentration instead of distilled water have been used to determine the (K air/water ) of radon in the temperature range of 0-25. Aqueous phase in a closed system was used in this study instead of gaseous phase in conventional methods. Three kinds of groundwater taken from different geologic environments were used to investigate the effect of groundwater properties. With the aim to evaluate the reproducibility of the data an appropriate number of laboratory experiments have been carried out. The results show that tie (K air/water ) of radon in the groundwater is smaller than that in the pure water. However, the temperature effect on the coefficient is similar in the groundwater and the pure water. The method using aqueous phase in a closed system by LSC can be used to determine the (K air/water ) of radon in various groundwaters with a simple procedure. The results will be presented at the NAC-IV conference

  19. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  20. STS-105 Crew Interview: Scott Horowitz

    Science.gov (United States)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  1. Sizing of air cleaning systems for access to nuclear plant spaces

    International Nuclear Information System (INIS)

    Estreich, P.J.

    A mathematical basis is developed to provide the practicing engineer with a method for sizing air-cleaning systems for nuclear facilities. In particular, general formulas are provided to relate cleaning and contamination dynamics of an enclosure such that safe conditions are obtained when working crews enter. Included in these considerations is the sizing of an air-cleaning system to provide rapid decontamination of airborne radioactivity. Multiple-nuclide contamination sources, leak rate, direct radiation, contaminant mixing efficiency, filter efficiencies, air-cleaning-system operational modes, and criteria for maximum permissible concentrations are integrated into the procedure. (author)

  2. Determination of carbonyl compounds in air by HPLC; Determinacion de compuestos carbonilicos en aire por HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S; Perez, R M; Campos, A; Gonzalez, D

    1995-07-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak Cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetoacetonitrile. Three different types of samples (rural, urban, petrol emission) were successfully analyzed. (Author) 12 refs.

  3. An electromyographic evaluation of elastic band exercises targeting neck and shoulder pain among helm bearing military helicopter crew

    DEFF Research Database (Denmark)

    Kristensen, Lars Askær; Grøndberg, Thomas Stig; Murray, Mike

    INTRODUCTION Flight related neck and shoulder pain is a frequent problem in helicopter pilots and crew [1]. Pain causes personnel suffering, reduces operational capabilities and incurs high financial cost due to the loss of manpower. Evidence suggests that the occupational loading such as posture...... adopted during flight and increased weight added to the mass of the head due to the helmet and night vision equipment contribute to the development of neck and shoulder pain. Strength training has among other occupational groups been found to reduce musculoskeletal pain [2]. A 20-week exercise program...... for the neck and shoulder muscles using elastic bands has been applied for helicopter pilots and crew in the Royal Danish Air Force to prevent and reduce pain. The exercise program had an initial loading of 20RM and was increased progressively towards 12RM in the final weeks. A muscle activity >60% MVE...

  4. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications...... of the European Communities It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. Therefore, the knowledge of this contribution is essential in view of risk assessment and management. The ECA STRATEX report collates the respective...... information and describes the strategies to determine population exposure to indoor air pollutants. Its major goal is to emphasise the importance of the contribution of indoor air to total air exposure. Taking this contribution into account is a prerequisite for sound risk assessment of air pollution...

  5. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    Science.gov (United States)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  6. Crew Exercise

    Science.gov (United States)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  7. A case study on determining air monitoring requirements in a radioactive materials handling area

    International Nuclear Information System (INIS)

    Newton, G.J.; Bechtold, W.E.; Hoover, M.D.; Ghanbari, F.; Herring, P.S.; Jow, Hong-Nian

    1993-01-01

    A technical, defensible basis for the number and placement of air sampling instruments in a radioactive materials handling facility was developed. Historical air sampling data, process and physicochemical knowledge, qualitative smoke dispersion studies with video documentation, and quantitative trace gas dispersion studies were used to develop a strategy for number and placement of air samplers. These approaches can be used in other facilities to provide a basis for operational decisions. The requirements for retrospective sampling, personal sampling, and real-time monitoring are included. Other relevant operational decisions include selecting the numbers, placement, and appropriate sampling rates for instruments, identifying areas of stagnation or recirculation, and determining the adequacy and efficiency of any sampling transport lines. Justification is presented for using a graded approach to characterizing the workplace and determining air sampling and monitoring needs

  8. 20 CFR 404.1074 - Farm crew leader who is self-employed.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Self-Employment § 404.1074 Farm crew leader who is self-employed. If you are a farm crew leader and are deemed the... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Farm crew leader who is self-employed. 404...

  9. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Science.gov (United States)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  10. How Effective Is Communication Training For Aircraft Crews

    Science.gov (United States)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  11. Multifunctional Coating for Crew Cabin Surfaces and Fabrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's crewed spacecrafts require routine cleaning of particulate, moisture, organic, and salt contaminants on the crew cabin surfaces and fabrics. Self-cleaning...

  12. Psychometric properties of the AIR Self-Determination Scale: the Chinese version (AIR SDS-C) for Chinese people with intellectual disabilities.

    Science.gov (United States)

    Wong, P K S; Wong, D F K; Zhuang, X Y; Liu, Y

    2017-03-01

    The construct of self-determination has received considerable attention in the international field of intellectual disabilities (ID). Recently, there has been a rapid development of this construct in Chinese societies including Hong Kong. However, there is no locally validated instrument to measure self-determination in people with ID. This article explains the validation process of the AIR Self-Determination Scale - Chinese version (AIR SDS-C) adapted from the 24-item AIR Self-Determination Scale, developed by Wolman and his colleagues, which is used in school setting. People with mild/moderate ID aged 15 years or above were recruited from special schools and social services units in different regions of Hong Kong. Factor analysis and reliability tests were conducted. Data for a total of 356 participants were used for the analysis. A confirmatory factor analysis was performed to test the factorial construct, and Mplus 7.0 was used for the analysis. The factor structure proposed in the original English version was supported by the data, and all factor loadings were between 0.42 and 0.76. The whole scale achieved good reliability (Cronbach's α = 0.88 and ω = 0.90). The AIR SDS-C appears to be a valid and reliable scale. This study examined adult groups as well as student groups. The application of the scale can thus be extended to a wider population. The implications for theory building and practice are discussed. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  13. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  14. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection

    Science.gov (United States)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the outcome of the NESC assessment. NASA/TM-2013-217380, "Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events." supercedes this document.

  15. Air Revitalization System Enables Excursions to the Stratosphere

    Science.gov (United States)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  16. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  17. An approach to enhanced control room crew performance

    International Nuclear Information System (INIS)

    Frye, S.R.

    1988-01-01

    The function of a nuclear power plant control room team is similar to that of an airline cockpit crew or a critical task military team such as a flight crew, tank crew, combat squad or platoon. These teams encounter many of the same problems or challenges in their environments when dealing with abnormal or emergency situations. The competency of these teams in bringing about successful conclusions in situations depends on their ability to coordinate their actions. This is often referred to as teamwork and includes the interactions between team members which must occur during highly critical situations. The purpose of this paper is to present team skills training and the advances made in this crucial area by utilizing both classroom and high fidelity simulator training

  18. Determination of Minimum Air Clearances for a 420kV Novel Unibody Composite Cross-Arm

    DEFF Research Database (Denmark)

    Jahangiri, Tohid; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2015-01-01

    One of the most important requirements of any overhead line tower is determining the air clearances between live parts and earthed parts such as phase conductor and tower structure. In contrast to traditional steel lattice towers, the recently introduced fully composite pylon is completely made....... This paper presents the insulation coordination studies to determine minimum required air clearances on the unibody cross-arm. The procedure and relevant equations to calculate minimum air clearances to avoid flashover between phases’ conductors as well as top phase conductor and shield wire are based...

  19. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  20. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  1. Determination of partition behavior of organic surrogates between paperboard packaging materials and air.

    Science.gov (United States)

    Triantafyllou, V I; Akrida-Demertzi, K; Demertzis, P G

    2005-06-03

    The suitability of recycled paperboard packaging materials for direct food contact applications is a major area of investigation. Chemical contaminants (surrogates) partitioning between recycled paper packaging and foods may affect the safety and health of the consumer. The partition behavior of all possible organic compounds between cardboards and individual foodstuffs is difficult and too time consuming for being fully investigated. Therefore it may be more efficient to determine these partition coefficients indirectly through experimental determination of the partitioning behavior between cardboard samples and air. In this work, the behavior of organic pollutants present in a set of two paper and board samples intended to be in contact with foods was studied. Adsorption isotherms have been plotted and partition coefficients between paper and air have been calculated as a basis for the estimation of their migration potential into food. Values of partition coefficients (Kpaper/air) from 47 to 1207 were obtained at different temperatures. For the less volatile surrogates such as dibutyl phthalate and methyl stearate higher Kpaper/air values were obtained. The adsorption curves showed that the more volatile substances are partitioning mainly in air phase and increasing the temperature from 70 to 100 degrees C their concentrations in air (Cair) have almost doubled. The analysis of surrogates was performed with a method based on solvent extraction and gas chromatographic-flame ionization detection (GC-FID) quantification.

  2. Trail Crews: Developing a Service Component to Your Program.

    Science.gov (United States)

    Boehringer, Brad; Merrill, Kurt

    Through wilderness stewardship programs, service projects, or trail crews, college outdoor programs can help land management agencies with their maintenance needs and provide student participants with rewarding service learning opportunities. Trail crews are usually composed of volunteer outdoor enthusiasts who take part in a multitude of…

  3. Emergency Air Rescue System in Romania

    Directory of Open Access Journals (Sweden)

    Tranca Sebastian

    2018-03-01

    Full Text Available The helicopter, as a means of transport, has facilitated a significant decrease in intervention time at the site of request, increasing the chances of survival of the critical patient. Since 2003, SMURD has managed to form a fleet composed of nine helicopters and two airplanes. From an operational and strategic point of view, the SMURD intervention unit, set up seven Aeromedical Operational Bases (A.O.B. equipped with helicopters and materials necessary for their operation. There is a dynamic increase in the number of air rescue missions in Romania, with most missions being carried out by the air rescue bases in Târgu Mureş and Bucharest. Specialty literature has clearly demonstrated the positive impact on the survival of critical patients assisted by airborne crews, so it is necessary for the Romanian air rescue system to grow up. It is necessary to increase the number of air bases, purchase new helicopters and to continue the training programs of both pilots and medical personnel.

  4. Identification of the operating crew's information needs for accident management

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence.

  5. Sensor gas analyzer for acetone determination in expired air

    Science.gov (United States)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  6. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  8. Determination of 1-octanol-air partition coefficient using gaseous diffusion in the air boundary layer.

    Science.gov (United States)

    Ha, Yeonjeong; Kwon, Jung-Hwan

    2010-04-15

    Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.

  9. Matching Crew Diet and Crop Food Production in BIO-Plex

    Science.gov (United States)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  10. Crew awareness as key to optimizing habitability standards onboard naval platforms: A 'back-to-basics' approach.

    Science.gov (United States)

    Neelakantan, Anand; Ilankumaran, Mookkiah; Ray, Sougat

    2017-10-01

    A healthy habitable environment onboard warships is vital to operational fleet efficiency and fit sea-warrier force. Unique man-machine-armament interface issues and consequent constraints on habitability necessitate a multi-disciplinary approach toward optimizing habitability standards. Study of the basic 'human factor', including crew awareness on what determines shipboard habitability, and its association with habitation specifications is an essential step in such an approach. The aim of this study was to assess crew awareness on shipboard habitability and the association between awareness and maintenance of optimal habitability as per specifications. A cross-sectional descriptive study was carried out among 552 naval personnel onboard warships in Mumbai. Data on crew awareness on habitability was collected using a standardized questionnaire, and correlated with basic habitability requirement specifications. Data was analyzed using Microsoft Excel, Epi-info, and SPSS version 17. Awareness level on basic habitability aspects was very good in 65.3% of crew. Area-specific awareness was maximum with respect to living area (95.3%). Knowledge levels on waste management were among the lowest (65.2%) in the category of aspect-wise awareness. Statistically significant association was found between awareness levels and habitability standards (OR = 7.27). The new benchmarks set in the form of high crew awareness levels on basic shipboard habitability specifications and its significant association with standards needs to be sustained. It entails re-iteration of healthy habitation essentials into training; and holds the key to a fit fighting force.

  11. Investigation of crew performance in a multi-vehicle supervisory control task

    Science.gov (United States)

    Miller, R. A.; Plamondon, B. D.; Jagacinski, R. J.; Kirlik, A. C.

    1986-01-01

    Crew information processing and decision making in a supervisory control task which is loosely based on the mission of future generation helicopters is measured and represented. Subjects control the motion and activities of their own vehicle and direct the activities of four additional craft. The task involves searching an uncertain environment for cargo and enemies, returning cargo to home base and destroying enemies while attempting to avoid destruction of the scout and the supervised vehicles. A series of experiments with two-person crews and one-person crews were performed. Resulting crew performance was modeled with the objective of describing and understanding the information processing strategies utilized. Of particular interest are problem simplification strategies under time stress and high work load, simplification and compensation in the one-person cases, crew coordination in the two-person cases, and the relationship between strategy and errors in all cases. The results should provide some insight into the effective use of aids, particularly aids based on artificial intelligence, for similar tasks. The simulation is described which is used for the study and some preliminary results from the first two-person crew study are discussed.

  12. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  13. Gas-chromatographic quantitative determination of argon in air samples, by elimination of oxigen

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-08-01

    A method of gas-chromatographic quantitative determination of argon in air samples, by elimination of oxygen, is presented. Experiments were carried out in a static system. Conditions for the application of the method in dynamic systems are specified. Sensibility of the method: 5 10 -4 cm 3 Ar per cm 3 of air. (author)

  14. Expedition 8 Crew Interview: Pedro Duque

    Science.gov (United States)

    2003-01-01

    European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.

  15. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  16. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    Science.gov (United States)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  17. The human story of Crew 173- capturing a Mars analog mission

    Science.gov (United States)

    Shaw, Niamh; Musilova, Michaela; Pons Lorente, Arnau; Sisaid, Idriss; Naor, Roy; Blake, Richard

    2017-04-01

    An international crew of six scientists, engineers, artists and entrepreneurs with different space specialisations were selected by the Mars Society to take part in a Martian simulation in January 2017. An ambitious outreach and media strategy was developed, aimed at communicating the benefits of missions to Mars to the public and to capture the public's interest by telling the human story of the crew's mission. Entitled Crew 173 Team PRIMA, they entered the Mars Desert Research Station in the Utah Desert and conducted research in 3D printing, hydroponics, geology and astronomy. Both the scientific and community experience of this mission was documented through still image, video, audio, diary and daily journalling by the resident artist of the mission, Niamh Shaw. The full experience of the crew was documented (before, during and after the expedition), to capture each individual experience of the crew and the human experience of isolation of future human space missions.

  18. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    Science.gov (United States)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  19. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing.

    Science.gov (United States)

    Schwendner, Petra; Mahnert, Alexander; Koskinen, Kaisa; Moissl-Eichinger, Christine; Barczyk, Simon; Wirth, Reinhard; Berg, Gabriele; Rettberg, Petra

    2017-10-04

    The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a

  20. The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Tool for Crew Health and Astrobiology Investigations

    Science.gov (United States)

    John, K. K.; Botkin, D. S.; Burton, A. S.; Castro-Wallace, S. L.; Chaput, J. D.; Dworkin, J. P.; Lehman, N.; Lupisella, M. L.; Mason, C. E.; Smith, D. J.; hide

    2016-01-01

    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods

  1. Individual differences in airline captains' personalities, communication strategies, and crew performance

    Science.gov (United States)

    Orasanu, Judith

    1991-01-01

    Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.

  2. Crew Communication as a Factor in Aviation Accidents

    Science.gov (United States)

    Goguen, J.; Linde, C.; Murphy, M.

    1986-01-01

    The crew communication process is analyzed. Planning and explanation are shown to be well-structured discourse types, described by formal rules. These formal rules are integrated with those describing the other most important discourse type within the cockpit: the command-and-control speech act chain. The latter is described as a sequence of speech acts for making requests (including orders and suggestions), for making reports, for supporting or challenging statements, and for acknowledging previous speech acts. Mitigation level, a linguistic indication of indirectness and tentativeness in speech, was an important variable in several hypotheses, i.e., the speech of subordinates is more mitigated than the speech of superiors, the speech of all crewmembers is less mitigated when they know that they are in either a problem or emergency situation, and mitigation is a factor in failures of crewmembers to initiate discussion of new topics or have suggestions ratified by the captain. Test results also show that planning and explanation are more frequently performed by captains, are done more during crew- recognized problems, and are done less during crew-recognized emergencies. The test results also indicated that planning and explanation are more frequently performed by captains than by other crewmembers, are done more during crew-recognized problems, and are done less during-recognized emergencies.

  3. The BWR [Boiling Water Reactor] Emergency Operating Procedures Tracking System (EOPTS): Evaluation by control-room operating crews

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Orvis, D.D.; Spurgin, J.P.; Luna, C.J.

    1990-05-01

    This report presents the results of a project sponsored by the Electric Power Research Institute (EPRI) and Taiwan Power Company (TPC) and conducted by APG and TPC to perform evaluation of the Emergency Operating Procedures Tracking System (EOPTS). The EOPTS is an expert system employing artificial intelligence techniques developed by EPRI for Boiling Water Reactor (BWR) plants based on emergency operating procedures (EOPs). EOPTS is a computerized decision aid used to assist plant operators in efficient and reliable use of EOPs. The main objective of this project was to evaluate the EOPTS and determine how an operator aid of this type could noticeably improve the response time and the reliability of control room crews to multi-failure scenarios. A secondary objective was to collect data on how crew performance was affected. Experiments results indicate that the EOPTS measurably improves crew performance over crews using the EOP flow charts. Time-comparison measurements indicate that crews using the EOPTS perform required actions more quickly than do those using the flowcharts. The results indicate that crews using the EOPTS are not only faster and more consistent in their actions but make fewer errors. In addition, they have a higher likelihood of recovering from the errors that they do make. Use of the EOPTS in the control room should result in faster termination and mitigation of accidents and reduced risk of power plant operations. Recommendations are made towards possible applications of the EOPTS to operator training and evaluation, and for the applicability of the evaluation methodology developed for this project to the evaluation of similar operator aides. 17 refs., 14 figs., 14 tabs

  4. Communication constraints, indexical countermeasures, and crew configuration effects in simulated space-dwelling groups

    Science.gov (United States)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Banner, Michele J.; Gasior, Eric D.; Spence, Kevin R.

    2007-02-01

    Previous research with groups of individually isolated crews communicating and problem-solving in a distributed interactive simulation environment has shown that the functional interchangeability of available communication channels can serve as an effective countermeasure to communication constraints. The present report extends these findings by investigating crew performance effects and psychosocial adaptation following: (1) the loss of all communication channels, and (2) changes in crew configuration. Three-person crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crews developed and employed discrete navigation system operations that served as functionally effective communication signals (i.e., “indexical” or “deictic” cues) in generating appropriate crewmember responses and maintaining performance effectiveness in the absence of normal communication channels. Additionally, changes in crew configuration impacted both performance effectiveness and psychosocial adaptation.

  5. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  6. 46 CFR 252.31 - Wages of officers and crews.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Wages of officers and crews. 252.31 Section 252.31... Subsidy Rates § 252.31 Wages of officers and crews. (a) Definitions. When used in this part: (1) Base period. The first base period under the wage index systems, as provided in section 603 of the Act, is the...

  7. A simple method to determine Tr concentrations in the moisture of the exhaust air of nuclear facilities and in the ambient air

    International Nuclear Information System (INIS)

    Weber, H.W.; Schuettelkopf, H.

    1983-04-01

    In the course of nuclear power plant operation radioactive tritium is generated which is released to the environment as HTO via the exhaust air and the liquid effluents. Measurement and balancing of the tritium emissions are required in order to be able to evaluate the resulting radiation exposure of the population. For determination of the HTO emission the humidity of the measured air is absorbed at a rod shaped molecular sieve of 1/16'' mesh size. The desiccant is contacted with T-free water and the T activity concentration of the water is determined after 3 H/ 1 H isotope exchange. The rod shaped molecular sieves are suited for use under this method on account of their drying capacity largely independent of temperature and air humidity and the good handling capability. The detection limit is at 19 Bq HTO/m 3 air. The exhaust air from several 3 H-emitters of the Karlsruhe Nuclear Research Center was monitored by this method for its HTO content and the results were compared with the values measured at existing points of measurement. The good results have been the reason for the application of such collectors in the routine T-measurement performed within the framework of exhaust air monitoring on the site of the Karlsruhe Nuclear Research Center. (orig./HP) [de

  8. 78 FR 46358 - Extension of Agency Information Collection Activity Under OMB Review: Security Programs for...

    Science.gov (United States)

    2013-07-31

    .... Specifically, TSA requires foreign air carriers to submit the following information: (1) A master crew list of all flight and cabin crew members flying to and from the United States; (2) the flight crew list on a..., 49 CFR part 1546. TSA uses the information collected to determine compliance with 49 CFR part 1546...

  9. Development of capacity for measuring ionizing radiation in aircraft crew; Desenvolvimento da capacitacao para efetuar medicoes de radiacao ionizante em tripulacoes de aeronaves

    Energy Technology Data Exchange (ETDEWEB)

    Federico, C.A.; Goncalez, O.L., E-mail: claudiofederico@ieav.cta.b, E-mail: odairl@ieav.cta.b [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica; Caldas, L.V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper describes the activities performed in a research program of the Institute of Advanced Studies, Brazil, belonging to the Brazilian Air Force, joining to researches from Brazilian Nuclear Energy Commission, in order to bring to Brazil the capacity and acknowledge necessary to the evaluation of dose from ionizing radiation originated in the cosmic radiation and its by products which fall on aircraft crews

  10. Quantitative Methods for Determining U.S. Air Force Crew Cushion Comfort

    Science.gov (United States)

    2006-09-01

    Directorate Biosciences and Protection Division Biomechanics Branch Wright Patterson AFB OH 45433-7947 Form Approved REPORT DOCUMENTATION PAGE OMB No...Division Biomechanics Branch Wright-Patterson AFB OH 45433-7947 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...workstations were constructed utilizing ejection seat long-term flight. mockups and foot pedal assemblies modified to simulate the ACES II seat in the F-16

  11. President Ford and both the Soviet and American ASTP crews

    Science.gov (United States)

    1974-01-01

    President Gerald R. Ford removes the Soviet Soyuz spacecraft model from a model set depicting the 1975 Apollo Soyuz Test Project (ASTP), an Earth orbital docking and rendezvous mission with crewmen from the U.S. and USSR. From left to right, Vladamir A. Shatalov, Chief, Cosmonaut training; Valeriy N. Kubasov, ASTP Soviet engineer; Aleksey A. Leonov, ASTP Soviet crew commander; Thomas P. Stafford, commander of the American crew; Donald K. Slayton, American docking module pilot; Vance D. Brand, command module pilot for the American crew. Dr. George M Low, Deputy Administrator for NASA is partially obscured behind President Ford.

  12. Blowout heroes : while his crew mate risked fire and falling rock to save him, Curly Slater fought right to the last breath

    Energy Technology Data Exchange (ETDEWEB)

    Louie, J.

    2008-11-15

    This article discussed a blow-out that resulted in a fatality at a drilling rig near Helmut, British Columbia (BC). The blowout caused a column of fire, drilling mud, and rock to explode from the floor of the rig. As the rig's derrickman was trapped when drilling mud caked onto his easy rider cable and froze the escape sliding mechanism. The derrickman fell and was left dangling by his harness. Crew members spotted him from a distance and returned to the site in order to unhook the easy rider cable from the manifold shack and move the steel line to a location that would allow him to descend more easily. The derrickman was unable to un-jam his fall arrestor. He freed himself using his own strength, seized a cable, but lost his grip while still 75 feet in the air and fell to his death. The tragedy was caused by the presence of a very large gas pocket encountered at an unusually shallow depth. Several of the crew members have been unable to continue working in the oil and gas industry, due to the psychological trauma of witnessing the man's death. The Canadian Association of Oilwell Drilling Contractors (CAODC) has issued awards of merit for the crew men who attempted to save the derrickman, and the entire crew will receive medals of bravery from the Governor General of Canada. 2 figs.

  13. PubMed search filters for the study of putative outdoor air pollution determinants of disease

    OpenAIRE

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-01-01

    Objectives: Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. Methods: We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to...

  14. 78 FR 37719 - Interim Final Determination To Defer Sanctions; California; South Coast Air Quality Management...

    Science.gov (United States)

    2013-06-24

    ... Determination To Defer Sanctions; California; South Coast Air Quality Management District AGENCY: Environmental... Quality Management District's (SCAQMD) portion of the California State Implementation Plan (SIP) published... California submitted the ``South Coast Air Quality Management District Proposed Contingency Measures for the...

  15. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  16. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  17. Determination of radon in indoor air in Quebec by liquid scintillation counting in ortho-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Chah, B; Zikovsky, L; Champagne, P [Ecole Polytechnique, Montreal, PQ (Canada)

    1992-01-01

    A new method for the determination of radon in air has been developed. it is based on low temperature absorption of radon in ortho-xylene followed by liquid scintillation counting. The method is reasonably fast and sensitive enough to analyse air without precipitation. The detection limit at the 95% confidence level for a 20 l air sample and 1 h counting time is 2 mBql{sup -1}. Radon concentrations measured in indoor air in Quebec varied from 7 to 162 mBql{sup -1}. (Author).

  18. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    Science.gov (United States)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  19. Surveillance of occupational exposure to ionizing radiation in the French air force: an example with a workplace study concerning the flight personnel on the E-3F; Surveillance de l'exposition professionnelle aux rayonnements ionisants dans l'armee de l'air. Exemple d'une etude de poste concernant les personnels navigants sur E-3F

    Energy Technology Data Exchange (ETDEWEB)

    Amabile, J.C.; Castagne, X.; Carbonnieres, H. de; Laroche, P. [Hopital des Armees du Val-de-Grace, 75 - Paris (France)

    2006-12-15

    This workplace study was first based on measurements of the ambient dose rates on board the E-3F (2000 to 2001). These results have been complemented by a series of measurements of individual exposure using passive and active gamma and neutrons dosimeters (2004 to 2005). We show that, from level 300 and after more than 200 flying hours per year, the air-crews of the French Air Force flying on board the E-3F are likely to annually receive an effective dose higher than 1 mSv. It is therefore necessary to organize a specific radiological and medical survey in favour of the air-crews of the E-3F and other aircraft with the same flight criteria. (authors)

  20. Crew-Centered Operations: What HAL 9000 Should Have Been

    Science.gov (United States)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  1. Heart rate and core temperature responses of elite pit crews during automobile races.

    Science.gov (United States)

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  2. 49 CFR 230.65 - Steam blocking view of engine crew.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...

  3. Crew Cerebral Oxygen Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  4. Crew Cerebral Oxygen Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  5. Bol d'Or success for all-women crew from CERN

    CERN Multimedia

    2001-01-01

    The boat 'Mic Mac' and its CERN's all-woman crew (left to right), Christine Theurillat, Ursula Haenger , Paola Catapano, Petra Riedler, and skipper Cristina Morone. Spectacular highlight of the Lake Leman sailing calendar is the annual Bol d'Or race. Held this year on 16 and 17 June, the event attracted nearly 500 teams who competed under extreme weather conditions for the honours. Among the competitors was an all-woman crew from the CERN Yachting Club, sailing their Surprise boat, Mic Mac. The team was not only among the 397 boats to finish, but also the first all-woman crewed single hull boat to cross the line.

  6. 76 FR 56116 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-12

    ... Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... Part 52 Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental...

  7. 76 FR 56114 - Interim Final Determination to Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-12

    ... Determination to Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... Part 52 Environmental protection, Air pollution control, Incorporation by reference, Intergovernmental...

  8. Comparing Communication Contents with the Associated Crew Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Kim, Seung Hwan; Kim, Man Cheol

    2011-01-01

    In the case of human operators working in a large process control system, the consequence of inappropriate communications would be significant because they have to carry out many kinds of crucial activities based on communications. This means that one of the practical methods would be the investigation of communication contents, through which we are able to identify useful insights pertaining to the prevention of inappropriate communications. For this reason, communications of main control room (MCR) operating crews are analyzed to characterize communication contents. After that, communication contents and the associated crew performance data are compared. As a result, it seems that the performance of operating crews is proportional to the amount of 3-way communications. However, it is also revealed that a theoretical framework that is able to characterize the communication of MCR operating crews is needed because it is insufficient to retrieve insightful information from simple comparisons based on the empirical observation of crew communications

  9. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew.

    Science.gov (United States)

    Rizal, Rachel E; Mediratta, Rishi P; Xie, James; Kambhampati, Swetha; Hills-Evans, Kelsey; Montacute, Tamara; Zhang, Michael; Zaw, Catherine; He, Jimmy; Sanchez, Magali; Pischel, Lauren

    2015-01-01

    Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful servicelearning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students' attitudes about population health, highlights the program's outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians.

  10. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  11. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  12. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  13. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  14. A device for determining air contamination with radon

    International Nuclear Information System (INIS)

    Wilhelm, I.; Krejcik, S.; Chabera, T.; Vitha, F.

    1990-01-01

    The device consists of a sampling section with a pump, an aerosol filter and a flowmeter, a semiconductor detector, a spectroscopic preamplifier, and an amplifier. The amplifier output is interfaced to the inputs of at least three independent discriminators. The output signals from the discriminators are processed by an evaluating unit. The device is so designed that the effects of external disturbances and of radionuclides other that radon in air are eliminated. The threshold of the first discriminator is determined by the noise conditions of the device. The device works with low voltage solely. (M.D.). 1 fig

  15. Determination of air pollutants by nuclear chemical analysis

    International Nuclear Information System (INIS)

    Lesny, J.; Toelgyessy, J.

    1975-01-01

    Nuclear analytical methods are discussed with a view to their applicability in the determination of air pollutants. It is shown that some methods (use of radioactive kryptonates in automatic analyzers, application of activation analysis, X-ray fluorescence methods) are developed in theory and proven in practice in such an extent to be widely used in the near future in the control of the environment. Many other methods are becoming increasingly important for the solution of specific problems of environmental protection (such as the control of sudden environmental contamination in the proximity of chemical plants and industrial centers). (author)

  16. Crew Clothing Odor Absorbing Stowage Bag

    Data.gov (United States)

    National Aeronautics and Space Administration — Clothing accounts for a significant portion of the logistical mass launched on current space missions: 277 kg (including 62 kg of exercise clothing) for an ISS crew...

  17. 76 FR 59254 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-26

    ... Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  18. Devices and Methods for Collection and Concentration of Air and Surface Samples for Improved Detection of Microbes onboard ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Protecting the International Space Station (ISS) crew from microbial contaminants is of great importance. Bacterial and fungal contamination of air, surfaces and...

  19. Method for determining the biological effects of air pollution by transplanted lichens

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, H

    1969-01-01

    The natural sensitivity of the leaf Parmelia physodes to air pollutants can be used for their detection. For this purpose the lichens are transplanted in many parallel lines onto boards made of wood or of any other material (lichen exposure boards) and are exposed in the area to be investigated at a height of 1.50 m. Their reactions are recorded photographically at definite intervals. The biological test values determined permit evidence of the existing emission load to be obtained, which can then be used in addition to the chemical air analysis.

  20. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  1. An all-woman crew to Mars: a radical proposal

    Science.gov (United States)

    Landis, G. A.

    2000-01-01

    It is logical to propose that if a human mission is flown to Mars, it should be composed of an entirely female crew. On the average, women have lower mass and take less volume than males, and use proportionately less consumables. In addition, sociological research indicates that a female crew may have a preferable interpersonal dynamic, and be likely to choose non-confrontational approaches to solve interpersonal problems.

  2. Low Loss Tapered Fiber Waveguide Modulator for Crew Cognitive State Monitoring (CSM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew...

  3. Mars Sample Return as a Feed-Forward into Planetary Protection for Crewed Missions to the Martian Surface

    Science.gov (United States)

    Spry, J. A.; Siegel, B.

    2018-04-01

    PP implementation is a required part of crewed exploration of Mars. Determining how PP is achieved is contingent on improved knowledge of Mars, best obtained in part by analysis of martian material of known provenance, as part of a Mars Sample Return mission.

  4. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    Science.gov (United States)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  5. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    Science.gov (United States)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  6. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    Science.gov (United States)

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  7. Legal status of crew members on pleasure craft and vessels used in nautical tourism

    Directory of Open Access Journals (Sweden)

    Giovanni Marchiafava

    2018-02-01

    Full Text Available The paper aims at examining the issues related to the legal status of crew members of pleasure craft and vessels used in nautical tourism from an Italian perspective. Firstly, the definition of crew and its composition on pleasure craft and vessels is examined. Additionally, the legal regime of crew members together with the crew on-board documentation, is discussed. Furthermore, the main similarities and dissimilarities of the crew regime according to the type of pleasure craft and vessel and their use, as well as, the on-board services, is dealt with. Finally, the issue related to the legal classification of ‘’guests’’, undertaking complementary on-board services of pleasure craft and vessels is considered.

  8. STS-31 crew training: firefighting, food tasting, EVA prep and post

    Science.gov (United States)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  9. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  10. Determination of the ejector dimensions of a bus air-conditioning system using analytical and numerical methods

    International Nuclear Information System (INIS)

    Ünal, Şaban

    2015-01-01

    Comfortable journey with commercial buses is an essential goal of transportation companies. An air-conditioning system can play an important role for this comfortable journey but it can put extra load on the engine and extra cost in the fuel consumption. The purpose of this work is to increase the performance of air-conditioning system of the buses by reducing the load on the engine and fuel consumption. Using a two-phase ejector as an expansion valve can increase the coefficient of performance (COP) of the air-conditioning system. An improvement in the COP can reduce the empty vehicle weight and fuel consumption of buses. Two-phase ejector dimensions can be determined using the empirical methods available in the literature. In this paper, the two-phase ejector dimensions of air conditioning system for a bus are calculated using the analytical and numerical methods. First of all, the thermodynamic analysis of the vapor-compression refrigeration cycle with a two-phase ejector is performed, and then the ejector dimensions are subsequently determined. The cooling loads of the midibus and bus with R134a as a refrigerant are assumed to be 14 kW and 32 kW, respectively. The total length of the two-phase ejector for the midibuses and buses due to these cooling loads, are computed to be 480.8 mm and 793.1 mm, respectively. Also, an experimental setup is installed on a midibus air conditioner to turn it into the ejector air conditioning system to validate theoretical results with the experimental study. - Highlights: • Determination of two-phase ejector dimensions of a bus air-conditioning system. • Thermodynamic analysis of the two-phase ejector cooling system. • Experimental study on a midibus air conditioner using two-phase ejector.

  11. Payload Crew Training Complex (PCTC) utilization and training plan

    Science.gov (United States)

    Self, M. R.

    1980-01-01

    The physical facilities that comprise the payload crew training complex (PCTC) are described including the host simulator; experiment simulators; Spacelab aft flight deck, experiment pallet, and experiment rack mockups; the simulation director's console; payload operations control center; classrooms; and supporting soft- and hardware. The parameters of a training philosophy for payload crew training at the PCTC are established. Finally the development of the training plan is addressed including discussions of preassessment, and evaluation options.

  12. Experimental determination of the average energy necessary for the production of an ion pair in air

    International Nuclear Information System (INIS)

    Guiho, J.P.; Simoen, J.P.

    1975-01-01

    The determination of the average energy Wbarsub(a) necessary to form an ion pair in air in a 60 Co beam (which is one of the French primary references in dosimetry) is obtained from measurements of the exposure and absorbed doses from the beam in the center of a graphite disc. The differential flux density of the beam having been measured the experimental value of Wbarsub(a) is obtained for a mean real photon energy. The so determined value of Wbarsub(a) in dry air is: Wbarsub(a) = 33,96 +-0.34 JC -1 for Ebar = 1150 keV. This result is then compared to different published values. From this comparison the importance of different correcting terms such as the air humidity correction and the carbon/air stopping power ratio, which constitutes the main source of uncertainty, are considered. (author)

  13. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    Science.gov (United States)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to

  14. How did crew resource management take-off outside of the cockpit? : a systematic review of how crew resource management training is conceptualised and evaluated for non-pilots

    NARCIS (Netherlands)

    Havinga, Jop; de Boer, R.J.; Rae, Andrew; Dekker, Sidney

    2017-01-01

    Crew resource management (CRM) training for flight crews is widespread and has been credited with improving aviation safety. As other industries have adopted CRM, they have interpreted CRM in different ways. We sought to understand how industries have adopted CRM, regarding its conceptualisation and

  15. CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician

    Science.gov (United States)

    Aume, Nilss M.

    1990-01-01

    Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.

  16. Don't Rock the Boat : How Antiphase Crew Coordination Affects Rowing

    NARCIS (Netherlands)

    de Brouwer, Anouk J.; de Poel, Harjo J.; Hofmijster, Mathijs J.

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of

  17. Nuclear power plant control room crew task analysis database: SEEK system. Users manual

    International Nuclear Information System (INIS)

    Burgy, D.; Schroeder, L.

    1984-05-01

    The Crew Task Analysis SEEK Users Manual was prepared for the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission. It is designed for use with the existing computerized Control Room Crew Task Analysis Database. The SEEK system consists of a PR1ME computer with its associated peripherals and software augmented by General Physics Corporation SEEK database management software. The SEEK software programs provide the Crew Task Database user with rapid access to any number of records desired. The software uses English-like sentences to allow the user to construct logical sorts and outputs of the task data. Given the multiple-associative nature of the database, users can directly access the data at the plant, operating sequence, task or element level - or any combination of these levels. A complete description of the crew task data contained in the database is presented in NUREG/CR-3371, Task Analysis of Nuclear Power Plant Control Room Crews (Volumes 1 and 2)

  18. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  19. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  20. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    Science.gov (United States)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  1. Chromatographic determination of the rate and extent of absorption of air pollutants by sea water

    International Nuclear Information System (INIS)

    Nikolakaki, S.; Vassilakos, C.; Katsanos, N.A.

    1994-01-01

    A simple chromatographic method is developed to determine the rate constant for expulsion of an air pollutant from water or its diffusion parameter in the liquid, the rate constant for chemical reaction of the pollutant with water, its mass transfer coefficient in the liquid, and the partition coefficient between liquid water and air. From these physicochemical parameters, the absorption rate by sea water and, therefore, the depletion rate of a polluting substance from the air can be calculated, together with the equilibrium state of this absorption. The method has been applied to nitrogen dioxide being absorbed by triple-distilled water and by sea water, at various temperatures. From the temperature variation of the reaction rate constant and of the partition coefficient, the activation energy for the reaction and the differential heat of solution were determined. (orig.)

  2. Planning for Crew Exercise for Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  3. The effect of training and job interruptions on logging crews' safety in ...

    African Journals Online (AJOL)

    The effect of training and job interruptions on logging crews' safety in ... method, experienced and inexperienced crews were studied before training, after ... that provision of appropriate safety gears as well as delivery of on job training are ...

  4. Prevalence of neck pain among cabin crew of Saudi Airlines.

    Science.gov (United States)

    Ezzat, Hesham M; Al-Sultan, Alanood; Al-Shammari, Anwar; Alyousef, Dana; Al-Hamidi, Hager; Al-Dossary, Nafla; Al-Zahrani, Nuha; Al-Abdulqader, Wala

    2015-01-01

    Neck pain is considered to be a major health problem in modern societies. Many previous studies found that certain occupations are related to this problem or are associated with the risk of developing it in future. Although the pain is caused by mechanical factors, it may progress to a serious problem and give rise to other abnormal symptoms such as vertigo, headache, or migraine. To investigate the prevalence of neck pain among the cabin crew of Saudi Airlines. A cross-sectional study was carried out on the available Saudi Airlines cabin crews in King Fahad Airport during our visits, using questionnaires and measurements of several parameters. Neck Pain Questionnaires were distributed to the cabin crews on Saudi Airlines and assessment sheets were completed by all participants of the study to evaluate the prevalence and distribution of neck pain. Physical therapy examination of neck motions in different directions and specific tests were performed by all the participants to identify any symptoms. Using these data the prevalence of neck pain among the cabin crews was calculated. Collected data were analyzed statistically using SPSS software calculating the mean, median, and score of the questionnaire. According to the scoring system of the study, 31 (30.09%) of 105 cabin crew staff of Saudi Airlines had neck pain. Our study confirmed a positive correlation between this occupation and neck pain, and in fact found that according to the results of logistic regression analysis, this occupation is the only significant factor that affects the positive compression test. The prevalence of neck pain among the cabin crews of Saudi Airlines was emphasized. The results show a high prevalence of neck pain in the participants of the study, with most cases appearing to run a chronic - episodic course. Further research is needed to help us understand more about the long-term course of neck pain and its broader outcomes and impacts.

  5. 19 CFR 4.7b - Electronic passenger and crew arrival manifests.

    Science.gov (United States)

    2010-04-01

    .... “Commercial vessel” means any civilian vessel being used to transport persons or property for compensation or hire. Crew member. “Crew member” means a person serving on board a vessel in good faith in any capacity... due to a mechanical, medical, or security problem affecting the voyage, or to an urgent situation...

  6. Science-based HRA: experimental comparison of operator performance to IDAC (Information-Decision-Action Crew) simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, Rachel [The Ohio State Univ., Columbus, OH (United States); Smidts, Carol [The Ohio State Univ., Columbus, OH (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Li, Yuandan [Univ. of Maryland, College Park, MD (United States); Mosleh, Ali [Univ. of Maryland, College Park, MD (United States)

    2015-02-01

    Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of available performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.

  7. Comparison of methods for determining the centers of extensive air showers

    International Nuclear Information System (INIS)

    Poirier, J.; Funk, E.; Mikocki, S.; Rohrer, N.

    1987-01-01

    Monte Carlo techniques are used to generate extensive air shower data. Two methods of determining the core location of the shower have been investigated: the method of least squares and the method of maximizing the likelihood function. The likelihood function method gives a precision of shower center location two times better than the χ 2 method for small numbers of detected particles. (orig.)

  8. Determination of the reference air kerma rate for 192Ir brachytherapy sources and the related uncertainty

    International Nuclear Information System (INIS)

    Dijk, Eduard van; Kolkman-Deurloo, Inger-Karine K.; Damen, Patricia M. G.

    2004-01-01

    Different methods exist to determine the air kerma calibration factor of an ionization chamber for the spectrum of a 192 Ir high-dose-rate (HDR) or pulsed-dose-rate (PDR) source. An analysis of two methods to obtain such a calibration factor was performed: (i) the method recommended by [Goetsch et al., Med. Phys. 18, 462-467 (1991)] and (ii) the method employed by the Dutch national standards institute NMi [Petersen et al., Report S-EI-94.01 (NMi, Delft, The Netherlands, 1994)]. This analysis showed a systematic difference on the order of 1% in the determination of the strength of 192 Ir HDR and PDR sources depending on the method used for determining the air kerma calibration factor. The definitive significance of the difference between these methods can only be addressed after performing an accurate analysis of the associated uncertainties. For an NE 2561 (or equivalent) ionization chamber and an in-air jig, a typical uncertainty budget of 0.94% was found with the NMi method. The largest contribution in the type-B uncertainty is the uncertainty in the air kerma calibration factor for isotope i, N k i , as determined by the primary or secondary standards laboratories. This uncertainty is dominated by the uncertainties in the physical constants for the average mass-energy absorption coefficient ratio and the stopping power ratios. This means that it is not foreseeable that the standards laboratories can decrease the uncertainty in the air kerma calibration factors for ionization chambers in the short term. When the results of the determination of the 192 Ir reference air kerma rates in, e.g., different institutes are compared, the uncertainties in the physical constants are the same. To compare the applied techniques, the ratio of the results can be judged by leaving out the uncertainties due to these physical constants. In that case an uncertainty budget of 0.40% (coverage factor=2) should be taken into account. Due to the differences in approach between the

  9. Determination of the conversion coefficient for ambient dose equivalent, H(10), from air kerma measurements

    International Nuclear Information System (INIS)

    Gonzalez J, F.; Alvarez R, J. T.

    2015-09-01

    Namely the operational magnitudes can be determined by the product of a conversion coefficient by exposure air kerma or fluence, etc. In particular in Mexico for the first time is determined the conversion coefficient (Cc) for operational magnitude Environmental Dose Equivalent H(10) by thermoluminescence dosimetry (TLD) technique. First 30 TLD-100 dosimeters are calibrated in terms of air kerma, then these dosimeters are irradiated inside a sphere ICRU type of PMMA and with the aid of theory cavity the absorbed dose in PMMA is determined at a depth of 10 mm within the sphere D PMMA (10), subsequently absorbed dose to ICRU tissue is corrected and the dose equivalent H(10) is determined. The Cc is determined as the ratio of H(10)/K a obtaining a value of 1.20 Sv Gy -1 with a u c = 3.66%, this being consistent with the published value in ISO-4037-3 of 1.20 Sv Gy -1 with a u c = 2%. (Author)

  10. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  11. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of ``modular biospheres''- closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth™ which will simulate a life support system designed for a four person crew. The structure will consist of /6 × 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.

  12. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base.

    Science.gov (United States)

    Silverstone, S; Nelson, M; Alling, A; Allen, J

    2003-01-01

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  13. STS-114: Discovery Crew Post Landing Press Briefing

    Science.gov (United States)

    2005-01-01

    The crew of the STS-114 Discovery is shown during a post landing press briefing. Commander Collins introduces the crew members who consist of Pilot Jim Kelley, Mission Specialist Soichi Noguchi from JAXA, Steve Robinson, Mission Specialist and Charlie Camarda, Mission Specialist. Steve Robinson answers a question from the news media about the repair that he performed in orbit, and his feelings about being back in his hometown of California. Commander Collins talks about the most significant accomplishment of the mission. The briefing ends as each crewmember reflects on the Space Shuttle Columbia tragedy and expresses their personal thoughts and feelings as they re-entered the Earth's atmosphere.

  14. Augmented Reality to Enhance Crew Medical Training

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to the large and diverse set of possible medical conditions, crew medical training focuses on the most likely medical scenarios that may occur in the current...

  15. Flight Crew State Monitoring Metrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  16. Simulation Development and Analysis of Crew Vehicle Ascent Abort

    Science.gov (United States)

    Wong, Chi S.

    2016-01-01

    NASA's Commercial Crew Program is an integral step in its journey to Mars as it would expedite development of space technologies and open up partnership with U.S. commercial companies. NASA reviews and independent assessment of Commercial Crew Program is fundamental to its success, and being able to model a commercial crew vehicle in a simulation rather than conduct a live test would be a safer, faster, and less expensive way to assess and certify the capabilities of the vehicle. To this end, my project was to determine the feasibility of using a simulation tool named SOMBAT version 2.0 to model a multiple parachute system for Commercial Crew Program simulation. The main tasks assigned to me were to debug and test the main parachute system model, (capable of simulating one to four main parachute bodies), and to utilize a graphical program to animate the simulation results. To begin tackling the first task, I learned how to use SOMBAT by familiarizing myself with its mechanics and by understanding the methods used to tweak its various parameters and outputs. I then used this new knowledge to set up, run, and analyze many different situations within SOMBAT in order to explore the limitations of the parachute model. Some examples of parameters that I varied include the initial velocity and orientation of the falling capsule, the number of main parachutes, and the location where the parachutes were attached to the capsule. Each parameter changed would give a different output, and in some cases, would expose a bug or limitation in the model. A major bug that I discovered was the inability of the model to handle any number of parachutes other than three. I spent quite some time trying to debug the code logically, but was unable to figure it out until my mentor taught me that digital simulation limitations can occur when some approximations are mistakenly assumed for certain in a physical system. This led me to the realization that unlike in all of the programming classes

  17. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    Directory of Open Access Journals (Sweden)

    Ristić Slavica S.

    2010-01-01

    Full Text Available Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp was experimentally determined by Laser Doppler Anemometry (LDA measurements. Two models were tested: model of airplane G4 (Super Galeb and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Comparisons between computational and experimental results prove the effectiveness of the LDA. The advantages and disadvantages of LDA application are discussed. Flow visualization was made by air bubbles.

  18. Changes in body composition of submarine crew during prolonged submarine deployment

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2015-01-01

    Discussion: Increased body fat along with lack of physical activity can lead to development of lifestyle disorders in submarine crew. These crew members need to be actively encouraged to participate in physical activity when in harbour. In addition dieting program specifically to encourage reduced fat consumption needs to be instituted in submarines during sorties at sea.

  19. A survey of the transport of radioactive materials by air to, from and within the UK

    International Nuclear Information System (INIS)

    Hughes, J.S.; Watson, S.J.

    2004-01-01

    Radioactive materials are frequently transported overseas by air for medical and industrial purposes. Among the advantages of this mode of transport is that urgent delivery is often required because some radionuclides are short lived. There are also a limited number of shipments by air within the UK. Scheduled passenger services or freight only aircraft may be used. Packages of radioactive materials are transported in aircraft holds at recommended segregation distances from areas occupied by passengers and crew. Many workers are involved in air transport and it is necessary to have procedures in place to minimise their exposure to ionising radiation

  20. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    Science.gov (United States)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  1. A Gold Standards Approach to Training Instructors to Evaluate Crew Performance

    Science.gov (United States)

    Baker, David P.; Dismukes, R. Key

    2003-01-01

    The Advanced Qualification Program requires that airlines evaluate crew performance in Line Oriented Simulation. For this evaluation to be meaningful, instructors must observe relevant crew behaviors and evaluate those behaviors consistently and accurately against standards established by the airline. The airline industry has largely settled on an approach in which instructors evaluate crew performance on a series of event sets, using standardized grade sheets on which behaviors specific to event set are listed. Typically, new instructors are given a class in which they learn to use the grade sheets and practice evaluating crew performance observed on videotapes. These classes emphasize reliability, providing detailed instruction and practice in scoring so that all instructors within a given class will give similar scores to similar performance. This approach has value but also has important limitations; (1) ratings within one class of new instructors may differ from those of other classes; (2) ratings may not be driven primarily by the specific behaviors on which the company wanted the crews to be scored; and (3) ratings may not be calibrated to company standards for level of performance skill required. In this paper we provide a method to extend the existing method of training instructors to address these three limitations. We call this method the "gold standards" approach because it uses ratings from the company's most experienced instructors as the basis for training rater accuracy. This approach ties the training to the specific behaviors on which the experienced instructors based their ratings.

  2. Conflict-handling mode scores of three crews before and after a 264-day spaceflight simulation.

    Science.gov (United States)

    Kass, Rachel; Kass, James; Binder, Heidi; Kraft, Norbert

    2010-05-01

    In both the Russian and U.S. space programs, crew safety and mission success have at times been jeopardized by critical incidents related to psychological, behavioral, and interpersonal aspects of crew performance. The modes used for handling interpersonal conflict may play a key role in such situations. This study analyzed conflict-handling modes of three crews of four people each before and after a 264-d spaceflight simulation that was conducted in Russia in 1999-2000. Conflict was defined as a situation in which the concerns of two or more individuals appeared to be incompatible. Participants were assessed using the Thomas-Kilmann Conflict Mode Instrument, which uses 30 forced-choice items to produce scores for five modes of conflict handling. Results were compared to norms developed using managers at middle and upper levels of business and government. Both before and after isolation, average scores for all crews were above 75% for Accommodating, below 25% for Collaborating, and within the middle 50% for Competing, Avoiding, and Compromising. Statistical analyses showed no significant difference between the crews and no statistically significant shift from pre- to post-isolation. A crew predisposition to use Accommodating most and Collaborating least may be practical in experimental settings, but is less likely to be useful in resolving conflicts within or between crews on actual flights. Given that interpersonal conflicts exist in any environment, crews in future space missions might benefit from training in conflict management skills.

  3. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  4. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  5. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  6. STS-70 crew on their way to Launch Pad 39B for TCDT

    Science.gov (United States)

    1995-01-01

    The STS-70 flight crew walks out of the Operations and Checkout Building on their way to Launch Pad 39B to participate in the Terminal Countdown Demonstration Test (TCDT) for that mission. As they depart to board their Astrovan, Mission Commander Terence 'Tom' Henricks (front right) holds up a Buckeye nut to signify that this is the Buckeye crew. Pilot Kevin R. Kregel (front left) is the only STS-70 crew member who is not a native of Ohio, but was recently bestowed with honorary citizenship by the governor of that state. Mission Specialist Mary Ellen Weber is behind Kregel, followed by Mission Specialists Nancy Jane Currie and Donald A. Thomas. With the crew aboard the Space Shuttle Discovery, the TCDT simulated a final launch countdown until just beofre orbiter main engine ignition.

  7. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler

    International Nuclear Information System (INIS)

    Kim, Seung-Kyu; Shoeib, Mahiba; Kim, Kyeong-Soo; Park, Jong-Eun

    2012-01-01

    Despite concerns to their increasing contribution to ecological and human exposure, the atmospheric levels of poly- and perfluoroalkyl substances (PFASs) have been determined mainly in Europe and North America. This study presents the indoor and outdoor air concentrations of volatile PFASs [fluorotelomer alcohols (FTOHs), and perfluoroalkyl sulfonamides/sulfonamidoethanols/sulfonamide ethyl acetate (FOSAs/FOSEs/FOSEA)] for the first time in Korean cities. In contrast to the good agreement observed for indoor FTOHs levels in Korea and Europea/North America, FOSAs/FOSEs levels were 10–100-fold lower in Korean indoor air, representing a cultural difference of indoor source. Korean outdoor air contained higher PFAS levels than indoor air, and additionally showed different PFAS composition profile from indoor air. Thus, indoor air would not likely be a main contributor to atmospheric PFAS contamination in Korea, in contrast to western countries. Inhalation exposure of volatile PFASs was estimated to be a minor contributor to PFOA and PFOS exposure in Korea. - Highlights: ► Volatile PFASs were measured in indoor and outdoor airs of Korea, for the first time. ► Cultural difference in indoor source was observed for Korea v.s. western countries. ► Furthermore, PFASs concentrations were higher in indoor air than outdoor air. ► Indoor air was not a major contributor to atmospheric PFASs contamination in Korea. ► Release from industrial activities was considered a possible source. - Korean outdoor air showed not only different PFAS composition profile but higher PFAS levels than indoor airs, indicating indoor air would not be a main source to Korean atmospheric PFASs.

  8. Investigating the effect of communication characteristics on crew performance under the simulated emergency condition of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Yang, Joon-Eon

    2012-01-01

    It is well known that the safety of large process control systems could be significantly affected by the communication characteristics of crews that have a responsibility for their operations. Accordingly, many researchers have spent huge amount of effort to grasp the relationship between the characteristics of crew communications and the associated crew performance. Unfortunately, in the case of nuclear power plants (NPPs), it seems that most of existing studies have tried to identify the relationship between the characteristics of crew communications and the associated crew performance using empirical observations without a firm technical underpinning. For these reasons, Park suggested a novel framework that is able to represent the characteristics of crew communications based on social network analysis (SNA) metrics. In order to confirm the appropriateness of the suggested framework, in this study, the characteristics of crew communications that are gathered from the simulated emergency condition of NPPs are additionally compared with the associated crew performance data. As a consequence, it is observed that there are significant relationships between communication characteristics and the associated crew performance. Therefore, it is reasonable to expect that the characteristics of crew communications can be properly grasped using the suggested framework. - Highlights: ► Communication data of MCR operating crews are collected from a simulated emergency condition. ► Communication characteristics are represented by the associated SNA metrics. ► Identified communication characteristics are compared with the results of existing studies. ► SNA metrics are meaningful for explaining the characteristics of crew communications.

  9. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  10. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  11. Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Science.gov (United States)

    Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.

    1990-01-01

    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.

  12. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    Science.gov (United States)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This

  13. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Science.gov (United States)

    2010-10-01

    ... shown that a natural system will provide adequate ventilation. However, vessels which trade regularly in... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for crew quarters and passenger spaces. 72... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 72.15-20 Ventilation for crew quarters and passenger...

  14. PubMed search filters for the study of putative outdoor air pollution determinants of disease

    Science.gov (United States)

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-01-01

    Objectives Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. Methods We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to formulate two filters (one ‘more specific’, one ‘more sensitive’). Their overall performance was evaluated as compared with our gold standard derived from systematic reviews on diseases potentially related to outdoor air pollution. We tested these filters in the study of three diseases potentially associated with outdoor air pollution and calculated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these diseases. Last searches were run in January 2016. Results The ‘more specific’ filter was based on the combination of terms that yielded a threshold of potentially pertinent articles ≥40%. The ‘more sensitive’ filter was based on the combination of all search terms under study. When compared with the gold standard, the ‘more specific’ filter reported the highest specificity (67.4%; with a sensitivity of 82.5%), while the ‘more sensitive’ one reported the highest sensitivity (98.5%; with a specificity of 47.9%). The NNR to find one potentially pertinent article was 1.9 for the ‘more specific’ filter and 3.3 for the ‘more sensitive’ one. Conclusions The proposed search filters could help healthcare professionals investigate environmental determinants of medical conditions that could be potentially related to outdoor air pollution. PMID:28003291

  15. PubMed search filters for the study of putative outdoor air pollution determinants of disease.

    Science.gov (United States)

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-12-21

    Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to formulate two filters (one 'more specific', one 'more sensitive'). Their overall performance was evaluated as compared with our gold standard derived from systematic reviews on diseases potentially related to outdoor air pollution. We tested these filters in the study of three diseases potentially associated with outdoor air pollution and calculated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these diseases. Last searches were run in January 2016. The 'more specific' filter was based on the combination of terms that yielded a threshold of potentially pertinent articles ≥40%. The 'more sensitive' filter was based on the combination of all search terms under study. When compared with the gold standard, the 'more specific' filter reported the highest specificity (67.4%; with a sensitivity of 82.5%), while the 'more sensitive' one reported the highest sensitivity (98.5%; with a specificity of 47.9%). The NNR to find one potentially pertinent article was 1.9 for the 'more specific' filter and 3.3 for the 'more sensitive' one. The proposed search filters could help healthcare professionals investigate environmental determinants of medical conditions that could be potentially related to outdoor air pollution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  17. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  18. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  19. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection. Part 1; Appendices

    Science.gov (United States)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the appendices to the NESC assessment report. NASA/TM-2013-217380, Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events supersedes this document.

  20. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew

    Directory of Open Access Journals (Sweden)

    Rizal RE

    2015-07-01

    Full Text Available Rachel E Rizal,1,* Rishi P Mediratta,1,* James Xie,1 Swetha Kambhampati,1 Kelsey Hills-Evans,1 Tamara Montacute,1 Michael Zhang,1 Catherine Zaw,2 Jimmy He,2 Magali Sanchez,2 Lauren Pischel1 1Stanford University School of Medicine, Stanford, CA, USA; 2Stanford University, Stanford, CA, USA *These authors contributed equally to this work Abstract: Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful service-learning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students' attitudes about population health, highlights the program’s outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians. Keywords: immunizations, vaccine delivery, vaccinations 

  1. Determination of air kerma standard of high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Pires, E.J.; Alves, C.F.E.; Leite, S.P.; Magalhaes, L.A.G.; David, M.G.; Almeida, C.E. de

    2015-01-01

    This paper presents the methodology developed by the Laboratorio de Ciencias Radiologicas and presently in use for determining of the air kerma standard of 192 Ir high dose rate sources to calibrate well-type chambers. Uncertainty analysis involving the measurements procedure are presented. (author)

  2. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    Science.gov (United States)

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  3. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  4. Constellation Probabilistic Risk Assessment (PRA): Design Consideration for the Crew Exploration Vehicle

    Science.gov (United States)

    Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis

    2010-01-01

    Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.

  5. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  6. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  7. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  8. Expert assessments and content analysis of crew communication during ISS missions

    Science.gov (United States)

    Yusupova, Anna

    During the last seven years, we have analyzed the communication patterns between ISS crewmembers and mission control personnel and identified a number of different communication styles between these two groups (Gushin et al, 2005). In this paper, we will report on an external validity check we conducted that compares our findings with those of another study using the same research material. For many years the group of psychologists at the Medical Center of Space Flight Control (TCUMOKO) at the Institute for Biomedical Problems (IBMP) in Moscow has been analyzing audio communication sessions of Russian space crews with the ground-based Mission Control during long-duration spaceflight conditions. We compared week by week texts of the standard weekly monitoring reports made by the TsUP psychological group and audiocommunication of space crews with mission control centers. Expert assessments of the crewmembers' psychological state are made by IBMP psychoneurologists on the basis of daily schedule fulfillment, video and audio materials, and psychophysiological data from board. The second approach was based on the crew-ground communication analysis. For both population of messages we applied two corresponding schemas of content analysis. All statements made in communication sessions and weekly reports were divided into three groups in terms of their communication function (Lomov, 1981): 1) informative function (e.g., demands for information, requests, professional slang); 2) socio-regulatory function (e.g., rational consent or discord, operational complaint, refusal to cooperate); and 3) affective (emotional) function (e.g., encouragement, sympathy, emotional consent or discord). Number of statements of the audiocommunication sessions correlated with corresponding functions (informative, regulatory, affective) of communication in weekly monitioring reports made by experts. Crewmembers verbal behavior expresses its psycho-emotional state which is formulated by expert

  9. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  10. Investigation of air transportation technology at Princeton University, 1986

    Science.gov (United States)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  11. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis.

    Science.gov (United States)

    Minematsu, Saaya; Xuan, Guang-Shan; Wu, Xing-Zheng

    2013-12-01

    The present study investigated capillary electrophoretic detection of vanillin in vanilla perfume and air. An UV-absorbance detector was used in a home-made capillary electrophoretic instrument. A fused silica capillary (outer diameter: 364 μm, inner diameter: 50 μm) was used as a separation capillary, and a high electric voltage (20 kV) was applied across the two ends of the capillary. Total length of the capillary was 70 cm, and the effective length was 55 cm. Experimental results showed that the vanillin peak was detected at about 600, 450, and 500 seconds when pH of running buffers in CE were 7.2, 9.3, and 11.5, respectively. The peak area of vanillin was proportional to its concentration in the range of 0-10(-2) mol/L. The detection limit was about 10(-5) mol/L. Vanillin concentration in a 1% vanilla perfume sample was determined to be about 3×10(-4) mol/L, agreed well with that obtained by a HPLC method. Furthermore, determination of vanillin in air by combination of CE and active carbon adsorption method was investigated. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    Science.gov (United States)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  13. Interim results of the study of control room crew staffing for advanced passive reactor plants

    International Nuclear Information System (INIS)

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-01-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study

  14. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  15. Effects of crew resource management training on the team performance of operators in an advanced nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Byun, Seong Nam

    2011-01-01

    The objectives of the study are twofold: the development of a CRM training program appropriate to Korean NPPs and the evaluation of CRM training effectiveness. Firstly, the CRM program was developed with a focus on nontechnical skills - such as leadership, situational awareness, teamwork, and communication - which have been widely known to be critical for improving operational performance. Secondly, the effectiveness tests were conducted for two different crews of operators, performing six different emergency operation scenarios during a four-week period. All the crews (crews A and B) participated in the training program for the technical knowledge and skills, which were required to operate the simulator of the MCR during the first week. However, for the verification of the effectiveness of the CRM training program, only crew A was randomly selected to attend the CRM training after the technical knowledge and skills training. The results of the experiments showed that the CRM training program improved the individual attitudes of crew A with a statistical significance. The team skills of crew A were found to be significantly more advanced than those of crew B. However, the CRM training did not have a positive effect on enhancing the individual performance of crew A, as compared with that of crew B. (author)

  16. STS-95: Post Landing and Crew Walkaround of the Orbiter at the Shuttle Landing Facility

    Science.gov (United States)

    1998-01-01

    After landing, the STS-95 crew (Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, Pedro Duque, Payload Specialists Chiaki Mukai and the legendary John H. Glenn) descend from the Space Shuttle. Commander Brown congratulates the crew and team photos are taken. The crew does a walkaround inspection of the spacecraft, then boards the bus for departure from the facility.

  17. Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries.

    Science.gov (United States)

    Hammer, Gaël P; Auvinen, Anssi; De Stavola, Bianca L; Grajewski, Barbara; Gundestrup, Maryanne; Haldorsen, Tor; Hammar, Niklas; Lagorio, Susanna; Linnersjö, Anette; Pinkerton, Lynne; Pukkala, Eero; Rafnsson, Vilhjálmur; dos-Santos-Silva, Isabel; Storm, Hans H; Strand, Trond-Eirik; Tzonou, Anastasia; Zeeb, Hajo; Blettner, Maria

    2014-05-01

    Commercial airline crew is one of the occupational groups with the highest exposures to ionising radiation. Crew members are also exposed to other physical risk factors and subject to potential disruption of circadian rhythms. This study analyses mortality in a pooled cohort of 93 771 crew members from 10 countries. The cohort was followed for a mean of 21.7 years (2.0 million person-years), during which 5508 deaths occurred. The overall mortality was strongly reduced in male cockpit (SMR 0.56) and female cabin crews (SMR 0.73). The mortality from radiation-related cancers was also reduced in male cockpit crew (SMR 0.73), but not in female or male cabin crews (SMR 1.01 and 1.00, respectively). The mortality from female breast cancer (SMR 1.06), leukaemia and brain cancer was similar to that of the general population. The mortality from malignant melanoma was elevated, and significantly so in male cockpit crew (SMR 1.57). The mortality from cardiovascular diseases was strongly reduced (SMR 0.46). On the other hand, the mortality from aircraft accidents was exceedingly high (SMR 33.9), as was that from AIDS in male cabin crew (SMR 14.0). This large study with highly complete follow-up shows a reduced overall mortality in male cockpit and female cabin crews, an increased mortality of aircraft accidents and an increased mortality in malignant skin melanoma in cockpit crew. Further analysis after longer follow-up is recommended.

  18. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  19. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  20. 76 FR 3831 - Crew Resource Management Training for Crewmembers in Part 135 Operations

    Science.gov (United States)

    2011-01-21

    ... training in the use of crew resource management principles, as appropriate for their operation. This final... incorporation of team management concepts in flight operations. This training focuses on communication and... document. Title: Crew Resource Management Training for Crewmembers in Part 135 Operations. Summary: This...

  1. Implementation of crew resource management: a qualitative study in 3 intensive care units.

    NARCIS (Netherlands)

    Kemper, P.F.; Dyck, C. van; Wagner, C.; Bruijne, M. de

    2017-01-01

    Objectives: Classroom-based crew resource management (CRM) training has been increasingly applied in health care to improve safe patient care. Crew resource management aims to increase participants' understanding of how certain threats can develop as well as provides tools and skills to respond to

  2. Nonstandard usage of ASS-500 station filters for determination of ground-level air contamination

    International Nuclear Information System (INIS)

    Kozak, K.; Jasinska, M.; Kwiatek, W.; Mietelski, J.W.; Dutkiewicz, E.

    1998-01-01

    The work describes nonstandard application of filters from ASS-500 station for the determination of the element content in the samples collected by PIXE method. Determination of gamma radioactive isotopes and alpha radioactive plutonium is also reviewed. Authors conclude that ASS-500 workstation allows collection of representative samples from the ground level air. These samples are suitable for the complex analysis of industrial pollution

  3. Determination of biomass burning tracers in air samples by GC/MS

    Science.gov (United States)

    Janoszka, Katarzyna

    2018-01-01

    Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).

  4. Determination of biomass burning tracers in air samples by GC/MS

    Directory of Open Access Journals (Sweden)

    Janoszka Katarzyna

    2018-01-01

    Full Text Available Levoglucosan (LG as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1.

  5. Quasi Real Time Data Analysis for Air Quality Monitoring with an Electronic Nose

    Science.gov (United States)

    Zhou, Hanying; Shevade, Abhijit V.; Pelletier, Christine C.; Homer, Margie L.; Ryan, M. Amy

    2006-01-01

    Cabin Air Quality Monitoring: A) Functions; 1) Incident monitor for targeted contaminants exceeding targeted concentrations. Identify and quantify. 2) Monitor for presence of compounds associated with fires or overheating electronics. 3) Monitor clean-up process. B) Characteristics; 1) Low mass, low power device. 2) Requires little crew time for maintenance and calibration. 3) Detects, identifies and quantifies selected chemical species at or below 24 hour SMAC.

  6. Effects of checklist interface on non-verbal crew communications

    Science.gov (United States)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  7. Advanced concept for a crewed mission to the martian moons

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  8. Avatar Robot for Crew Performance and Behavioral Health

    Data.gov (United States)

    National Aeronautics and Space Administration — This project investigates the effectiveness of using an avatar robotic platform as a crew assistant and a family member substitute. This type of avatar robot is...

  9. Cosmic rays score direct hits with Apollo crew

    CERN Multimedia

    1971-01-01

    Apollo 14 astronauts conduted experiments during the spaceflight to help scientists to understand why previous crews have seen flashes of light during missions, believed to be caused by cosmic rays (1 page).

  10. The Evolution of the NASA Commercial Crew Program Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy C.

    2016-01-01

    In 2010, the National Aeronautics and Space Administration (NASA) established the Commercial Crew Program (CCP) in order to provide human access to the International Space Station and low Earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine that the Commercial Provider's transportation system complies with programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted hazard reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100% of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (S&MA) model does not support the nature of the CCP. To that end, NASA S&MA is implementing a Risk Based Assurance process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications.

  11. International Space Station Crew Restraint Design

    Science.gov (United States)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  12. Studies on an efficient method for determining 3,3’-dimethylbenzidine in the workplace air

    Directory of Open Access Journals (Sweden)

    Joanna Kowalska

    2016-04-01

    Full Text Available Background: 3,3’-Dimethylbenzidene (DMB is a substance classified into the group of carcinogens. The value of maximum admissible concentration for this substance in the workplace air is not specified in Poland. Bearing in mind that DMB is used in domestic companies there is a need to develop a sensitive method for determining 3,3’-dimethylbenzidine in the work environment. Material and Methods: The method consists in passing DMB-containing air through sulfuric acid-treated glass fiber filters, washing out the substance settled on the filter, using water and solution of sodium hydroxide, liquid–liquid extraction with toluene, replacing dissolvent with acetonitrile and analyzing the obtained solution. Studies were performed using high-performance liquid chromatography (HPLC technique. An Agilent Technologies chromatograph, series 1200, with a diode-array detector (DAD and a fluorescence detector (FLD was used in the experiment. In the test, an Ultra C18 column of dimensions: 250×4.6 mm, particle diameter (dp = 5 μm (Restek was applied. Results: The method is linear (r = 0.999 within the investigated working range of concentration 1.08–21.6 μg/ml, which is equivalent to air concentrations 2–40 μg/m3 for a 540 l air sample. The limit of detection (LOD of quantification determination is 5.4 ng/ml and the limit of quantification (LOQ – 16.19 ng/ml. Conclusions: The analytical method described in this paper allows for selective determination of 3,3’-dimethylbenzidine in the workplace air in the presence of 1,4-phenylenediamine, benzidine, aniline, 3,3’-dimethoxybenzidine, 2-nitrotoluene, 3,3’-dichlorobenzidine and azobenzene. The method is characterized by good precision and good accuracy, it also meets the criteria for procedures involving the measurement of chemical agents, listed in EN 482:2012. Med Pr 2016;67(1:43–50

  13. 75 FR 75656 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Determination of...

    Science.gov (United States)

    2010-12-06

    ... 51.902(a)), EPA is proposing to determine that this area has attained the 1997 ozone NAAQS by its... implementation rule (see 40 CFR 51.902(a)), EPA is proposing to determine that this area has attained the 1997... 1997 8-hour ozone nonattainment area continues to attain the 1997 8-hour National Ambient Air Quality...

  14. Accuracy of Emergency Medical Services Dispatcher and Crew Diagnosis of Stroke in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Judy Jia

    2017-09-01

    Full Text Available BackgroundAccurate recognition of stroke symptoms by Emergency Medical Services (EMS is necessary for timely care of acute stroke patients. We assessed the accuracy of stroke diagnosis by EMS in clinical practice in a major US city.Methods and resultsPhiladelphia Fire Department data were merged with data from a single comprehensive stroke center to identify patients diagnosed with stroke or TIA from 9/2009 to 10/2012. Sensitivity and positive predictive value (PPV were calculated. Multivariable logistic regression identified variables associated with correct EMS diagnosis. There were 709 total cases, with 400 having a discharge diagnosis of stroke or TIA. EMS crew sensitivity was 57.5% and PPV was 69.1%. EMS crew identified 80.2% of strokes with National Institutes of Health Stroke Scale (NIHSS ≥5 and symptom duration <6 h. In a multivariable model, correct EMS crew diagnosis was positively associated with NIHSS (NIHSS 5–9, OR 2.62, 95% CI 1.41–4.89; NIHSS ≥10, OR 4.56, 95% CI 2.29–9.09 and weakness (OR 2.28, 95% CI 1.35–3.85, and negatively associated with symptom duration >270 min (OR 0.41, 95% CI 0.25–0.68. EMS dispatchers identified 90 stroke cases that the EMS crew missed. EMS dispatcher or crew identified stroke with sensitivity of 80% and PPV of 50.9%, and EMS dispatcher or crew identified 90.5% of patients with NIHSS ≥5 and symptom duration <6 h.ConclusionPrehospital diagnosis of stroke has limited sensitivity, resulting in a high proportion of missed stroke cases. Dispatchers identified many strokes that EMS crews did not. Incorporating EMS dispatcher impression into regional protocols may maximize the effectiveness of hospital destination selection and pre-notification.

  15. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    Science.gov (United States)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  16. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    Science.gov (United States)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  17. The Evolution of On-Board Emergency Training for the International Space Station Crew

    Science.gov (United States)

    LaBuff, Skyler

    2015-01-01

    The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives

  18. Corroborating the Land Use Change as Primary Determinant of Air Quality Degradation in a Concentric City

    Directory of Open Access Journals (Sweden)

    Ariva Sugandi Permana

    2015-05-01

    Full Text Available Bandung City is characterized by concentric land use pattern as found in many naturally grown cities. It radiates from mixed commercial areas in the center to low density residential areas in the periphery. This pattern generates significant traffic volume towards city center. The gener-ated traffic releases emissions and degrades urban air quality since fossil fuel is predominantly used by vehicles in Bandung. In the absence of air polluting industries as well as construction and demolition activities, traffic load generated by land use changes is the only major contribu-tor to air quality degradation in the city. The land use change can therefore be seen as primary determinant of air pollution in Bandung. This study analyses land use changes and its impacts on traffic pattern and air quality. Multivariate correlation between traffic load and land use changes is employed as tool to substantiate the proposition. Relationships between the degree of chang-es in land use, as reflected in traffic loads, and the quantity of two principal air pollutants, namely SO2 and HC are also established to validate the argument. The result of analysis sub-stantiates the correlation between land use changes and air quality degradation.

  19. Determination of sulfur dioxide in ambient air and in industrial stack using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Sumitra, T.; Chankow, N.; Punnachaiya, S.; Laopaibul, R.

    1988-01-01

    Sulfur dioxide is a major air pollutant of concern. The gas has to be monitored both in ambient air and in industrial stacks. There are several methods of measuring sulfur dioxide. Standard methods adopted for Thailand are based on chemical methods. These are normally sensitive to light and temperature changes. Therefore a method of collecting air sample and determination of SO 2 by X-ray fluorescence technique was developed. Air sampling was done by an in-house low cost air sampler using automobile battery, dependency on a.c. source was thus avoided. The air pump has a flow rate between 0.2-1.5 liters/minute and draw about 0.6 A from a 12 V battery. SO 2 was collected on 37 mm filters impregnated with 5% sodium carbonate. This method could detect SO 2 from 10 μg up. The method has been checked by interlaboratory comparison. Field test has also been performed at some tobacco curing plants in Amphoe Sansai, Changwat Chiengmai, both in ambient air and in stacks. The results were found to be satisfactory and comparable with the standard methods

  20. Development of a versatile, easy and rapid atmospheric monitor for benzene, toluene, ethylbenzene and xylenes determination in air.

    Science.gov (United States)

    Esteve-Turrillas, Francesc A; Ly-Verdú, Saray; Pastor, Agustín; de la Guardia, Miguel

    2009-11-27

    A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography-mass spectrometry (HS-GC-MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).

  1. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  2. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T

    International Nuclear Information System (INIS)

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  3. SURVEY OF SELECTED PROCEDURES FOR THE INDIRECT DETERMINATION OF THE GROUP REFRACTIVE INDEX OF AIR

    Directory of Open Access Journals (Sweden)

    Filip Dvořáček

    2018-02-01

    Full Text Available The main aim of the research was to evaluate numeric procedures of the indirect determination of the group refractive index of air and to choose the suitable ones for requirements of ordinary and high accuracy distance measurement in geodesy and length metrology. For this purpose, 10 existing computation methods were derived from various authors’ original publications and all were analysed for wide intervals of wavelengths and atmospheric parameters. The determination of the phase and the group refractive indices are essential parts in the evaluation of the first velocity corrections of laser interferometers and electronic distance meters. The validity of modern procedures was tested with respect to updated CIPM-2007 equations of the density of air. The refraction model of Leica AT401 laser tracker was analysed.

  4. METHODS OF TRAINING OF MODERN AIRCRAFT FLIGHT CREWS FOR INFLIGHT ABNORMAL CIRCUMSTANCES

    Directory of Open Access Journals (Sweden)

    Yurii Hryshchenko

    2017-03-01

    Full Text Available Purpose: The purpose of this article is the theoretical justification of the existing methods and development of new methods of training the crews of modern aircraft for inflight abnormal circumstances. Methods: The article describes the research methods of engineering psychology, mathematical statistics and analysis of the correlation functions. Results: The example of the two accidents of aircraft with modern avionics is shown in the problem statement. The pilot made a sharp movement of the steering wheel while go-around, which has led to a sharp diving and impossibility of coming out of it. It was shown that the developed anti-stress training methods allow crews to train a human operator to prevent such events. The theoretical solution of the problem of optimization of the flight on the final approach, considering the human factor, is suggested to solve using the method of analysis of the autocorrelation function. Conclusions: It is necessary to additionally implement methods of teaching the counteracting of factorial overlaps into the training course using the complex modern aircraft simulators. It is enough to analyze a single pitch angle curve of the autocorrelation function to determine the phenomena of amplification of integral-differential motor dynamic stereotype of the pilot.

  5. Rapid determination of radon daughters and of artificial radionuclides in air by online gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1993-01-01

    For the determination of airborne radionuclide concentrations in real time, a fixed filter device was constructed which fits directly onto a germanium detector with standard nuclear electronics and a multichannel analyzer buffer connected via a data line to a personal computer for remote control and on-line spectrum evaluation. The on-line gamma-ray spectrometer was applied to the study of radon decay product concentrations in ground-level air and to the rapid detection of only contamination of the environmental air by artificial radionuclides. At Munich-Neuherberg, depending on the meteorological conditions, the measured air concentrations of 214 Pb, the first gamma-ray-emitting member of the 222 Rn decay series, varied from about 1 to 50 Bq m -3 . For the artifical radionuclides 60 Co, 131 I and 137 Cs the detection limits were determined as a function of the varying natural radon daughter concentrations at sampling and counting times of 1 h or 1 day. For these radionuclides minimum detectable air activity concentrations of 0.3 or 0.001 Bq m -3 , respectively, were obtained at low radon daughter levels. At high radon daughter levels the respective detection limits were found to be higher by a factor of only about 2. (orig.)

  6. Rapid determination of radon daughters and of artificial radionuclides in air by online gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. (GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Strahlenschutz)

    1993-04-01

    For the determination of airborne radionuclide concentrations in real time, a fixed filter device was constructed which fits directly onto a germanium detector with standard nuclear electronics and a multichannel analyzer buffer connected via a data line to a personal computer for remote control and on-line spectrum evaluation. The on-line gamma-ray spectrometer was applied to the study of radon decay product concentrations in ground-level air and to the rapid detection of only contamination of the environmental air by artificial radionuclides. At Munich-Neuherberg, depending on the meteorological conditions, the measured air concentrations of [sup 214]Pb, the first gamma-ray-emitting member of the [sup 222]Rn decay series, varied from about 1 to 50 Bq m[sup -3]. For the artifical radionuclides [sup 60]Co, [sup 131]I and [sup 137]Cs the detection limits were determined as a function of the varying natural radon daughter concentrations at sampling and counting times of 1 h or 1 day. For these radionuclides minimum detectable air activity concentrations of 0.3 or 0.001 Bq m[sup -3], respectively, were obtained at low radon daughter levels. At high radon daughter levels the respective detection limits were found to be higher by a factor of only about 2. (orig.).

  7. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  8. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  9. STS-51B Crew Portrait

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-51B mission included (seated left to right) Robert F. Overmyer, commander; and Frederick D. Gregory, pilot. Standing, left to right, are Don L. Lind, mission specialist; Taylor G. Wang, payload specialist; Norman E. Thagard, mission specialist; William E. Thornton, mission specialist; and Lodewijk van den Berg, payload specialist. Launched aboard the Space Shuttle Challenger on April 29, 1985 at 12:02:18 pm (EDT), the STS-51A mission's primary payload was the Spacelab-3.

  10. The STS-95 crew addresses KSC employees in the Training Auditorium

    Science.gov (United States)

    1998-01-01

    In the Kennedy Space Center (KSC) Training Auditorium, STS-95 Commander Curtis L. Brown Jr. (at podium) addresses KSC employees who were invited to hear the STS-95 crew describe their experiences during their successful mission dedicated to microgravity research and to view a videotape of the highlights of the mission. The other STS-95 crew members are (seated, from left to right) Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialists Scott E. Parazynski and Pedro Duque, with the European Space Agency (ESA); and Payload Specialists Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), and John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. Later in the afternoon, the crew will participate in a parade down State Road A1A in nearby Cocoa Beach, reminiscent of those held after missions during the Mercury Program.

  11. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  12. Cosmic rays exposure during aircraft flight (3). Guideline and dose evaluation

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    2007-01-01

    Radiation Council of MEXT drew up the Guideline of Cosmic Ray Exposure Control for Air Crew in 2006. The content of the Guideline and evaluation methods of dose are explained. The Guideline stated five items for Airline Company. It consists of 1) exposure dose control for air crew, 2) evaluation methods of cosmic rays exposure dose of air crew, 3) explanation and education of cosmic rays exposure for air crew, 4) reading, record and store of cosmic rays exposure dose of air crew, and 5) health control of air crew. The doses of four airlines were calculated by the Civil Aeromedical Research Institute (CARI) code and the European Program package for the Calculation of Aviation Route Doses (EPCARD) code. The difference of two codes was about 15 to 25%. Japanese Internet System for Calculation of Aviation Route Doses (JISCAED) has been developed by Japan. (S.Y.)

  13. Joint determination of the concentrations of the 222Rn and 220Rn decay products in air

    International Nuclear Information System (INIS)

    Terent'ev, M.V.

    1987-01-01

    The authors describe a modification of the Kuznets and Markov methods normally employed for the determination of radon 220 and 222 daughter alpha product concentration in air in which an air sample is taken for 10 minutes on a filter at a flow rate of 10-40 liters per minute. After the conclusion of sampling the filter activity is measured for another 10 minutes. In order to then determine the latent energy of the radon 222 daughter products and to bring into account the radon 220 daughter products in the total activity measurements of the filter are taken for a second time for 30 minutes five hours after initial sampling. The level of latent energy of the combined daughter products are calculated by an equation which incorporates alpha particle detection efficiency, aerosol retention efficiency in the filter, and the Kuznets coefficients, and analyzes the separate and combined contributions of both daughter products from both sampling periods. A statistical analysis employing the Markov method is also depicted in modified form and is recommended when a more rapid analysis of air radioactivity is mandated

  14. Automatic colorimetric determination of low concentrations of sulphate for measuring sulphur dioxide in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Persson, G A

    1966-01-01

    An automatic colorimetric method for the determination of low concentrations of sulphate (0-10 microgram/ml) using the thoron indicator is described. Total amounts of sulphate as small as 0.3 micrograms can be determined. The sulphate is precipitated with barium perchlorate and the excess of barium is indicated with 1-(o-arsenophenylazo)-2-naphthol-3-6-disulfonic acid(thoron). The procedure is worked out primarily for the determination of sulphur dioxide in air after absorption in diluted hydrogen peroxide.

  15. Improved Design of Crew Operation in Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Jung, Yeon Sub; Sung, Chan Ho [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The operators perform the paper-based procedures in analog-based conventional main control room (MCR) depending on only communications between operators except a procedure controller such as a Shift Supervisor (SS), however in digital-based MCR the operators can confirm the procedures simultaneously in own console when the procedure controller of computerized procedure (CP) opens the CP. The synchronization and a synchronization function between procedure controller and other operators has to be considered to support the function of crew operation. This paper suggests the improved design of crew operation in computerized procedure system of APR1400. This paper suggests the improved design of APR1400 CPS. These improvements can help operators perform the crew procedures more efficiently. And they reduce a burden of communication and misunderstanding of computerized procedures. These improvements can be applied to CPS after human factors engineering verification and validation.

  16. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    Science.gov (United States)

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  17. STS-99 Flight Day Highlights and Crew Activities Report

    Science.gov (United States)

    2000-01-01

    Live footage shows the Blue Team (second of the dual shift crew), Dominic L. Pudwill Gorie, Janice E. Voss and Mamoru Mohri, beginning the first mapping swath covering a 140-mile-wide path. While Mohri conducts mapping operations, Voss and Gorie are seen participating in a news conference with correspondents from NBC and CNN. The Red Team (first of the dual shift crew), Kevin R. Kregel, Janet L. Kavandi and Gerhard P.J. Thiele, relieves the Blue Team and are seen continuing the mapping operations for this around the clock Shuttle Radar Topography Mission (SRTM). Commander Kregel is shown performing boom (mass) durability tests, calibrating the EarthCam Payload, and speaking with the Launch Control Center (LCC) about trouble shooting a bracket for better camera angle.

  18. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Science.gov (United States)

    2010-10-01

    ..., unless it can be shown that a natural system will provide adequate ventilation. However, vessels which... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for crew quarters and, where provided...) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-15 Ventilation for crew...

  19. Communication Research in Aviation and Space Operations: Symptoms and Strategies of Crew Coordination

    Science.gov (United States)

    Kanki, Barbara G.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    The day-to-day operators of today's aerospace systems work under increasing pressures to accomplish more with less. They work in operational systems which are complex, technology-based, and high-risk; in which incidents and accidents have far-reaching and costly consequences. For these and other reasons, there is concern that the safety net formerly built upon redundant systems and abundant resources may become overburdened. Although we know that human ingenuity can overcome incredible odds, human nature can also fail in unpredictable ways. Over the last 20 years, a large percentage of aviation accidents and incidents have been attributed to human errors rather than hardware or environmental factors alone. A class of errors have been identified which are not due to a lack of individual, technical competencies. Rather, they are due to the failure of teams to utilize readily available resources or information in a timely fashion. These insights began a training revolution in the aviation industry called Cockpit Resource Management, which later became known as Crew Resource Management (CRM) as its concepts and applications extended to teams beyond the flightdeck. Then, as now, communication has been a cornerstone in CRM training since crew coordination and resource management largely resides within information transfer processes--both within flightcrews, and between flightcrews and the ground operations teams that support them. The research I will describe takes its roots in CRM history as we began to study communication processes in order to discover symptoms of crew coordination problems, as well as strategies of effective crew management. On the one hand, communication is often the means or the tool by which team members manage their resources, solve problems, maintain situational awareness and procedural discipline. Conversely, it is the lack of planning and resource management, loss of vigilance and situational awareness, and non-standard communications that are

  20. Reflex Marine celebrates 10. anniversary of FROG crew transfer device

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Reflex Marine developed the initial 3-person FROG crew transfer device in response to the main risks identified from incidents involving traditional rope baskets for personnel transfer: falling, collisions, hard landings, and immersion. To address these issues, the FROG was developed with 4-point harnesses, a protective shell, shock-absorbing landing feet, and self-righting capability. As a result of industry demand for a higher capacity transfer device, the company introduced 6- and 9-man versions of the FROG. The perceptions and reality of marine transfers have changed greatly over the past decade, from the design of the device to vessel specifications and increased focus on crane operations. Marine transfers offer a low-risk alternative to helicopter transfers. The TORO, a low-cost crew transfer capsule launched in February 2009, fits into a standard shipping container, providing significant logistical advantages. The TORO can carry 4 passengers, offer protection from side impacts and hard landings, and is buoyant and self-righting. Most of the units are being used by major oil and gas companies, but offshore wind turbines are an emerging source of demand for the crew transfer system. 3 figs.

  1. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  2. KASTOR – A VEHICLE AND CREW SCHEDULING SYSTEM FOR REGULAR BUS PASSENGER TRANSPORT

    Directory of Open Access Journals (Sweden)

    Stanislav PALÚCH

    2017-04-01

    Full Text Available The challenge in vehicle and crew scheduling is to arrange a given set of bus trips into running boards while minimizing certain objectives and complying with a given set of constraints. This scheduling was solved several tens years ago manually by a dispatcher who used his skill, experience, knowledge of history, and intuition. This attitude worked quite well in small instances but could not be applied in larger ones. Development of computers brought opportunities to build computerized vehicle and crew optimization systems. This paper describes a computer system KASTOR developed for vehicle and crew optimization, which complies with the special requirements of Czech and Slovak bus providers, and is significantly different from those in some west European countries.

  3. Mission impossible or border security – Practical and effective infection control on air ambulances

    Directory of Open Access Journals (Sweden)

    M. Kuhn*

    2013-12-01

    These principles have been applied to our air ambulance system based from Lanseria International Airport. By combining preventative and control measures, there has been no breach in our infection control strategies, as evidenced by no growth noted on specific and random swabs even when more and more ”super bugs” are being identified in hospital. As an air ambulance service flying patients from various African countries, we have the responsibility to conduct our own ”Border Security” to keep our hospitals, patients, aircraft and crews clean and safe. In this presentation we will share our ”Border Security” principles and experiences with the audience.

  4. Cancer incidence among Nordic airline cabin crew.

    Science.gov (United States)

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones. Copyright © 2012 UICC.

  5. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Bergau, L.

    1995-01-01

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG) [de

  6. Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control

    Directory of Open Access Journals (Sweden)

    Andersone Silva

    2017-08-01

    Full Text Available The Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control evaluates the factors affecting the operational decision-making of a human air traffic controller, interacting in a dynamic environment with the flight crew, surrounding aircraft traffic and environmental conditions of the airspace. This article reviews the challenges of air traffic control in different conditions, ranging from normal and complex to emergency and catastrophic. Workload factors and operating conditions make an impact on air traffic controllers’ decision-making. The proposed model compares various operating conditions within an assumed air traffic control environment subsequently comparing them against a theoretically “perfect” air traffic control system. A mathematical model of flight safety assessment has been proposed for the quantitative assessment of various hazards arising during the process of Air Traffic Control. The model assumes events of various severity and probability ranging from high frequency and low severity up to less likely and catastrophic ones. Certain limitations of the model have been recognised and further improvements for effective hazard evaluation have been suggested.

  7. Decision support system for outage management and automated crew dispatch

    Science.gov (United States)

    Kang, Ning; Mousavi, Mirrasoul

    2018-01-23

    A decision support system is provided for utility operations to assist with crew dispatch and restoration activities following the occurrence of a disturbance in a multiphase power distribution network, by providing a real-time visualization of possible location(s). The system covers faults that occur on fuse-protected laterals. The system uses real-time data from intelligent electronics devices coupled with other data sources such as static feeder maps to provide a complete picture of the disturbance event, guiding the utility crew to the most probable location(s). This information is provided in real-time, reducing restoration time and avoiding more costly and laborious fault location finding practices.

  8. Flammability on textile of flight crew professional clothing

    Science.gov (United States)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  9. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    Science.gov (United States)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  10. High Level Rule Modeling Language for Airline Crew Pairing

    Science.gov (United States)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  11. An epidemiological study of rates of illness in passengers and crew at a busy Caribbean cruise port.

    Science.gov (United States)

    Marshall, Cathy Ann; Morris, Euclid; Unwin, Nigel

    2016-04-12

    The Caribbean has one of the largest cruise ship industries in the world, with close to 20 million visitors per year. The potential for communicable disease outbreaks on vessels and the transmission by ship between countries is high. Barbados has one of the busiest ports in the Caribbean. Our aim was to describe and analyse the epidemiology of illnesses experienced by passengers and crew arriving at the Bridgetown Port, Barbados between 2009 and 2013. Data on the illnesses recorded were extracted from the passenger and crew arrival registers and passenger and crew illness logs for all ships and maritime vessels arriving at Barbados' Ports and passing through its territorial waters between January 2009 and December 2013. Data were entered into an Epi Info database and most of the analysis undertaken using Epi Info Version 7. Rates per 100,000 visits were calculated, and confidence intervals on these were derived using the software Openepi. There were 1031 cases of illness from over 3 million passenger visits and 1 million crew visits during this period. The overall event rate for communicable illnesses was 15.7 (95 % CI 14.4-17.1) per 100,000 passengers, and for crew was 24.0 (21.6-26.6) per 100, 000 crew. Gastroenteritis was the predominant illness experienced by passengers and crew followed by influenza. The event rate for gastroenteritis among passengers was 13.7 (12.5-15.0) per 100,000 and 14.4 (12.6, 16.5) for crew. The event rate for non-communicable illnesses was 3.4 per 100,000 passengers with myocardial infarction being the main diagnosis. The event rate for non-communicable illnesses among crew was 2.1 per 100,000, the leading cause being injuries. The predominant illnesses reported were gastroenteritis and influenza similar to previous published reports from around the world. This study is the first of its type in the Caribbean and the data provide a baseline for future surveillance and for comparison with other countries and regions.

  12. Wet effluent diffusion technique and determination of C1-C5 alcohols in air

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Pařízek, Petr; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 121-127 ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant - others:COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : wet effluent difussion denuder * determination * air Subject RIV: CB - Analytical Chemistry, Separation

  13. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    Science.gov (United States)

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  14. STS-110/Atlantic/ISS 8A Pre-Launch On Orbit-Landing-Crew Egress

    Science.gov (United States)

    2002-01-01

    The crew of STS-110, which consists of Commander Michael Bloomfield, Pilot Stephen Frick, and Mission Specialists Rex Walheim, Ellen Ochoa, Lee Morin, Jerry Ross, and Steven Smith is introduced at the customary pre-flight meal. The narrator provides background information on the astronauts during suit-up. Each crew member is shown in the White Room before boarding Space Shuttle Atlantis, and some display signs to loved ones. Launch footage includes the following replays: Beach Tracker, VAB, Pad B, Tower 1, DLTR-3, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, SLF Convoy, OTV-154, OTV-163, OTV-170 (mislabeled), and OTV-171 (mislabeled). After the launch, NASA administrator Sean O'Keefe gives a speech to the Launch Control Center, with political dignitaries present. While on-orbit, Atlantis docks with the International Space Station (ISS), and Canadarm 2 on the ISS lifts the S0 Truss out of the orbiter's payload bay. The video includes highlights of three extravehicular activities (EVAs). In the first, the S0 Truss is fastened to the Destiny Laboratory Module on the ISS. During the third EVA, Walheim and Smith assist in the checkout of the handcart on the S0 Truss. The Atlantis crew is shown gathered together with the Expedition 4 crew of the ISS, and again by itself after undocking. Replays of the landing include: VAB, Tower 1, Mid-field, Runway South End, Runway North End, Tower 2, Playalinda DOAMS, Cocoa Beach DOAMS, and Pilot Point of View (PPOV). After landing, Commander Bloomfield lets each of his crew members give a short speech.

  15. Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2005-01-01

    In cities located in a subtropical climate, air-cooled chillers are commonly used to provide cooling to the indoor environment. This accounts for the increasing electricity demand of buildings over the decades. This paper investigates how the condensing temperature serves to accurately determine the energy efficiency, or coefficient of performance (COP), of air-cooled chillers under part load conditions. An experiment on an air-cooled reciprocating chiller showed that for any given operating condition, the COP of the chiller varies, depending on how the condensing temperature is controlled. A sensitivity analysis is implemented to investigate to what extent COP is responding to changes in operating variables and confirms that the condensing temperature is an adequate variable to gauge COP under various operating conditions. The specifications of the upper limit for the condensing temperature in order to improve the energy efficiency of air-cooled chillers are discussed. The results of this work will give designers and researchers a good idea about how to model chiller energy performance curves in the thermal and energy computation exercises

  16. Is Equality always desirable? : Analyzing the Trade-Off between Fairness and Attractiveness in Crew Rostering

    NARCIS (Netherlands)

    T. Breugem (Thomas); T.A.B. Dollevoet (Twan); D. Huisman (Dennis)

    2017-01-01

    textabstractIn this paper, we analyze the trade-off between perceived fairness and perceived attractiveness in crew rostering. First, we introduce the Fairness-oriented Crew Rostering Problem. In this problem, attractive cyclic rosters have to be constructed, while respecting a pre-specified

  17. The risk of melanoma in airline pilots and cabin crew: a meta-analysis.

    Science.gov (United States)

    Sanlorenzo, Martina; Wehner, Mackenzie R; Linos, Eleni; Kornak, John; Kainz, Wolfgang; Posch, Christian; Vujic, Igor; Johnston, Katia; Gho, Deborah; Monico, Gabriela; McGrath, James T; Osella-Abate, Simona; Quaglino, Pietro; Cleaver, James E; Ortiz-Urda, Susana

    2015-01-01

    Airline pilots and cabin crew are occupationally exposed to higher levels of cosmic and UV radiation than the general population, but their risk of developing melanoma is not yet established. To assess the risk of melanoma in pilots and airline crew. PubMed (1966 to October 30, 2013), Web of Science (1898 to January 27, 2014), and Scopus (1823 to January 27, 2014). All studies were included that reported a standardized incidence ratio (SIR), standardized mortality ratio (SMR), or data on expected and observed cases of melanoma or death caused by melanoma that could be used to calculate an SIR or SMR in any flight-based occupation. Primary random-effect meta-analyses were used to summarize SIR and SMR for melanoma in any flight-based occupation. Heterogeneity was assessed using the χ2 test and I2 statistic. To assess the potential bias of small studies, we used funnel plots, the Begg rank correlation test, and the Egger weighted linear regression test. Summary SIR and SMR of melanoma in pilots and cabin crew. Of the 3527 citations retrieved, 19 studies were included, with more than 266 431 participants. The overall summary SIR of participants in any flight-based occupation was 2.21 (95% CI, 1.76-2.77; P < .001; 14 records). The summary SIR for pilots was 2.22 (95% CI, 1.67-2.93; P = .001; 12 records). The summary SIR for cabin crew was 2.09 (95% CI, 1.67-2.62; P = .45; 2 records). The overall summary SMR of participants in any flight-based occupation was 1.42 (95% CI, 0.89-2.26; P = .002; 6 records). The summary SMR for pilots was 1.83 (95% CI, 1.27-2.63, P = .33; 4 records). The summary SMR for cabin crew was 0.90 (95% CI, 0.80-1.01; P = .97; 2 records). Pilots and cabin crew have approximately twice the incidence of melanoma compared with the general population. Further research on mechanisms and optimal occupational protection is needed.

  18. U.S. Coast Guard Guide for the Management of Crew Endurance Risk Factors - Version 1.0

    National Research Council Canada - National Science Library

    Comperatore, Carlos

    2001-01-01

    .... This Guide will show you how to identify and manage crew endurance risk factors. The step-by-step process will guide you in selecting and implementing the controls necessary to improve crew endurance...

  19. Aviation and Health: A Key Nexus for the US Air Force’s Regional Security-Building Efforts

    Science.gov (United States)

    2015-06-01

    improved governance, commercial utility and economic growth, increased currency and training for air- crews in multiuse aircraft (for internal defense...jp5_0.pdf. 16. Mexican Commission on Macroeconomics and Health, Investing in Health for Economic Develop- ment (Puebla, Mexico: Mexican Commission...on Macroeconomics and Health, 2004); and Research Analyst, “The Role of Health in Economic Development,” Development Strategy, Advisory, and

  20. Crew portrait during 51-B mission

    Science.gov (United States)

    1985-01-01

    Crew portrait during 51-B mission. Note the gold T-shirts of 'gold' team members Robert F. Overmyer (bottom left), Don L. Lind (behind Overmyer), William E. Thornton (bottom right) and Taylor G. Wang (behind Thornton). Posing 'upside down' are 'silver team members (l.-r.) Frederick D. Gregory, Norman E. Thagard and Lodewijk van den Berg. The seven are in the long science module for Spacelab 3 in the cargo bay of the Shuttle Challenger.

  1. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    Science.gov (United States)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-12-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving towards the Earth's surface at the speed of light. The electric fields that exists in thunderclouds induces electric currents in the plasma cloud that emit radio waves. The radio footprint for intensity, linear and circular polarization thus contains the finger print of the atmospheric electric fields along the path of the air shower.Here we report on the analysis of many cosmic-ray radio footprints as have been measured at LOFAR, a dense array of simple radio antennas (several thousands of dual-polarized antennas) primarily developed for radio-astronomy observations. We show that this method can be used to determine the charge structure in thunderclouds and discuss the accuracy of the method. We have observed seasonal dependencies.

  2. Influence of storm electromagnetic field on the aircraft crew

    Directory of Open Access Journals (Sweden)

    Э. Г. Азнакаев

    2000-12-01

    Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control

  3. X-2 on ramp with B-50 mothership and support crew

    Science.gov (United States)

    1956-01-01

    Air Force test pilot Capt. Iven Kincheloe stands in front of the Bell X-2 (46-674) on the ramp at Edwards Air Force Base, California. Behind the X-2 are ground support personnel, the B-50 launch aircraft and crew, chase planes, and support vehicles. Kincheloe had flown nearly 100 combat missions in Korea in an F-86 and was credited with shooting down 10 enemy aircraft. He then graduated from the Empire Test Pilot's School in Great Britain in December 1954, whereupon he was assigned to Edwards Air Force Base. He made four powered flights in the X-2. On September 7, 1956, he reached an altitude of 126,200 feet. After the death of Capt. Mel Apt and the loss of the X-2 #1 on September 27, 1956, in the first Mach 3 flight, Kincheloe was assigned as the Air Force project pilot for the X-15. Before he had a chance to fly that rocket-powered aircraft, Kincheloe himself lost his life on July 26, 1958, in an F-104 accident. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights

  4. 78 FR 12243 - Interim Final Determination To Stay and Defer Sanctions, Placer County Air Pollution Control...

    Science.gov (United States)

    2013-02-22

    ...EPA is making an interim final determination to stay the imposition of offset sanctions and to defer the imposition of highway sanctions based on a proposed approval of a revision to the Placer County Air Pollution Control District (PCAPCD) and Feather River Air Quality Management District (FRAQMD) portion of the California State Implementation Plan (SIP) published elsewhere in this Federal Register. The SIP revision concerns two permitting rules submitted by the PCAPCD and FRAQMD, respectively: Rule 502, New Source Review, and Rule 10.1, New Source Review.

  5. Promoting Crew Autonomy: Current Advances and Novel Techniques

    Science.gov (United States)

    Harris, Samantha

    2017-01-01

    Since the dawn of the era of human space flight, mission control centers around the world have played an integral role in guiding space travelers toward mission success. In the International Space Station (ISS) program, astronauts and cosmonauts have the benefit of near constant access to the expertise and resources within mission control, as well as lifeboat capability to quickly return to Earth if something were to go wrong. As we move into an era of longer duration missions to more remote locations, rapid and ready access to mission control on earth will no longer be feasible. To prepare for such missions, long duration crews must be prepared to operate more autonomously, and the mission control paradigm that has been successfully employed for decades must be re-examined. The team at NASA's Payload Operations and Integration Center (POIC) in Huntsville, Alabama is playing an integral role in the development of concepts for a more autonomous long duration crew of the future via research on the ISS.

  6. More explicit communication after classroom-based crew resource management training: results of a pragmatic trial.

    NARCIS (Netherlands)

    Verbeek-van Noord, I.; Bruijne, M.C. de; Twisk, J.W.R.; Dyck, C. van; Wagner, C.

    2015-01-01

    Rationale, aims and objectives: Aviation-based crew resource management trainings to optimize non-technical skills among professionals are often suggested for health care as a way to increase patient safety. Our aim was to evaluate the effect of a 2-day classroom-based crew resource management (CRM)

  7. More explicit communication after classroom-based crew resource management training: results of a pragmatic trial

    NARCIS (Netherlands)

    van Noord, I.; de Bruijne, M.C.; Twisk, J.W.R.; van Dyck, C.; Wagner, C.

    2015-01-01

    Rationale, aims and objectives Aviation-based crew resource management trainings to optimize non-technical skills among professionals are often suggested for health care as a way to increase patient safety. Our aim was to evaluate the effect of a 2-day classroom-based crew resource management (CRM)

  8. Investigation of air transportation technology at Princeton University, 1984

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  9. Investigation of air transportation technology at Princeton University, 1985

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  10. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    Science.gov (United States)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  11. Determination of decamethylcyclopentasiloxane in air using commercial solid phase extraction cartridges.

    Science.gov (United States)

    Kierkegaard, Amelie; McLachlan, Michael S

    2010-05-21

    Decamethylcyclopentasiloxane (D(5)), a high production volume chemical used in personal care products, has been designated for regulation in Canada and is under review in the EU because of concerns about its persistence and potential for bioaccumulation in the environment. D(5) is a volatile compound expected to be found primarily in air, but there is little information on atmospheric concentrations due to the lack of sensitive analytical methods. Here a simple and sensitive method to determine D(5) in ambient air is presented. The challenge in the environmental analysis of D(5) is avoiding contamination. Our method is based on the high trapping efficiency of the sorbent Isolute ENV+, combined with a comparably high sampling rate. A small amount of sorbent (10 mg) is eluted in a small volume of n-hexane (0.1-0.6 mL), which is injected onto a GC/MS system without further processing. The simplicity of the method enables the use of a field blank for every sample to trace contamination. The method provides low limits of quantification (approximately 0.3 ng/m(3)), good repeatability and limited breakthrough (approximately 1%). By lowering the limit of quantification compared to published work by almost two orders of magnitude, it became possible to quantify D(5) in ambient air at locations remote from strong point sources. The concentrations at a rural Swedish site ranged from 0.7 to 8 ng/m(3) over a period of 4 months. 2010 Elsevier B.V. All rights reserved.

  12. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  13. ALMERA Proficiency Test: Determination of Gamma Emitting Radionuclides in Simulated Air Filters

    International Nuclear Information System (INIS)

    2010-01-01

    The activity concentration of radionuclides in air is a critical factor in assessing the air quality and the potential impact of possible pollutants. Air is in fact one of the main pathways for human exposure to radioactivity. Radioactivity may be present in the atmosphere due to natural processes; intentional (low level) anthropogenic release; or as a consequence of nuclear or radiological incident. The resulting environmental impact should be considered carefully to ensure safety and compliance with environmental regulations. A reliable determination of radionuclides in air is necessary for regular monitoring of air quality to comply with radiation protection and environmental regulations. This proficiency test (PT) is one of the series of the ALMERA network proficiency tests organised on regular basis by the Terrestrial Environment Laboratory in Seibersdorf, designed to assess the technical capacity of ALMERA Members in analysing radionuclides to identify any analytical problems and to support ALMERA laboratories to maintain their preparedness to provide rapid and reliable analytical results. The range of simulated air filters used in this PT for analysis has been mainly at environmental level. The PT set consisted of four filters. The participating laboratories were requested to analyze Mn-54, Co-57, Fe-59, Co-60, Zn-65, Cd-109, Ba-133, Cs-134, Cs-137, Eu-152 and Am-241 in filters 01, 02 and 03. The participants were informed that only some of the listed radionuclides were present in the filters and the levels of the radionuclides were such that they could be measured within a 6-hour measurement period using a conventional HPGe gammaspectrometer of 35% relative efficiency. Filter 04, was containing only Co-60 and Ba-133 with known activities to the participants, had to be used as a control for the efficiency calibration. The tasks of IAEA were to prepare and distribute the simulated air filters to the participating laboratories, to collect and interpret

  14. Indirect determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame

    International Nuclear Information System (INIS)

    Alder, J.F.; Das, B.C.

    1977-01-01

    An indirect method has been developed for the determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame. Use is made of the reduction of copper(II) by uranium(IV) followed by complex formation of the copper(I) ions so produced with neocuproine (2,9-dimethyl-1,10-phenanthroline) and finally the determination of copper in this complex by atomic-absorption spectrophotometry. The results show that the method can be recommended, provided that care is taken to ensure the complete reduction of uranium(VI) to uranium(IV). The sensitivity of the method is 4.9 μg of uranium and the upper limit 500 μg without dilution. (author)

  15. Report on intercomparison air-3/1 of the determination of trace elements in simulated air filters

    International Nuclear Information System (INIS)

    Pszonicki, L.; Veglia, A.; Suschny, O.

    1982-06-01

    The report is a sum up of an intercomparison experiment organized by the Analytical Quality Control Service of the IAEA, for simulated air filters (Air-3/1) spiked with 17 trace elements. The purpose was twofold: to assist participating laboratories in controlling their own performance, and to characterize exactly the prepared batch of air filters in order to be able to use them as reference filters for elemental trace analysis. The results submitted by 29 laboratories from 20 countries are presented and statistically processed. The analytical methods used are also specified. Conclusions concerning the use of filters Air-3/1 as certified reference filters are presented

  16. Determination of the air attenuation correction factor for a free air ionization chamber

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E.

    2016-01-01

    The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)

  17. The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.

  18. A method for the determination of volatile ammonia in air, using a nitrogen-cooled trap and fluorometric detection

    NARCIS (Netherlands)

    Westra, H.G.; Tigchelaar, R.G.; Berden, J.A.

    2001-01-01

    A quick, cheap, and accurate method for the determination of ammonia in air is described. Ammonia and water vapor are trapped simultaneously in a gas sampling tube cooled in liquid nitrogen. Subsequently ammonia is derivatized with o-phthaldialdehyde and determined using fluorescence detection. The

  19. SU-F-T-64: An Alternative Approach to Determining the Reference Air-Kerma Rate from Extrapolation Chamber Measurements

    International Nuclear Information System (INIS)

    Schneider, T

    2016-01-01

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of "1"2"5I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x_0. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit to the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x_1, x_2) is applied to the difference of charges measured at the two plate separations x_1 and x_2. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x_1 and x_2, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.

  20. An epidemiological study of rates of illness in passengers and crew at a busy Caribbean cruise port

    Directory of Open Access Journals (Sweden)

    Cathy Ann Marshall

    2016-04-01

    Full Text Available Abstract Background The Caribbean has one of the largest cruise ship industries in the world, with close to 20 million visitors per year. The potential for communicable disease outbreaks on vessels and the transmission by ship between countries is high. Barbados has one of the busiest ports in the Caribbean. Our aim was to describe and analyse the epidemiology of illnesses experienced by passengers and crew arriving at the Bridgetown Port, Barbados between 2009 and 2013. Methods Data on the illnesses recorded were extracted from the passenger and crew arrival registers and passenger and crew illness logs for all ships and maritime vessels arriving at Barbados’ Ports and passing through its territorial waters between January 2009 and December 2013. Data were entered into an Epi Info database and most of the analysis undertaken using Epi Info Version 7. Rates per 100,000 visits were calculated, and confidence intervals on these were derived using the software Openepi. Results There were 1031 cases of illness from over 3 million passenger visits and 1 million crew visits during this period. The overall event rate for communicable illnesses was 15.7 (95 % CI 14.4–17.1 per 100,000 passengers, and for crew was 24.0 (21.6–26.6 per 100, 000 crew. Gastroenteritis was the predominant illness experienced by passengers and crew followed by influenza. The event rate for gastroenteritis among passengers was 13.7 (12.5–15.0 per 100,000 and 14.4 (12.6, 16.5 for crew. The event rate for non-communicable illnesses was 3.4 per 100,000 passengers with myocardial infarction being the main diagnosis. The event rate for non-communicable illnesses among crew was 2.1 per 100,000, the leading cause being injuries. Conclusions The predominant illnesses reported were gastroenteritis and influenza similar to previous published reports from around the world. This study is the first of its type in the Caribbean and the data provide a baseline for future surveillance

  1. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles

    International Nuclear Information System (INIS)

    Sato, T.; Kataoka, R.; Yasuda, H.; Yashiro, S.; Kuwabara, T.; Shiota, D.; Kubo, Y.

    2014-01-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect air crews from additional SEP exposure. When galactic cosmic rays (GCRs) or solar energetic particles (SEPs) are incident on the atmosphere, they can induce air showers by producing various secondary particles. These secondary particles can reach conventional flight altitudes (∼12 km); hence, air crews are exposed to enhanced levels of radiation. The most important difference between GCR and SEP exposure arises from their temporal variations and dose rates; GCRs induce continuous exposure with low dose rates, usually up to several μSv h -1 , whereas SEPs produce pulsed exposure with high dose rates, occasionally >1 mSv h -1 , though such severe events rarely occur. Thus, subsequent evaluation is sufficient for estimating the aircrew dose due to GCR exposure, whereas forecasting is desirable for SEP exposure. Several calculation codes, e.g. CARI-6(3), EPCARD(4), JISCARD-EX(5), and PCAIRE(6), have been developed for post-exposure evaluation of GCR doses. On the other hand, empirical and phenomenological models have been developed for real-time or

  2. Air quality and disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Climate change is an important determinant of air quality. Climate change is an important determinant of air quality. Poor air quality associated with higher levels of respiratory and cardiovascular disease. Exposure to high levels of ground-level ozone associated with ...

  3. Crew Interviews: Treschev

    Science.gov (United States)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  4. Determination of data correction coefficients and the sensitivities of the KIER air-borne gamma-ray spectrometer survey system

    International Nuclear Information System (INIS)

    Koo, J.H.; Cho, D.H.; Park, Y.S.

    1982-01-01

    In air-borne gamma-ray spectrometer survey, the observed data must be corrected for the background, Compton scattering and flight altitude. And the corrected data are usually converted into the radiometric elements equivalents of the ground, using the sensitivities of the survey system. Accordingly, the correction coefficients and the sensitivities are determined as follows for the KIER air-borne survey system. The stripping or Compton scattering coefficients α, β and γ at the ground level were first determined on the basis of the gamma-ray count rates due to the 5 concrete calibration pads of the Soosaek Airbase, together with the radiometric elements concentrations of the core samples taken from the pads. As for the determination of the exponential altitude coefficients anti μ(K), anti μ(U), anti μ(Th) and anti μ(Tc), the count rates observed over the Hongseong Test Strip of about 3 km length were used after they had been corrected for the background and Compton scattering. The background count rates mainly caused by the air-craft as well as cosmic radiations were determined with the data taken over the West Sea near Anmyon Island, Chung-cheongnam-do. And the corrected count rates observed over the Strip, combined with the average radiometric elements concentrations of the Strip, yielded the sensitivities k(K), k(U) and k(Th) at the 400 feet flight altitude. (author)

  5. The European space suit, a design for productivity and crew safety

    Science.gov (United States)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  6. STS-95 crew members Duque and Mukai check out slidewire basket

    Science.gov (United States)

    1998-01-01

    At Launch Pad 39-B, STS-95 Mission Specialist Pedro Duque of Spain (left) and Payload Specialist Chiaki Mukai look over the gate for the slidewire basket, part of the emergency egress system on the pad. Mukai represents the National Space Development Agency of Japan (NASDA), and Duque the European Space Agency (ESA). The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other STS-95 crew members are Mission Specialist Stephen K. Robinson, Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Payload Specialists John H. Glenn Jr., senator from Ohio, and Mission Specialist Scott E. Parazynski. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  7. STS-89 crew arrives at KSC's SLF and speaks to the press

    Science.gov (United States)

    1998-01-01

    The STS-89 crew speak with the press after arriving at Kennedy Space Center's Shuttle Landing Facility in preparation for launch later this week. From left to right the crew include Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists Bonnie Dunbar, Ph.D.; Salizhan Sharipov with the Russian Space Agency; Michael Anderson; James Reilly, Ph.D.; and Andrew Thomas, Ph.D. (at microphone). Dr. Thomas will succeed David Wolf, M.D., on the Russian Space Station Mir. Launch is scheduled for January 22 at 9:48 p.m. EST.

  8. Determination of metals in air samples using X-Ray fluorescence associated the APDC preconcentration technique

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, Raysa C.; Santos, Ramon S.; Sanches, Francis A.C.R.A.; Gama Filho, Hamilton S.; Oliveira, Davi F.; Anjos, Marcelino J., E-mail: rc.nardes@gmail.com, E-mail: ramonziosp@yahoo.com.br, E-mail: francissanches@gmail.com, E-mail: hamiltongamafilho@hotmail.com, E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica. Departamento de Fisica Aplicada e Termodinamica

    2015-07-01

    Air pollution has become one of the leading quality degradation factors of life for people in large urban centers. Studies indicate that the suspended particulate matter in the atmosphere is directly associated with risks to public health, in addition, it can cause damage to fauna, flora and public / cultural patrimonies. The inhalable particulate materials can cause the emergence and / or worsening of chronic diseases related to respiratory system and other diseases, such as reduced physical strength. In this study, we propose a new method to measure the concentration of total suspended particulate matter (TSP) in the air using an impinger as an air cleaning apparatus, preconcentration with APDC and Total Reflection X-ray Fluorescence technique (TXRF) to analyze the heavy metals present in the air. The samples were collected from five random points in the city of Rio de Janeiro/Brazil. Analyses of TXRF were performed at the Brazilian Synchrotron Light Laboratory (LNLS). The technique proved viable because it was able to detect five important metallic elements to environmental studies: Cr, Fe, Ni, Cu and Zn. This technique presented substantial efficiency in determining the elementary concentration of air pollutants, in addition to low cost. It can be concluded that the metals analysis technique in air samples using an impinger as sample collection instrument associated with a complexing agent (APDC) was viable because it is a low-cost technique, moreover, it was possible the detection of five important metal elements in environmental studies associated with industrial emissions and urban traffic. (author)

  9. Determination of metals in air samples using X-Ray fluorescence associated the APDC preconcentration technique

    International Nuclear Information System (INIS)

    Nardes, Raysa C.; Santos, Ramon S.; Sanches, Francis A.C.R.A.; Gama Filho, Hamilton S.; Oliveira, Davi F.; Anjos, Marcelino J.

    2015-01-01

    Air pollution has become one of the leading quality degradation factors of life for people in large urban centers. Studies indicate that the suspended particulate matter in the atmosphere is directly associated with risks to public health, in addition, it can cause damage to fauna, flora and public / cultural patrimonies. The inhalable particulate materials can cause the emergence and / or worsening of chronic diseases related to respiratory system and other diseases, such as reduced physical strength. In this study, we propose a new method to measure the concentration of total suspended particulate matter (TSP) in the air using an impinger as an air cleaning apparatus, preconcentration with APDC and Total Reflection X-ray Fluorescence technique (TXRF) to analyze the heavy metals present in the air. The samples were collected from five random points in the city of Rio de Janeiro/Brazil. Analyses of TXRF were performed at the Brazilian Synchrotron Light Laboratory (LNLS). The technique proved viable because it was able to detect five important metallic elements to environmental studies: Cr, Fe, Ni, Cu and Zn. This technique presented substantial efficiency in determining the elementary concentration of air pollutants, in addition to low cost. It can be concluded that the metals analysis technique in air samples using an impinger as sample collection instrument associated with a complexing agent (APDC) was viable because it is a low-cost technique, moreover, it was possible the detection of five important metal elements in environmental studies associated with industrial emissions and urban traffic. (author)

  10. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  11. Aircrew radiation exposure assessment for Yugoslav airlines

    Energy Technology Data Exchange (ETDEWEB)

    Antic, Dragoljub [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Petrovic, Zika [Yugoslav Airlines, JAT, Bulevar umetnosti 16, 11001 Belgrade (Yugoslavia)

    1997-12-31

    The presented study shows that the crews of the intercontinental flights can receive significant annual effective doses (1.5-2.0 mSv). The exposure of the crews is comparable with natural radiation level on the ground level (it can be up to 5 times higher for some air crew members in the intercontinental flights), but smaller than maximum permissible dose for general population. The annual exposures of the passengers are generally smaller than the exposures of tile air crews. because the passengers have a limited number of flights per year compared with the members of the air-crews. (author).

  12. Socio-economic Survey of Commercial Fishing Crew in the Northeast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northeast Fisheries Science Center's Social Sciences Branch (SSB) completed a survey of crew, including hired captains, participating in commercial fisheries in...

  13. Personal traits and a sense of job-related stress in a military aviation crew

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milanko

    2011-01-01

    Full Text Available Background/Aim. Accelerated technological and organizational changes in numerous professions lead to increase in jobrelated stress. Since these changes are particularly common in military aviation, this study examined the way military aviation crew experiences job-related stress during a regular aviation drill, depending on particular social-demographic factors and personal traits. Methods. The modified Cooper questionnaire was used to examine the stress related factors at work. The questionnaire was adapted for the aviation crew in the army environment. Personal characteristics were examined using the NEO-PI-R personality inventory. The study included 50 examinees (37 pilots and 13 other crew members employed in the Serbian Army. The studies were performed during routine physical examinations at the Institute for Aviation Medicine during the year 2007. Statistical analysis of the study results contained descriptive analysis, one-way analysis of variance and correlation analysis. Results. It was shown that army aviation crew works under high stress. The highest stress value had the intrinsic factor (AS = 40.94 and role in organisation (AS = 39.92, while the lowest one had the interpersonal relationship factor (AS = 29.98. The results also showed that some social-demographic variables (such as younger examinees, shorter working experience and neuroticism as a personality trait, were in correlation with job-related stress. Conclusion. Stress evaluation and certain personality characteristics examination can be used for the devalopment of the basic anti-stress programs and measures in order to achieve better psychological selection, adaptation career leadership and organization of military pilots and other crew members.

  14. [Personal traits and a sense of job-related stress in a military aviation crew].

    Science.gov (United States)

    Cabarkapa, Milanko; Korica, Vesna; Rodjenkov, Sanja

    2011-02-01

    Accelerated technological and organizational changes in numerous professions lead to increase in job-related stress. Since these changes are particularly common in military aviation, this study examined the way military aviation crew experiences job-related stress during a regular aviation drill, depending on particular social-demographic factors and personal traits. The modified Cooper questionnaire was used to examine the stress related factors at work. The questionnaire was adapted for the aviation crew in the army environment. Personal characteristics were examined using the NEO-PI-R personality inventory. The study included 50 examinees (37 pilots and 13 other crew members) employed in the Serbian Army. The studies were performed during routine physical examinations at the Institute for Aviation Medicine during the year 2007. Statistical analysis of the study results contained descriptive analysis, one-way analysis of variance and correlation analysis. It was shown that army aviation crew works under high stress. The highest stress value had the intrinsic factor (AS = 40.94) and role in organisation (AS = 39.92), while the lowest one had the interpersonal relationship factor (AS = 29.98). The results also showed that some social-demographic variables (such as younger examinees, shorter working experience) and neuroticism as a personality trait, were in correlation with job-related stress. Stress evaluation and certain personality characteristics examination can be used for the development of the basic anti-stress programs and measures in order to achieve better psychological selection, adaptation career leadership and organization of military pilots and other crew members.

  15. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    International Nuclear Information System (INIS)

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-01-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m 3 (sampling period 1 wk) or of about 250,000 m 3 (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 μBq m -3 and 0.2 μBq m -3 for 137 Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m 3 per week and lowers the detection limit to -3 for 137 Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine)

  16. Crew Fatigue and Performance on U.S. Coast Guard Cutters

    National Research Council Canada - National Science Library

    1998-01-01

    .... Descriptive measures were obtained on five cutters of three types under normal operations. Evidence of mild fatigue, specifically daytime sleepiness and a degradation of vigilance performance, was observed in many crew members...

  17. Elemental Resource Breakdown Approach to Crew-Vehicle Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TSRCo and CU are developing a framework to quantify and predict crew performance in various spacecraft designs in the context of the design process. The framework...

  18. The use of radio-release methods for the determination of air pollutants

    International Nuclear Information System (INIS)

    Klehr, E.H.; Toelgyessy, J.; Pruzinec, J.; Naoum, M.M.

    1978-01-01

    Investigations on the applicability of radio-release methods to the determination of air pollutants are summarized. In any case kryptonated substances were used (SiO 2 for HF, H 2 O vapor, C 6 H 6 and CCl 4 ; SeS 2 for Hg; hydrochinon for O 3 and SO 2 ; and hopcalite, PdCl 2 , S 2 O 5 and HgO for CO). Positive results were obtained for HF, Hg, O 3 , CO (with kryptonated PdCl 2 and HgO), H 2 O vapor and SO 2

  19. Environmental pollution studies. Quantitative determination of elements in the air particulate matter by NAA

    International Nuclear Information System (INIS)

    Sutisna; Hidayat, Achmad; Muhayatun; Supriatna, Dadang

    2006-01-01

    Regarding to the 2002 PNCA Program for the Utilization of INAA in the Environmental Study, the elemental determination of air particulate matter have been done. Two sampling site were chosen to collect a PMs samples, i.e. Lembang and Bandung that represent the rural and the urban region respectively. The period of sampling was January 2002 to November 2002. Air sample was collect by GANT Stacked air sampler using 47 mm diameter cellulose filter which have a pore size of 0.45 μm and 8 μm for fine and coarse particle respectively. Quantitative elemental determination has been done using Instrumental Neutron Activation Analysis based on a comparative method. The elemental distributions on fine and coarse fraction of air particulate matter have been analyzed for both sampling sites as well as the enrichment factor (EF) for all elements interest. The result shows that the average annual concentrations of fine and coarse PMs in the Lembang sampling site were 7.8 μg.m -3 and 1.6 μg.m -3 respectively. Meanwhile at Bandung sampling site, the PMs are higher than that a Lembang sampling site, i.e. 14.4 μg.m -3 and 22.5 μg.m -3 for fine and coarse PMs respectively. The fine fraction was higher than the coarse fraction at Lembang sampling site, but at Bandung sampling site the fine fraction was lower than the coarse fraction. Fifteen elements of Na, Al, V, Mn, Br, I, Cl, Sc, Co, Fe, Cr, Zn, La, Sb and Sm were analyzed for both sampling site. Among those elements concerned, Na, Al, Br, Cl and Fe were major constituent elements in all fractions that have a concentration more than 40 ng.cm -3 . Generally, the concentration of elements determined in the urban sampling site was higher than that in the rural site. Al, V, Mn, Sc, Co and Fe are relatively higher in concentration in coarse fraction of urban site. Br element concentration was not significantly different for both sampling site. The EF values of most elements concerned are generally also higher for the fine fraction

  20. Orion Multi-Purpose Crew Vehicle Solving and Mitigating the Two Main Cluster Pendulum Problem

    Science.gov (United States)

    Ali, Yasmin; Sommer, Bruce; Troung, Tuan; Anderson, Brian; Madsen, Christopher

    2017-01-01

    The Orion Multi-purpose Crew Vehicle (MPCV) Orion spacecraft will return humans from beyond earth's orbit, including Mars and will be required to land 20,000 pounds of mass safely in the ocean. The parachute system nominally lands under 3 main parachutes, but the system is designed to be fault tolerant and land under 2 main parachutes. During several of the parachute development tests, it was observed that a pendulum, or swinging, motion could develop while the Crew Module (CM) was descending under two parachutes. This pendulum effect had not been previously predicted by modeling. Landing impact analysis showed that the landing loads would double in some places across the spacecraft. The CM structural design limits would be exceeded upon landing if this pendulum motion were to occur. The Orion descent and landing team was faced with potentially millions of dollars in structural modifications and a severe mass increase. A multidisciplinary team was formed to determine root cause, model the pendulum motion, study alternate canopy planforms and assess alternate operational vehicle controls & operations providing mitigation options resulting in a reliability level deemed safe for human spaceflight. The problem and solution is a balance of risk to a known solution versus a chance to improve the landing performance for the next human-rated spacecraft.

  1. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment

    Science.gov (United States)

    Coyne, Kevin Anthony

    branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.

  2. Application of virtual reality for crew mental health in extended-duration space missions

    Science.gov (United States)

    Salamon, Nick; Grimm, Jonathan M.; Horack, John M.; Newton, Elizabeth K.

    2018-05-01

    Human exploration of the solar system brings a host of environmental and engineering challenges. Among the most important factors in crew health and human performance is the preservation of mental health. The mental well-being of astronaut crews is a significant issue affecting the success of long-duration space missions, such as habitation on or around the Moon, Mars exploration, and eventual colonization of the solar system. If mental health is not properly addressed, these missions will be at risk. Upkeep of mental health will be especially difficult on long duration missions because many of the support systems available to crews on shorter missions will not be available. In this paper, we examine the use of immersive virtual reality (VR) simulations to maintain healthy mental states in astronaut crews who are removed from the essential comforts typically associated with terrestrial life. Various methods of simulations and their administration are analyzed in the context of current research and knowledge in the fields of psychology, medicine, and space sciences, with a specific focus on the environment faced by astronauts on long-term missions. The results of this investigation show that virtual reality should be considered a plausible measure in preventing mental state deterioration in astronauts, though more work is needed to provide a comprehensive view of the effectiveness and administration of VR methods.

  3. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  4. Automatic mental heath assistant : monitoring and measuring nonverbal behavior of the crew during long-term missions

    NARCIS (Netherlands)

    Voynarovskaya, N.; Gorbunov, R.D.; Barakova, E.I.; Rauterberg, G.W.M.; Barakova, E.I.; Ruyter, B.; Spink, A.

    2010-01-01

    This paper presents a method for monitoring the mental state of small isolated crews during long-term missions (such as space mission, polar expeditions, submarine crews, meteorological stations, and etc.) The research is done as a part of Automatic Mental Health Assistant (AMHA) project which aims

  5. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  6. Real-Time Simulation of Ship Impact for Crew Training

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2003-01-01

    Real-time simulation of marine accidents and representation in a realistic, virtual environment may be an efficient way to train emergency procedures for ship?s crews and thus improve safety at sea. However, although various fast, simplified methods have been presented over the past decades...

  7. Wireless Monitoring of Changes in Crew Relations during Long-Duration Mission Simulation.

    Directory of Open Access Journals (Sweden)

    Bernd Johannes

    Full Text Available Group structure and cohesion along with their changes over time play an important role in the success of missions where crew members spend prolonged periods of time under conditions of isolation and confinement. Therefore, an objective system for unobtrusive monitoring of crew cohesion and possible individual stress reactions is of high interest. For this purpose, an experimental wireless group structure (WLGS monitoring system integrated into a mobile psychophysiological system was developed. In the presented study the WLGS module was evaluated separately in six male subjects (27-38 years old participating in a 520-day simulated mission to Mars. Two days per week, each crew member wore a small sensor that registered the presence and distance of the sensors either worn by the other subjects or strategically placed throughout the isolation facility. The registration between two sensors was on average 91.0% in accordance. A correspondence of 95.7% with the survey video on day 475 confirmed external reliability. An integrated score of the "crew relation time index" was calculated and analyzed over time. Correlation analyses of a sociometric questionnaire (r = .35-.55, p< .05 and an ethological group approach (r = .45-.66, p < 05 provided initial evidence of the method's validity as a measure of cohesion when taking behavioral and activity patterns into account (e.g. only including activity phases in the afternoon. This confirms our assumption that the registered amount of time spent together during free time is associated with the intensity of personal relationships.

  8. Don't rock the boat: how antiphase crew coordination affects rowing.

    Directory of Open Access Journals (Sweden)

    Anouk J de Brouwer

    Full Text Available It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1 on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair's coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

  9. Team training in the skies: does crew resource management (CRM) training work?

    Science.gov (United States)

    Salas, E; Burke, C S; Bowers, C A; Wilson, K A

    2001-01-01

    The aviation community has invested great amounts of money and effort into crew resource management (CRM) training. Using D. L. Kirkpatrick's (1976) framework for evaluating training, we reviewed 58 published accounts of CRM training to determine its effectiveness within aviation. Results indicated that CRM training generally produced positive reactions, enhanced learning, and promoted desired behavioral changes. However, we cannot ascertain whether CRM has an effect on an organization's bottom line (i.e., safety). We discuss the state of the literature with regard to evaluation of CRM training programs and, as a result, call for the need to conduct systematic, multilevel evaluation efforts that will show the true effectiveness of CRM training. As many evaluations do not collect data across levels (as suggested by D. L. Kirkpatrick, 1976, and by G. M. Alliger, S. I. Tannenbaum, W. Bennett, Jr., & H. Traver, 1997), the impact of CRM cannot be truly determined; thus more and better evaluations are needed and should be demanded.

  10. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  11. Real-time power angle determination of salient-pole synchronous machine based on air gap measurements

    Energy Technology Data Exchange (ETDEWEB)

    Despalatovic, Marin; Jadric, Martin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, R. Boskovica bb, 21000 Split (Croatia)

    2008-11-15

    This paper presents a new method for the real-time power angle determination of the salient-pole synchronous machines. This method is based on the terminal voltage and air gap measurements, which are the common features of the hydroturbine generator monitoring system. The raw signal of the air gap sensor is used to detect the rotor displacement with reference to the fundamental component of the terminal voltage. First, the algorithm developed for the real-time power angle determination is tested using the synthetic data obtained by the standard machine model simulation. Thereafter, the experimental investigation is carried out on the 26 MVA utility generator. The validity of the method is verified by comparing with another method, which is based on a tooth gear mounted on the rotor shaft. The proposed real-time algorithm has an adequate accuracy and needs a very short processing time. For applications that do not require real-time processing, such as the estimation of the synchronous machine parameters, the accuracy is additionally increased by applying an off-line data-processing algorithm. (author)

  12. CRM Assessment: Determining the Generalization of Rater Calibration Training. Summary of Research Report: Gold Standards Training

    Science.gov (United States)

    Baker, David P.

    2002-01-01

    The extent to which pilot instructors are trained to assess crew resource management (CRM) skills accurately during Line-Oriented Flight Training (LOFT) and Line Operational Evaluation (LOE) scenarios is critical. Pilot instructors must make accurate performance ratings to ensure that proper feedback is provided to flight crews and appropriate decisions are made regarding certification to fly the line. Furthermore, the Federal Aviation Administration's (FAA) Advanced Qualification Program (AQP) requires that instructors be trained explicitly to evaluate both technical and CRM performance (i.e., rater training) and also requires that proficiency and standardization of instructors be verified periodically. To address the critical need for effective pilot instructor training, the American Institutes for Research (AIR) reviewed the relevant research on rater training and, based on "best practices" from this research, developed a new strategy for training pilot instructors to assess crew performance. In addition, we explored new statistical techniques for assessing the effectiveness of pilot instructor training. The results of our research are briefly summarized below. This summary is followed by abstracts of articles and book chapters published under this grant.

  13. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  14. Crew Configuration, Ingress/Egress Procedures, and In-Flight Caregiving Capacity in a Space Ambulance Based on the Boeing X-37B

    Science.gov (United States)

    Halberg, Ephriam Etan

    This study proposes that a Boeing X-37B space plane, its dimensions and performance characteristics estimated from publicly available documents, diagrams, and photographs, could be internally redesigned as a medical evacuation (ambulance) vehicle for the International Space Station. As of 2017, there is currently no spacecraft designed to accommodate a contingency medical evacuation wherein a crew member aboard the ISS is injured or ailing and must be returned to Earth for immediate medical attention. The X-37B is an unmanned vehicle with a history of success in both sub-orbital testing and all four of its long-duration orbital missions to date. Research conducted at UC Davis suggests that it is possible to retain the outer mold line of the X-37B while expanding the internal payload compartment to a volume sufficient for a crew of three--pilot, crew medical officer, and injured crew member--throughout ISS un-dock and atmospheric entry, descent, and landing. In addition to crew life support systems, this re-purposed X-37B, hereafter referred to as the X-37SA (Space Ambulance), includes medical equipment for stabilization of a patient in-transit. This study suggests an optimal, ergonomic crew configuration and berthing port location, procedures for microgravity ingress and 1G egress, a minimum medical equipment list and location within the crew cabin for the medical care and monitoring equipment. Conceptual crew configuration, ingress/egress procedures, and patient/equipment access are validated via physical simulation in a full-scale mockup of the proposed X-37SA crew cabin.

  15. PROCRU: A model for analyzing crew procedures in approach to landing

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Lancraft, R.; Zacharias, G.

    1980-01-01

    A model for analyzing crew procedures in approach to landing is developed. The model employs the information processing structure used in the optimal control model and in recent models for monitoring and failure detection. Mechanisms are added to this basic structure to model crew decision making in this multi task environment. Decisions are based on probability assessments and potential mission impact (or gain). Sub models for procedural activities are included. The model distinguishes among external visual, instrument visual, and auditory sources of information. The external visual scene perception models incorporate limitations in obtaining information. The auditory information channel contains a buffer to allow for storage in memory until that information can be processed.

  16. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  17. Crew resource management training adapted to nuclear power plant operators for enhancing safety attitude

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Kitamura, Masaharu; Takahashi, Makoto

    2015-01-01

    A conventional training program for nuclear power plant operators mainly focuses on the improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an additional training program aiming at the improvement of team performance. In the aviation domain, crew resource management (CRM) training has demonstrated the effectiveness in resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempt to introduce the CRM concept into operator training in nuclear power plant for the training of conceptual skill (that is, non-technical skill). In this paper an adapted CRM training for nuclear power plant operators is proposed. The proposed training method has been practically utilized in the training course of the managers of nuclear power plants. (author)

  18. 77 FR 44544 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Determination of Clean Data...

    Science.gov (United States)

    2012-07-30

    ... further progress plans, reasonably available control measures, and contingency measures, no longer apply... Promulgation of Air Quality Implementation Plans; Utah; Determination of Clean Data for the 1987 PM 10 Standard... VI. Statutory and Executive Order Reviews Definitions For the purpose of this document, we are giving...

  19. Integrated Measurement of Crew Resource Management and Technical Flying Skills

    Science.gov (United States)

    1993-08-01

    This report presents the findings of a study designed with two objectives: to produce a prototype performance : measurement instrument (PMI) that integrates the assessment of Crew Resource Management (CRM) and technical flying : skills and to investi...

  20. What determines the periportal free air, and ligamentum teres and falciform ligament signs on CT: Can these specific air distributions be valuable predictors of gastroduodenal perforation?

    International Nuclear Information System (INIS)

    Choi, A Lam; Jang, Kyung Mi; Kim, Min-Jeong; Koh, Sung Hye; Lee, Yul; Min, Kwangseon; Choi, Dongil

    2011-01-01

    Purpose: The purpose of this retrospective study was to determine what gives rise to the periportal free air, and ligamentum teres and falciform ligament signs on CT in patients with gastrointestinal (GI) tract perforation, and whether these specific air distributions can play a clinically meaningful role in the diagnosis of gastroduodenal perforation. Material and methods: Ninety-three patients who underwent a diagnostic CT scan before laparotomy for a GI tract perforation were included. The readers assessed the presence of specific air distributions on CT (periportal free air, and ligamentum teres and falciform ligament signs). The readers also assessed the presence of strong predictors of gastroduodenal perforation (focal defects in the stomach and duodenal bulb wall, concentrated extraluminal air bubbles in close proximity to the stomach and duodenal bulb, and wall thickening at the stomach and duodenal bulb). The specific air distributions were assessed according to perforation sites, and the elapsed time and amount of free air, and then compared with the strong predictors of gastroduodenal perforation by using statistical analysis. Results: All specific air distributions were more frequently present in patients with gastroduodenal perforation than lower GI tract perforation, but only the falciform ligament sign was statistically significant (p < 0.05). The presence of all three specific air distributions was demonstrated in only 13 (20.6%) of 63 patients with gastroduodenal perforation. Regardless of the perforation sites, the falciform ligament sign was present significantly more frequently with an increase in the amount of free air on multiple logistic regression analysis (adjusted odds ratio, 1.29; p < 0.001). The sensitivity, specificity, accuracy, and positive predictive and negative predictive values of each strong predictor for the diagnosis of gastroduodenal perforation were higher than those of specific air distributions. The focal wall thickening

  1. Croatian Airports as Potential European Flight Crew Training Centres

    Directory of Open Access Journals (Sweden)

    Tomislav Gradišar

    2012-10-01

    Full Text Available The paper deals with the possibilities of offering Croatianailports as potential flight crew training centres on the Europeanmarket of se!Vices. With her available ai1port capacities,mainly those located on the Adriatic coast, Croatia has significantadvantages compared to other countries of Westem andCentral Europe. The most important condition for establishinga specialised training centre for the European market is the harmonisationof the national aviation regulations i.e. the implementationof global and European standards of flight crewtraining, as well as conditions that have to be met by a specialisedtraining centre from the aspect of the necessary infrastructure.The study has evaluated the potential airports of Rijeka,Pula and Losinj, acc01ding to the basic criteria of their geo-Lraffic location, infrastructure resources (technical elements ofrunway, navigation equipment, abport se1vices, availability ofspecial equipment for flight crew training on the ground and inthe ail; as well as climate conditions.

  2. Determination of gamma emitting radionuclides in environmental air and precipitation samples with a Ge(Li) detector

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.; Sansoni, B.

    1977-01-01

    The concentrations of the radionuclides 7 Be, 54 Mn, 95 Zr, 95 Nb, 103 Ru, 106 Ru, 125 Sb, 137 Cs, 140 Ba/ 140 La, 141 Ce and 144 Ce in ground level air and of 7 Be, 95 Zr, 137 Cs and 144 Ce in precipitation were determined since 1970 and 1971 respectively at Neuherberg, 10 km north of Munich, by gamma spectrometry using a 60 cm 3 Ge(Li) detector. Dust samples were collected twice a month 1 m above ground from about 40,000 m 3 of air on 46 cm x 28 cm microsorbane filters and pressed to small cylinders of 35 cm 3 in size. Sensitivity of the procedure is of the order of 1 fCi/m 3 for air and of 10 pCi/m 2 per month for precipitation samples at a counting time of 1500 min. (author)

  3. The STS-95 crew and their families prepare for their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Pilot Steven W. Lindsey (left), Lindsey's daughter (front), and Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, give a thumbs up on the success of the mission. Members of the STS-95 crew and their families prepared for their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Others returning were Mission Commander Curtis L. Brown Jr.; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  4. Crew resource management: applications in healthcare organizations.

    Science.gov (United States)

    Oriol, Mary David

    2006-09-01

    Healthcare organizations continue their struggle to establish a culture of open communication and collaboration. Lessons are learned from the aviation industry, which long ago acknowledged that most errors were the result of poor communication and coordination rather than individual mistakes. The author presents a review of how some healthcare organizations have successfully adopted aviation's curriculum called Crew Resource Management, which promotes and reinforces the conscious, learned team behaviors of cooperation, coordination, and sharing.

  5. Atmospheric Ionizing Radiation (AIR) Project Review

    Science.gov (United States)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  6. Aircraft crew individual dosimetry of Czech air companies: 1998-2004 overview

    International Nuclear Information System (INIS)

    Spurny, F.; Malusek, A.; Kovar, I.; Orcikova, H.; Ploc, O.

    2006-01-01

    TICRP Publication 60 recommends that where applicable, radiation exposure due to the cosmic component at high altitudes be considered as part of occupational exposure to ionizing radiation. This recommendation was incorporated into Czech legislation in 1997, and studies on how to perform individual dosimetry of Czech companies aircrew started immediately. Individual monitoring is performed by calculation using the CARI transport code. The results obtained since the beginning of the monitoring period have been recalculated now by using the most recent CARI 6 version and are presented in the form of the effective dose. Information on the flight schedules and on the aircrew present during the flights was obtained from the air company. Routine individual dosimetry started in 1998. The main results for the 1998 - 2004 period are as follows: (i) Both the relative effective dose distribution and the average annual effective doses vary from company to company and from year to year. Since 2000, the average effective doses seem to have been increasing constantly. (ii) The collective dose has been increasing constantly up to a value of 3 manSv in 2004. More detailed analysis is presented, including verification of the routine procedure through a series of onboard experimental measurements performed in 2005. (orig.)

  7. Air toxics and the 1990 Clean Air Act: Managing trace element emissions

    International Nuclear Information System (INIS)

    Chow, W.; Levin, L.; Miller, M.J.

    1992-01-01

    The US Environmental Protection Agency (EPA) has historically regulated air toxics (hazardous air pollutants) under Section 112 of the Clean Air Act. To date, EPA has established emission standards for 8 hazardous air pollutants (arsenic, asbestos, benzene, beryllium, mercury, radionuclides, coke oven emissions and vinyl chloride). The US electric utility industry was not determined to be a source category requiring regulation for any of the eight chemicals. Of the eight, radionuclides were the last species for which EPA established hazardous emissions standards. In this instance, EPA determined that the risks associated with electric utility fossil fuel power plant emissions were sufficiently low that they should not be regulated. However, the 1990 Clean Air Act Amendments require a new evaluation of the electric utility industry emissions of hazardous air pollutants. This paper summarizes the key features of the air toxics provisions of the Clean Air Act Amendments, describes EPRI's activities on the subject, and provides some preliminary insights from EPRI's research to date

  8. 46 CFR 2.01-50 - Persons other than crew on towing, oyster, or fishing steam vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Persons other than crew on towing, oyster, or fishing steam vessels. 2.01-50 Section 2.01-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... than crew on towing, oyster, or fishing steam vessels. (a) A steam vessel engaged in towing, oyster...

  9. The environmental effects of radiation on flight crews

    International Nuclear Information System (INIS)

    Connor, C.W.

    1991-01-01

    A review is presented of a continuing investigation of flight deck radiation and its potential effects on flight crews. Attention is given to the various critical factors concerned in UV radiation exposure and detection including skin cancer classifications, skin types, effectiveness of different sun protection factors, and flight deck color configuration and sunglasses. Consideration is given to both UV and ionizing radiation

  10. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    Science.gov (United States)

    Shelhamer, Mark

    2015-01-01

    NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy

  11. Experimental Evaluation of the Hydrodynamic Response of Crew Boat Hulls

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the results of an experimental study on 3 different hulls of crew boats intended for service to offshore wind turbines. Their hydrodynamic behaviour has been tested in various sea states representing general wave conditions that could be expected at offshore wind farms. Two...... main setups were used during the tests, corresponding to the hulls being connected to an offshore windmill and being free floating. The following aspects were the main subjects of investigation: • The Response Amplitude Operators of the hulls in two different configurations and with waves coming from 3...... different directions. • The connection forces between the hulls and the wind turbine pile. • The natural frequency of oscillation. For the study, realistic scale models of the hulls of the crew boats were supplied by the client, Hauschildt Marine. The laboratory tests were performed by Arthur Pecher under...

  12. STS-47 Astronaut Crew at Pad B for TCDT, Emergency Egress Training, and Photo Opportunity

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri are seen during emergency egress training. Then Commander Gibson introduces the members of the crew and they each give a brief statement about the mission and answer questions from the press.

  13. Cytogenetic effects of ionizing radiation in peripheral lymphocytes of ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra; Obe, Günter; Horstmann, Markus

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). The effect of the increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required.The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second sample was drawn within 3 days after return from their flights. From lymphocyte cultures metaphase plates were prepared on glass slides. Metaphases were Giemsa stained or hybridised using multicolour FISH probes. All types of chromosome changes were scored in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to cosmic radiation exposure. Overall significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed in long-term crew members. Our data indicate no elevation of mutation rates due to short-term stays on-board the ISS.

  14. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Newton, G.J.; Hoover, M.D.

    1995-12-01

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF{sub 6}) in sampler placement studies and describes the results of a study done within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF{sub 6} dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room.

  15. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    Science.gov (United States)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  16. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  17. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber; Determinacao da atenuacao do ar e perda eletronica para a camara de ionizacao de ar livre de cilindros concentricos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hebert Pinto Silveira de

    2010-07-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k{sub e}) and air attenuation (k{sub a}). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  18. Air sampling in the workplace

    International Nuclear Information System (INIS)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC's Regulatory Guide 8.25, Revision 1, ''Air sampling in the Workplace.'' That guide addresses air sampling to meet the requirements in NRC's regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed

  19. Pining for home: Studying crew homesickness aboard a cruise liner ...

    African Journals Online (AJOL)

    Research in Hospitality Management ... Crew homesickness should be seen as important by both shipboard and liner company management because it can ultimately impact on customer service experiences, and can be ameliorated by ... Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ...

  20. STS-112 Crew Interviews: Yurchikhin

    Science.gov (United States)

    2002-01-01

    A preflight interview with mission specialist Fyodor Yurchikhin is presented. He worked for a long time in Energia in the Russian Mission Control Center (MCC). Yurchikhin discusses the main goal of the STS-112 flight, which is to install the Integrated Truss Assembly S1 (Starboard Side Thermal Radiator Truss) on the International Space Station. He also talks about the three space walks required to install the S1. After the installation of S1, work with the bolts and cameras are performed. Yurchikhin is involved in working with nitrogen and ammonia jumpers. He expresses the complexity of his work, but says that he and the other crew members are ready for the challenge.

  1. Nonflammable Crew Clothing Utilizing Phosphorus-Based Fire-Retardant Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For maintaining U.S. leadership in space exploration, there is an urgent need to develop nonflammable crew clothing with the requirements of comfort, ease of...

  2. PROPOSED ASTM METHOD FOR THE DETERMINATION OF ASBESTOS IN AIR BY TEM AND INFORMATION ON INTERFERING FIBERS

    Science.gov (United States)

    The draft of the ASTM Test Method for air entitled: "Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)" (ASTM Z7077Z) is an adaptation of the International Standard, ISO 10312. It is currently...

  3. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  4. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  5. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air.

  6. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  7. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin

    International Nuclear Information System (INIS)

    Szántó, P.; Apáthy, I.; Deme, S.; Hirn, A.; Nikolaev, I.V.; Pázmándi, T.; Shurshakov, V.A.; Tolochek, R.V.; Yarmanova, E.N.

    2015-01-01

    As a preparation for long duration space missions it is important to determine and minimize the impact of space radiation on human health. One of the methods to diminish the radiation burden is using an additional local shielding in the places where the crewmembers can stay for longer time. To increase the crew cabin shielding a special protective curtain was designed and delivered to ISS in 2010 containing four layers of hygienic wipes and towels providing an additional shielding thickness of about 8 g/cm"2 water-equivalent matter. The radiation shielding effect of the protective curtain, in terms of absorbed dose, was measured with the thermoluminescent Pille-ISS Detector System. In order to verify the reliability of the Pille system an onboard cross-calibration was also performed. The measurement proved that potentially 25% reduction of the absorbed dose rate in the crew cabin can be achieved, that results in 8% (∼16 μGy/day) decrease of the total absorbed dose to the crew, assuming that they spend 8 h in the crew cabin a day. - Highlights: • The dose level in the ISS Zvezda crew quarters is higher than the average dose level in the module. • A shielding made of hygienic wipes and towels was set up onboard as additional protection. • Onboard cross calibration of the Pille-ISS space dosimeter (TL) system was performed. • The shielding effect of the protective curtain in terms of absorbed dose was measured with the onboard Pille system. • The shielding effect of the protective water curtain is approximately 24 ± 9% in absorbed dose.

  8. Official portrait of the STS 61-B crew

    Science.gov (United States)

    1985-01-01

    Official portrait of the STS 61-B crew. Kneeling next to the Official mission emblam are Astronaut Brewster Shaw, Jr., (right), mission commander; and Bryan D. O'Conner (left), pilot. In the back row are (l.-r.) Charles D. Walker, McDonnell Douglas payload specialist; Jerry L. Ross, Mary L. Cleve and Sherwood C. Spring -- all mission specialists; and Rodolfo Neri, Morelos payload specialist.

  9. HPLC determination of chlorine in air and water samples following precolumn derivatization to 4-bromoacetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry); Verma, K.K. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry)

    1993-11-01

    Chlorine has been determined in air and water samples by a rapid and sensitive method entailing precolumn derivatization to 4-bromoacetanilide. A mixed potassium bromide - acetanilide reagent was used as a trapping agent for chlorine in air, and for its derivatization. The 4-bromoacetanilide formed was determined by reversed-phase HPLC on an ODS column, using methanol-water, 65:35 (v/v) as mobile phase; detection was at 240 nm. A rectilinear calibration graph was obtained for the range 0.1-30 [mu]g mL[sup -1] chlorine; the limit of detection found to be 0.01 [mu]g mL[sup -1]. The precolumn derivative has been found to have a shelf-life of at least 21 days; this enables the use of the method for samples transported from the field to the analytical laboratory, or the testing of a variety of conditions for chlorine scrubbing studies without the need for immediate analysis of samples. Humic substances do not cause any interference with the proposed method and the presence of nitrite does not lead to artificially high results and consequent misleading conclusions of the presence of high levels of chlorine. (orig.)

  10. HPLC determination of chlorine in air and water samples following precolumn derivatization to 4-bromoacetanilide

    International Nuclear Information System (INIS)

    Jain, A.; Verma, K.K.

    1993-01-01

    Chlorine has been determined in air and water samples by a rapid and sensitive method entailing precolumn derivatization to 4-bromoacetanilide. A mixed potassium bromide - acetanilide reagent was used as a trapping agent for chlorine in air, and for its derivatization. The 4-bromoacetanilide formed was determined by reversed-phase HPLC on an ODS column, using methanol-water, 65:35 (v/v) as mobile phase; detection was at 240 nm. A rectilinear calibration graph was obtained for the range 0.1-30 μg mL -1 chlorine; the limit of detection found to be 0.01 μg mL -1 . The precolumn derivative has been found to have a shelf-life of at least 21 days; this enables the use of the method for samples transported from the field to the analytical laboratory, or the testing of a variety of conditions for chlorine scrubbing studies without the need for immediate analysis of samples. Humic substances do not cause any interference with the proposed method and the presence of nitrite does not lead to artificially high results and consequent misleading conclusions of the presence of high levels of chlorine. (orig.)

  11. The need for the vegetarian crew for long-term LSS

    Science.gov (United States)

    Gorgolewski, S.

    The long-term space missions pose very stringent demands on the high degree of closure levels. One obvious requirements is to assure the human crew a steady state self-supporting and self-regenerating LSS environment. The strictly vegetarian crew is the primary requirement to minimize the cost and weight of the spacecraft. This ensures the minimal matter circulation problems, because we can also use for food as many as possible fuly edible plants with nex to none, non digestable plant tissues. One important task is to select a range of plants which should satisfy the nutritional needs of the crew for a long-term, in the range of several years. Preliminary fitotron experiments with lettuce, demonstrated that one can achieve this goal, with a plant which is wholy edible even with the roots. This has been achieved with the use of several teens times stronger electrical field, than the 130 V/m fair weather global atmospheric electrical field. More experiments are in progress for the extension of the list of such vegetarian food. The selection of suitable plants which meet these highly demanding selection criteria, has to be done and can be done in ground based experiments. Plants ensure one important requirements of a closed loop CO2 and O2 circulation with the vegetarian crew in the loop. Extensive research programs are needed for this purpose using large ground based instalations like the Biosphere 2. The success of the use of electrical fields as replacement of gravitational field in the fitotron which proved the dominating role over gravity, of several kV/m electical field intensities. It also proves the feasibility of improving the crop productivity in ground based greenhouses, provided that we do restore inside the missing in "normal" designs our global electrical field. The fair weather electrical field (not to mention the enhanced field) is the missing vital environmental factor which has been systematically "overlooked" in practically all greenhouses. It is

  12. Benefits of Using Pairwise Trajectory Management in the Central East Pacific

    Science.gov (United States)

    Chartrand, Ryan; Ballard, Kathryn

    2016-01-01

    Pairwise Trajectory Management (PTM) is a concept that utilizes airborne and ground-based capabilities to enable airborne spacing operations in oceanic regions. The goal of PTM is to use enhanced surveillance, along with airborne tools, to manage the spacing between aircraft. Due to the enhanced airborne surveillance of Automatic Dependent Surveillance-Broadcast (ADS-B) information and reduced communication, the PTM minimum spacing distance will be less than distances currently required of an air traffic controller. Reduced minimum distance will increase the capacity of aircraft operations at a given altitude or volume of airspace, thereby increasing time on desired trajectory and overall flight efficiency. PTM is designed to allow a flight crew to resolve a specific traffic conflict (or conflicts), identified by the air traffic controller, while maintaining the flight crew's desired altitude. The air traffic controller issues a PTM clearance to a flight crew authorized to conduct PTM operations in order to resolve a conflict for the pair (or pairs) of aircraft (i.e., the PTM aircraft and a designated target aircraft). This clearance requires the flight crew of the PTM aircraft to use their ADS-B-enabled onboard equipment to manage their spacing relative to the designated target aircraft to ensure spacing distances that are no closer than the PTM minimum distance. When the air traffic controller determines that PTM is no longer required, the controller issues a clearance to cancel the PTM operation.

  13. Determination of PAH concentrations in the air of Belgrade in summer 1999

    International Nuclear Information System (INIS)

    Rajsic, S.; Tasic, M.; Novakovic, V.; Vukmirovic, Z.

    2002-01-01

    Laboratory for Environmental Physics from the Institute of Physics, Belgrade, has been involved in the programme 'Determination of polycyclic aromatic hydrocarbon (PAH) concentrations in the Balkans' organized in the period of June to August 1999. Laboratory for Environmental Physics is almost 15 years involved in fundamental, applied and development research in environmental science. Pollution sources, transport and transformation processes of pollutants and their impact on environment have been investigated. Main topics of the research are physical and chemical characterization of aerosols, trace metals determination in dry and wet deposition, suspended particles and vegetation. An automated wet/dry deposition collector was designed and constructed to be used for the trace metal deposition monitoring. Special attention is focused on sampling of particulate matter PM10 and PM2.5 that have been recognized to have the greatest impact on human health. All preparation and sample analysis are performed in class 100 clean room. Significant part of the activities is also related to the study of kinetics of combustion and its environmental effect and also to the development of methods, sensors and devices for monitoring of meteorological data and detection of polluting gases and vapours. In the Institute of Physics, an automated meteorological station has been constructed and installed in the Institute for nuclear science Vinca. A constitutive part of this meteorological station is the software that gives prediction of pollutant spreading. Models for evaluation of long-range air transport have been developed and applied to predict accidental and permanent transboundary transfer of pollutants. The work is a part of an international effort to monitor and control air pollution in the lower troposphere. (author)

  14. In-flight Diagnostic capability for Crew Health by DESI-mass spectrometry

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a flight-compatible, direct analysis mass spectrometer that can enable in situ diagnostic analyses for crew health and...

  15. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    Science.gov (United States)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  16. Exercise training as treatment of neck pain among military helicopter pilots and crew members

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling

    ) and Pressure-Pain-Threshold (PPT) in the trapezius m. and upper neck extensors. Secondary outcome: Maximal-Voluntary-Contraction (MVC) for cervical flexion/extension and shoulder-elevation. Results: Neck-pain for ETG was (mean±SD) 1.9±1.7 at baseline and 1.8±2.1 at follow-up, and correspondingly for REF 2.......4±2.0 and 1.7±1.7. Preliminary intention-to-treat analysis, revealed no significant effect on change in pain or PPT between groups. Further analysis, controlling for training frequency, intensity and volume are pending. Baseline MVC for ETG cervical flexion/extension was 184.4±59.8N and 247.2±63.8N......Introduction: Neck pain is frequent among helicopter pilots and crew (1). The aim of this study was to investigate if an exercise intervention could reduce the prevalence of neck-pain among helicopter pilots and crew. Methods: Thirty-one pilots and thirty-eight crew members were randomized...

  17. Preflight and postflight microbiological results from 25 space shuttle crews

    Science.gov (United States)

    Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.

    1993-01-01

    Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.

  18. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    Science.gov (United States)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  19. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    Science.gov (United States)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  20. Ionising Radiation and Cabin Crew Concerns

    International Nuclear Information System (INIS)

    Balouet, J.C.

    1999-01-01

    The trend in flying at higher altitudes and latitudes results in increased exposure to cosmic radiation. The biological incidence of highest energy particles and heavy ions is not well documented. Crew members flying transpolar routes are already exposed to levels of about 6 mSv.y -1 , and are expected to exceed this level in a number of cases. Epidemiological studies are important in risk assessment. Organisation of monitoring campaigns, aircrew information, solar flares and related high levels of exposures, pregnancy related issues, medical control, recognition of occupational exposure during illness, including cancer cases, and social protection, are also major concerns. (author)